这是一篇来自已证抗体库的有关小鼠 Pecam1的综述,是根据699篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pecam1 抗体。
Pecam1 同义词: C85791; Cd31; PECAM-1; Pecam

BioLegend
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 102508)被用于被用于流式细胞仪在小鼠样本上 (图 1b). elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
BioLegend Pecam1抗体(BioLegend, 102407)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Stem Cell Res Ther (2020) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
BioLegend Pecam1抗体(Biolegend, 102401)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2020) ncbi
大鼠 单克隆(390)
  • mass cytometry; 小鼠; 1:800; 图 s33b
BioLegend Pecam1抗体(Biolegend, 102425)被用于被用于mass cytometry在小鼠样本上浓度为1:800 (图 s33b). Nat Commun (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1l
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1l). Nat Metab (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 2s2d
BioLegend Pecam1抗体(BioLegend, 102504)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s2d). elife (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
BioLegend Pecam1抗体(Biolegend, 102413)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Cell (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:500; 图 1b
BioLegend Pecam1抗体(BioLegend, 102507)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Nature (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 6a
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 6a). J Cell Sci (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 s5a
BioLegend Pecam1抗体(BioLegend, 102408)被用于被用于免疫组化在小鼠样本上 (图 s5a). J Clin Invest (2019) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 图 ev3a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫细胞化学在小鼠样本上 (图 ev3a). EMBO J (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Exp Med (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 7a
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7a). Nat Cell Biol (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Int J Cancer (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). J Cell Biol (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:200; 图 1d
BioLegend Pecam1抗体(Biolegend, 102402)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). Bone Res (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Pecam1抗体(BioLegend, 102409)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 ev1b
BioLegend Pecam1抗体(Biolegend, MEC13:3)被用于被用于免疫组化在小鼠样本上 (图 ev1b). EMBO J (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2d
BioLegend Pecam1抗体(BioLegend, 102416)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
BioLegend Pecam1抗体(BioLegend, 102515)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
BioLegend Pecam1抗体(BioLegend, 102410)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 1f
BioLegend Pecam1抗体(BioLegend, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 1f). Nat Commun (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegend Pecam1抗体(BioLegend, 102421)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). FASEB J (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS Pathog (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
BioLegend Pecam1抗体(BioLegend, 102415)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s1g
BioLegend Pecam1抗体(BioLegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1g). Leukemia (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 1k
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 1k). Science (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). Nature (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Pecam1抗体(Biolegend, 102404)被用于被用于流式细胞仪在小鼠样本上 (图 8a). elife (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s5f
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Nature (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2i
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s2i). J Exp Med (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Pecam1抗体(BioLegend, 102507)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 3d
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d). Immunology (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS Biol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Cell Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 9b
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 9b). Am J Physiol Renal Physiol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 7e
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7e). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 e1
BioLegend Pecam1抗体(BioLegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 e1). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102509)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s8c
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8c). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pecam1抗体(Biolegend, BLE102510)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Oncogene (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6h
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6h). Haematologica (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 st2
BioLegend Pecam1抗体(BioLegend, 102510)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2f
BioLegend Pecam1抗体(BioLegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2f). Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS Pathog (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s7a
BioLegend Pecam1抗体(Biolegend, 102507)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 图 1b
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:300; 图 1b
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1b). Nat Immunol (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). PLoS Pathog (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2016) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(biolegend, 102408)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s8
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pecam1抗体(Biolegend, Mec13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2). Thyroid (2016) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(BioLegend, 102416)被用于. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Pecam1抗体(BioLegend, 1024)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nature (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Am J Pathol (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Pecam1抗体(BioLegend, 102506)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Protoc (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 人类; 1:500; 图 5
BioLegend Pecam1抗体(BioLegend, #102423)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 5). Am J Physiol Heart Circ Physiol (2015) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102506)被用于. Development (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 1e
BioLegend Pecam1抗体(BioLegend, 102406)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1e). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 抑制或激活实验; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Cell (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:200; 图 7
BioLegend Pecam1抗体(BioLegend, 102506)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pecam1抗体(Biolegend, 102506)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 仓鼠; 图 7
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在仓鼠样本上 (图 7). J Virol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend Pecam1抗体(Biolegend, 102423)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Immun Ageing (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Pecam1抗体(BioLegend, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Pecam1抗体(Biolegend, 102407)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Transl Med (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cytometry A (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Invest Ophthalmol Vis Sci (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 小鼠
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
BioLegend Pecam1抗体(Biolegend, 102501)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Brain Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Am Soc Nephrol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102407)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上. Cancer Discov (2014) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠
BioLegend Pecam1抗体(Biolegend, m390)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上. Dev Growth Differ (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(BioLegend, 102501)被用于. Exp Eye Res (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(BioLegend, 102513)被用于. Am J Pathol (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102513)被用于. J Control Release (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:60
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:60. J Cell Biol (2013) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncogene (2014) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(Biolegend, 102415)被用于. Am J Physiol Lung Cell Mol Physiol (2013) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Biol (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4h
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在大鼠样本上 (图 4h). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Oncotarget (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s7e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s7e). Nature (2020) ncbi
小鼠 单克隆(HEC7)
  • 免疫细胞化学; 大鼠; 1:400; 图 3c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab119339)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 3c). J Inflamm (Lond) (2020) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化-冰冻切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab119339)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d). Sci Adv (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s3d). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上 (图 4c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Cell Signaling, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 5s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2a). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s5a). Atherosclerosis (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Atherosclerosis (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; black ferret; 1:15; 图 8a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在black ferret样本上浓度为1:15 (图 8a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 1e). Neuroscience (2018) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠; 图 s4j
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4j). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司 Pecam1抗体(ABCAM, AB28364)被用于被用于免疫组化在小鼠样本上 (图 s2a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Nat Chem Biol (2018) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 大鼠; 1:50; 图 s1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1f). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4e). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 7c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab38364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7c). Oncotarget (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 图 7e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在domestic rabbit样本上 (图 7e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). PLoS Genet (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:100; 图 s1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1b). Sci Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 11a
  • 免疫组化; 人类; 1:50; 图 11a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 11a) 和 被用于免疫组化在人类样本上浓度为1:50 (图 11a). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Cardiovasc Diabetol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
  • 免疫印迹; 小鼠; 1:5000; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3g). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 56
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 56). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化在小鼠样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 猪; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在猪样本上 (图 2a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e3). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:30; 图 7b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫细胞化学在人类样本上浓度为1:30 (图 7b). Nat Protoc (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上. Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s9d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s9d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 猪; 图 11a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化在猪样本上 (图 11a). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b). Nat Med (2016) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab119339)被用于被用于免疫组化在大鼠样本上 (图 4). Front Pharmacol (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3a
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4c). Biochem Pharmacol (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3a). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4C
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8A
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4C) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(HEC7)
  • 免疫组化; 大鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab119339)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1b). Brain Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab28364)被用于被用于免疫组化在小鼠样本上 (图 3g). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s14
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s14), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 小鼠; 1:250; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:250 (图 4). Front Neurosci (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 大鼠; 1:50; 图 6c
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab64543)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6c). Biomaterials (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3n
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3n). Nat Cell Biol (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Int J Biol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 1g
  • 免疫组化; 小鼠; 1:50; 图 1i
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1g) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1i). Nat Commun (2016) ncbi
小鼠 单克隆(JC/70A)
  • 流式细胞仪; domestic rabbit; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猪; 1:100; 图 3C
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:100 (图 3C). Biores Open Access (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4c). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:40
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Oncol Lett (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猪; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在猪样本上浓度为1:50 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Springerplus (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Mol Ther (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 8
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:20; 图 s3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 s3). Tissue Eng Part C Methods (2016) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Stem Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab9498)被用于被用于免疫组化在人类样本上 (图 4). J Transl Med (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 s1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3e). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, JC70/A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Stem Cells Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab9498)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:150. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab24590)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 1:100; 图 4
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498-500)被用于被用于免疫组化在domestic rabbit样本上浓度为1:100 (图 4) 和 被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化在小鼠样本上 (图 5d). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫细胞化学在小鼠样本上. Transpl Int (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Pecam1抗体(AbCam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3d). BMC Neurosci (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 家羊; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 3a). Reprod Biol Endocrinol (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上 (图 6a). BMC Cancer (2015) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 7388)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Toxicol Lett (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 流式细胞仪; 小鼠; 1:50
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Int J Mol Med (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, JC70/A)被用于被用于免疫组化在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab56299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab9498)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(HEC7)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab119339)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 2.5 ug/ml
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化在小鼠样本上浓度为2.5 ug/ml. Cell Commun Signal (2014) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Br J Pharmacol (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 3b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Thromb Haemost (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于. Mol Ther (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Acta Neuropathol Commun (2013) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Int J Oral Sci (2013) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200. PLoS ONE (2013) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hum Gene Ther Methods (2013) ncbi
赛默飞世尔
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6k
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上 (图 s6k). Sci Adv (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c
赛默飞世尔 Pecam1抗体(Invitrogen, RM5201)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c). Nat Commun (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 ex1b
赛默飞世尔 Pecam1抗体(eBioscience, 13-0311-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 ex1b). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6l
赛默飞世尔 Pecam1抗体(BD, 12-0311-83)被用于被用于流式细胞仪在小鼠样本上 (图 s6l). Cell (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c). Cell (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Pecam1抗体(Thermo Fisher, 13-0311)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Pecam1抗体(eBioscience, 46-0311-80)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell Rep (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Stem Cell Reports (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Obesity (Silver Spring) (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 14-0311)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Cell Biol (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s9d
赛默飞世尔 Pecam1抗体(分子探针, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s9d). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 s1a
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1a). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2g). J Clin Invest (2018) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 6h
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 2H8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6h). Nat Commun (2018) ncbi
大鼠 单克隆(390)
  • 其他; 小鼠; 图 8d
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于其他在小鼠样本上 (图 8d). J Clin Invest (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBiosciences, 48-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 3b
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3b). Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Pecam1抗体(生活技术, RM5228)被用于被用于流式细胞仪在小鼠样本上 (表 1). Methods Mol Biol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Pecam1抗体(eBiosciences, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Cell Stem Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1h
  • 免疫细胞化学; 小鼠; 图 1g
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-85)被用于被用于流式细胞仪在小鼠样本上 (图 1h) 和 被用于免疫细胞化学在小鼠样本上 (图 1g). Stem Cell Reports (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Pecam1抗体(EBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Haematologica (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
赛默飞世尔 Pecam1抗体(Affymetrix eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 5e
赛默飞世尔 Pecam1抗体(生活技术, 390)被用于被用于免疫组化在小鼠样本上 (图 5e). Sci Signal (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Circ Res (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 s3b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化在小鼠样本上 (图 s3b). Nature (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Kidney Int (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔 Pecam1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Pecam1抗体(ebioscience, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cell Death Dis (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:25
赛默飞世尔 Pecam1抗体(Invitrogen, RM5228)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. Nat Med (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Res (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Pecam1抗体(eBiosciences, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:250; 图 st1
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunity (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 S2A
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 S2A). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 112-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Pecam1抗体(eBioscience, 46-0311-80)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cell Adh Migr (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, RM5228)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2s
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 2s). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:428
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:428. Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
赛默飞世尔 Pecam1抗体(Neomarkers, RB-10333-P)被用于被用于免疫组化在小鼠样本上 (图 5). Oncotarget (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1a
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311- 81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1a). Nat Cell Biol (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(BD Biosciences, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:25; 图 2
赛默飞世尔 Pecam1抗体(Thermo Scientific, RB-10333)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 2). Methods (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 Pecam1抗体(Thermo Scientific, #MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 Pecam1抗体(生活技术, RM5201)被用于被用于免疫组化在小鼠样本上 (图 2). Mol Ther (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠
赛默飞世尔 Pecam1抗体(Invitrogen, RM5201)被用于被用于免疫组化在小鼠样本上. Cell Mol Immunol (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311-81)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上. Adipocyte (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience,, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Cell Biol (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:100; 图 6
赛默飞世尔 Pecam1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Oncoimmunology (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Am Soc Nephrol (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Nature (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图  1
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图  1). Angiogenesis (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Cell Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 7a
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 7a) 和 被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 v3
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化在小鼠样本上 (图 v3). J Exp Med (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1). Nat Cell Biol (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, clone 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Pecam1抗体(Invitrogen, ERMP12)被用于被用于免疫组化-冰冻切片在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 1:250
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-85)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Nat Cell Biol (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Pecam1抗体(EBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nat Commun (2014) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠
赛默飞世尔 Pecam1抗体(Thermo/Fisher, MA3105)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Pecam1抗体(eBiosciences, 13-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Med (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. Stem Cell Reports (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Pecam1抗体(Caltag, 390)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Med Sci (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5). Biomaterials (2010) ncbi
大鼠 单克隆(390)
  • 抑制或激活实验; 大鼠; 1:40; 图 1
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 Pecam1抗体(noco, noca)被用于被用于抑制或激活实验在大鼠样本上浓度为1:40 (图 1) 和 被用于免疫组化-冰冻切片在大鼠样本上. Am J Pathol (1997) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3s2o
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3s2o). elife (2019) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 大鼠; 图 6c
圣克鲁斯生物技术 Pecam1抗体(SantaCruz, sc-376764)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6c). Oncotarget (2017) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-52713)被用于被用于免疫印迹在小鼠样本上 (图 3a). Exp Ther Med (2017) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫印迹在小鼠样本上 (图 2c). Redox Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology Inc., sc-18916L)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Oncol Lett (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 3j
圣克鲁斯生物技术 Pecam1抗体(Santa cruz, MEC 13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 3j). Stem Cells Int (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:50; 图 4a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4a). Mol Med Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3g
圣克鲁斯生物技术 Pecam1抗体(SantaCruz, sc-52713)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3g). Mol Med Rep (2016) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, RM0032-1D12)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). J Biomed Sci (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 4
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-46694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 4). Oxid Med Cell Longev (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 s5
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5). Nature (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Tumour Biol (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫细胞化学; 大鼠; 图 6
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫细胞化学在大鼠样本上 (图 6). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫组化; 小鼠; 1:50; 图 S3c
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-46694)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 S3c). Acta Neuropathol (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-101454)被用于被用于免疫组化在小鼠样本上. AIMS Genet (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc376764)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-18916)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-20071)被用于被用于免疫细胞化学在人类样本上. J Cell Mol Med (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Kidney Int (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Respir Res (2013) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-101454)被用于被用于免疫组化-冰冻切片在小鼠样本上. Clin Exp Metastasis (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1a, 7s4b
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1a, 7s4b). elife (2020) ncbi
大鼠 单克隆(693102)
  • 免疫组化; 小鼠; 1:170; 图 1h
安迪生物R&D Pecam1抗体(R&D Systems, MAB3628)被用于被用于免疫组化在小鼠样本上浓度为1:170 (图 1h). Front Immunol (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100
安迪生物R&D Pecam1抗体(R and D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4e
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4e). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3c
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Breast Cancer Res (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 10n
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 10n). Brain Behav Immun (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3a
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Nat Commun (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 10c
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 10c). Am J Physiol Heart Circ Physiol (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 1f
  • 免疫组化; 人类; 1:100; 图 1e
安迪生物R&D Pecam1抗体(R&D system, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1e). J Am Heart Assoc (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(693102)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1
安迪生物R&D Pecam1抗体(R&D Systems, MAB3628)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1). Nature (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). Nature (2016) ncbi
domestic goat 多克隆
  • 其他; 小鼠
安迪生物R&D Pecam1抗体(R&D, BAF3628)被用于被用于其他在小鼠样本上. J Biol Chem (2016) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(ER-MP12)
  • 免疫组化; 小鼠; 1:100; 图 1a
伯乐(Bio-Rad)公司 Pecam1抗体(Bio-Rad, MCA2388)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). elife (2019) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫细胞化学; 小鼠; 图 2a
伯乐(Bio-Rad)公司 Pecam1抗体(Bio-Rad, MCA2388T)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Int J Mol Sci (2018) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
伯乐(Bio-Rad)公司 Pecam1抗体(Serotec, ER-MP12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Virol (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA-2388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Mol Cell Cardiol (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388GA)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Stem Cell Res (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
伯乐(Bio-Rad)公司 Pecam1抗体(Serotec, MCA1370Z)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4). Development (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 3
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388A647)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Theranostics (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, 2H8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
Novus Biologicals
大鼠 单克隆(MEC13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1c
  • 免疫细胞化学; 人类; 1:500; 图 s1a
Novus Biologicals Pecam1抗体(Novus, NB600-1475)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a). J Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 7b
Novus Biologicals Pecam1抗体(Novus, NB100-2284)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7b). Physiol Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
Novus Biologicals Pecam1抗体(Novus Biologicals, NB100-2284)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 小鼠; 图 1
Novus Biologicals Pecam1抗体(Novus Biologicals, MEC13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
美天旎
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:10; 图 1b
美天旎 Pecam1抗体(MiltenyiBiotec, 130-102-519)被用于被用于流式细胞仪在小鼠样本上浓度为1:10 (图 1b). Biosci Rep (2019) ncbi
碧迪BD
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 s2c
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2c). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1c, 1d
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1c, 1d). Sci Rep (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s14a, s14b
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s14a, s14b). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1l
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1l). Sci Adv (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s2b
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2b). Sci Adv (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5s1g
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5s1g). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
碧迪BD Pecam1抗体(BD Bioscience, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Science (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2j
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 2j). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 2a
碧迪BD Pecam1抗体(BD Biosciences, 55337)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1s1a
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1s1a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3s1c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上 (图 3s1c). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:200; 图 5i
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5i). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3s4
碧迪BD Pecam1抗体(Beckton Dickinson, 550274)被用于被用于免疫组化在小鼠样本上 (图 3s4). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1s1a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1s1a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s2m
碧迪BD Pecam1抗体(BD Bioscences, 553370)被用于被用于免疫组化在小鼠样本上 (图 s2m). Cell (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400; 图 4d
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4d). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3e
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3e). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 e3a
  • 免疫组化; 小鼠; 图 e9b
碧迪BD Pecam1抗体(BD, 557355)被用于被用于流式细胞仪在小鼠样本上 (图 e3a) 和 被用于免疫组化在小鼠样本上 (图 e9b). Nature (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:1000; 图 s3
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s3). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类; 图 3a
碧迪BD Pecam1抗体(BD, 55027)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s8c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8c). Oncoimmunology (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). EMBO J (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Br J Cancer (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Bioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 0.5 mg/ml; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为0.5 mg/ml (图 1b). Science (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Stem Cell Reports (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). J Pathol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Hum Mol Genet (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 1s1c
碧迪BD Pecam1抗体(BD Pharmingen, 553373)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1s1c). elife (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). J Immunol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3f
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 3f). Int J Cancer (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, 5533370)被用于被用于免疫组化在小鼠样本上 (图 1c). Nature (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Cell (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Science (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Leukemia (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4a
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4a). Oncotarget (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). J Immunol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 4b
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1d
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1d). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7c
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
碧迪BD Pecam1抗体(R&D Systems, 557355)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7c) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s12
  • 酶联免疫吸附测定; 人类
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s12) 和 被用于酶联免疫吸附测定在人类样本上. Sci Transl Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 2b). J Biol Chem (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6f
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 6f). Neuron (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD bioscience, 553372)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 s5b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s5b). Science (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 4f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4f). Dev Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
碧迪BD Pecam1抗体(Pharmingen, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Circulation (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3c
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 ev1a
碧迪BD Pecam1抗体(BD Biosciences, Mec13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 ev1a). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3f
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化在小鼠样本上 (图 3f). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1h
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1h). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:400; 图 3a
碧迪BD Pecam1抗体(BD, 553369)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3a). Nat Protoc (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
  • 免疫组化-冰冻切片; 猕猴; 1:100; 图 5b
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a) 和 被用于免疫组化-冰冻切片在猕猴样本上浓度为1:100 (图 5b). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 1:300; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1c). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 1b). elife (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 9b
碧迪BD Pecam1抗体(Pharmingen, 553371)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 9b). J Biol Chem (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
碧迪BD Pecam1抗体(bd, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). PLoS ONE (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c). PLoS Pathog (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1f
碧迪BD Pecam1抗体(BD Bioscience, 553371)被用于被用于免疫细胞化学在小鼠样本上 (图 1f). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 图 4f
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在人类样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD Pecam1抗体(BD Pharmingen, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Methods Mol Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 st4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 st4). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上 (图 5c). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5b
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5b). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Skelet Muscle (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 af2
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 af2). Breast Cancer Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). J Cell Sci (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 7a
碧迪BD Pecam1抗体(PharMingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7a). elife (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2n
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2n). Haematologica (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5d
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 5d). FASEB J (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2b). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上 (图 5e). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). J Comp Neurol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类; 1:200
碧迪BD Pecam1抗体(BD Pharmigen, 553371)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nature (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
碧迪BD Pecam1抗体(BD Pharmingen, 558736)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Circ Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1). Mol Med Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). Dev Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Dev Cell (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Genes Cells (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5b
碧迪BD Pecam1抗体(Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5b). Neoplasia (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:500; 图 1b
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3b
碧迪BD Pecam1抗体(BD Pharminogen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3b). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Pecam1抗体(Becton, Dickinson, and Company, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cytotherapy (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 7c
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 7c). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:1000; 图 1e
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 3l
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3l). Exp Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 3d
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3d). Stroke (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:20; 图 s1e
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 s1e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1n
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 1n). J Mol Histol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 4). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在人类样本上 (图 1a). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上 (图 3e). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 4C
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4C). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). Nat Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 2c). Cancer Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:200; 图 1e
碧迪BD Pecam1抗体(BD-Pharmingen, 553370)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Exp Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6i
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6i). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3c
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3c). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). Nat Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 图 s9b
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s9b). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 S7
碧迪BD Pecam1抗体(Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 S7). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1i
碧迪BD Pecam1抗体(BD Biosciences, 558736)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1i). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1a, S2a, S2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a, S2a, S2c). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 2b). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1 ug/ml; 图 2g
碧迪BD Pecam1抗体(BD Biosciences, Mec 13.3)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 2g). Lab Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s4
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 s4). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 6). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:400; 图 1
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1e
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1e). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD Pecam1抗体(BD Pharmigen, 558738)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Eur J Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 5j
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.33)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5j). Genes Dev (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4). Theranostics (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:75
碧迪BD Pecam1抗体(BD Bioscience, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:75. Nat Biotechnol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
碧迪BD Pecam1抗体(BD, 561814)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1h
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1h). J Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫沉淀; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫沉淀在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cardiovasc Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4
  • 免疫细胞化学; 小鼠; 1:500; 图 st1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 st1). Circ Res (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 558738)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Cell Adh Migr (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 1
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 st1
碧迪BD Pecam1抗体(BD Pharmigen, MEC 13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50; 图 11
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 11). J Immunol Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 53370)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:800; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 561073)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7). Onco Targets Ther (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Lipid Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). Mol Cancer (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 3a). JCI Insight (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s3b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3b). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1 ml / 100 ml; 图 s1
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1 ml / 100 ml (图 s1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1). Acta Neuropathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). J Pathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 大鼠; 图 2d
碧迪BD Pecam1抗体(BD, 561073)被用于被用于流式细胞仪在大鼠样本上 (图 2d). Stem Cell Reports (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 5
碧迪BD Pecam1抗体(BD PharMingen, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 5a
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Development (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Cell Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 550,274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). EBioMedicine (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3a
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于免疫组化在小鼠样本上 (图 3a). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 6
碧迪BD Pecam1抗体(BD Biociences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6b
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 6b). Dev Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). EJNMMI Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 s13
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD PharMingen, 561814)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s13) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 1). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 1h). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s3
碧迪BD Pecam1抗体(BD, 553371)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 3). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). Front Cell Neurosci (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 表 s6
碧迪BD Pecam1抗体(BD, 553372)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). J Am Soc Nephrol (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 55370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Development (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s2
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 图 2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在人类样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Pecam1抗体(BD, 561814)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:100
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 561814)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BD Pecam1抗体(BD, 550 274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, #553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4). ASN Neuro (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD Pecam1抗体(Becton-Dickinson, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 0.001 mg/ml; 表 1
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上浓度为0.001 mg/ml (表 1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5h). Nat Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Glia (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上. Fluids Barriers CNS (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 4
碧迪BD Pecam1抗体(BD Pharmigen, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). PLoS Genet (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 390)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 1:200; 图 5
碧迪BD Pecam1抗体(Millipore, 550274)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5). Naunyn Schmiedebergs Arch Pharmacol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3h
  • 流式细胞仪; 小鼠; 1:100; 图 s17a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3h) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s17a). J Clin Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 人类
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 s2
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 8f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 8f). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 ed2g
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 ed2g). Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
碧迪BD Pecam1抗体(BD Pharminogen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 0.02 mg/ml; 图 3
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为0.02 mg/ml (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD BioScience, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50. Mol Neurodegener (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 3a
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). J Exp Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD Pecam1抗体(Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Cancer Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
碧迪BD Pecam1抗体(Bioscience, MEC 13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4). Cancer Cell (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cardiovasc Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. Matrix Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上. Angiogenesis (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(bD Bioscience, 550274)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 s8
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s8). Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(BD-Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:10; 图 2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 2). Lab Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. Acta Biomater (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:250; 图 6
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2a). BMC Cancer (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 553372)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Mol Cell Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 s2
碧迪BD Pecam1抗体(BD, 553372)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:25; 图 2j
  • 免疫细胞化学; 小鼠; 1:25; 图 2c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 2j) 和 被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 2c). Stem Cell Reports (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neuroscience (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:50; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). J Neurosci (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 1:250
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫印迹在小鼠样本上浓度为1:250. Endocrinology (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Biol Chem (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫细胞化学在人类样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1). Sci Transl Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Cell Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
碧迪BD Pecam1抗体(BD, 561073)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Development (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:400. F1000Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 551262)被用于被用于流式细胞仪在小鼠样本上. Skelet Muscle (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Pathog (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 550274BD)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Methods Mol Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Invest Dermatol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 561073)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上. J Proteome Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Mol Pharm (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 其他; 小鼠; 图 7
  • 免疫组化; 小鼠; 图 s2
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于其他在小鼠样本上 (图 7) 和 被用于免疫组化在小鼠样本上 (图 s2). Matrix Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Front Cell Neurosci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2). Br J Cancer (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:100
碧迪BD Pecam1抗体(BD-Pharmingen, 550274)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nucleic Acids Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:250; 图 s3
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3). Nat Biotechnol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1). Development (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:100; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫组化-石蜡切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上. J Pharmacol Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2d
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化在小鼠样本上 (图 2d). FASEB J (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:400. ASN Neuro (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100. Curr Eye Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫印迹在小鼠样本上. J Thyroid Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于. Hum Mol Genet (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 s9
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s9). Nat Commun (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Genesis (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Cardiovasc Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Vis Exp (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:30
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:30. Development (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Mech Dev (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫组化; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6), 被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. J Clin Invest (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:1,000
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1,000. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于流式细胞仪在人类样本上. Angiogenesis (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:300
碧迪BD Pecam1抗体(BD, BD553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. FASEB J (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上. Int J Biochem Cell Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Nature (2014) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 558738)被用于被用于免疫组化-冰冻切片在小鼠样本上. Hum Mol Genet (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharmigen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 558738)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cornea (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Nephrol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫沉淀; 人类
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫沉淀在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen / Fisher, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Thromb Haemost (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫细胞化学在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Neuro Oncol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Cell Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Hepatol (2014) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Biosciences, BD 550274)被用于. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(Becton Dickinson, 553371)被用于被用于免疫组化在小鼠样本上浓度为1:50. Genes Dev (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. J Gerontol A Biol Sci Med Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:400. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 1c). Oncogene (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Respir Res (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:350
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350. Biol Reprod (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Pecam1抗体(BD, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫印迹在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences PharMingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Neurosci (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:125
碧迪BD Pecam1抗体(BD, 558738)被用于被用于流式细胞仪在小鼠样本上浓度为1:125. Stem Cells (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Neurosci (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Angiogenesis (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:20
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:20. Vasc Cell (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100. Oncogene (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharminogen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Tissue Res (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553372)被用于被用于免疫组化在小鼠样本上浓度为1:500. Blood (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Soc Nephrol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. Biol Reprod (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Development (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上. Cell Cycle (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于流式细胞仪在小鼠样本上. J Pharmacol Exp Ther (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上. Mol Cell Biol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Biosciences PharMingen, MEC13.3)被用于被用于免疫细胞化学在人类样本上, 被用于免疫细胞化学在大鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Biol Cell (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. Am J Physiol Renal Physiol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Comp Neurol (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:500. Mol Cell Biol (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 5 ug/ml
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml. FASEB J (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Comp Neurol (2008) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1.7 ug/ml
碧迪BD Pecam1抗体(BD Biosciences / PharMingen, 553370)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1.7 ug/ml. J Comp Neurol (2006) ncbi
大鼠 单克隆(390)
  • 抑制或激活实验; 小鼠; 2 mg/kg
碧迪BD Pecam1抗体(PharMingen, 390)被用于被用于抑制或激活实验在小鼠样本上浓度为2 mg/kg. Stroke (1996) ncbi
默克密理博中国
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2
默克密理博中国 Pecam1抗体(Chemicon, CBL1337)被用于被用于免疫组化在小鼠样本上 (图 2). Oncogene (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 s1d
默克密理博中国 Pecam1抗体(Chemicon, CBL1337)被用于被用于免疫组化在小鼠样本上 (图 s1d). Nat Genet (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 人类; 10 ug/ml
默克密理博中国 Pecam1抗体(Chemicon, CBL1337)被用于被用于免疫组化-冰冻切片在人类样本上浓度为10 ug/ml. PLoS ONE (2013) ncbi
Developmental Studies Hybridoma Bank
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫细胞化学; 小鼠; 图 5a
Developmental Studies Hybridoma Bank Pecam1抗体(Developmental Studies Hybridoma Bank, 2H8-C)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫细胞化学在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
文章列表
  1. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  2. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  3. Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J, Funahashi Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939 pubmed 出版商
  4. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  5. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  6. Taniguchi Y, Oyama N, Fumoto S, Kinoshita H, Yamashita F, Shimizu K, et al. Tissue suction-mediated gene transfer to the beating heart in mice. PLoS ONE. 2020;15:e0228203 pubmed 出版商
  7. Kang H, Kwon H, Kim I, Ban W, Kim S, Kang H, et al. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10:1854 pubmed 出版商
  8. Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget. 2020;11:99-114 pubmed 出版商
  9. Bálint L, Ocskay Z, Deák B, Aradi P, Jakus Z. Lymph Flow Induces the Postnatal Formation of Mature and Functional Meningeal Lymphatic Vessels. Front Immunol. 2019;10:3043 pubmed 出版商
  10. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  11. Rao L, Giannico D, Leone P, Solimando A, Maiorano E, Caporusso C, et al. HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma. Cancers (Basel). 2020;12: pubmed 出版商
  12. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  13. Benhadou F, Glitzner E, Brisebarre A, Swedlund B, Song Y, Dubois C, et al. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. Sci Adv. 2020;6:eaax5849 pubmed 出版商
  14. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  15. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  16. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  17. Travisano S, Oliveira V, Prados B, Grego Bessa J, Piñeiro Sabarís R, Bou V, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. elife. 2019;8: pubmed 出版商
  18. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  19. de Morrée A, Klein J, Gan Q, Farup J, Urtasun A, Kanugovi A, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science. 2019;366:734-738 pubmed 出版商
  20. Massa L pez D, Thelen M, Stahl F, Thiel C, Linhorst A, Sylvester M, et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. elife. 2019;8: pubmed 出版商
  21. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  22. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  23. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  24. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  25. Grinstein M, Dingwall H, O Connor L, Zou K, Capellini T, Galloway J. A distinct transition from cell growth to physiological homeostasis in the tendon. elife. 2019;8: pubmed 出版商
  26. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  27. Amezcua Vesely M, Pallis P, Bielecki P, Low J, Zhao J, Harman C, et al. Effector TH17 Cells Give Rise to Long-Lived TRM Cells that Are Essential for an Immediate Response against Bacterial Infection. Cell. 2019;178:1176-1188.e15 pubmed 出版商
  28. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  29. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  30. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  31. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  32. Overman J, Fontaine F, Wylie Sears J, Moustaqil M, Huang L, Meurer M, et al. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. elife. 2019;8: pubmed 出版商
  33. Li K, Jain P, He C, Eun F, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. elife. 2019;8: pubmed 出版商
  34. Xie X, Wang Y, Xia Y, Mao Y. Overexpressed vascular endothelial growth factor in adipose derived stem cells attenuates fibroblasts and skin injuries by ultraviolet radiation. Biosci Rep. 2019;39: pubmed 出版商
  35. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  36. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  37. Cho C, Wang Y, Smallwood P, Williams J, Nathans J. Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. elife. 2019;8: pubmed 出版商
  38. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  39. Iring A, Jin Y, Albarrán Juárez J, Siragusa M, Wang S, Dancs P, et al. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129:2775-2791 pubmed 出版商
  40. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  41. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  42. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  43. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  44. Xanthis I, Souilhol C, Serbanovic Canic J, Roddie H, Kalli A, Fragiadaki M, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci. 2019;132: pubmed 出版商
  45. Norwood J, Zhang Q, CARD D, Craine A, Ryan T, Drew P. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. elife. 2019;8: pubmed 出版商
  46. Cunin P, Bouslama R, Machlus K, Martínez Bonet M, Lee P, Wactor A, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. elife. 2019;8: pubmed 出版商
  47. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  48. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  49. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  50. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  51. Lucotti S, Cerutti C, Soyer M, Gil Bernabé A, Gomes A, Allen P, et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest. 2019;130:1845-1862 pubmed 出版商
  52. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed 出版商
  53. Li W, Feng G, Gauthier J, Lokshina I, Higashikubo R, Evans S, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129:2293-2304 pubmed 出版商
  54. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  55. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  56. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  57. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  58. Rowe R, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527-538 pubmed 出版商
  59. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  60. Hutchinson E, Chatterjee M, Reyes L, Djankpa F, Valiant W, Dardzinski B, et al. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527:1706-1719 pubmed 出版商
  61. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  62. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  63. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  64. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  65. Commerford C, Dieterich L, He Y, Hell T, Montoya Zegarra J, Noerrelykke S, et al. Mechanisms of Tumor-Induced Lymphovascular Niche Formation in Draining Lymph Nodes. Cell Rep. 2018;25:3554-3563.e4 pubmed 出版商
  66. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  67. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  68. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  69. Urner S, Planas Paz L, Hilger L, Henning C, Branopolski A, Kelly Goss M, et al. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J. 2019;38: pubmed 出版商
  70. Uccellini M, Garcia Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep. 2018;25:2784-2796.e3 pubmed 出版商
  71. Wu F, Xu P, Chow A, Man S, Kruger J, Khan K, et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer. 2019;120:196-206 pubmed 出版商
  72. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  73. Choi H, Suwanpradid J, Kim I, Staats H, Haniffa M, Macleod A, et al. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science. 2018;362: pubmed 出版商
  74. Jürgensen H, Nørregaard K, Sibree M, Santoni Rugiu E, Madsen D, Wassilew K, et al. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol. 2019;218:333-349 pubmed 出版商
  75. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  76. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, et al. Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation. Stem Cell Reports. 2018;11:988-997 pubmed 出版商
  77. Stephens J, Bailey J, Hang H, Rittell V, Dietrich M, Mynatt R, et al. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring). 2018;26:1439-1447 pubmed 出版商
  78. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  79. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  80. Oldstone M, Ware B, Horton L, Welch M, Aiolfi R, Zarpellon A, et al. Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A. 2018;115:E7814-E7823 pubmed 出版商
  81. Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22 pubmed 出版商
  82. Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, et al. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol. 2018;246:311-322 pubmed 出版商
  83. Gallot Y, Straughn A, Bohnert K, Xiong G, Hindi S, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet. 2018;27:3449-3463 pubmed 出版商
  84. Maeda K, Otomo K, Yoshida N, Abu Asab M, Ichinose K, Nishino T, et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest. 2018;128:3445-3459 pubmed 出版商
  85. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  86. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  87. Alonso Martin S, Aurade F, Mademtzoglou D, Rochat A, Zammit P, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. elife. 2018;7: pubmed 出版商
  88. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  89. Gurevich D, Severn C, Twomey C, Greenhough A, Cash J, Toye A, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37: pubmed 出版商
  90. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  91. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  92. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  93. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  94. Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, et al. Schwann Cell Plasticity is Regulated by a Weakened Intrinsic Antioxidant Defense System in Acute Peripheral Nerve Injury. Neuroscience. 2018;382:1-13 pubmed 出版商
  95. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104-2115 pubmed 出版商
  96. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  97. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  98. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  99. Longchamp A, Mirabella T, Arduini A, MacArthur M, Das A, Treviño Villarreal J, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018;173:117-129.e14 pubmed 出版商
  100. Brown M, Assen F, Leithner A, Abe J, Schachner H, Asfour G, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359:1408-1411 pubmed 出版商
  101. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  102. Verbiest T, Finnon R, Brown N, Cruz Garcia L, Finnon P, O Brien G, et al. Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia. 2018;32:1435-1444 pubmed 出版商
  103. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  104. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  105. Gechijian L, Buckley D, Lawlor M, Reyes J, Paulk J, Ott C, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405-412 pubmed 出版商
  106. Zacharias W, Frank D, Zepp J, Morley M, Alkhaleel F, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255 pubmed 出版商
  107. Yang J, Cornelissen F, Papazian N, Reijmers R, Llorian M, Cupedo T, et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med. 2018;215:1069-1077 pubmed 出版商
  108. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  109. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  110. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  111. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  112. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  113. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  114. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  115. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  116. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  117. Fang J, Coon B, Gillis N, Chen Z, Qiu J, Chittenden T, et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun. 2017;8:2149 pubmed 出版商
  118. Matsuo K, Nagakubo D, Yamamoto S, Shigeta A, Tomida S, Fujita M, et al. CCL28-Deficient Mice Have Reduced IgA Antibody-Secreting Cells and an Altered Microbiota in the Colon. J Immunol. 2018;200:800-809 pubmed 出版商
  119. Heimsath E, Yim Y, Mustapha M, Hammer J, Cheney R. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep. 2017;7:17354 pubmed 出版商
  120. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  121. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  122. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  123. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  124. Yamazaki R, Yamazoe K, Yoshida S, Hatou S, Inagaki E, Okano H, et al. The Semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Sci Rep. 2017;7:15584 pubmed 出版商
  125. Singh P, Hoggatt J, Kamocka M, Mohammad K, Saunders M, Li H, et al. Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. J Clin Invest. 2017;127:4527-4540 pubmed 出版商
  126. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  127. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  128. Kang H, Kumar D, Liao G, Lichti Kaiser K, Gerrish K, Liao X, et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest. 2017;127:4326-4337 pubmed 出版商
  129. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  130. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  131. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  132. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  133. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  134. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  135. Song K, Fu J, Song J, Herzog B, Bergstrom K, Kondo Y, et al. Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J Biol Chem. 2017;292:16491-16497 pubmed 出版商
  136. Degn S, van der Poel C, Firl D, Ayoglu B, Al Qureshah F, Bajic G, et al. Clonal Evolution of Autoreactive Germinal Centers. Cell. 2017;170:913-926.e19 pubmed 出版商
  137. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  138. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  139. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  140. Jiang X, Hawkins J, Lee J, Lizama C, Bos F, Zape J, et al. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun. 2017;8:128 pubmed 出版商
  141. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  142. van Vliet P, Lin L, Boogerd C, Martin J, Andelfinger G, Grossfeld P, et al. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol. 2017;429:249-259 pubmed 出版商
  143. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  144. Reinhard J, Lin S, McKee K, Meinen S, Crosson S, Sury M, et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med. 2017;9: pubmed 出版商
  145. Kraus R, Yu X, Cordes B, Sathiamoorthi S, Iempridee T, Nawandar D, et al. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 2017;13:e1006404 pubmed 出版商
  146. Heggermont W, Papageorgiou A, Quaegebeur A, Deckx S, Carai P, Verhesen W, et al. Inhibition of MicroRNA-146a and Overexpression of Its Target Dihydrolipoyl Succinyltransferase Protect Against Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. Circulation. 2017;136:747-761 pubmed 出版商
  147. Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nat Commun. 2017;8:15426 pubmed 出版商
  148. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  149. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  150. Tammela T, Sanchez Rivera F, Cetinbas N, Wu K, Joshi N, Helenius K, et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 2017;545:355-359 pubmed 出版商
  151. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  152. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  153. Yu P, Wilhelm K, Dubrac A, Tung J, Alves T, Fang J, et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224-228 pubmed 出版商
  154. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  155. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  156. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  157. Lalit P, Rodriguez A, Downs K, Kamp T. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc. 2017;12:1029-1054 pubmed 出版商
  158. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. elife. 2017;6: pubmed 出版商
  159. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  160. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  161. Li Q, Xia S, Fang H, Pan J, Jia Y, Deng G. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp Ther Med. 2017;13:449-454 pubmed 出版商
  162. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  163. Heim J, Squirewell E, Neu A, Zocher G, Sominidi Damodaran S, Wyles S, et al. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A. 2017;114:3933-3938 pubmed 出版商
  164. Kanki Y, Nakaki R, Shimamura T, Matsunaga T, Yamamizu K, Katayama S, et al. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res. 2017;45:4344-4358 pubmed 出版商
  165. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  166. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  167. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  168. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  169. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  170. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  171. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  172. Zhao C, Cai S, Shin K, Lim A, Kalisky T, Lu W, et al. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science. 2017;356: pubmed 出版商
  173. Strangward P, Haley M, Shaw T, Schwartz J, Greig R, Mironov A, et al. A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathog. 2017;13:e1006267 pubmed 出版商
  174. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  175. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  176. Gatto S, Puri P, Malecova B. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells. Methods Mol Biol. 2017;1556:191-219 pubmed 出版商
  177. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  178. Meyers M, Rink J, Jiang Q, Kelly M, Vercammen J, Thaxton C, et al. Systemically administered collagen-targeted gold nanoparticles bind to arterial injury following vascular interventions. Physiol Rep. 2017;5: pubmed 出版商
  179. Li H, Liu P, Xu S, Li Y, Dekker J, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241-1253 pubmed 出版商
  180. Moestrup K, Andersen M, Jensen K. Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods Mol Biol. 2017;1553:67-83 pubmed 出版商
  181. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  182. Turner V, Mabbott N. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017;151:239-247 pubmed 出版商
  183. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  184. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  185. Daniels B, Jujjavarapu H, Durrant D, Williams J, Green R, White J, et al. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017;127:843-856 pubmed 出版商
  186. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  187. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  188. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  189. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  190. Zhu X, Zhou H, Luo J, Cui Y, Li H, Zhang W, et al. Different but synergistic effects of bone marrow-derived VEGFR2+ and VEGFR2-CD45+ cells during hepatocellular carcinoma progression. Oncol Lett. 2017;13:63-68 pubmed 出版商
  191. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  192. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  193. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  194. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  195. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  196. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  197. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  198. Benito Jardón M, Klapproth S, Gimeno LLuch I, Petzold T, Bharadwaj M, Müller D, et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. elife. 2017;6: pubmed 出版商
  199. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  200. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  201. Stzepourginski I, Nigro G, Jacob J, Dulauroy S, Sansonetti P, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci U S A. 2017;114:E506-E513 pubmed 出版商
  202. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  203. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  204. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  205. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  206. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  207. Lesage J, Suarez Carmona M, Neyrinck Leglantier D, Grelet S, Blacher S, Hunziker W, et al. Zonula occludens-1/NF-?B/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017;31:1678-1688 pubmed 出版商
  208. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  209. Xavier S, Sahu R, Landes S, Yu J, Taylor R, Ayyadevara S, et al. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol. 2017;312:F516-F532 pubmed 出版商
  210. Wong B, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid ?-oxidation in lymphangiogenesis. Nature. 2017;542:49-54 pubmed 出版商
  211. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  212. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  213. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  214. Campa C, Germena G, Ciraolo E, Copperi F, Sapienza A, Franco I, et al. Rac signal adaptation controls neutrophil mobilization from the bone marrow. Sci Signal. 2016;9:ra124 pubmed 出版商
  215. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  216. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  217. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini C, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41-45 pubmed 出版商
  218. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  219. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  220. Feng L, Shu Y, Wu Q, Liu T, Long H, Yang H, et al. EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Mol Med Rep. 2017;15:37-46 pubmed 出版商
  221. Wang X, Chen D, Chen K, Jubran A, Ramirez A, Astrof S. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol. 2017;421:108-117 pubmed 出版商
  222. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  223. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  224. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  225. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  226. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  227. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  228. Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed 出版商
  229. Zhang Y, Yang J, Ding M, Li L, Lu Z, Zhang Q, et al. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol Lett. 2016;12:3241-3249 pubmed
  230. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  231. Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T. Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia. 2016;18:732-741 pubmed 出版商
  232. Yadav V, Zamler D, Baker G, Kadiyala P, Erdreich Epstein A, deCarvalho A, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget. 2016;7:83701-83719 pubmed 出版商
  233. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  234. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  235. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  236. Mouillesseaux K, Wiley D, Saunders L, Wylie L, Kushner E, Chong D, et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun. 2016;7:13247 pubmed 出版商
  237. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  238. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  239. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  240. Gallini R, Lindblom P, Bondjers C, Betsholtz C, Andrae J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res. 2016;349:282-290 pubmed 出版商
  241. Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, et al. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke. 2016;47:3022-3031 pubmed
  242. Scully K, Skowronska Krawczyk D, Krawczyk M, Merkurjev D, Taylor H, Livolsi A, et al. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland. Proc Natl Acad Sci U S A. 2016;113:13408-13413 pubmed
  243. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  244. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  245. Iyer S, Chhabra Y, Harvey T, Wang R, Chiu H, Smith A, et al. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. J Mol Histol. 2017;48:53-61 pubmed 出版商
  246. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  247. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  248. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  249. Yu H, Moran C, Trollope A, Woodward L, Kinobe R, Rush C, et al. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 2016;6:35190 pubmed 出版商
  250. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  251. Prendergast A, Kück A, van Essen M, Haas S, Blaszkiewicz S, Essers M. IFN?-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica. 2017;102:445-453 pubmed 出版商
  252. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  253. Illingworth R, Hölzenspies J, Roske F, Bickmore W, Brickman J. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. elife. 2016;5: pubmed 出版商
  254. Hu X, García M, Weng L, Jung X, Murakami J, Kumar B, et al. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun. 2016;7:13095 pubmed 出版商
  255. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  256. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  257. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  258. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  259. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  260. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  261. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  262. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  263. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A. 2016;113:E5618-27 pubmed 出版商
  264. Yang J, Feng X, Zhou Q, Cheng W, Shang C, Han P, et al. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A. 2016;113:E5628-35 pubmed 出版商
  265. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  266. Stock A, Hansen J, Sleeman M, McKenzie B, Wicks I. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J Exp Med. 2016;213:1983-98 pubmed 出版商
  267. Zhang K, Cai H, Gao S, Yang G, Deng H, Xu G, et al. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 2016;7:69436-69449 pubmed 出版商
  268. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation. 2016;13:227 pubmed 出版商
  269. Yang Y, Zhang Y, Iwamoto H, Hosaka K, Seki T, Andersson P, et al. Discontinuation of anti-VEGF cancer therapy promotes metastasis through a liver revascularization mechanism. Nat Commun. 2016;7:12680 pubmed 出版商
  270. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  271. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  272. Jaaks P, D Alessandro V, Grob N, Büel S, Hajdin K, Schafer B, et al. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS ONE. 2016;11:e0161396 pubmed 出版商
  273. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  274. Kim M, Allen B, Korhonen E, Nitschké M, Yang H, Baluk P, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126:3511-25 pubmed 出版商
  275. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  276. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  277. Antonova L, Sevostyanova V, Kutikhin A, Mironov A, Krivkina E, Shabaev A, et al. Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(?-caprolactone) Small-Diameter Vascular Grafts In vivo. Front Pharmacol. 2016;7:230 pubmed 出版商
  278. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  279. Navarro Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, et al. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS ONE. 2016;11:e0160979 pubmed 出版商
  280. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  281. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  282. Martin Gonzalez J, Morgani S, Bone R, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports. 2016;7:177-91 pubmed 出版商
  283. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  284. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  285. Agarwal S, Drake J, Qureshi A, Loder S, Li S, Shigemori K, et al. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS ONE. 2016;11:e0156253 pubmed 出版商
  286. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  287. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  288. Strilic B, Yang L, Albarrán Juárez J, Wachsmuth L, Han K, Müller U, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536:215-8 pubmed
  289. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  290. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  291. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  292. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  293. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  294. Kretschmer S, Pieper M, Hüttmann G, Bölke T, Wollenberg B, Marsh L, et al. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways. Lab Invest. 2016;96:918-31 pubmed 出版商
  295. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  296. Martin Almedina S, Martínez Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest. 2016;126:3080-8 pubmed 出版商
  297. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  298. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  299. Yu Q, Song W, Wang D, Zeng Y. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26:1079-1098 pubmed 出版商
  300. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  301. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  302. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  303. Legeay S, Clere N, Hilairet G, Do Q, Bernard P, Quignard J, et al. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep. 2016;6:28546 pubmed 出版商
  304. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  305. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  306. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  307. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  308. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  309. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  310. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  311. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  312. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  313. Löffler T, Flunkert S, Temmel M, Hutter Paier B. Decreased Plasma A? in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci. 2016;10:232 pubmed 出版商
  314. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  315. Horrillo A, Porras G, Ayuso M, González Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol. 2016;95:265-76 pubmed 出版商
  316. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  317. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  318. Ryan T, Schmidt C, Alleman R, Tsang A, Green T, Neufer P, et al. Mitochondrial therapy improves limb perfusion and myopathy following hindlimb ischemia. J Mol Cell Cardiol. 2016;97:191-6 pubmed 出版商
  319. Bian Q, Jain A, Xu X, Kebaish K, Crane J, Zhang Z, et al. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep. 2016;6:27093 pubmed 出版商
  320. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  321. Pumberger M, Qazi T, Ehrentraut M, Textor M, Kueper J, Stoltenburg Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials. 2016;99:95-108 pubmed 出版商
  322. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  323. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  324. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  325. Lim S, Hosaka K, Nakamura M, Cao Y. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis. Oncotarget. 2016;7:38282-38291 pubmed 出版商
  326. Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, et al. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci. 2016;12:639-52 pubmed 出版商
  327. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  328. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  329. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  330. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, et al. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep. 2016;6:25955 pubmed 出版商
  331. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  332. Antony N, McDougall A, Mantamadiotis T, Cole T, Bird A. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep. 2016;6:25569 pubmed 出版商
  333. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  334. Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, et al. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Sci Rep. 2016;6:25658 pubmed 出版商
  335. Nakagawa A, Naito A, Sumida T, Nomura S, Shibamoto M, Higo T, et al. Activation of endothelial β-catenin signaling induces heart failure. Sci Rep. 2016;6:25009 pubmed 出版商
  336. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  337. Körbelin J, Dogbevia G, Michelfelder S, Ridder D, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8:609-25 pubmed 出版商
  338. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  339. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  340. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  341. Wu C, Sheu S, Hsu L, Yang K, Tseng C, Kuo T. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2017;105:1536-1543 pubmed 出版商
  342. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  343. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  344. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  345. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  346. Rios A, Fu N, Jamieson P, Pal B, Whitehead L, Nicholas K, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400 pubmed 出版商
  347. Raredon M, Rocco K, Gheorghe C, Sivarapatna A, Ghaedi M, Balestrini J, et al. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access. 2016;5:72-83 pubmed 出版商
  348. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  349. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  350. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  351. Fujiwara M, Kanayama K, Hirokawa Y, Shiraishi T. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo. Oncol Lett. 2016;11:2773-2779 pubmed
  352. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  353. Chang C, Petrie T, Clark A, Lin X, Sondergaard C, Griffiths L. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS ONE. 2016;11:e0153412 pubmed 出版商
  354. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  355. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  356. Hobbs R, Batazzi A, Han M, Coulombe P. Loss of Keratin 17 induces tissue-specific cytokine polarization and cellular differentiation in HPV16-driven cervical tumorigenesis in vivo. Oncogene. 2016;35:5653-5662 pubmed 出版商
  357. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  358. Cozzo A, Sundaram S, Zattra O, Qin Y, Freemerman A, Essaid L, et al. cMET inhibitor crizotinib impairs angiogenesis and reduces tumor burden in the C3(1)-Tag model of basal-like breast cancer. Springerplus. 2016;5:348 pubmed 出版商
  359. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  360. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  361. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  362. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  363. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  364. Zhou Z, Tang A, Wong W, Bamezai S, Goddard L, Shenkar R, et al. Cerebral cavernous malformations arise from endothelial gain of MEKK3-KLF2/4 signalling. Nature. 2016;532:122-6 pubmed 出版商
  365. Aikawa H, Hayashi M, Ryu S, Yamashita M, Ohtsuka N, Nishidate M, et al. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging. Sci Rep. 2016;6:23749 pubmed 出版商
  366. Ding X, Qiu L, Zhang L, Xi J, Li D, Huang X, et al. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer. Onco Targets Ther. 2016;9:1189-204 pubmed 出版商
  367. Körbelin J, Sieber T, Michelfelder S, Lunding L, Spies E, Hunger A, et al. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries. Mol Ther. 2016;24:1050-1061 pubmed 出版商
  368. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  369. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  370. Cordeiro O, Chypre M, Brouard N, Rauber S, Alloush F, Romera Hernandez M, et al. Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE. 2016;11:e0151848 pubmed 出版商
  371. Tao W, Moore R, Meng Y, Smith E, Xu X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res. 2016;57:809-17 pubmed 出版商
  372. Brooks D, Schwab L, Krutilina R, Parke D, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26 pubmed 出版商
  373. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  374. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  375. Wang C, Inzana J, Mirando A, Ren Y, Liu Z, Shen J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest. 2016;126:1471-81 pubmed 出版商
  376. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  377. Stabler C, Caires L, Mondrinos M, Marcinkiewicz C, Lazarovici P, Wolfson M, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22:439-50 pubmed 出版商
  378. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  379. Cruz F, Borg Z, Goodwin M, Coffey A, Wagner D, Rocco P, et al. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Transl Med. 2016;5:488-99 pubmed 出版商
  380. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  381. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  382. Crisan M, Solaimani Kartalaei P, Neagu A, Karkanpouna S, Yamada Inagawa T, Purini C, et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Reports. 2016;6:383-95 pubmed 出版商
  383. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  384. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  385. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  386. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  387. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  388. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  389. Shahrabi Farahani S, Gallottini M, Martins F, Li E, Mudge D, Nakayama H, et al. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma. Am J Pathol. 2016;186:1055-64 pubmed 出版商
  390. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  391. Singh N, Kotla S, Kumar R, Rao G. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine. 2015;2:1767-84 pubmed 出版商
  392. Gawade S, Mayer C, Hafen K, Barthlott T, Krenger W, Szinnai G. Cell Growth Dynamics in Embryonic and Adult Mouse Thyroid Revealed by a Novel Approach to Detect Thyroid Gland Subpopulations. Thyroid. 2016;26:591-9 pubmed 出版商
  393. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, et al. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget. 2016;7:9859-75 pubmed 出版商
  394. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  395. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  396. Franco C, Jones M, Bernabeu M, Vion A, Barbacena P, Fan J, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife. 2016;5:e07727 pubmed 出版商
  397. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  398. Kowalewska P, Nguyen U, Burrows L, Fox Robichaud A. Syndecan-1 (CD138) deficiency increases Staphylococcus aureus infection but has no effect on pathology in a mouse model of peritoneal dialysis. J Biomed Sci. 2016;23:20 pubmed 出版商
  399. Cheung K, Padmanaban V, Silvestri V, Schipper K, Cohen J, Fairchild A, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113:E854-63 pubmed 出版商
  400. Deverman B, Pravdo P, Simpson B, Kumar S, Chan K, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204-9 pubmed 出版商
  401. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  402. Solomon I, O Reilly M, Ionescu L, Alphonse R, Rajabali S, Zhong S, et al. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med. 2016;5:291-300 pubmed 出版商
  403. Norden P, Kim D, Barry D, CLEAVER O, Davis G. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. PLoS ONE. 2016;11:e0147758 pubmed 出版商
  404. Chandler R, Magnuson T. The SWI/SNF BAF-A complex is essential for neural crest development. Dev Biol. 2016;411:15-24 pubmed 出版商
  405. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  406. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  407. Nitta Y, Shimizu S, Shishido Hara Y, Suzuki K, Shiokawa Y, Nagane M. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 2016;5:486-99 pubmed 出版商
  408. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  409. Merk H, Zhang S, Lehr T, Müller C, Ulrich M, Bibb J, et al. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget. 2016;7:6088-104 pubmed 出版商
  410. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  411. Cano E, Carmona R, Ruiz Villalba A, Rojas A, Chau Y, Wagner K, et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A. 2016;113:656-61 pubmed 出版商
  412. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  413. Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich M, Lim R, et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 2016;529:216-20 pubmed 出版商
  414. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  415. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  416. SINGLA D, Wang J. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. Oxid Med Cell Longev. 2016;2016:5810908 pubmed 出版商
  417. Poczobutt J, Nguyen T, Hanson D, Li H, Sippel T, Weiser Evans M, et al. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment. J Immunol. 2016;196:891-901 pubmed 出版商
  418. de Almeida G, Yamamoto M, Morioka Y, Ogawa S, Matsuzaki T, Noda M. Critical roles for murine Reck in the regulation of vascular patterning and stabilization. Sci Rep. 2015;5:17860 pubmed 出版商
  419. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  420. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  421. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  422. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  423. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26:119-30 pubmed 出版商
  424. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  425. Mistry R, Murray T, Prysyazhna O, Martin D, Burgoyne J, Santos C, et al. Transcriptional Regulation of Cystathionine-γ-Lyase in Endothelial Cells by NADPH Oxidase 4-Dependent Signaling. J Biol Chem. 2016;291:1774-88 pubmed 出版商
  426. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol. 2016;18:111-21 pubmed 出版商
  427. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  428. Hirota S, Clements T, Tang L, Morales J, Lee H, Oh S, et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363-73 pubmed 出版商
  429. Beaudet M, Yang Q, Cadau S, Blais M, Bellenfant S, Gros Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep. 2015;5:16763 pubmed 出版商
  430. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  431. Dumont N, Wang Y, von Maltzahn J, Pasut A, Bentzinger C, Brun C, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21:1455-63 pubmed 出版商
  432. Lau W, Pandey V, Kong X, Wang X, Wu Z, Zhu T, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2. PLoS ONE. 2015;10:e0141947 pubmed 出版商
  433. Rath S, Salinas M, Villegas A, Ramaswamy S. Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype. PLoS ONE. 2015;10:e0141802 pubmed 出版商
  434. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  435. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  436. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  437. Stein Merlob A, Kessinger C, Erdem S, Zelada H, Hilderbrand S, Lin C, et al. Blood Accessibility to Fibrin in Venous Thrombosis is Thrombus Age-Dependent and Predicts Fibrinolytic Efficacy: An In Vivo Fibrin Molecular Imaging Study. Theranostics. 2015;5:1317-27 pubmed 出版商
  438. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701 pubmed 出版商
  439. Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE. 2015;10:e0140831 pubmed 出版商
  440. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  441. Tsukui T, Ueha S, Shichino S, Inagaki Y, Matsushima K. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am J Pathol. 2015;185:2939-48 pubmed 出版商
  442. Yu D, Makkar G, Strickland D, Blanpied T, Stumpo D, Blackshear P, et al. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc. 2015;4:e002255 pubmed 出版商
  443. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  444. Moen I, Gebre M, Alonso Camino V, Chen D, Epstein D, McDonald D. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32:799-817 pubmed 出版商
  445. Suarez Mier G, Buckwalter M. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro. 2015;7: pubmed 出版商
  446. Ishida R, Kami D, Kusaba T, Kirita Y, Kishida T, Mazda O, et al. Kidney-specific Sonoporation-mediated Gene Transfer. Mol Ther. 2016;24:125-34 pubmed 出版商
  447. Dyer L, Lockyer P, Wu Y, Saha A, Cyr C, Moser M, et al. BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions. PLoS ONE. 2015;10:e0139209 pubmed 出版商
  448. Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou A. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS ONE. 2015;10:e0139199 pubmed 出版商
  449. Liu L, Cheung T, Charville G, Rando T. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc. 2015;10:1612-24 pubmed 出版商
  450. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  451. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  452. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  453. ZiÄ™tara N, Łyszkiewicz M, PuchaÅ‚ka J, Witzlau K, Reinhardt A, Förster R, et al. Multicongenic fate mapping quantification of dynamics of thymus colonization. J Exp Med. 2015;212:1589-601 pubmed 出版商
  454. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  455. Wittmann G, Mohácsik P, Balkhi M, Gereben B, Lechan R. Endotoxin-induced inflammation down-regulates L-type amino acid transporter 1 (LAT1) expression at the blood-brain barrier of male rats and mice. Fluids Barriers CNS. 2015;12:21 pubmed 出版商
  456. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  457. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  458. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  459. Zhang R, Cao P, Yang Z, Wang Z, Wu J, Chen Y, et al. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling. PLoS ONE. 2015;10:e0136518 pubmed 出版商
  460. Sereni F, Dal Monte M, Filippi L, Bagnoli P. Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1317-31 pubmed 出版商
  461. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  462. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  463. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  464. Church C, Brown M, Rodeheffer M. Conditional immortalization of primary adipocyte precursor cells. Adipocyte. 2015;4:203-11 pubmed 出版商
  465. Yin T, He S, Su C, Chen X, Zhang D, Wan Y, et al. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep. 2015;12:5093-9 pubmed 出版商
  466. Hossain M, Qadri S, Xu N, Su Y, Cayabyab F, Heit B, et al. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. J Immunol. 2015;195:2408-16 pubmed 出版商
  467. Fisher O, Deng H, Liu D, Zhang Y, Wei R, Deng Y, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015;6:7937 pubmed 出版商
  468. Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M, et al. Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period. Nat Commun. 2015;6:7725 pubmed 出版商
  469. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  470. Lu W, Bird T, Boulter L, Tsuchiya A, Cole A, Hay T, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015;17:971-983 pubmed 出版商
  471. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  472. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  473. Raissadati A, Nykänen A, Tuuminen R, Syrjälä S, Krebs R, Arnaudova R, et al. Systemic overexpression of matricellular protein CCN1 exacerbates obliterative bronchiolitis in mouse tracheal allografts. Transpl Int. 2015;28:1416-25 pubmed 出版商
  474. Hobbs R, DePianto D, Jacob J, Han M, Chung B, Batazzi A, et al. Keratin-dependent regulation of Aire and gene expression in skin tumor keratinocytes. Nat Genet. 2015;47:933-8 pubmed 出版商
  475. Dokun A, Chen L, Okutsu M, Farber C, Hazarika S, Jones W, et al. ADAM12: a genetic modifier of preclinical peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2015;309:H790-803 pubmed 出版商
  476. Pardo Saganta A, Tata P, Law B, Saez B, Chow R, Prabhu M, et al. Parent stem cells can serve as niches for their daughter cells. Nature. 2015;523:597-601 pubmed 出版商
  477. Yotsumoto F, You W, Cejudo Martin P, Kucharova K, Sakimura K, Stallcup W. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204 pubmed
  478. May U, Prince S, Vähätupa M, Laitinen A, Nieminen K, Uusitalo Järvinen H, et al. Resistance of R-Ras knockout mice to skin tumour induction. Sci Rep. 2015;5:11663 pubmed 出版商
  479. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  480. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  481. Nobutani K, Shimono Y, Mizutani K, Ueda Y, Suzuki T, Kitayama M, et al. Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy. PLoS ONE. 2015;10:e0130032 pubmed 出版商
  482. Aspalter I, Gordon E, Dubrac A, Ragab A, Narloch J, Vizan P, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 2015;6:7264 pubmed 出版商
  483. Aspelund A, Antila S, Proulx S, Karlsen T, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991-9 pubmed 出版商
  484. Cunha S, Bocci M, Lövrot J, Eleftheriou N, Roswall P, Cordero E, et al. Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer. Cancer Res. 2015;75:2445-56 pubmed 出版商
  485. Tchang L, Pippenger B, Todorov A, Wolf F, Burger M, Jaquiery C, et al. Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. J Tissue Eng Regen Med. 2017;11:1542-1552 pubmed 出版商
  486. de Melo S, Bittencourt S, Ferrazoli E, da Silva C, da Cunha F, da Silva F, et al. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE. 2015;10:e0128922 pubmed 出版商
  487. Liu Z, Brunskill E, Varnum Finney B, Zhang C, Zhang A, Jay P, et al. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development. 2015;142:2452-63 pubmed 出版商
  488. Selvaraj D, Gangadharan V, Michalski C, Kurejova M, Stösser S, Srivastava K, et al. A Functional Role for VEGFR1 Expressed in Peripheral Sensory Neurons in Cancer Pain. Cancer Cell. 2015;27:780-96 pubmed 出版商
  489. Yoshida Y, Shimizu I, Katsuumi G, Jiao S, Suda M, Hayashi Y, et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol. 2015;85:183-98 pubmed 出版商
  490. Wei K, Díaz Trelles R, Liu Q, Diez Cuñado M, Scimia M, Cai W, et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287-94 pubmed 出版商
  491. Roche F, Sipilä K, Honjo S, Johansson S, Tugues S, Heino J, et al. Histidine-rich glycoprotein blocks collagen-binding integrins and adhesion of endothelial cells through low-affinity interaction with α2 integrin. Matrix Biol. 2015;48:89-99 pubmed 出版商
  492. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  493. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  494. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  495. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  496. Fagiani E, Bill R, Pisarsky L, Ivanek R, Rüegg C, Christofori G. An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis. 2015;18:327-45 pubmed 出版商
  497. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  498. Wang H, Hong L, Huang J, Jiang Q, Tao R, Tan C, et al. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res. 2015;25:674-90 pubmed 出版商
  499. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  500. Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900-9 pubmed 出版商
  501. Hamilton A, Basic V, Andersson S, Abrink M, Ringvall M. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS ONE. 2015;10:e0126688 pubmed 出版商
  502. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  503. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  504. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  505. Morissette Martin P, Maux A, Laterreur V, Mayrand D, L Gagné V, Moulin V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater. 2015;22:39-49 pubmed 出版商
  506. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  507. Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, et al. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS ONE. 2015;10:e0124213 pubmed 出版商
  508. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  509. Guidotti L, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell. 2015;161:486-500 pubmed 出版商
  510. Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13:12 pubmed 出版商
  511. Zang G, Gustafsson K, Jamalpour M, Hong J, Genové G, Welsh M. Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer. 2015;15:234 pubmed 出版商
  512. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  513. Crawford G, Boldison J, Copland D, Adamson P, Gale D, Brandt M, et al. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis. PLoS ONE. 2015;10:e0122093 pubmed 出版商
  514. Marks Bluth J, Khanna A, Chandrakanthan V, Thoms J, Bee T, Eich C, et al. SMAD1 and SMAD5 Expression Is Coordinately Regulated by FLI1 and GATA2 during Endothelial Development. Mol Cell Biol. 2015;35:2165-72 pubmed 出版商
  515. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  516. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  517. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  518. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  519. Sugimoto M, Kondo M, Koga Y, Shiura H, Ikeda R, Hirose M, et al. A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition. Stem Cell Reports. 2015;4:744-57 pubmed 出版商
  520. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  521. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  522. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  523. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  524. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  525. Watanabe S, Chan K, Wang J, Rivino L, Lok S, Vasudevan S. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89:5847-61 pubmed 出版商
  526. Elahy M, Jackaman C, Mamo J, Lam V, Dhaliwal S, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2 pubmed 出版商
  527. Luo J, Liang M, Mitch W, Danesh F, Yu M, Cheng J. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice. Endocrinology. 2015;156:2200-10 pubmed 出版商
  528. You L, Yan K, Zou J, Zhao H, Bertos N, Park M, et al. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem. 2015;290:11349-64 pubmed 出版商
  529. Woods S, Waite A, O Dea K, Halford P, Takata M, Wilson M. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2015;308:L912-21 pubmed 出版商
  530. Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  531. Moding E, Castle K, Perez B, Oh P, Min H, Norris H, et al. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med. 2015;7:278ra34 pubmed 出版商
  532. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  533. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  534. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  535. Jeffery E, Church C, Holtrup B, Colman L, Rodeheffer M. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376-85 pubmed 出版商
  536. Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, et al. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development. 2015;142:1193-202 pubmed 出版商
  537. McCoy E, Street S, Taylor Blake B, Yi J, Edwards M, Wightman M, et al. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res. 2014;3:163 pubmed 出版商
  538. Fernandes S, Salta S, Summavielle T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol Lett. 2015;234:131-8 pubmed 出版商
  539. Singhal N, Martin P. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle. 2015;5:3 pubmed 出版商
  540. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  541. Tran K, Jackson S, Olufs Z, Zaidan N, Leng N, Kendziorski C, et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun. 2015;6:6188 pubmed 出版商
  542. Maione F, Giraudo E. Tumor angiogenesis: methods to analyze tumor vasculature and vessel normalization in mouse models of cancer. Methods Mol Biol. 2015;1267:349-65 pubmed 出版商
  543. Schulz J, Zeltz C, Sørensen I, Barczyk M, Carracedo S, Hallinger R, et al. Reduced granulation tissue and wound strength in the absence of α11β1 integrin. J Invest Dermatol. 2015;135:1435-1444 pubmed 出版商
  544. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  545. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  546. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:6020 pubmed 出版商
  547. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  548. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortalization of mouse liver sinusoidal endothelial cells. Int J Mol Med. 2015;35:617-24 pubmed 出版商
  549. Hong H, Yan Y, Shi S, Graves S, Krasteva L, Nickles R, et al. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm. 2015;12:403-10 pubmed 出版商
  550. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  551. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  552. Kilic E, Reitmeir R, Kilic Ã, Caglayan A, Beker M, Kelestemur T, et al. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia. Front Cell Neurosci. 2014;8:422 pubmed 出版商
  553. Chen W, Cao Z, Truong L, Sugaya S, Panjwani N. Fingerprinting of galectins in normal, P. aeruginosa-infected, and chemically burned mouse corneas. Invest Ophthalmol Vis Sci. 2015;56:515-25 pubmed 出版商
  554. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  555. Coutelle O, Schiffmann L, Liwschitz M, Brunold M, Goede V, Hallek M, et al. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer. 2015;112:495-503 pubmed 出版商
  556. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  557. Cuellar T, Barnes D, Nelson C, Tanguay J, Yu S, Wen X, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43:1189-203 pubmed 出版商
  558. Pérez de Puig I, Miró Mur F, Ferrer Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239-57 pubmed 出版商
  559. Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy I, Schaffer D. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells. 2015;33:1577-88 pubmed 出版商
  560. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  561. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  562. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  563. Ito A, Fujimura M, Niizuma K, Kanoke A, Sakata H, Morita Fujimura Y, et al. Enhanced post-ischemic angiogenesis in mice lacking RNF213; a susceptibility gene for moyamoya disease. Brain Res. 2015;1594:310-20 pubmed 出版商
  564. Ding X, Lucas T, Marcuzzi G, Pfister H, Eming S. Distinct functions of epidermal and myeloid-derived VEGF-A in skin tumorigenesis mediated by HPV8. Cancer Res. 2015;75:330-43 pubmed 出版商
  565. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  566. Li W, Cavelti Weder C, Zhang Y, Zhang Y, Clement K, Donovan S, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol. 2014;32:1223-30 pubmed 出版商
  567. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  568. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  569. Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc). 2014;79:797-804 pubmed 出版商
  570. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  571. Femel J, Huijbers E, Saupe F, Cedervall J, Zhang L, Roswall P, et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget. 2014;5:12418-27 pubmed
  572. Santoro S, Kim S, Motz G, Alatzoglou D, Li C, Irving M, et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol Res. 2015;3:68-84 pubmed 出版商
  573. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  574. Redig J, Fouad G, Babcock D, Reshey B, Feingold E, Reeves R, et al. Allelic Interaction between CRELD1 and VEGFA in the Pathogenesis of Cardiac Atrioventricular Septal Defects. AIMS Genet. 2014;1:1-19 pubmed
  575. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  576. Chuang D, Cui J, Simonyi A, Engel V, Chen S, Fritsche K, et al. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells. ASN Neuro. 2014;6: pubmed 出版商
  577. Schuhmann M, Kraft P, Stoll G, Lorenz K, Meuth S, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35:6-10 pubmed 出版商
  578. Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res. 2015;40:891-901 pubmed 出版商
  579. He L, Tian X, Zhang H, Hu T, Huang X, Zhang L, et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE. 2014;9:e109493 pubmed 出版商
  580. Tohyama O, Matsui J, Kodama K, Hata Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747 pubmed 出版商
  581. Aoto K, Trainor P. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet. 2015;24:698-713 pubmed 出版商
  582. Pang H, Braun G, Friman T, Aza Blanc P, Ruidiaz M, Sugahara K, et al. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun. 2014;5:4904 pubmed 出版商
  583. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  584. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed 出版商
  585. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  586. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  587. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  588. Miller L, Lincoln J. Isolation of murine valve endothelial cells. J Vis Exp. 2014;: pubmed 出版商
  589. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  590. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  591. Bajwa A, Rosin D, Chrościcki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26:908-25 pubmed 出版商
  592. Liakhovitskaia A, Rybtsov S, Smith T, Batsivari A, Rybtsova N, Rode C, et al. Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development. 2014;141:3319-23 pubmed 出版商
  593. Wallingford M, Giachelli C. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev. 2014;133:189-202 pubmed 出版商
  594. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  595. Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K, Arima Y, et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat Commun. 2014;5:4552 pubmed 出版商
  596. Moding E, Lee C, Castle K, Oh P, Mao L, Zha S, et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest. 2014;124:3325-38 pubmed 出版商
  597. Mésange P, Poindessous V, Sabbah M, Escargueil A, de Gramont A, Larsen A. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709-21 pubmed
  598. Prakash A, Udager A, Saenz D, Gumucio D. Roles for Nkx2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol. 2014;307:G430-6 pubmed 出版商
  599. Wang C, Cai Y, Zhang Y, Xiong Z, Li G, Cui L. Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1? and VEGF expression. PLoS ONE. 2014;9:e100818 pubmed 出版商
  600. Sanchez Gurmaches J, Guertin D. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun. 2014;5:4099 pubmed 出版商
  601. Forgèt M, Voorhees J, Cole S, Dakhlallah D, Patterson I, Gross A, et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE. 2014;9:e98623 pubmed 出版商
  602. Pogoda K, Füller M, Pohl U, Kameritsch P. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun Signal. 2014;12:33 pubmed 出版商
  603. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  604. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  605. Wang Y, Zhao W, Zhang L, Zhao Y, Li F, Zhang Z, et al. Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol. 2014;53:134-40 pubmed 出版商
  606. Ben Zvi A, Lacoste B, Kur E, Andreone B, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507-11 pubmed 出版商
  607. Vincent S, Mayeuf Louchart A, Watanabe Y, Brzezinski J, Miyagawa Tomita S, Kelly R, et al. Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Hum Mol Genet. 2014;23:5087-101 pubmed 出版商
  608. Katuri V, Gerber S, Qiu X, McCarty G, Goldstein S, Hammers H, et al. WT1 regulates angiogenesis in Ewing Sarcoma. Oncotarget. 2014;5:2436-49 pubmed
  609. Moreau J, Artap S, Shi H, Chapman G, Leone G, Sparrow D, et al. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol. 2014;392:62-79 pubmed 出版商
  610. Wu M, Lou J, Song B, Gong Y, Li Y, Yu C, et al. Hypoxia augments the calcium-activated chloride current carried by anoctamin-1 in cardiac vascular endothelial cells of neonatal mice. Br J Pharmacol. 2014;171:3680-92 pubmed 出版商
  611. Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS ONE. 2014;9:e95374 pubmed 出版商
  612. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  613. Xu Y, Hyun Y, Lim K, Lee H, Cummings R, Gerber S, et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A. 2014;111:6371-6 pubmed 出版商
  614. Xu J, Nie X, Cai X, Cai C, Xu P. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol. 2014;391:17-31 pubmed 出版商
  615. Cho Y, Archer B, Ambati B. Dry eye predisposes to corneal neovascularization and lymphangiogenesis after corneal injury in a murine model. Cornea. 2014;33:621-7 pubmed 出版商
  616. Baluk P, Phillips K, Yao L, Adams A, Nitschké M, McDonald D. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. Am J Pathol. 2014;184:1877-89 pubmed 出版商
  617. Edwards J, Bruno J, Key P, Cheng Y. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol. 2014;15:54 pubmed 出版商
  618. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  619. Savchenko A, Martinod K, Seidman M, Wong S, Borissoff J, Piazza G, et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12:860-70 pubmed 出版商
  620. Eskilsson A, Tachikawa M, Hosoya K, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol. 2014;522:3229-44 pubmed 出版商
  621. Hayes B, Riehle K, Shimizu Albergine M, Bauer R, Hudkins K, Johansson F, et al. Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS ONE. 2014;9:e92925 pubmed 出版商
  622. Liu X, McMurphy T, Xiao R, Slater A, Huang W, Cao L. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 2014;22:1275-1284 pubmed 出版商
  623. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres A. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56:255-75 pubmed 出版商
  624. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  625. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  626. Hale A, Tian H, Anih E, Recio F, Shatat M, Johnson T, et al. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem. 2014;289:12016-28 pubmed 出版商
  627. Giacomini C, Ferrari G, Bignami F, Rama P. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization. Exp Eye Res. 2014;121:1-4 pubmed 出版商
  628. Ablonczy Z, Dahrouj M, Marneros A. Progressive dysfunction of the retinal pigment epithelium and retina due to increased VEGF-A levels. FASEB J. 2014;28:2369-79 pubmed 出版商
  629. Cosgrove B, Gilbert P, Porpiglia E, Mourkioti F, Lee S, Corbel S, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255-64 pubmed 出版商
  630. Haba R, Shintani N, Onaka Y, Kanoh T, Wang H, Takenaga R, et al. Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci. 2014;34:2514-23 pubmed 出版商
  631. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  632. Hum S, Rymer C, Schaefer C, Bushnell D, Sims Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE. 2014;9:e88400 pubmed 出版商
  633. Anastasía A, Deinhardt K, Wang S, Martin L, Nichol D, Irmady K, et al. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS ONE. 2014;9:e87406 pubmed 出版商
  634. Chen Q, Lu G, Cai Y, Li Y, Xu R, Ke Y, et al. MiR-124-5p inhibits the growth of high-grade gliomas through posttranscriptional regulation of LAMB1. Neuro Oncol. 2014;16:637-51 pubmed 出版商
  635. Takeda K, Duan L, Takeda H, Fong G. Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism. Am J Pathol. 2014;184:686-96 pubmed 出版商
  636. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  637. Berger M, Neth O, Ilmer M, Garnier A, Salinas Martín M, de Agustín Asencio J, et al. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol. 2014;60:985-94 pubmed 出版商
  638. Kohler E, Wary K, Li F, Chatterjee I, Urao N, Toth P, et al. Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS ONE. 2013;8:e85549 pubmed 出版商
  639. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  640. Ribeiro V, Garcia M, Oliveira R, Gomes P, Colaço B, Fernandes M. Bisphosphonates induce the osteogenic gene expression in co-cultured human endothelial and mesenchymal stem cells. J Cell Mol Med. 2014;18:27-37 pubmed 出版商
  641. Yamane T, Washino A, Yamazaki H. Common developmental pathway for primitive erythrocytes and multipotent hematopoietic progenitors in early mouse development. Stem Cell Reports. 2013;1:590-603 pubmed 出版商
  642. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  643. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  644. Shin E, Sorenson C, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol. 2014;306:L620-34 pubmed 出版商
  645. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  646. Hu Y, Ru N, Xiao H, Chaturbedi A, Hoa N, Tian X, et al. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS ONE. 2013;8:e80898 pubmed 出版商
  647. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  648. Pascal L, Ai J, Masoodi K, Wang Y, Wang D, Eisermann K, et al. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice. PLoS ONE. 2013;8:e79542 pubmed 出版商
  649. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  650. Lu Q, Li M, Zou Y, Cao T. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J Control Release. 2014;174:43-50 pubmed 出版商
  651. Tan M, Li H, Sun Y. Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 2014;33:5211-20 pubmed 出版商
  652. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  653. Alessio A, Beltrame M, Nascimento M, Vicente C, de Godoy J, Silva J, et al. Circulating progenitor and mature endothelial cells in deep vein thrombosis. Int J Med Sci. 2013;10:1746-54 pubmed 出版商
  654. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  655. Winden D, Ferguson N, Bukey B, Geyer A, Wright A, Jergensen Z, et al. Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res. 2013;14:108 pubmed 出版商
  656. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed 出版商
  657. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  658. Cagnet S, Faraldo M, Kreft M, Sonnenberg A, Raymond K, Glukhova M. Signaling events mediated by ?3?1 integrin are essential for mammary tumorigenesis. Oncogene. 2014;33:4286-95 pubmed 出版商
  659. Ghazvini M, Sonneveld P, Kremer A, Franken P, Sacchetti A, Atlasi Y, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis. PLoS ONE. 2013;8:e73872 pubmed 出版商
  660. Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor ?2. J Biol Chem. 2013;288:31853-66 pubmed 出版商
  661. Li S, Haigh K, Haigh J, Vasudevan A. Endothelial VEGF sculpts cortical cytoarchitecture. J Neurosci. 2013;33:14809-15 pubmed 出版商
  662. Zhang H, Nieves J, Fraser S, Isern J, Douvaras P, Papatsenko D, et al. Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells. 2014;32:191-203 pubmed 出版商
  663. Gray B, McGuire M, Brown K. A liposomal drug platform overrides peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density. PLoS ONE. 2013;8:e72938 pubmed 出版商
  664. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  665. Subramanian V, Moorleghen J, Balakrishnan A, Howatt D, Chishti A, Uchida H. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS ONE. 2013;8:e72214 pubmed 出版商
  666. Harrell J, Pfefferle A, Zalles N, Prat A, Fan C, Khramtsov A, et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis. 2014;31:33-45 pubmed 出版商
  667. Rakian A, Yang W, Gluhak Heinrich J, Cui Y, Harris M, Villarreal D, et al. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. Int J Oral Sci. 2013;5:75-84 pubmed 出版商
  668. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  669. Ding H, Gao Y, Hu C, Wang Y, Wang C, Yin J, et al. HIF-1? transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS ONE. 2013;8:e63628 pubmed 出版商
  670. Navone S, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013;5:10 pubmed 出版商
  671. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  672. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  673. Li S, Li B, Jiang H, Wang Y, Qu M, Duan H, et al. Macrophage depletion impairs corneal wound healing after autologous transplantation in mice. PLoS ONE. 2013;8:e61799 pubmed 出版商
  674. Campbell L, Trendell J, Spears N. Identification of cells migrating from the thecal layer of ovarian follicles. Cell Tissue Res. 2013;353:189-94 pubmed 出版商
  675. He L, Marneros A. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 2013;182:2407-17 pubmed 出版商
  676. Rhee S, Guerrero Zayas M, Wallingford M, Ortíz Pineda P, Mager J, Tremblay K. Visceral endoderm expression of Yin-Yang1 (YY1) is required for VEGFA maintenance and yolk sac development. PLoS ONE. 2013;8:e58828 pubmed 出版商
  677. Martín Saavedra F, Wilson C, Voellmy R, Vilaboa N, Franceschi R. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods. 2013;24:160-70 pubmed 出版商
  678. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  679. Singh N, Tiem M, Watkins R, Cho Y, Wang Y, Olsen T, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242-9 pubmed 出版商
  680. Schell C, Baumhakl L, Salou S, Conzelmann A, Meyer C, Helmstädter M, et al. N-wasp is required for stabilization of podocyte foot processes. J Am Soc Nephrol. 2013;24:713-21 pubmed 出版商
  681. DeFalco T, Saraswathula A, Briot A, Iruela Arispe M, Capel B. Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod. 2013;88:91 pubmed 出版商
  682. Davis R, Curtis C, Griffin C. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 2013;140:1272-81 pubmed 出版商
  683. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  684. Berdnikovs S, Abdala Valencia H, Cook Mills J. Endothelial cell PTP1B regulates leukocyte recruitment during allergic inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;304:L240-9 pubmed 出版商
  685. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  686. Shah G, Price T, Banks W, Morofuji Y, Kovac A, Ercal N, et al. Pharmacological inhibition of mitochondrial carbonic anhydrases protects mouse cerebral pericytes from high glucose-induced oxidative stress and apoptosis. J Pharmacol Exp Ther. 2013;344:637-45 pubmed 出版商
  687. Qian H, Badaloni A, Chiara F, Stjernberg J, Polisetti N, Nihlberg K, et al. Molecular characterization of prospectively isolated multipotent mesenchymal progenitors provides new insight into the cellular identity of mesenchymal stem cells in mouse bone marrow. Mol Cell Biol. 2013;33:661-77 pubmed 出版商
  688. Munger S, Kanady J, Simon A. Absence of venous valves in mice lacking Connexin37. Dev Biol. 2013;373:338-48 pubmed 出版商
  689. Chandler R, Brennan J, Schisler J, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 2013;33:265-80 pubmed 出版商
  690. Juin A, Planus E, Guillemot F, Horáková P, Albiges Rizo C, Genot E, et al. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell. 2013;105:46-57 pubmed 出版商
  691. Grutzmacher C, Park S, Zhao Y, Morrison M, Sheibani N, Sorenson C. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes. Am J Physiol Renal Physiol. 2013;304:F19-30 pubmed 出版商
  692. PELUSO C, Jang W, DRAGER U, Schwob J. Differential expression of components of the retinoic acid signaling pathway in the adult mouse olfactory epithelium. J Comp Neurol. 2012;520:3707-26 pubmed 出版商
  693. Curtis C, Griffin C. The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol Cell Biol. 2012;32:1312-20 pubmed 出版商
  694. Nakao S, Zandi S, Faez S, Kohno R, Hafezi Moghadam A. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. FASEB J. 2012;26:808-17 pubmed 出版商
  695. Tortelli F, Tasso R, Loiacono F, Cancedda R. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010;31:242-9 pubmed 出版商
  696. Benton R, Maddie M, Minnillo D, Hagg T, Whittemore S. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol. 2008;507:1031-52 pubmed
  697. Baker K, Daniels S, Lennington J, Lardaro T, Czap A, Notti R, et al. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol. 2006;498:747-61 pubmed
  698. DeLisser H, Christofidou Solomidou M, Strieter R, Burdick M, Robinson C, Wexler R, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol. 1997;151:671-7 pubmed
  699. Rosenblum W, Nelson G, Wormley B, Werner P, Wang J, Shih C. Role of platelet-endothelial cell adhesion molecule (PECAM) in platelet adhesion/aggregation over injured but not denuded endothelium in vivo and ex vivo. Stroke. 1996;27:709-11 pubmed