这是一篇来自已证抗体库的有关小鼠 Pdpn的综述,是根据93篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pdpn 抗体。
Pdpn 同义词: E11; Gp38; OTS-8; RANDAM-2; T1-alpha; T1a; T1alpha

BioLegend
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). PLoS Biol (2022) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 2
BioLegend Pdpn抗体(BioLegend, 127402)被用于被用于免疫组化在小鼠样本上 (图 2). BMC Nephrol (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2e, s1b
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2e, s1b). Sci Rep (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:250; 图 1e
BioLegend Pdpn抗体(BioLegend, 127414)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 1e). Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:1000
BioLegend Pdpn抗体(Biolegend, 127410)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1h
BioLegend Pdpn抗体(BioLegend, 127403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1h). Clin Cancer Res (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 1
BioLegend Pdpn抗体(BioLegend, clone 8.8.1 (#127402)被用于被用于免疫组化在小鼠样本上 (图 1). BMC Nephrol (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Pdpn抗体(Biolegend, 127407)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Theranostics (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1e
  • 免疫组化; 小鼠
BioLegend Pdpn抗体(Biolegend, 127402)被用于被用于流式细胞仪在小鼠样本上 (图 1e) 和 被用于免疫组化在小鼠样本上. Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pdpn抗体(Biolegend, 127412)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • mass cytometry; 小鼠; 1:300; 图 s32a, s32c
BioLegend Pdpn抗体(Biolegend, 127415)被用于被用于mass cytometry在小鼠样本上浓度为1:300 (图 s32a, s32c). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pdpn抗体(BioLegend, 127409)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Oncol (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Sci Rep (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 s9d
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于免疫组化在小鼠样本上 (图 s9d). Nature (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:300; 图 1b
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1b). Nat Immunol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 3e
BioLegend Pdpn抗体(BioLegend, 8.1.1.)被用于被用于免疫组化在小鼠样本上 (图 3e). PLoS Pathog (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上 (图 3b). PLoS ONE (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 S1
BioLegend Pdpn抗体(BioLegend, 8.1.)被用于被用于流式细胞仪在小鼠样本上 (图 S1). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 7
BioLegend Pdpn抗体(Biolegend, 127402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Dev Biol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Pdpn抗体(Biolegend, clone 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫细胞化学; 小鼠; 图 5
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
赛默飞世尔
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:50; 图 2c-d
赛默飞世尔 Pdpn抗体(Thermo Fisher, 14-5381-82)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2c-d). elife (2022) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:200; 图 s6-6
赛默飞世尔 Pdpn抗体(ThermoFisher, MA5-16113)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s6-6). elife (2022) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-石蜡切片; 小鼠; 图 s5f
赛默飞世尔 Pdpn抗体(Invitrogen, 14-5381-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5f). Sci Adv (2022) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7b
  • 流式细胞仪; 小鼠; 1:100; 图 s10
赛默飞世尔 Pdpn抗体(Invitrogen, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7b) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s10). Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pdpn抗体(Thermo Fisher Scientific, eBio8.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
赛默飞世尔 Pdpn抗体(eBioscience, 12-5381-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Cell Res (2020) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:500
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1 14-5381-82)被用于被用于免疫组化在小鼠样本上浓度为1:500. Acta Neuropathol (2020) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 图 ex10d
赛默飞世尔 Pdpn抗体(Thermofisher, eBio8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 ex10d). Nature (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 ex1e
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 ex1e). Nature (2019) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔 Pdpn抗体(eBioscience, 25-5381-82)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔 Pdpn抗体(ThermoFisher, MA5-16113)被用于被用于免疫印迹在小鼠样本上 (图 6a). Bone Rep (2019) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:200; 图 s2e
赛默飞世尔 Pdpn抗体(eBiosciences, 12-5381-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2e). Nat Neurosci (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 抑制或激活实验; 小鼠; 图 5
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于抑制或激活实验在小鼠样本上 (图 5), 被用于免疫组化在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Blood (2017) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 图 5e
赛默飞世尔 Pdpn抗体(eBioscience, eBio8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Exp Med (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 人类; 图 2b
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:500; 图 s1
赛默飞世尔 Pdpn抗体(Affymetrix, 53-5381-80)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Nat Med (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 7a
  • 免疫组化; 小鼠; 图 10a
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 7a) 和 被用于免疫组化在小鼠样本上 (图 10a). Nat Commun (2015) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:200; 图 4d
赛默飞世尔 Pdpn抗体(eBioscience, 53-5381-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Nat Commun (2015) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pdpn抗体(eBioscience, 53-5381-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pdpn抗体(Invitrogen, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫印迹; 小鼠
赛默飞世尔 Pdpn抗体(eBioscience, 13-5381-82)被用于被用于免疫印迹在小鼠样本上. Clin Exp Immunol (2014) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 人类; 1:100
赛默飞世尔 Pdpn抗体(eBioscience, 14-5381-82)被用于被用于免疫组化在人类样本上浓度为1:100. Integr Biol (Camb) (2012) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 1:50; 表 1
赛默飞世尔 Pdpn抗体(eBioscience, 14-5381)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (表 1). Hepatology (2009) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(18H5)
  • 免疫组化-石蜡切片; 人类; 1:750; 图 4b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:750 (图 4b). Front Oncol (2022) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e1b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e1b). Nat Immunol (2022) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2l
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2l). Nat Commun (2021) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). Genes Dev (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, Ab109059)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2a). NPJ Regen Med (2021) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化; 小鼠; 1:250; 图 2i
  • 免疫印迹; 小鼠; 图 s2-1k
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2i) 和 被用于免疫印迹在小鼠样本上 (图 s2-1k). elife (2020) ncbi
小鼠 单克隆(18H5)
  • 免疫组化; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, Ab10288)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3). Acta Orthop (2020) ncbi
单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:170; 图 1b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab92319)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 1b). Front Immunol (2019) ncbi
小鼠 单克隆(18H5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Arthritis Res Ther (2019) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3g
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3g). PLoS Genet (2017) ncbi
小鼠 单克隆(18H5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b). Arthritis Res Ther (2017) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 s11b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, 11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 s11b). Proc Natl Acad Sci U S A (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a). Evid Based Complement Alternat Med (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化在人类样本上 (图 2). PLoS ONE (2015) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(18H5)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(18H5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
Novus Biologicals
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
Novus Biologicals Pdpn抗体(Novus, NB600-1015)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). elife (2021) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s16f
安迪生物R&D Pdpn抗体(R&D Systems, AF3244)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s16f). Nat Commun (2022) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
安迪生物R&D Pdpn抗体(R&D Systems, AF3244)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Theranostics (2021) ncbi
Fitzgerald Industries
  • 免疫组化; 小鼠; 1:500; 图 4
Fitzgerald Industries Pdpn抗体(Fitzgerald, 10R-P133a)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Nature (2015) ncbi
Developmental Studies Hybridoma Bank
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3s2b
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3s2b). elife (2022) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2c
Developmental Studies Hybridoma Bank Pdpn抗体(Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2c). Clin Exp Metastasis (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:100; 图 3f
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3f). Cell Rep (2021) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1s4b
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1s4b). elife (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1f
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1f). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于. Stem Cell Reports (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; fruit fly ; 1:50; 图 2a
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8C11)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2a). Development (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 2a
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 2a). Dev Biol (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:200; 图 2d
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). elife (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). PLoS Biol (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:200; 图 1h
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1h). J Clin Invest (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 e1d
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 e1d). Nature (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:1000; 图 4
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Development (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Sci Rep (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s7c
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s7c). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3aa
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3aa). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1g
Developmental Studies Hybridoma Bank Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:500
Developmental Studies Hybridoma Bank Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 s7
Developmental Studies Hybridoma Bank Pdpn抗体(Iowa Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 s7). Cell Death Dis (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). Development (2014) ncbi
文章列表
  1. Gao F, Li C, Smith S, Peinado N, Kohbodi G, Tran E, et al. Decoding the IGF1 signaling gene regulatory network behind alveologenesis from a mouse model of bronchopulmonary dysplasia. elife. 2022;11: pubmed 出版商
  2. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  3. Pribluda A, Daemen A, Lima A, Wang X, Hafner M, Poon C, et al. EHMT2 methyltransferase governs cell identity in the lung and is required for KRAS G12D tumor development and propagation. elife. 2022;11: pubmed 出版商
  4. Werder R, Liu T, Abo K, Lindstrom Vautrin J, Villacorta Martin C, Huang J, et al. CRISPR interference interrogation of COPD GWAS genes reveals the functional significance of desmoplakin in iPSC-derived alveolar epithelial cells. Sci Adv. 2022;8:eabo6566 pubmed 出版商
  5. Zhang K, Yao E, Chen B, Chuang E, Wong J, Seed R, et al. Acquisition of cellular properties during alveolar formation requires differential activity and distribution of mitochondria. elife. 2022;11: pubmed 出版商
  6. Fischer A, Wannemacher J, Christ S, Koopmans T, Kadri S, Zhao J, et al. Neutrophils direct preexisting matrix to initiate repair in damaged tissues. Nat Immunol. 2022;23:518-531 pubmed 出版商
  7. Günes Günsel G, Conlon T, Jeridi A, Kim R, Ertuz Z, Lang N, et al. The arginine methyltransferase PRMT7 promotes extravasation of monocytes resulting in tissue injury in COPD. Nat Commun. 2022;13:1303 pubmed 出版商
  8. Jasso G, Jaiswal A, Varma M, Laszewski T, Grauel A, Omar A, et al. Colon stroma mediates an inflammation-driven fibroblastic response controlling matrix remodeling and healing. PLoS Biol. 2022;20:e3001532 pubmed 出版商
  9. Kajiwara K, Sawa Y. Overexpression of SGLT2 in the kidney of a P. gingivalis LPS-induced diabetic nephropathy mouse model. BMC Nephrol. 2021;22:287 pubmed 出版商
  10. Hayakawa M, Sakata A, Hayakawa H, Matsumoto H, Hiramoto T, Kashiwakura Y, et al. Characterization and visualization of murine coagulation factor VIII-producing cells in vivo. Sci Rep. 2021;11:14824 pubmed 出版商
  11. Wutschka J, Kast B, Sator Schmitt M, Appak Baskoy S, Hess J, Sinn H, et al. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis. 2021;38:411-423 pubmed 出版商
  12. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  13. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  14. Shan Z, Li L, Atkins C, Wang M, Wen Y, Jeong J, et al. Chitinase 3-like-1 contributes to acetaminophen-induced liver injury by promoting hepatic platelet recruitment. elife. 2021;10: pubmed 出版商
  15. Liberti D, Kremp M, Liberti W, Penkala I, Li S, Zhou S, et al. Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep. 2021;35:109092 pubmed 出版商
  16. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  17. Seavey C, Pobbati A, Hallett A, Ma S, Reynolds J, Kanai R, et al. WWTR1(TAZ)-CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev. 2021;35:512-527 pubmed 出版商
  18. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  19. Kurashima Y, Kigoshi T, Murasaki S, Arai F, Shimada K, Seki N, et al. Pancreatic glycoprotein 2 is a first line of defense for mucosal protection in intestinal inflammation. Nat Commun. 2021;12:1067 pubmed 出版商
  20. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  21. Kajiwara K, Sawa Y, Fujita T, Tamaoki S. Immunohistochemical study for the expression of leukocyte adhesion molecules, and FGF23 and ACE2 in P. gingivalis LPS-induced diabetic nephropathy. BMC Nephrol. 2021;22:3 pubmed 出版商
  22. Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics. 2021;11:117-131 pubmed 出版商
  23. Song L, Chen X, Swanson T, LaViolette B, Pang J, Cunio T, et al. Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. elife. 2020;9: pubmed 出版商
  24. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  25. Rashid M, Smith R, Nagra N, Wheway K, Watkins B, Snelling S, et al. Rotator cuff repair with biological graft augmentation causes adverse tissue outcomes. Acta Orthop. 2020;91:782-788 pubmed 出版商
  26. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  27. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  28. Ikonomou L, Herriges M, Lewandowski S, Marsland R, Villacorta Martin C, Caballero I, et al. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun. 2020;11:635 pubmed 出版商
  29. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  30. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  31. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  32. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  33. Shibata Germanos S, Goodman J, Grieg A, Trivedi C, Benson B, Foti S, et al. Structural and functional conservation of non-lumenized lymphatic endothelial cells in the mammalian leptomeninges. Acta Neuropathol. 2020;139:383-401 pubmed 出版商
  34. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  35. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  36. Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol. 2019;9:187 pubmed 出版商
  37. Katsura H, Kobayashi Y, Tata P, Hogan B. IL-1 and TNFα Contribute to the Inflammatory Niche to Enhance Alveolar Regeneration. Stem Cell Reports. 2019;12:657-666 pubmed 出版商
  38. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  39. Bergsma A, Ganguly S, Wiegand M, Dick D, Williams B, Miranti C. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Rep. 2019;10:100196 pubmed 出版商
  40. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  41. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  42. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C, et al. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018;8:8308 pubmed 出版商
  43. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  44. Zmojdzian M, de Joussineau S, Da Ponte J, Jagla K. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila. Development. 2018;145: pubmed 出版商
  45. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  46. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  47. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  48. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  49. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  50. Dakin S, Buckley C, Al Mossawi M, Hedley R, Martinez F, Wheway K, et al. Persistent stromal fibroblast activation is present in chronic tendinopathy. Arthritis Res Ther. 2017;19:16 pubmed 出版商
  51. Payne H, Ponomaryov T, Watson S, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood. 2017;129:2013-2020 pubmed 出版商
  52. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  53. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  54. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  55. Stock A, Hansen J, Sleeman M, McKenzie B, Wicks I. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J Exp Med. 2016;213:1983-98 pubmed 出版商
  56. Laresgoiti U, Nikolić M, Rao C, Brady J, Richardson R, Batchen E, et al. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development. 2016;143:3686-3699 pubmed
  57. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  58. Karaman S, Hollmén M, Yoon S, Alkan H, Alitalo K, Wolfrum C, et al. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Sci Rep. 2016;6:31566 pubmed 出版商
  59. Lao T, Jiang Z, Yun J, Qiu W, Guo F, Huang C, et al. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A. 2016;113:E4681-7 pubmed 出版商
  60. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  61. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  62. Chen Y, Li J, Li Q, Wang T, Xing L, Xu H, et al. Du-Huo-Ji-Sheng-Tang Attenuates Inflammation of TNF-Tg Mice Related to Promoting Lymphatic Drainage Function. Evid Based Complement Alternat Med. 2016;2016:7067691 pubmed 出版商
  63. Jordan Williams K, Ramanujam N, Farr A, Ruddell A. The Lymphatic Endothelial mCLCA1 Antibody Induces Proliferation and Growth of Lymph Node Lymphatic Sinuses. PLoS ONE. 2016;11:e0156079 pubmed 出版商
  64. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  65. Crosswhite P, Podsiadlowska J, Curtis C, Gao S, Xia L, Srinivasan R, et al. CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity. J Clin Invest. 2016;126:2254-66 pubmed 出版商
  66. San Agustin J, Klena N, Granath K, Panigrahy A, Stewart E, Devine W, et al. Genetic link between renal birth defects and congenital heart disease. Nat Commun. 2016;7:11103 pubmed 出版商
  67. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  68. Munger S, Geng X, Srinivasan R, Witte M, Paul D, Simon A. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol. 2016;412:173-90 pubmed 出版商
  69. Regan E, Sibley R, Cenik B, Silva A, Girard L, Minna J, et al. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS ONE. 2016;11:e0150963 pubmed 出版商
  70. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  71. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  72. Lau W, Pandey V, Kong X, Wang X, Wu Z, Zhu T, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2. PLoS ONE. 2015;10:e0141947 pubmed 出版商
  73. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  74. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  75. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  76. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  77. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  78. Ngo J, Matsuyama M, Kim C, Poventud Fuentes I, Bates A, Siedlak S, et al. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis. 2015;6:e1706 pubmed 出版商
  79. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  80. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  81. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  82. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  83. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  84. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  85. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  86. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  87. Astarita J, Cremasco V, Fu J, Darnell M, Peck J, Nieves Bonilla J, et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol. 2015;16:75-84 pubmed 出版商
  88. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  89. Ruseva M, Takahashi M, Fujita T, Pickering M. C3 dysregulation due to factor H deficiency is mannan-binding lectin-associated serine proteases (MASP)-1 and MASP-3 independent in vivo. Clin Exp Immunol. 2014;176:84-92 pubmed 出版商
  90. Ghaedi M, Mendez J, Bove P, Sivarapatna A, Raredon M, Niklason L. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials. 2014;35:699-710 pubmed 出版商
  91. Dellinger M, Meadows S, Wynne K, Cleaver O, Brekken R. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE. 2013;8:e74686 pubmed 出版商
  92. Kloxin A, Lewis K, DeForest C, Seedorf G, Tibbitt M, Balasubramaniam V, et al. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol (Camb). 2012;4:1540-9 pubmed 出版商
  93. Asahina K, Tsai S, Li P, Ishii M, Maxson R, Sucov H, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology. 2009;49:998-1011 pubmed 出版商