这是一篇来自已证抗体库的有关小鼠 Pdpn的综述,是根据74篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pdpn 抗体。
Pdpn 同义词: E11; Gp38; OTS-8; RANDAM-2; T1-alpha; T1a; T1alpha

赛默飞世尔
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
赛默飞世尔 Pdpn抗体(eBioscience, 12-5381-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Cell Res (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 ex1e
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 ex1e). Nature (2019) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 图 ex10d
赛默飞世尔 Pdpn抗体(Thermofisher, eBio8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 ex10d). Nature (2019) ncbi
大鼠 单克隆(NZ-1.3)
  • 免疫组化-冰冻切片; 人类; 图 1e
赛默飞世尔 Pdpn抗体(eBioscience, NZ-1.3)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Nature (2019) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 图 e3a
赛默飞世尔 Pdpn抗体(eBioscience, 25-5381-82)被用于被用于流式细胞仪在小鼠样本上 (图 e3a). Nature (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫印迹; 小鼠; 图 6a
赛默飞世尔 Pdpn抗体(ThermoFisher, MA5-16113)被用于被用于免疫印迹在小鼠样本上 (图 6a). Bone Rep (2019) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:200; 图 s2e
赛默飞世尔 Pdpn抗体(eBiosciences, 12-5381-82)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2e). Nat Neurosci (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 抑制或激活实验; 小鼠; 图 5
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 4b
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于抑制或激活实验在小鼠样本上 (图 5), 被用于免疫组化在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Blood (2017) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 图 5e
赛默飞世尔 Pdpn抗体(eBioscience, eBio8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Exp Med (2016) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100; 表 1
  • 免疫细胞化学; 小鼠; 1:100; 表 1
赛默飞世尔 Pdpn抗体(eBiosciences, eBio1.8.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 人类; 图 2b
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2b). Am J Pathol (2016) ncbi
大鼠 单克隆(NZ-1.3)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 Pdpn抗体(eBioscience, NZ-1.3)被用于被用于流式细胞仪在人类样本上 (图 4). Sci Rep (2016) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 小鼠; 1:500; 图 s1
赛默飞世尔 Pdpn抗体(Affymetrix, 53-5381-80)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Nat Med (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 7a
  • 免疫组化; 小鼠; 图 10a
赛默飞世尔 Pdpn抗体(eBioscience, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 7a) 和 被用于免疫组化在小鼠样本上 (图 10a). Nat Commun (2015) ncbi
大鼠 单克隆(NZ-1.3)
  • 免疫组化; 人类; 图 2k
赛默飞世尔 Pdpn抗体(eBioscience, NZ-1.3)被用于被用于免疫组化在人类样本上 (图 2k). Exp Dermatol (2015) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:200; 图 4d
赛默飞世尔 Pdpn抗体(eBioscience, 53-5381-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Nat Commun (2015) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pdpn抗体(eBioscience, 53-5381-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pdpn抗体(Invitrogen, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. elife (2014) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫印迹; 小鼠
赛默飞世尔 Pdpn抗体(eBioscience, 13-5381-82)被用于被用于免疫印迹在小鼠样本上. Clin Exp Immunol (2014) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化; 人类; 1:100
赛默飞世尔 Pdpn抗体(eBioscience, 14-5381-82)被用于被用于免疫组化在人类样本上浓度为1:100. Integr Biol (Camb) (2012) ncbi
Syrian golden hamster 单克隆(eBio8.1.1 (8.1.1))
  • 免疫组化-冰冻切片; 小鼠; 1:50; 表 1
赛默飞世尔 Pdpn抗体(eBioscience, 14-5381)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (表 1). Hepatology (2009) ncbi
BioLegend
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pdpn抗体(Biolegend, 127412)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • mass cytometry; 小鼠; 1:300; 图 s32a, s32c
BioLegend Pdpn抗体(Biolegend, 127415)被用于被用于mass cytometry在小鼠样本上浓度为1:300 (图 s32a, s32c). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pdpn抗体(BioLegend, 127409)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Oncol (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1b
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). Sci Rep (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 s9d
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于免疫组化在小鼠样本上 (图 s9d). Nature (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:300; 图 1b
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1b). Nat Immunol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 图 3e
BioLegend Pdpn抗体(BioLegend, 8.1.1.)被用于被用于免疫组化在小鼠样本上 (图 3e). PLoS Pathog (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 3b
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b) 和 被用于流式细胞仪在小鼠样本上 (图 3b). PLoS ONE (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 S1
BioLegend Pdpn抗体(BioLegend, 8.1.)被用于被用于流式细胞仪在小鼠样本上 (图 S1). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 7
BioLegend Pdpn抗体(Biolegend, 127402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Dev Biol (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Pdpn抗体(Biolegend, clone 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫细胞化学; 小鼠; 图 5
BioLegend Pdpn抗体(Biolegend, 8.1.1)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Pdpn抗体(BioLegend, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
艾博抗(上海)贸易有限公司
单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:170; 图 1b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab92319)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 1b). Front Immunol (2019) ncbi
小鼠 单克隆(18H5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3a
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3a). Arthritis Res Ther (2019) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3g
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3g). PLoS Genet (2017) ncbi
小鼠 单克隆(18H5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1b). Arthritis Res Ther (2017) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:10; 图 s11b
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, 11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10 (图 s11b). Proc Natl Acad Sci U S A (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a). Evid Based Complement Alternat Med (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化在人类样本上 (图 2). PLoS ONE (2015) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(18H5)
  • 免疫组化; 人类; 1:100; 图 1
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(18H5)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab10288)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2014) ncbi
Syrian golden hamster 单克隆(RTD4E10)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Pdpn抗体(Abcam, ab11936)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5i
安迪生物R&D Pdpn抗体(R&D Systems, AF3244)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 ev1e
  • 免疫印迹; 小鼠; 1:3000; 图 1f
安迪生物R&D Pdpn抗体(R&D, AF3244)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 ev1e) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1f). EMBO J (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4b
安迪生物R&D Pdpn抗体(R&D Systems, AF3244)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4b). Nat Commun (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s1
安迪生物R&D Pdpn抗体(R&D Systems, AF3244)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1). Cell Adh Migr (2016) ncbi
LifeSpan Biosciences
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 1c
LifeSpan Biosciences Pdpn抗体(LifeSpan Biosciences, LS-C143022)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 1c). Stem Cell Reports (2016) ncbi
Fitzgerald Industries
  • 免疫组化; 小鼠; 1:500; 图 4
Fitzgerald Industries Pdpn抗体(Fitzgerald, 10R-P133a)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Nature (2015) ncbi
Developmental Studies Hybridoma Bank
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1s4b
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1s4b). elife (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1f
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1f). Nat Commun (2020) ncbi
Syrian golden hamster 单克隆(8.1.1)
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于. Stem Cell Reports (2019) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; fruit fly ; 1:50; 图 2a
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8C11)被用于被用于免疫组化在fruit fly 样本上浓度为1:50 (图 2a). Development (2018) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 2a
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 2a). Dev Biol (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:200; 图 2d
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). elife (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). PLoS Biol (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:200; 图 1h
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1h). J Clin Invest (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 e1d
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 e1d). Nature (2017) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化; 小鼠; 1:1000; 图 4
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Development (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Sci Rep (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s7c
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s7c). J Clin Invest (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3aa
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3aa). Nat Commun (2016) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 图 3
Developmental Studies Hybridoma Bank Pdpn抗体(DSHB, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 图 1g
Developmental Studies Hybridoma Bank Pdpn抗体(Biolegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Sci Rep (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 流式细胞仪; 小鼠; 1:500
Developmental Studies Hybridoma Bank Pdpn抗体(BioLegend, 8.1.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-石蜡切片; 小鼠; 5 ug/ml; 图 s7
Developmental Studies Hybridoma Bank Pdpn抗体(Iowa Hybridoma Bank, 8.1.1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为5 ug/ml (图 s7). Cell Death Dis (2015) ncbi
Syrian golden hamster 单克隆(8.1.1)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
Developmental Studies Hybridoma Bank Pdpn抗体(Developmental Studies Hybridoma Bank, 8.1.1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). Development (2014) ncbi
文章列表
  1. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  2. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  3. Ikonomou L, Herriges M, Lewandowski S, Marsland R, Villacorta Martin C, Caballero I, et al. The in vivo genetic program of murine primordial lung epithelial progenitors. Nat Commun. 2020;11:635 pubmed 出版商
  4. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  5. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  6. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  7. Chung K, Hsu C, Fan L, Huang Z, Bhatia D, Chen Y, et al. Mitofusins regulate lipid metabolism to mediate the development of lung fibrosis. Nat Commun. 2019;10:3390 pubmed 出版商
  8. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  9. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  10. Eisemann T, Costa B, Peterziel H, Angel P. Podoplanin Positive Myeloid Cells Promote Glioma Development by Immune Suppression. Front Oncol. 2019;9:187 pubmed 出版商
  11. Katsura H, Kobayashi Y, Tata P, Hogan B. IL-1 and TNFα Contribute to the Inflammatory Niche to Enhance Alveolar Regeneration. Stem Cell Reports. 2019;12:657-666 pubmed 出版商
  12. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  13. Bergsma A, Ganguly S, Wiegand M, Dick D, Williams B, Miranti C. Regulation of cytoskeleton and adhesion signaling in osteoclasts by tetraspanin CD82. Bone Rep. 2019;10:100196 pubmed 出版商
  14. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  15. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  16. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  17. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C, et al. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018;8:8308 pubmed 出版商
  18. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  19. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  20. Zmojdzian M, de Joussineau S, Da Ponte J, Jagla K. Distinct subsets of Eve-positive pericardial cells stabilise cardiac outflow and contribute to Hox gene-triggered heart morphogenesis in Drosophila. Development. 2018;145: pubmed 出版商
  21. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  22. Guo H, Kazadaeva Y, Ortega F, Manjunath N, Desai T. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev Biol. 2017;430:214-223 pubmed 出版商
  23. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  24. Lin C, Yao E, Zhang K, Jiang X, Croll S, Thompson Peer K, et al. YAP is essential for mechanical force production and epithelial cell proliferation during lung branching morphogenesis. elife. 2017;6: pubmed 出版商
  25. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  26. Dakin S, Buckley C, Al Mossawi M, Hedley R, Martinez F, Wheway K, et al. Persistent stromal fibroblast activation is present in chronic tendinopathy. Arthritis Res Ther. 2017;19:16 pubmed 出版商
  27. Payne H, Ponomaryov T, Watson S, Brill A. Mice with a deficiency in CLEC-2 are protected against deep vein thrombosis. Blood. 2017;129:2013-2020 pubmed 出版商
  28. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  29. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  30. Ray S, Chiba N, Yao C, Guan X, McConnell A, Brockway B, et al. Rare SOX2+ Airway Progenitor Cells Generate KRT5+ Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports. 2016;7:817-825 pubmed 出版商
  31. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  32. Stock A, Hansen J, Sleeman M, McKenzie B, Wicks I. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J Exp Med. 2016;213:1983-98 pubmed 出版商
  33. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  34. Laresgoiti U, Nikolić M, Rao C, Brady J, Richardson R, Batchen E, et al. Lung epithelial tip progenitors integrate glucocorticoid- and STAT3-mediated signals to control progeny fate. Development. 2016;143:3686-3699 pubmed
  35. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  36. Karaman S, Hollmén M, Yoon S, Alkan H, Alitalo K, Wolfrum C, et al. Transgenic overexpression of VEGF-C induces weight gain and insulin resistance in mice. Sci Rep. 2016;6:31566 pubmed 出版商
  37. Lao T, Jiang Z, Yun J, Qiu W, Guo F, Huang C, et al. Hhip haploinsufficiency sensitizes mice to age-related emphysema. Proc Natl Acad Sci U S A. 2016;113:E4681-7 pubmed 出版商
  38. Harfuddin Z, Dharmadhikari B, Wong S, Duan K, Poidinger M, Kwajah S, et al. Transcriptional and functional characterization of CD137L-dendritic cells identifies a novel dendritic cell phenotype. Sci Rep. 2016;6:29712 pubmed 出版商
  39. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  40. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  41. Chen Y, Li J, Li Q, Wang T, Xing L, Xu H, et al. Du-Huo-Ji-Sheng-Tang Attenuates Inflammation of TNF-Tg Mice Related to Promoting Lymphatic Drainage Function. Evid Based Complement Alternat Med. 2016;2016:7067691 pubmed 出版商
  42. Jordan Williams K, Ramanujam N, Farr A, Ruddell A. The Lymphatic Endothelial mCLCA1 Antibody Induces Proliferation and Growth of Lymph Node Lymphatic Sinuses. PLoS ONE. 2016;11:e0156079 pubmed 出版商
  43. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  44. Crosswhite P, Podsiadlowska J, Curtis C, Gao S, Xia L, Srinivasan R, et al. CHD4-regulated plasmin activation impacts lymphovenous hemostasis and hepatic vascular integrity. J Clin Invest. 2016;126:2254-66 pubmed 出版商
  45. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  46. San Agustin J, Klena N, Granath K, Panigrahy A, Stewart E, Devine W, et al. Genetic link between renal birth defects and congenital heart disease. Nat Commun. 2016;7:11103 pubmed 出版商
  47. Peteranderl C, Morales Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty R, et al. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest. 2016;126:1566-80 pubmed 出版商
  48. Munger S, Geng X, Srinivasan R, Witte M, Paul D, Simon A. Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Dev Biol. 2016;412:173-90 pubmed 出版商
  49. Regan E, Sibley R, Cenik B, Silva A, Girard L, Minna J, et al. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS ONE. 2016;11:e0150963 pubmed 出版商
  50. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  51. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  52. Lau W, Pandey V, Kong X, Wang X, Wu Z, Zhu T, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2. PLoS ONE. 2015;10:e0141947 pubmed 出版商
  53. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  54. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  55. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  56. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  57. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  58. Brunner P, Glitzner E, Reininger B, Klein I, Stary G, Mildner M, et al. CCL7 contributes to the TNF-alpha-dependent inflammation of lesional psoriatic skin. Exp Dermatol. 2015;24:522-8 pubmed 出版商
  59. Ngo J, Matsuyama M, Kim C, Poventud Fuentes I, Bates A, Siedlak S, et al. Bax deficiency extends the survival of Ku70 knockout mice that develop lung and heart diseases. Cell Death Dis. 2015;6:e1706 pubmed 出版商
  60. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  61. Park S, Kim H, Koo J. Differential expression of cancer-associated fibroblast-related proteins according to molecular subtype and stromal histology in breast cancer. Breast Cancer Res Treat. 2015;149:727-41 pubmed 出版商
  62. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  63. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  64. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  65. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  66. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  67. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  68. Astarita J, Cremasco V, Fu J, Darnell M, Peck J, Nieves Bonilla J, et al. The CLEC-2-podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nat Immunol. 2015;16:75-84 pubmed 出版商
  69. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  70. Ruseva M, Takahashi M, Fujita T, Pickering M. C3 dysregulation due to factor H deficiency is mannan-binding lectin-associated serine proteases (MASP)-1 and MASP-3 independent in vivo. Clin Exp Immunol. 2014;176:84-92 pubmed 出版商
  71. Ghaedi M, Mendez J, Bove P, Sivarapatna A, Raredon M, Niklason L. Alveolar epithelial differentiation of human induced pluripotent stem cells in a rotating bioreactor. Biomaterials. 2014;35:699-710 pubmed 出版商
  72. Dellinger M, Meadows S, Wynne K, Cleaver O, Brekken R. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE. 2013;8:e74686 pubmed 出版商
  73. Kloxin A, Lewis K, DeForest C, Seedorf G, Tibbitt M, Balasubramaniam V, et al. Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integr Biol (Camb). 2012;4:1540-9 pubmed 出版商
  74. Asahina K, Tsai S, Li P, Ishii M, Maxson R, Sucov H, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology. 2009;49:998-1011 pubmed 出版商