这是一篇来自已证抗体库的有关小鼠 血小板源性生长因子受体 (Pdgfra) 的综述,是根据178篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合血小板源性生长因子受体 抗体。
血小板源性生长因子受体 同义词: AI115593; CD140a; Pdgfr-2

其他
  • 免疫组化; 小鼠; 1:300
血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nature (2019) ncbi
赛默飞世尔
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:500; 图 4b
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 12-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 4b). J Extracell Vesicles (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔血小板源性生长因子受体抗体(ThermoFisher, 17-1401)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a
赛默飞世尔血小板源性生长因子受体抗体(ThermoFisher, PA5-16571)被用于被用于免疫组化在人类样本上 (图 1a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3n
赛默飞世尔血小板源性生长因子受体抗体(Thermo Fisher, 14-1401-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3n). Transl Psychiatry (2021) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14?C1401-81)被用于被用于免疫组化在小鼠样本上 (图 3h). Cell Rep (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 1s3a
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 25-1401)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1s3a). elife (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 人类
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 17-1401-81)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔血小板源性生长因子受体抗体(eBiosciences, 12-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nature (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔血小板源性生长因子受体抗体(Thermo Fisher Scientific, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. elife (2020) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:200; 图 s7a
赛默飞世尔血小板源性生长因子受体抗体(Invitrogen, 13-C1401-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7a). Nature (2020) ncbi
大鼠 单克隆(APA5)
  • mass cytometry; 小鼠; 1:300; 图 s32a, s32c
赛默飞世尔血小板源性生长因子受体抗体(Biolegend, 14-1401-82)被用于被用于mass cytometry在小鼠样本上浓度为1:300 (图 s32a, s32c). Nat Commun (2020) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 25-1401-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Cell Rep (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:50; 图 s6c
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 17-1401-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s6c). Nat Commun (2019) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nature (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 3d
赛默飞世尔血小板源性生长因子受体抗体(Thermo Fisher, 12-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3d). FASEB J (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 5s1c
赛默飞世尔血小板源性生长因子受体抗体(Invitrogen/ eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5s1c). elife (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 s9h
赛默飞世尔血小板源性生长因子受体抗体(Invitrogen, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s9h). Science (2018) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔血小板源性生长因子受体抗体(eBiosciences, 12-1401-81)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). J Clin Invest (2017) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Cell (2017) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 1c
  • 免疫细胞化学; 小鼠; 图 1g
赛默飞世尔血小板源性生长因子受体抗体(ebioscience, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上 (图 1c) 和 被用于免疫细胞化学在小鼠样本上 (图 1g). Stem Cell Reports (2017) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 13-1401)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 图 s2b
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401)被用于被用于免疫组化在小鼠样本上 (图 s2b). Stem Cell Reports (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 S4
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401-81)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 S4). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 7a
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7a). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:30
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:30. Nat Med (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔血小板源性生长因子受体抗体(eBiosciences, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Cancer Res (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:75; 图 1l
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:75 (图 1l). J Cell Biol (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Nat Med (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-1401-82)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Circ Res (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 17-1401)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. EMBO J (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔血小板源性生长因子受体抗体(eBiosciences, 13-1401-80)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Sci Rep (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 12-1401-81)被用于被用于流式细胞仪在小鼠样本上 (表 2). Dev Biol (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:100; 图 2c
赛默飞世尔血小板源性生长因子受体抗体(e bioscience, 16-1401)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Gastroenterology (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 人类; 表 5
  • 免疫组化; 人类; 图 st7
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在人类样本上 (表 5) 和 被用于免疫组化在人类样本上 (图 st7). Gastroenterology (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 12140181)被用于被用于流式细胞仪在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫印迹; 小鼠; 1:100
赛默飞世尔血小板源性生长因子受体抗体(e bioscience, 16-1401)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Am J Pathol (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫细胞化学; 大鼠; 1:500
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 16-1401-82)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. J Neurosci (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Res (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上. Dev Cell (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBiosciences, 17-1401-81)被用于被用于流式细胞仪在小鼠样本上. PLoS Genet (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, 14-140182)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nature (2013) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 7
  • 免疫组化; 小鼠; 图 7
赛默飞世尔血小板源性生长因子受体抗体(eBioscience, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 7) 和 被用于免疫组化在小鼠样本上 (图 7). Proc Natl Acad Sci U S A (2006) ncbi
BioLegend
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 s1b
BioLegend血小板源性生长因子受体抗体(BioLegend, 135916)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1b). Nat Commun (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 s21
BioLegend血小板源性生长因子受体抗体(BioLegend, 135907)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s21). elife (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend血小板源性生长因子受体抗体(BioLegend, 135907)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Clin Invest (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend血小板源性生长因子受体抗体(Biolegend, 135908)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Rep (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend血小板源性生长因子受体抗体(BioLegend, 135907)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Sci Adv (2021) ncbi
大鼠 单克隆(APA5)
BioLegend血小板源性生长因子受体抗体(BioLegend, 135906)被用于. Aging Cell (2020) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 5g
BioLegend血小板源性生长因子受体抗体(BioLegend, 135906)被用于被用于流式细胞仪在小鼠样本上 (图 5g). Sci Adv (2020) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:200; 图 2s2d
BioLegend血小板源性生长因子受体抗体(BioLegend, 135910)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s2d). elife (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:400; 图 9b
BioLegend血小板源性生长因子受体抗体(Biolegend, 135912)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 9b). PLoS Biol (2019) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend血小板源性生长因子受体抗体(Biolegend, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2018) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 s2l
BioLegend血小板源性生长因子受体抗体(BioLegend, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2l). J Exp Med (2017) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:200; 图 s5c
BioLegend血小板源性生长因子受体抗体(BioLegend, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5c). J Clin Invest (2017) ncbi
大鼠 单克隆(APA5)
BioLegend血小板源性生长因子受体抗体(Biolegend, 135902)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 2
BioLegend血小板源性生长因子受体抗体(Biolegend, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 2). Thyroid (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend血小板源性生长因子受体抗体(BioLegend, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Am J Pathol (2015) ncbi
大鼠 单克隆(APA5)
BioLegend血小板源性生长因子受体抗体(Biolegend, 135907)被用于. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 7
BioLegend血小板源性生长因子受体抗体(Biolegend, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Immunol (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:400
BioLegend血小板源性生长因子受体抗体(BioLegend, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. J Biol Chem (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:400
BioLegend血小板源性生长因子受体抗体(BioLegend, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Dev Neurosci (2012) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆
  • 免疫细胞化学; 大鼠; 图 2s1c
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab203491)被用于被用于免疫细胞化学在大鼠样本上 (图 2s1c) 和 被用于免疫印迹在大鼠样本上 (图 3d). elife (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3b
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab134123)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3b). Front Cell Dev Biol (2022) ncbi
大鼠 单克隆(RM0004-3G28)
  • 免疫组化; 大鼠; 1:200; 图 2f
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab51875)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2f). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab203491)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab5460)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). J Cardiovasc Dev Dis (2021) ncbi
小鼠 单克隆(16A1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5c
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab96569)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5c). Front Aging Neurosci (2020) ncbi
单克隆(APA5)
  • mass cytometry; 小鼠; 图 1d
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab90967)被用于被用于mass cytometry在小鼠样本上 (图 1d). Cell Stem Cell (2019) ncbi
单克隆(APA5)
  • 免疫组化; 小鼠; 1:300; 图 5s1e
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, AB90967)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5s1e). elife (2019) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab134068)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆
  • 流式细胞仪; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab203491)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Bone Res (2018) ncbi
大鼠 单克隆(RM0004-3G28)
  • 免疫印迹基因敲除验证; 小鼠; 1:100; 图 3e
  • 免疫组化-石蜡切片; 小鼠; 图 4b
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab51875)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:100 (图 3e) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). Development (2018) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, ab93531)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Front Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司血小板源性生长因子受体抗体(Abcam, 5460)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8), 被用于免疫印迹在小鼠样本上 (图 8), 被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 7). J Immunol (2016) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3d
  • 免疫细胞化学; 小鼠; 1:500; 图 2e
安迪生物R&D血小板源性生长因子受体抗体(R&D, AF1062)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2e). Nat Commun (2022) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4h
  • 免疫印迹; 小鼠; 1:500; 图 2f
安迪生物R&D血小板源性生长因子受体抗体(R&D, AF1062)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4h) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2f). Int J Mol Sci (2022) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 e5a
安迪生物R&D血小板源性生长因子受体抗体(R&D systems, AF1062)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 e5a). Nat Immunol (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 2b
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上 (图 2b). Sci Adv (2022) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 2h
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2h). J Cell Sci (2022) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1u, s1b
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1u, s1b). Nucleic Acids Res (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:300
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:300. Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4o
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4o). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3c
安迪生物R&D血小板源性生长因子受体抗体(R&D, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3c). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1a
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上 (图 1a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
安迪生物R&D血小板源性生长因子受体抗体(R&D, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2h
  • 免疫印迹; 小鼠; 图 7f
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2h) 和 被用于免疫印迹在小鼠样本上 (图 7f). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3h
安迪生物R&D血小板源性生长因子受体抗体(R and D systems, AF1062)被用于被用于免疫组化在小鼠样本上 (图 3h). Cell Rep (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:50; 图 1
安迪生物R&D血小板源性生长因子受体抗体(R&D, AF1062)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). J Cardiovasc Dev Dis (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3a
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化在小鼠样本上 (图 3a). Am J Physiol Gastrointest Liver Physiol (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
安迪生物R&D血小板源性生长因子受体抗体(R&D Systems, AF1062)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). J Neurosci (2021) ncbi
圣克鲁斯生物技术
小鼠 单克隆
  • 免疫组化; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术血小板源性生长因子受体抗体(Santa Cruz Bio, sc-398206)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). elife (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3a
圣克鲁斯生物技术血小板源性生长因子受体抗体(Santa Cruz Biotechnology, sc-398206)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3a). BMC Neurosci (2019) ncbi
小鼠 单克隆(16A1)
  • 免疫组化; 人类; 1:250; 表 s4
圣克鲁斯生物技术血小板源性生长因子受体抗体(Santa Cruz, sc-21789)被用于被用于免疫组化在人类样本上浓度为1:250 (表 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(16A1)
  • 流式细胞仪; 人类; 图 s4
圣克鲁斯生物技术血小板源性生长因子受体抗体(Santa Cruz Biotechnology, sc-21789)被用于被用于流式细胞仪在人类样本上 (图 s4). Stem Cell Reports (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 1:50; 图 s2-2hk
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2-2hk). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 8c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 8c). Nat Commun (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3174)被用于被用于免疫细胞化学在小鼠样本上. Signal Transduct Target Ther (2022) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4g
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 2992)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4g). elife (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s3f
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s3f). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a). Mol Neurobiol (2022) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫印迹在小鼠样本上 (图 4c). iScience (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 图 6h
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化在小鼠样本上 (图 6h). Cell Rep Methods (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 小鼠; 1:500; 图 2k
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signalling Technology, 3174S)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2k). J Extracell Vesicles (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2i
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3164)被用于被用于免疫组化在人类样本上 (图 2i). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 2a). Circulation (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174)被用于被用于免疫组化在小鼠样本上 (图 7d). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹基因敲除验证; 人类; 图 3a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 3a). Biomol Ther (Seoul) (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Cell (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Cell Stem Cell (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 5f, s3b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 5f, s3b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 5a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 1b
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 1b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3174)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(C43E9)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3170S)被用于被用于免疫印迹在人类样本上 (图 5c). JCI Insight (2021) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3h
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 2992)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3h). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 3g
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 3g). elife (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 6a). J Biomed Sci (2020) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 人类; 1:200
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell signalling technology, D13C6)被用于被用于免疫组化在人类样本上浓度为1:200. Sci Rep (2020) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化-石蜡切片; 人类; 表 1
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 5241)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Neurol Med Chir (Tokyo) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 4547)被用于被用于免疫印迹在人类样本上 (图 7a). J Clin Med (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5h
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5h). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D1E1E)
  • 流式细胞仪; 小鼠; 1:500; 图 e10b
  • 免疫组化; 小鼠; 1:500; 图 4e
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signalling, 3174)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e10b) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 4e). Nature (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3f
  • 免疫细胞化学; 小鼠; 1:500; 图 3e
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3f) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3e). FASEB J (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1s1a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell signaling, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1s1a). elife (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:600; 图 5d
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(CST, 3174)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 (图 5d). elife (2019) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s7c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 3174S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s7c). Neuron (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Neurogastroenterol Motil (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 s3d
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s3d). Science (2018) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, D1E1E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(C43E9)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3170)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 1
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164)被用于被用于免疫沉淀在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 3c). Cancer Sci (2017) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3f
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3f). Dev Cell (2016) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 小鼠; 1:1000; 图 e5
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(cell signalling, 3174)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e5). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 e1
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(cell signalling, 4547)被用于被用于免疫印迹在小鼠样本上 (图 e1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3164S)被用于被用于免疫组化在小鼠样本上 (图 7a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signal, 2992)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 7
  • 免疫组化-石蜡切片; 小鼠; 图 8
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 2992)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7), 被用于免疫印迹在人类样本上 (图 7), 被用于免疫组化-石蜡切片在小鼠样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 8). J Immunol (2016) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, D13C6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell signaling, 3164)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫细胞化学; 人类; 1:200; 图 4
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, 5241P)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling Technology, D1E1E)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 s6). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫细胞化学; 人类; 1:500; 表 4
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(New England BioLabs, 5241)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 4). J Vis Exp (2015) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 人类; 1:150
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化在人类样本上浓度为1:150. Pathol Res Pract (2014) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 5241)被用于被用于免疫组化在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(D13C6)
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 5241)被用于被用于免疫组化在小鼠样本上. Bone (2013) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(23B2)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 2992)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cancer Cell (2011) ncbi
domestic rabbit 单克隆(D1E1E)
  • 免疫组化; 人类; 1:200
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司血小板源性生长因子受体抗体(Cell Signaling, 3174)被用于被用于免疫组化在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:2000. Cancer Cell (2011) ncbi
碧迪BD
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 5f
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 562776)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Front Oncol (2022) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:50; 图 1g
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 562774)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1g). Sci Adv (2022) ncbi
大鼠 单克隆(APA5)
  • 免疫细胞化学; 小鼠; 图 s2e
碧迪BD血小板源性生长因子受体抗体(BD, 558774)被用于被用于免疫细胞化学在小鼠样本上 (图 s2e). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(APA5)
  • 其他; 小鼠
碧迪BD血小板源性生长因子受体抗体(BD科学, 558774)被用于被用于其他在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4f
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4f). Neurosci Bull (2021) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1e
  • 免疫细胞化学; 大鼠; 1:200; 图 e6a
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1e) 和 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 e6a). Nat Neurosci (2021) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 图 e6e
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 e6e). Nat Neurosci (2021) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 6s2
碧迪BD血小板源性生长因子受体抗体(BD, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 6s2). elife (2020) ncbi
大鼠 单克隆(APA5)
  • 免疫细胞化学; 大鼠; 1:300; 图 s1g
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 558774)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 s1g). Cell Stem Cell (2019) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 图 s3a
碧迪BD血小板源性生长因子受体抗体(BD PharMingen, 558774)被用于被用于免疫组化在小鼠样本上 (图 s3a). Cell (2019) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:400; 图 4f
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). Cell Res (2019) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 图 1b
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 558774)被用于被用于免疫组化在小鼠样本上 (图 1b). Dev Cell (2018) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3e
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, AB_397117)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3e). J Neurosci (2018) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1m
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1m). Glia (2018) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1b
  • 免疫细胞化学; 小鼠; 1:500; 图 s2a
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 1:100; 图 3b
碧迪BD血小板源性生长因子受体抗体(BD, APA5)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3b). Dev Cell (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:500; 图 8
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 st1
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 562776)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Circ Res (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1h
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1h). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:500; 图 1g
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1g). Nat Commun (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 表 s6
碧迪BD血小板源性生长因子受体抗体(BD, 562774)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:200
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:200. Glia (2016) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 562774)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD血小板源性生长因子受体抗体(BD, APA5)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Neurobiol Dis (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:500; 图 3
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:800; 图 1
碧迪BD血小板源性生长因子受体抗体(BD PharMingen, 562171)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1). J Neurosci (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4b
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4b). Mol Biol Cell (2015) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD血小板源性生长因子受体抗体(BD Biosciences PharMingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Neurosci (2014) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(APA5)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD血小板源性生长因子受体抗体(BD Pharmingen, 558774)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(APA5)
  • 流式细胞仪; 小鼠
碧迪BD血小板源性生长因子受体抗体(BD Bioscience, 562776)被用于被用于流式细胞仪在小鼠样本上. Cells Tissues Organs (2013) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:800
碧迪BD血小板源性生长因子受体抗体(BD biosciences, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:800. PLoS ONE (2013) ncbi
大鼠 单克隆(APA5)
  • 免疫组化; 小鼠; 1:250
碧迪BD血小板源性生长因子受体抗体(BD, 558774)被用于被用于免疫组化在小鼠样本上浓度为1:250. Nat Neurosci (2013) ncbi
大鼠 单克隆(APA5)
  • 免疫细胞化学; 大鼠
碧迪BD血小板源性生长因子受体抗体(BD Biosciences, 558774)被用于被用于免疫细胞化学在大鼠样本上. Exp Neurol (2013) ncbi
文章列表
  1. Gao F, Li C, Smith S, Peinado N, Kohbodi G, Tran E, et al. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. elife. 2022;11: pubmed 出版商
  2. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  3. Mart xed nez Nieto G, Teppo H, Petrelius N, Izzi V, Devarajan R, Pet xe4 ist xf6 T, et al. Upregulated integrin α11 in the stroma of cutaneous squamous cell carcinoma promotes skin carcinogenesis. Front Oncol. 2022;12:981009 pubmed 出版商
  4. Lee K, Yeo S, Gong J, Koo O, Sohn I, Lee W, et al. PRRX1 is a master transcription factor of stromal fibroblasts for myofibroblastic lineage progression. Nat Commun. 2022;13:2793 pubmed 出版商
  5. Ha S, Jorgensen B, Wei L, Jin B, Kim M, Poudrier S, et al. Metalloendopeptidase ADAM-like Decysin 1 (ADAMDEC1) in Colonic Subepithelial PDGFRα+ Cells Is a New Marker for Inflammatory Bowel Disease. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  7. Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed R, et al. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. elife. 2022;11: pubmed 出版商
  8. Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S, Zhao J, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol. 2022;23:518-531 pubmed 出版商
  9. Chen L, You Q, Liu M, Li S, Wu Z, Hu J, et al. Remodeling of dermal adipose tissue alleviates cutaneous toxicity induced by anti-EGFR therapy. elife. 2022;11: pubmed 出版商
  10. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  11. Yoshitake R, Chang G, Saeki K, Ha D, Wu X, Wang J, et al. Single-Cell Transcriptomics Identifies Heterogeneity of Mouse Mammary Gland Fibroblasts With Distinct Functions, Estrogen Responses, Differentiation Processes, and Crosstalks With Epithelium. Front Cell Dev Biol. 2022;10:850568 pubmed 出版商
  12. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  13. Meschkat M, Steyer A, Weil M, Kusch K, Jahn O, Piepkorn L, et al. White matter integrity in mice requires continuous myelin synthesis at the inner tongue. Nat Commun. 2022;13:1163 pubmed 出版商
  14. Aberle T, Piefke S, Hillg xe4 rtner S, Tamm E, Wegner M, K xfc spert M. Transcription factor Zfp276 drives oligodendroglial differentiation and myelination by switching off the progenitor cell program. Nucleic Acids Res. 2022;50:1951-1968 pubmed 出版商
  15. Wang Y, Xu Y, Zhou K, Zhang S, Wang Y, Li T, et al. Autophagy Inhibition Reduces Irradiation-Induced Subcortical White Matter Injury Not by Reducing Inflammation, but by Increasing Mitochondrial Fusion and Inhibiting Mitochondrial Fission. Mol Neurobiol. 2022;59:1199-1213 pubmed 出版商
  16. Li Z, Chiang Y, He M, Worgall T, Zhou H, Jiang X. Liver sphingomyelin synthase 1 deficiency causes steatosis, steatohepatitis, fibrosis, and tumorigenesis: An effect of glucosylceramide accumulation. iScience. 2021;24:103449 pubmed 出版商
  17. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  18. McClenahan F, Dimitriou C, Koutsakis C, Dimitrakopoulos D, Arampatzis A, Kakouri P, et al. Isolation of neural stem and oligodendrocyte progenitor cells from the brain of live rats. Stem Cell Reports. 2021;16:2534-2547 pubmed 出版商
  19. Mangold K, Masek J, He J, Lendahl U, Fuchs E, Andersson E. Highly efficient manipulation of nervous system gene expression with NEPTUNE. Cell Rep Methods. 2021;1: pubmed 出版商
  20. Minakawa T, Matoba T, Ishidate F, Fujiwara T, Takehana S, Tabata Y, et al. Extracellular vesicles synchronize cellular phenotypes of differentiating cells. J Extracell Vesicles. 2021;10:e12147 pubmed 出版商
  21. Takanezawa Y, Tanabe S, Kato D, Ozeki R, Komoda M, Suzuki T, et al. Microglial ASD-related genes are involved in oligodendrocyte differentiation. Sci Rep. 2021;11:17825 pubmed 出版商
  22. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  23. Ambrosi T, Sinha R, Steininger H, Hoover M, Murphy M, Koepke L, et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. elife. 2021;10: pubmed 出版商
  24. Kohnke S, Buller S, Nuzzaci D, Ridley K, Lam B, Pivonkova H, et al. Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Rep. 2021;36:109362 pubmed 出版商
  25. Quijada P, Trembley M, Misra A, Myers J, Baker C, Pérez Hernández M, et al. Coordination of endothelial cell positioning and fate specification by the epicardium. Nat Commun. 2021;12:4155 pubmed 出版商
  26. Talley M, Nardini D, Shabbir N, Ehrman L, Prada C, Waclaw R. Generation of a Mouse Model to Study the Noonan Syndrome Gene Lztr1 in the Telencephalon. Front Cell Dev Biol. 2021;9:673995 pubmed 出版商
  27. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  28. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  29. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  30. Li J, Sun Z, Luo G, Wang S, Cui H, Yao Z, et al. Quercetin Attenuates Trauma-Induced Heterotopic Ossification by Tuning Immune Cell Infiltration and Related Inflammatory Insult. Front Immunol. 2021;12:649285 pubmed 出版商
  31. Wei Y, Sun H, Gui T, Yao L, Zhong L, Yu W, et al. The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. elife. 2021;10: pubmed 出版商
  32. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  33. Lu Z, Ortiz A, Verginadis I, Peck A, Zahedi F, Cho C, et al. Regulation of intercellular biomolecule transfer-driven tumor angiogenesis and responses to anticancer therapies. J Clin Invest. 2021;131: pubmed 出版商
  34. Velasco Estevez M, Koch N, Klejbor I, Laurent S, Dev K, Szutowicz A, et al. EBI2 Is Temporarily Upregulated in MO3.13 Oligodendrocytes during Maturation and Regulates Remyelination in the Organotypic Cerebellar Slice Model. Int J Mol Sci. 2021;22: pubmed 出版商
  35. Usui N, Berto S, Konishi A, Kondo M, Konopka G, Matsuzaki H, et al. Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry. 2021;11:242 pubmed 出版商
  36. Kimura K, Ramirez K, Nguyen T, Yamashiro Y, Sada A, Yanagisawa H. Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Sci Rep. 2021;11:8683 pubmed 出版商
  37. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  38. Sherafat A, Pfeiffer F, Reiss A, Wood W, Nishiyama A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat Commun. 2021;12:2265 pubmed 出版商
  39. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  40. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  41. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  42. Hemanthakumar K, Fang S, Anisimov A, Mäyränpää M, Mervaala E, Kivela R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. elife. 2021;10: pubmed 出版商
  43. Bressan R, Southgate B, Ferguson K, Blin C, Grant V, Alfazema N, et al. Regional identity of human neural stem cells determines oncogenic responses to histone H3.3 mutants. Cell Stem Cell. 2021;28:877-893.e9 pubmed 出版商
  44. Li X, Liu G, Yang L, Li Z, Zhang Z, Xu Z, et al. Decoding Cortical Glial Cell Development. Neurosci Bull. 2021;37:440-460 pubmed 出版商
  45. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  46. Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, et al. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis. 2021;12:163 pubmed 出版商
  47. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  48. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  49. Chao F, Zhang Y, Zhang L, Jiang L, Zhou C, Tang J, et al. Fluoxetine Promotes Hippocampal Oligodendrocyte Maturation and Delays Learning and Memory Decline in APP/PS1 Mice. Front Aging Neurosci. 2020;12:627362 pubmed 出版商
  50. Paredes I, Vieira J, Shah B, Ramunno C, Dyckow J, Adler H, et al. Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor-endothelial cell crosstalk. Nat Neurosci. 2021;24:478-488 pubmed 出版商
  51. Díaz Lezama N, Wolf A, Koch S, Pfaller A, Biber J, Guillonneau X, et al. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci. 2021;22: pubmed 出版商
  52. Ichinose M, Suzuki N, Wang T, Wright J, Lannagan T, Vrbanac L, et al. Stromal DLK1 promotes proliferation and inhibits differentiation of the intestinal epithelium during development. Am J Physiol Gastrointest Liver Physiol. 2021;320:G506-G520 pubmed 出版商
  53. Wen Y, Hou Y, Yi X, Sun S, Guo J, He X, et al. EZH2 activates CHK1 signaling to promote ovarian cancer chemoresistance by maintaining the properties of cancer stem cells. Theranostics. 2021;11:1795-1813 pubmed 出版商
  54. Sanmarco L, Wheeler M, Gutiérrez Vázquez C, Polonio C, Linnerbauer M, Pinho Ribeiro F, et al. Gut-licensed IFNγ+ NK cells drive LAMP1+TRAIL+ anti-inflammatory astrocytes. Nature. 2021;: pubmed 出版商
  55. Ye S, Sharipova D, Kozinova M, Klug L, D Souza J, Belinsky M, et al. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight. 2021;6: pubmed 出版商
  56. Zhang S, Wang Y, Xu J, Kim B, Deng W, Guo F. HIFα Regulates Developmental Myelination Independent of Autocrine Wnt Signaling. J Neurosci. 2021;41:251-268 pubmed 出版商
  57. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  58. Runyan C, Welch L, Lecuona E, Shigemura M, Amarelle L, Abdala Valencia H, et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;: pubmed 出版商
  59. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  60. Lai Y, Chao H, Lai A, Lin S, Chang Y, Huang Y. CPEB2-activated PDGFRα mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J Biomed Sci. 2020;27:52 pubmed 出版商
  61. de Gooyer J, Versleijen Jonkers Y, Hillebrandt Roeffen M, Frielink C, Desar I, de Wilt J, et al. Immunohistochemical selection of biomarkers for tumor-targeted image-guided surgery of myxofibrosarcoma. Sci Rep. 2020;10:2915 pubmed 出版商
  62. Suzuki H, Mikuni N, Sugita S, Aoyama T, Yokoyama R, Suzuki Y, et al. Molecular Aberrations Associated with Seizure Control in Diffuse Astrocytic and Oligodendroglial Tumors. Neurol Med Chir (Tokyo). 2020;60:147-155 pubmed 出版商
  63. Zhang B, Ma S, Rachmin I, He M, Baral P, Choi S, et al. Hyperactivation of sympathetic nerves drives depletion of melanocyte stem cells. Nature. 2020;577:676-681 pubmed 出版商
  64. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  65. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  66. Lin C, Lin W, Cho R, Yang C, Yeh Y, Hsiao L, et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med. 2020;9: pubmed 出版商
  67. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  68. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  69. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  70. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  71. Kim G, Rincon Fernandez Pacheco D, Saxon D, Yang A, Sabet S, Dutra Clarke M, et al. Rapid Generation of Somatic Mouse Mosaics with Locus-Specific, Stably Integrated Transgenic Elements. Cell. 2019;179:251-267.e24 pubmed 出版商
  72. Shin S, Kim E, Lee K, Kim H. TNF-α antagonist attenuates systemic lipopolysaccharide-induced brain white matter injury in neonatal rats. BMC Neurosci. 2019;20:45 pubmed 出版商
  73. SEGEL M, Neumann B, Hill M, Weber I, Viscomi C, Zhao C, et al. Niche stiffness underlies the ageing of central nervous system progenitor cells. Nature. 2019;573:130-134 pubmed 出版商
  74. Wolock S, Krishnan I, Tenen D, Matkins V, Camacho V, Patel S, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28:302-311.e5 pubmed 出版商
  75. Severe N, Karabacak N, Gustafsson K, Baryawno N, Courties G, Kfoury Y, et al. Stress-Induced Changes in Bone Marrow Stromal Cell Populations Revealed through Single-Cell Protein Expression Mapping. Cell Stem Cell. 2019;25:570-583.e7 pubmed 出版商
  76. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  77. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  78. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111 pubmed 出版商
  79. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  80. Dimas P, Montani L, Pereira J, Moreno D, Trötzmüller M, Gerber J, et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. elife. 2019;8: pubmed 出版商
  81. Jang M, Gould E, Xu J, Kim E, Kim J. Oligodendrocytes regulate presynaptic properties and neurotransmission through BDNF signaling in the mouse brainstem. elife. 2019;8: pubmed 出版商
  82. Walens A, DiMarco A, Lupo R, Kroger B, Damrauer J, Alvarez J. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. elife. 2019;8: pubmed 出版商
  83. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  84. Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira J, et al. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. elife. 2019;8: pubmed 出版商
  85. Li Q, Cheng Z, Zhou L, Darmanis S, Neff N, Okamoto J, et al. Developmental Heterogeneity of Microglia and Brain Myeloid Cells Revealed by Deep Single-Cell RNA Sequencing. Neuron. 2019;101:207-223.e10 pubmed 出版商
  86. HERRING B, Hoggatt A, Gupta A, Wo J. Gastroparesis is associated with decreased FOXF1 and FOXF2 in humans, and loss of FOXF1 and FOXF2 results in gastroparesis in mice. Neurogastroenterol Motil. 2019;31:e13528 pubmed 出版商
  87. Wu R, Li A, Sun B, Sun J, Zhang J, Zhang T, et al. A novel m6A reader Prrc2a controls oligodendroglial specification and myelination. Cell Res. 2019;29:23-41 pubmed 出版商
  88. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  89. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  90. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  91. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  92. Hemming M, Lawlor M, Zeid R, Lesluyes T, Fletcher J, Raut C, et al. Gastrointestinal stromal tumor enhancers support a transcription factor network predictive of clinical outcome. Proc Natl Acad Sci U S A. 2018;115:E5746-E5755 pubmed 出版商
  93. Chakrabarti R, Celià Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science. 2018;360: pubmed 出版商
  94. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  95. Winkler C, Yabut O, Fregoso S, Gomez H, Dwyer B, Pleasure S, et al. The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. J Neurosci. 2018;38:5237-5250 pubmed 出版商
  96. Kelenis D, Hart E, Edwards Fligner M, Johnson J, Vue T. ASCL1 regulates proliferation of NG2-glia in the embryonic and adult spinal cord. Glia. 2018;66:1862-1880 pubmed 出版商
  97. Gao Z, Daquinag A, Su F, Snyder B, Kolonin M. PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development. 2018;145: pubmed 出版商
  98. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  99. Kuroda M, Muramatsu R, Maedera N, Koyama Y, Hamaguchi M, Fujimura H, et al. Peripherally derived FGF21 promotes remyelination in the central nervous system. J Clin Invest. 2017;127:3496-3509 pubmed 出版商
  100. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  101. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  102. Boulanger J, Messier C. Doublecortin in Oligodendrocyte Precursor Cells in the Adult Mouse Brain. Front Neurosci. 2017;11:143 pubmed 出版商
  103. Ohlund D, Handly Santana A, Biffi G, Elyada E, Almeida A, Ponz Sarvisé M, et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J Exp Med. 2017;214:579-596 pubmed 出版商
  104. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  105. Ibata M, Iwasaki J, Fujioka Y, Nakagawa K, Darmanin S, Onozawa M, et al. Leukemogenic kinase FIP1L1-PDGFRA and a small ubiquitin-like modifier E3 ligase, PIAS1, form a positive cross-talk through their enzymatic activities. Cancer Sci. 2017;108:200-207 pubmed 出版商
  106. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  107. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  108. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  109. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  110. Zheng X, Yang P, Lackford B, Bennett B, Wang L, Li H, et al. CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports. 2016;7:897-910 pubmed 出版商
  111. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  112. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  113. Jiang M, Liu L, He X, Wang H, Lin W, Wang H, et al. Regulation of PERK-eIF2? signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun. 2016;7:12185 pubmed 出版商
  114. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  115. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  116. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  117. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  118. Yang X, Lin Y, Shi Y, Li B, Liu W, Yin W, et al. FAP Promotes Immunosuppression by Cancer-Associated Fibroblasts in the Tumor Microenvironment via STAT3-CCL2 Signaling. Cancer Res. 2016;76:4124-35 pubmed 出版商
  119. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  120. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  121. Rothhammer V, Mascanfroni I, Bunse L, Takenaka M, Kenison J, Mayo L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22:586-97 pubmed 出版商
  122. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  123. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  124. Okumura F, Uematsu K, Byrne S, Hirano M, Joo Okumura A, Nishikimi A, et al. Parallel Regulation of von Hippel-Lindau Disease by pVHL-Mediated Degradation of B-Myb and Hypoxia-Inducible Factor ?. Mol Cell Biol. 2016;36:1803-17 pubmed 出版商
  125. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  126. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  127. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  128. Zhao C, Deng Y, Liu L, Yu K, Zhang L, Wang H, et al. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun. 2016;7:10883 pubmed 出版商
  129. Gawade S, Mayer C, Hafen K, Barthlott T, Krenger W, Szinnai G. Cell Growth Dynamics in Embryonic and Adult Mouse Thyroid Revealed by a Novel Approach to Detect Thyroid Gland Subpopulations. Thyroid. 2016;26:591-9 pubmed 出版商
  130. Guye P, Ebrahimkhani M, Kipniss N, Velazquez J, Schoenfeld E, Kiani S, et al. Genetically engineering self-organization of human pluripotent stem cells into a liver bud-like tissue using Gata6. Nat Commun. 2016;7:10243 pubmed 出版商
  131. Morrison G, Scognamiglio R, Trumpp A, Smith A. Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification. EMBO J. 2016;35:356-68 pubmed 出版商
  132. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  133. Zomerman W, Plasschaert S, Diks S, Lourens H, Meeuwsen de Boer T, Hoving E, et al. Exogenous HGF Bypasses the Effects of ErbB Inhibition on Tumor Cell Viability in Medulloblastoma Cell Lines. PLoS ONE. 2015;10:e0141381 pubmed 出版商
  134. Tsukui T, Ueha S, Shichino S, Inagaki Y, Matsushima K. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am J Pathol. 2015;185:2939-48 pubmed 出版商
  135. Peckham H, Giuffrida L, Wood R, Gonsalvez D, Ferner A, Kilpatrick T, et al. Fyn is an intermediate kinase that BDNF utilizes to promote oligodendrocyte myelination. Glia. 2016;64:255-69 pubmed 出版商
  136. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  137. ZiÄ™tara N, Łyszkiewicz M, PuchaÅ‚ka J, Witzlau K, Reinhardt A, Förster R, et al. Multicongenic fate mapping quantification of dynamics of thymus colonization. J Exp Med. 2015;212:1589-601 pubmed 出版商
  138. Yanagida A, Chikada H, Ito K, Umino A, Kato Itoh M, Yamazaki Y, et al. Liver maturation deficiency in p57(Kip2)-/- mice occurs in a hepatocytic p57(Kip2) expression-independent manner. Dev Biol. 2015;407:331-43 pubmed 出版商
  139. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  140. Larsson K, Kock A, Idborg H, Arsenian Henriksson M, Martinsson T, Johnsen J, et al. COX/mPGES-1/PGE2 pathway depicts an inflammatory-dependent high-risk neuroblastoma subset. Proc Natl Acad Sci U S A. 2015;112:8070-5 pubmed 出版商
  141. James S, Fox J, Afsari F, Lee J, Clough S, Knight C, et al. Multiparameter Analysis of Human Bone Marrow Stromal Cells Identifies Distinct Immunomodulatory and Differentiation-Competent Subtypes. Stem Cell Reports. 2015;4:1004-15 pubmed 出版商
  142. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  143. Kondo J, Powell A, Wang Y, Musser M, Southard Smith E, Franklin J, et al. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology. 2015;149:407-19.e8 pubmed 出版商
  144. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  145. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed 出版商
  146. Westcott J, Prechtl A, Maine E, Dang T, Esparza M, Sun H, et al. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest. 2015;125:1927-43 pubmed 出版商
  147. Wang Y, Shi C, Lu Y, Poulin E, Franklin J, Coffey R. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol. 2015;185:1123-34 pubmed 出版商
  148. Liu W, Zhou H, Liu L, Zhao C, Deng Y, Chen L, et al. Disruption of neurogenesis and cortical development in transgenic mice misexpressing Olig2, a gene in the Down syndrome critical region. Neurobiol Dis. 2015;77:106-16 pubmed 出版商
  149. Agley C, Rowlerson A, Velloso C, Lazarus N, Harridge S. Isolation and quantitative immunocytochemical characterization of primary myogenic cells and fibroblasts from human skeletal muscle. J Vis Exp. 2015;:52049 pubmed 出版商
  150. Göttle P, Sabo J, Heinen A, Venables G, Torres K, Tzekova N, et al. Oligodendroglial maturation is dependent on intracellular protein shuttling. J Neurosci. 2015;35:906-19 pubmed 出版商
  151. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  152. Moyon S, Dubessy A, Aigrot M, Trotter M, Huang J, Dauphinot L, et al. Demyelination causes adult CNS progenitors to revert to an immature state and express immune cues that support their migration. J Neurosci. 2015;35:4-20 pubmed 出版商
  153. Ding X, Lucas T, Marcuzzi G, Pfister H, Eming S. Distinct functions of epidermal and myeloid-derived VEGF-A in skin tumorigenesis mediated by HPV8. Cancer Res. 2015;75:330-43 pubmed 出版商
  154. Umberger N, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350-8 pubmed 出版商
  155. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  156. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  157. Mizoguchi T, Pinho S, Ahmed J, Kunisaki Y, Hanoun M, Mendelson A, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014;29:340-9 pubmed 出版商
  158. Wahl S, McLane L, Bercury K, Macklin W, Wood T. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci. 2014;34:4453-65 pubmed 出版商
  159. Roh J, Huang J, Hu W, Yang X, Jennings N, Sehgal V, et al. Biologic effects of platelet-derived growth factor receptor ? blockade in uterine cancer. Clin Cancer Res. 2014;20:2740-50 pubmed 出版商
  160. Gao Y, Bayless K, Li Q. TGFBR1 is required for mouse myometrial development. Mol Endocrinol. 2014;28:380-94 pubmed 出版商
  161. McQueen J, Reimer M, Holland P, Manso Y, McLaughlin M, Fowler J, et al. Restoration of oligodendrocyte pools in a mouse model of chronic cerebral hypoperfusion. PLoS ONE. 2014;9:e87227 pubmed 出版商
  162. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  163. Kikuchi K, Hettmer S, Aslam M, Michalek J, Laub W, Wilky B, et al. Cell-cycle dependent expression of a translocation-mediated fusion oncogene mediates checkpoint adaptation in rhabdomyosarcoma. PLoS Genet. 2014;10:e1004107 pubmed 出版商
  164. Knösel T, Werner M, Jung A, Kirchner T, Dürr H. Dedifferentiated chondrosarcoma mimicking a giant cell tumor. Is this low grade dedifferentiated chondrosarcoma?. Pathol Res Pract. 2014;210:194-7 pubmed 出版商
  165. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  166. Osada M, Singh V, Wu K, Sant Angelo D, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS ONE. 2013;8:e83024 pubmed 出版商
  167. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  168. Babic A, Jang S, Nicolov E, Voicu H, Luckey C. Culture of mouse amniotic fluid-derived cells on irradiated STO feeders results in the generation of primitive endoderm cell lines capable of self-renewal in vitro. Cells Tissues Organs. 2013;198:111-26 pubmed 出版商
  169. Khalaf Nazzal R, Bruel Jungerman E, Rio J, Bureau J, Irinopoulou T, Sumia I, et al. Organelle and cellular abnormalities associated with hippocampal heterotopia in neonatal doublecortin knockout mice. PLoS ONE. 2013;8:e72622 pubmed 出版商
  170. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  171. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  172. Pendleton J, Shamblott M, Gary D, Belegu V, Hurtado A, Malone M, et al. Chondroitin sulfate proteoglycans inhibit oligodendrocyte myelination through PTP?. Exp Neurol. 2013;247:113-21 pubmed 出版商
  173. Kan L, Peng C, McGuire T, Kessler J. Glast-expressing progenitor cells contribute to heterotopic ossification. Bone. 2013;53:194-203 pubmed 出版商
  174. Buono K, Vadlamuri D, Gan Q, Levison S. Leukemia inhibitory factor is essential for subventricular zone neural stem cell and progenitor homeostasis as revealed by a novel flow cytometric analysis. Dev Neurosci. 2012;34:449-62 pubmed 出版商
  175. Helmy K, Halliday J, Fomchenko E, Setty M, Pitter K, Hafemeister C, et al. Identification of global alteration of translational regulation in glioma in vivo. PLoS ONE. 2012;7:e46965 pubmed 出版商
  176. Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-86 pubmed 出版商
  177. Taylor R, Patel S, Lin E, Butler B, Lake J, Newberry R, et al. Lymphotoxin-independent expression of TNF-related activation-induced cytokine by stromal cells in cryptopatches, isolated lymphoid follicles, and Peyer's patches. J Immunol. 2007;178:5659-67 pubmed
  178. Mukouyama Y, Deneen B, Lukaszewicz A, Novitch B, Wichterle H, Jessell T, et al. Olig2+ neuroepithelial motoneuron progenitors are not multipotent stem cells in vivo. Proc Natl Acad Sci U S A. 2006;103:1551-6 pubmed