这是一篇来自已证抗体库的有关小鼠 Pecam1的综述,是根据962篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pecam1 抗体。
Pecam1 同义词: C85791; Cd31; PECAM-1; Pecam

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(AbCam, ab28364)被用于被用于免疫组化在小鼠样本上. Nat Commun (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2a
  • 免疫细胞化学; 小鼠; 1:50; 图 3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3d). Burns Trauma (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab222783)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2b). Stem Cell Res Ther (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab28364)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 6a). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s5n
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5n). J Clin Invest (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 10a). Cells (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:30; 图 6d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:30 (图 6d). Mol Ther Nucleic Acids (2022) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫细胞化学在小鼠样本上 (图 2e). Signal Transduct Target Ther (2022) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 图 2n
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上 (图 2n). Sci Adv (2022) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s9
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 s9). iScience (2022) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2g). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s11a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s11a). J Clin Invest (2022) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Int J Mol Sci (2021) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 大鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2a). Biomedicines (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:50; 图 4e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上浓度为1:50 (图 4e). Front Immunol (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1 ug/ml; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上浓度为1 ug/ml (图 4a). Front Cardiovasc Med (2021) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化; 小鼠; 1:50; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1g). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). Bone Res (2021) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 2a). Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2h
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab 28364)被用于被用于免疫细胞化学在人类样本上 (图 2h). Cell J (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1k
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1k). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7d). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于. Cell Mol Life Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:300; 图 4h
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 4h). J Tissue Eng (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 3b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 3b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Diab Vasc Dis Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 7c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). J Orthop Surg Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 8b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 8b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于流式细胞仪在小鼠样本上. Mol Ther Methods Clin Dev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 小鼠; 1:200; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Arterioscler Thromb Vasc Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s1-1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 s1-1c). elife (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 小鼠; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a). Physiol Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
  • 免疫组化; 小鼠; 1:60; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫印迹在人类样本上 (图 6b) 和 被用于免疫组化在小鼠样本上浓度为1:60 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(JC/70A)
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于. Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上 (图 2a). Sci Rep (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7l
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7l). J Exp Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6a). JCI Insight (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 4f
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab222783)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f), 被用于免疫印迹在小鼠样本上 (图 5d), 被用于免疫印迹在人类样本上 (图 4f) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g). Clin Transl Med (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
  • 流式细胞仪; 小鼠; 图 5g
  • 免疫细胞化学; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e), 被用于流式细胞仪在小鼠样本上 (图 5g), 被用于免疫细胞化学在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 4c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 e8e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 e8e). Nat Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在小鼠样本上 (图 4a). J Endocrinol (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s7d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s7d). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 5a). Int J Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3j
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3j). Science (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cancers (Basel) (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫细胞化学; 小鼠; 图 s8a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab24590)被用于被用于免疫细胞化学在小鼠样本上 (图 s8a). Nat Commun (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4f). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). elife (2020) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(AbCam, 7388)被用于被用于免疫组化在小鼠样本上. Eur Respir J (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 8c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 8c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a, s5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a, s5). Cancer Sci (2021) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在人类样本上. elife (2020) ncbi
小鼠 单克隆(JC/70A)
  • 免疫印迹基因敲除验证; 小鼠; 图 3c
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3c) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:20; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, AB28364)被用于被用于免疫细胞化学在人类样本上浓度为1:20 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:25; 图 5di
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25 (图 5di). Brain (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3o
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3o). Life Sci Alliance (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, AB32457)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 6b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 6b). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Cell Prolif (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 4h
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在大鼠样本上 (图 4h). Cell Commun Signal (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 1:500; 图 2h
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2h). Fluids Barriers CNS (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5b). Sci Rep (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1g
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1g) 和 被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1f). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1b). Oncotarget (2020) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Chin Med J (Engl) (2020) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于. Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s7e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s7e). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Cancers (Basel) (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s1a). Sci Rep (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s3d). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e). J Clin Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化在人类样本上 (图 4c). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab32457)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1a). J Physiol Biochem (2019) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化; 小鼠; 1:250; 图 3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3e). Nat Commun (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Biomed Res Int (2019) ncbi
小鼠 单克隆(P2B1)
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab24590)被用于. Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Cell Signaling, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 5s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 s2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 s2a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s5a). Atherosclerosis (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Atherosclerosis (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2e). J Am Heart Assoc (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 5b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 e6o
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 e6o). Nature (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab182981)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; black ferret; 1:15; 图 8a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在black ferret样本上浓度为1:15 (图 8a). J Comp Neurol (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 1:100; 图 1k
  • 免疫组化; 人类; 1:100; 图 6f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1k) 和 被用于免疫组化在人类样本上浓度为1:100 (图 6f). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4a). Mol Med Rep (2019) ncbi
小鼠 单克隆(P2B1)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 1e). Neuroscience (2018) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠; 图 s4j
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4j). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2a
艾博抗(上海)贸易有限公司 Pecam1抗体(ABCAM, AB28364)被用于被用于免疫组化在小鼠样本上 (图 s2a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3c). Nat Chem Biol (2018) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 大鼠; 1:50; 图 s1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1f). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4e). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 7c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab38364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7c). Oncotarget (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 图 7e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在domestic rabbit样本上 (图 7e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s2). PLoS Genet (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 1:100; 图 s1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s1b). Sci Transl Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 11a
  • 免疫组化; 人类; 1:50; 图 11a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 11a) 和 被用于免疫组化在人类样本上浓度为1:50 (图 11a). PLoS Pathog (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Cardiovasc Diabetol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
  • 免疫印迹; 小鼠; 1:5000; 图 1d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3g). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 56
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 56). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 1:100; 图 1f
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化在小鼠样本上 (图 1c). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 s1a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 s3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 s3a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在pigs 样本上 (图 2a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 e3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 e3). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:30; 图 7b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫细胞化学在人类样本上浓度为1:30 (图 7b). Nat Protoc (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上. Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s9d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s9d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; pigs ; 图 11a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化在pigs 样本上 (图 11a). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b). Nat Med (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:10; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10 (图 3a). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 3a
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 3a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4c). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4C
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8A
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4C) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab28364)被用于被用于免疫组化在小鼠样本上 (图 3g). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 2
  • 免疫细胞化学; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5c). Oncogene (2017) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s14
  • 免疫细胞化学; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s14), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 2d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 酶联免疫吸附测定; 小鼠; 1:250; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:250 (图 4). Front Neurosci (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Adv Healthc Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化; 大鼠; 1:50; 图 6c
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab64543)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6c). Biomaterials (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s3n
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s3n). Nat Cell Biol (2016) ncbi
小鼠 单克隆(TLD-3A12)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab64543)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 7). Int J Biol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化在人类样本上 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 1g
  • 免疫组化; 小鼠; 1:50; 图 1i
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1g) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 1i). Nat Commun (2016) ncbi
小鼠 单克隆(JC/70A)
  • 流式细胞仪; domestic rabbit; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 3C
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 3C). Biores Open Access (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4c). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:40
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40. Oncol Lett (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 人类; 1:200; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:50 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Springerplus (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 st1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 st1). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Mol Ther (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 8
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:20; 图 s3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在大鼠样本上浓度为1:20 (图 s3). Tissue Eng Part C Methods (2016) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠; 图 s2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s2). Cell Stem Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 s1
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab28364)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab9498)被用于被用于免疫组化在人类样本上 (图 4). J Transl Med (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 s1c
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s3e
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s3e). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 5a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, JC70/A)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5a). Stem Cells Transl Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上 (图 6). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Cancer Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4g
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4g). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab28364)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 人类; 图 5
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫细胞化学; 小鼠; 1:200; 表 2
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab9498)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 2). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于被用于免疫组化在小鼠样本上浓度为1:150. Cell Mol Immunol (2017) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab24590)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; domestic rabbit; 1:100; 图 4
  • 流式细胞仪; 人类; 图 1
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498-500)被用于被用于免疫组化在domestic rabbit样本上浓度为1:100 (图 4) 和 被用于流式细胞仪在人类样本上 (图 1). Mol Med Rep (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化在小鼠样本上 (图 5d). Am J Respir Cell Mol Biol (2016) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫细胞化学在小鼠样本上. Transpl Int (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Pecam1抗体(AbCam, ab28364)被用于被用于免疫组化-石蜡切片在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3d). BMC Neurosci (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 家羊; 图 3a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 3a). Reprod Biol Endocrinol (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 6a
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化在人类样本上 (图 6a). BMC Cancer (2015) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 7388)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Toxicol Lett (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 流式细胞仪; 小鼠; 1:50
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Int J Mol Med (2015) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, JC70/A)被用于被用于免疫组化在人类样本上 (图 3). Cytotherapy (2015) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab56299)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司 Pecam1抗体(abcam, ab9498)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. PLoS ONE (2014) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠; 2.5 ug/ml
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, 56299)被用于被用于免疫组化在小鼠样本上浓度为2.5 ug/ml. Cell Commun Signal (2014) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫细胞化学; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab7388)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Br J Pharmacol (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; 人类; 图 3b
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). J Thromb Haemost (2014) ncbi
domestic rabbit 多克隆
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab28364)被用于. Mol Ther (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab24590)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-自由浮动切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100. Acta Neuropathol Commun (2013) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, Ab7388)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Int J Oral Sci (2013) ncbi
小鼠 单克隆(JC/70A)
  • 免疫组化-石蜡切片; domestic rabbit; 1:200
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab9498)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:200. PLoS ONE (2013) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司 Pecam1抗体(Abcam, ab56299)被用于被用于免疫组化-石蜡切片在小鼠样本上. Hum Gene Ther Methods (2013) ncbi
BioLegend
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Pecam1抗体(Biolegend, 102508)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). elife (2022) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1b, s4h
BioLegend Pecam1抗体(BioLegend, 102522)被用于被用于流式细胞仪在小鼠样本上 (图 1b, s4h). Sci Adv (2022) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 e8b
BioLegend Pecam1抗体(BioLegend, 102508)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 e8b). Nat Cell Biol (2022) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 s1b
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1b). Ann Rheum Dis (2022) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 3f, s8e
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3f, s8e). Nat Commun (2022) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Pecam1抗体(Biolegend, 102421)被用于被用于流式细胞仪在小鼠样本上 (图 5a). elife (2022) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3s1e
BioLegend Pecam1抗体(BioLegend, 102,502)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3s1e). elife (2022) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell Mol Gastroenterol Hepatol (2022) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1h
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Front Immunol (2021) ncbi
大鼠 单克隆(390)
  • 其他; 小鼠
BioLegend Pecam1抗体(BioLegend, 102425)被用于被用于其他在小鼠样本上. Nat Commun (2021) ncbi
大鼠 单克隆(MEC13.3)
  • mass cytometry; 小鼠; 图 7a
BioLegend Pecam1抗体(Biolegend, 102502)被用于被用于mass cytometry在小鼠样本上 (图 7a). Cancer Cell (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Rep (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
BioLegend Pecam1抗体(BioLegend, 102508)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). Cell Rep (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 s2c
BioLegend Pecam1抗体(BioLegend, 102523)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2c). Cancer Res (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 s2c
BioLegend Pecam1抗体(BioLegend, 102422)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2c). Cancer Res (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s1b
BioLegend Pecam1抗体(BioLegend, 102406)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1b). Nat Commun (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2c
BioLegend Pecam1抗体(BioLegend, 102516)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pecam1抗体(BioLegend, 102417)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Clin Invest (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102427)被用于被用于流式细胞仪在小鼠样本上. Cell (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend Pecam1抗体(Biolegend, 102423)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Rep (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:500
BioLegend Pecam1抗体(Biolegend, 102413)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上. Commun Biol (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). Front Immunol (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 5e
  • 免疫组化; 小鼠; 1:100; 图 5f
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5e) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 5f). Sci Adv (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
BioLegend Pecam1抗体(Biolegend, 102504)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). J Immunol (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:50; 图 2a
BioLegend Pecam1抗体(BioLegend, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4a, 4b, s4e
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4b, s4e). Clin Cancer Res (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 3s1b, c
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3s1b, c). elife (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Pecam1抗体(Biolegend, 102417)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Theranostics (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 1d
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1d). J Clin Invest (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pecam1抗体(Biolegend, 102406)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cancer Sci (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1-1a
BioLegend Pecam1抗体(Biolegend, MEC13)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1-1a). elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:500; 图 2b
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 2b). elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:500; 图 5h
BioLegend Pecam1抗体(Biolegend, 102422)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 5h). Thyroid (2021) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 1c
BioLegend Pecam1抗体(Biolegend, 102515)被用于被用于免疫组化在小鼠样本上 (图 1c). Nat Commun (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:100; 图 2s1c
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2s1c). elife (2020) ncbi
大鼠 单克隆(390)
  • 其他; 小鼠; 图 s11a
BioLegend Pecam1抗体(BioLegend, 102416)被用于被用于其他在小鼠样本上 (图 s11a). Nat Commun (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 102508)被用于被用于流式细胞仪在小鼠样本上 (图 1b). elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
BioLegend Pecam1抗体(BioLegend, 102407)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Stem Cell Res Ther (2020) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
BioLegend Pecam1抗体(Biolegend, 102401)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 5c
BioLegend Pecam1抗体(BioLegend, 102507)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 5c). Sci Rep (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6s2
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6s2). elife (2020) ncbi
大鼠 单克隆(390)
  • mass cytometry; 小鼠; 1:800; 图 s33b
BioLegend Pecam1抗体(Biolegend, 102425)被用于被用于mass cytometry在小鼠样本上浓度为1:800 (图 s33b). Nat Commun (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 e1b
BioLegend Pecam1抗体(BioLegend, 102423)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 e1b). Nature (2020) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1l
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1l). Nat Metab (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3j
BioLegend Pecam1抗体(BioLegend, 102427)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Nature (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 2s2d
BioLegend Pecam1抗体(BioLegend, 102504)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2s2d). elife (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
BioLegend Pecam1抗体(Biolegend, 102413)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
BioLegend Pecam1抗体(Biolegend, 102516)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f). Cell (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:500; 图 1b
BioLegend Pecam1抗体(BioLegend, 102507)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, 102404)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell Rep (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 6a
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 6a). J Cell Sci (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s6a). J Clin Invest (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 s5a
BioLegend Pecam1抗体(BioLegend, 102408)被用于被用于免疫组化在小鼠样本上 (图 s5a). J Clin Invest (2019) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 图 ev3a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫细胞化学在小鼠样本上 (图 ev3a). EMBO J (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Exp Med (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 7a
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7a). Nat Cell Biol (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Int J Cancer (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). J Cell Biol (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:200; 图 1d
BioLegend Pecam1抗体(Biolegend, 102402)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). Bone Res (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Pecam1抗体(BioLegend, 102409)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 ev1b
BioLegend Pecam1抗体(Biolegend, MEC13:3)被用于被用于免疫组化在小鼠样本上 (图 ev1b). EMBO J (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Pecam1抗体(Biolegend, 102410)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2d
BioLegend Pecam1抗体(BioLegend, 102416)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
BioLegend Pecam1抗体(BioLegend, 102515)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a). Cell (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
BioLegend Pecam1抗体(BioLegend, 102410)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 1f
BioLegend Pecam1抗体(BioLegend, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 1f). Nat Commun (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 2c
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegend Pecam1抗体(BioLegend, 102421)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). FASEB J (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS Pathog (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 7a
BioLegend Pecam1抗体(BioLegend, 102415)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7a). Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s1g
BioLegend Pecam1抗体(BioLegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1g). Leukemia (2018) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 图 1k
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 1k). Science (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s6e
BioLegend Pecam1抗体(Biolegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 s6e). Nature (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 8a
BioLegend Pecam1抗体(Biolegend, 102404)被用于被用于流式细胞仪在小鼠样本上 (图 8a). elife (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s5f
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s5f). Nature (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2i
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s2i). J Exp Med (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Pecam1抗体(BioLegend, 102507)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 3d
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3d). Immunology (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6b). PLoS Biol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 9b
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 9b). Am J Physiol Renal Physiol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 7e
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7e). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6a). PLoS Pathog (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 e1
BioLegend Pecam1抗体(BioLegend, 102510)被用于被用于流式细胞仪在小鼠样本上 (图 e1). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102509)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s8c
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8c). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Pecam1抗体(Biolegend, BLE102510)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Oncogene (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6h
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6h). Haematologica (2017) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 st2
BioLegend Pecam1抗体(BioLegend, 102510)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 st2). Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2f
BioLegend Pecam1抗体(BioLegend, 102418)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2f). Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS Pathog (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s7a
BioLegend Pecam1抗体(Biolegend, 102507)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 图 1b
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:300; 图 1b
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1b). Nat Immunol (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). PLoS Pathog (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Immunol (2016) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(biolegend, 102408)被用于. Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s8
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pecam1抗体(Biolegend, Mec13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2). Thyroid (2016) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(BioLegend, 102416)被用于. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 8
BioLegend Pecam1抗体(BioLegend, 1024)被用于被用于流式细胞仪在小鼠样本上 (图 8). Nature (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Am J Pathol (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 1d). Sci Rep (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Pecam1抗体(BioLegend, 102506)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Protoc (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 人类; 1:500; 图 5
BioLegend Pecam1抗体(BioLegend, #102423)被用于被用于流式细胞仪在人类样本上浓度为1:500 (图 5). Am J Physiol Heart Circ Physiol (2015) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102506)被用于. Development (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 1e
BioLegend Pecam1抗体(BioLegend, 102406)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1e). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 抑制或激活实验; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于抑制或激活实验在小鼠样本上 (图 2). Cell (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:200; 图 7
BioLegend Pecam1抗体(BioLegend, 102506)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Pecam1抗体(Biolegend, 102506)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 仓鼠; 图 7
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在仓鼠样本上 (图 7). J Virol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 s1
BioLegend Pecam1抗体(Biolegend, 102423)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1). Immun Ageing (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Pecam1抗体(BioLegend, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Pecam1抗体(Biolegend, 102407)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Sci Transl Med (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cytometry A (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化; 小鼠; 1:100; 图 1
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Invest Ophthalmol Vis Sci (2015) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 小鼠
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于免疫细胞化学在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
BioLegend Pecam1抗体(Biolegend, 102501)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). Brain Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Pecam1抗体(Biolegend, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, MEC 13.3)被用于. J Am Soc Nephrol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102407)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(BioLegend, 390)被用于被用于流式细胞仪在小鼠样本上. Cancer Discov (2014) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠
BioLegend Pecam1抗体(Biolegend, m390)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上. Dev Growth Differ (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(BioLegend, 102501)被用于. Exp Eye Res (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
BioLegend Pecam1抗体(Biolegend, 102418)被用于被用于流式细胞仪在小鼠样本上. Nature (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(BioLegend, 102513)被用于. Am J Pathol (2014) ncbi
大鼠 单克隆(MEC13.3)
BioLegend Pecam1抗体(Biolegend, 102513)被用于. J Control Release (2014) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 1:60
BioLegend Pecam1抗体(BioLegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:60. J Cell Biol (2013) ncbi
大鼠 单克隆(MEC13.3)
  • 流式细胞仪; 小鼠; 图 s2
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncogene (2014) ncbi
大鼠 单克隆(390)
BioLegend Pecam1抗体(Biolegend, 102415)被用于. Am J Physiol Lung Cell Mol Physiol (2013) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫组化-冰冻切片; 小鼠
BioLegend Pecam1抗体(Biolegend, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. Mol Cell Biol (2013) ncbi
赛默飞世尔
大鼠 单克隆(ER-MP12)
  • 免疫组化; 小鼠; 图 3d
赛默飞世尔 Pecam1抗体(Thermo Scientific, ER-MP12)被用于被用于免疫组化在小鼠样本上 (图 3d). Front Cell Dev Biol (2022) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Pecam1抗体(分子探针, A14715)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Sci Adv (2022) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:1000; 图 1a
赛默飞世尔 Pecam1抗体(ThermoFisher, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Cell Rep (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Front Cell Dev Biol (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上. BMC Biol (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Pecam1抗体(ThermoFisher, 17-0311)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s10
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s10). Nat Commun (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 3a
赛默飞世尔 Pecam1抗体(Invitrogen, 48-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3a). elife (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(Fisher Scientific, 13-0311-85)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Pecam1抗体(eBioscience, 48-0311- 82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 1b
赛默飞世尔 Pecam1抗体(Invitrogen, RM5201)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1b). elife (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:1000; 图 2a
赛默飞世尔 Pecam1抗体(Thermo Fisher, A14716)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
仓鼠 单克隆(2H8)
  • 流式细胞仪; 人类; 图 2e
  • 免疫组化; 小鼠; 图 s1j
赛默飞世尔 Pecam1抗体(Invitrogen, 2H8)被用于被用于流式细胞仪在人类样本上 (图 2e) 和 被用于免疫组化在小鼠样本上 (图 s1j). Cell (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). Cell Res (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
赛默飞世尔 Pecam1抗体(Thermo Fisher, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). elife (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6k
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上 (图 s6k). Sci Adv (2020) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 e7a
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 e7a). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c
赛默飞世尔 Pecam1抗体(Invitrogen, RM5201)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c). Nat Commun (2019) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 ex1b
赛默飞世尔 Pecam1抗体(eBioscience, 13-0311-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 ex1b). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 ex1b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 ex1b). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 s2f
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s2f). Nature (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Pecam1抗体(eBioscience, 46-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell Rep (2019) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛默飞世尔 Pecam1抗体(ThermoFisher, MA3105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Cell Rep (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1a, 4g
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 4g). Stem Cell Res Ther (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s6l
赛默飞世尔 Pecam1抗体(BD, 12-0311-83)被用于被用于流式细胞仪在小鼠样本上 (图 s6l). Cell (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. elife (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s6c
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6c). Cell (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Pecam1抗体(Thermo Fisher, 13-0311)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Cell Rep (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Pecam1抗体(eBioscience, 46-0311-80)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Cell Rep (2018) ncbi
小鼠 单克隆(WM59)
  • 免疫组化; 小鼠; 图 3d
赛默飞世尔 Pecam1抗体(eBioscience, WM-59)被用于被用于免疫组化在小鼠样本上 (图 3d). J Exp Med (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Stem Cell Reports (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6f
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6f). Obesity (Silver Spring) (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 14-0311)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). J Cell Biol (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Death Dis (2018) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 s9d
赛默飞世尔 Pecam1抗体(分子探针, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 s9d). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:50; 图 s1a
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1a). Science (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200; 图 e3b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e3b). Nature (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2g
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2g). J Clin Invest (2018) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 6h
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, 2H8)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6h). Nat Commun (2018) ncbi
大鼠 单克隆(390)
  • 其他; 小鼠; 图 8d
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于其他在小鼠样本上 (图 8d). J Clin Invest (2018) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBiosciences, 48-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 3b
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3b). Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Pecam1抗体(生活技术, RM5228)被用于被用于流式细胞仪在小鼠样本上 (表 1). Methods Mol Biol (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Pecam1抗体(eBiosciences, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Cell Mol Life Sci (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 表 s1
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Cell Stem Cell (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1h
  • 免疫细胞化学; 小鼠; 图 1g
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-85)被用于被用于流式细胞仪在小鼠样本上 (图 1h) 和 被用于免疫细胞化学在小鼠样本上 (图 1g). Stem Cell Reports (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Pecam1抗体(EBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Haematologica (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
赛默飞世尔 Pecam1抗体(Affymetrix eBioscience, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 5e
赛默飞世尔 Pecam1抗体(生活技术, 390)被用于被用于免疫组化在小鼠样本上 (图 5e). Sci Signal (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Pecam1抗体(eBiosciences, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Circ Res (2017) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 1
赛默飞世尔 Pecam1抗体(Invitrogen, WM59)被用于被用于流式细胞仪在人类样本上 (表 1). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 s3b
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化在小鼠样本上 (图 s3b). Nature (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-石蜡切片; 小鼠; 图 s1e
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1e). Kidney Int (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:500; 图 2a
赛默飞世尔 Pecam1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Pecam1抗体(ebioscience, 17-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4a). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cell Death Dis (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:25
赛默飞世尔 Pecam1抗体(Invitrogen, RM5228)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. Nat Med (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Cell Res (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Pecam1抗体(eBiosciences, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:250; 图 st1
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunity (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 S2A
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311-81)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 S2A). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 112-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Leukemia (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Pecam1抗体(eBioscience, 46-0311-80)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cell Adh Migr (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, RM5228)被用于被用于流式细胞仪在小鼠样本上 (图 1d). elife (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Nat Commun (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2s
赛默飞世尔 Pecam1抗体(eBioscience, 17-0311)被用于被用于流式细胞仪在小鼠样本上 (图 2s). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:428
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:428. Nat Commun (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1a
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311- 81)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1a). Nat Cell Biol (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(BD Biosciences, 12-0311-81)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 Pecam1抗体(Thermo Scientific, #MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 Pecam1抗体(生活技术, RM5201)被用于被用于免疫组化在小鼠样本上 (图 2). Mol Ther (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠
赛默飞世尔 Pecam1抗体(Invitrogen, RM5201)被用于被用于免疫组化在小鼠样本上. Cell Mol Immunol (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 14-0311-81)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上. Adipocyte (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, PA5-2441)被用于. J Immunol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience,, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). J Immunol (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Pecam1抗体(eBioscience, 12-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Cell Biol (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠; 1:100; 图 6
赛默飞世尔 Pecam1抗体(Thermo Scientific, MA3105)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). Oncoimmunology (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
赛默飞世尔 Pecam1抗体(Thermo Fisher Scientific, MA3105)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Am Soc Nephrol (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). Nature (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100; 图  1
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图  1). Angiogenesis (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:500
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. Cell Res (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 7a
  • 免疫组化; 小鼠; 图 1a
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 7a) 和 被用于免疫组化在小鼠样本上 (图 1a). Nat Commun (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 v3
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化在小鼠样本上 (图 v3). J Exp Med (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1). Nat Cell Biol (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 s1
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Pecam1抗体(eBioscience, clone 390)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Pecam1抗体(Invitrogen, ERMP12)被用于被用于免疫组化-冰冻切片在小鼠样本上. elife (2014) ncbi
大鼠 单克隆(390)
  • 免疫细胞化学; 小鼠; 1:250
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-85)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Nat Cell Biol (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Pecam1抗体(EBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nat Commun (2014) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化; 小鼠
赛默飞世尔 Pecam1抗体(Thermo/Fisher, MA3105)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Pecam1抗体(eBiosciences, 13-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Med (2014) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Pecam1抗体(eBioscience, 11-0311-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cell Transplant (2015) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. Stem Cell Reports (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Pecam1抗体(eBioscience, 25-0311-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nature (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Pecam1抗体(Caltag, 390)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Med Sci (2013) ncbi
小鼠 单克隆(WM59)
  • 流式细胞仪; 人类; 表 2
赛默飞世尔 Pecam1抗体(Invitrogen, WM59)被用于被用于流式细胞仪在人类样本上 (表 2). BMC Cancer (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Pecam1抗体(eBioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 5). Biomaterials (2010) ncbi
大鼠 单克隆(390)
  • 抑制或激活实验; 大鼠; 1:40; 图 1
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 Pecam1抗体(noco, noca)被用于被用于抑制或激活实验在大鼠样本上浓度为1:40 (图 1) 和 被用于免疫组化-冰冻切片在大鼠样本上. Am J Pathol (1997) ncbi
圣克鲁斯生物技术
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:100; 图 5a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc?\18,916)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5a). J Cell Mol Med (2022) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Int J Mol Sci (2022) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 图 8a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化在大鼠样本上 (图 8a). Front Pharmacol (2021) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:300; 图 2c
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 2c). J Neuroinflammation (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1d
圣克鲁斯生物技术 Pecam1抗体(Santa-Cruz, SC-18916)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
圣克鲁斯生物技术 Pecam1抗体(Santa, Sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3s2o
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3s2o). elife (2019) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 大鼠; 图 6c
圣克鲁斯生物技术 Pecam1抗体(SantaCruz, sc-376764)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 6c). Oncotarget (2017) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-52713)被用于被用于免疫印迹在小鼠样本上 (图 3a). Exp Ther Med (2017) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫印迹在小鼠样本上 (图 2c). Redox Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology Inc., sc-18916L)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Oncol Lett (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 3j
圣克鲁斯生物技术 Pecam1抗体(Santa cruz, MEC 13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 3j). Stem Cells Int (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:50; 图 4a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4a). Mol Med Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Sci Rep (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 3g
圣克鲁斯生物技术 Pecam1抗体(SantaCruz, sc-52713)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 3g). Mol Med Rep (2016) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, RM0032-1D12)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). J Biomed Sci (2016) ncbi
小鼠 单克隆(D-11)
  • 免疫组化-石蜡切片; 小鼠; 1:20; 图 4
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-46694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:20 (图 4). Oxid Med Cell Longev (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 s5
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5). Nature (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-石蜡切片; 人类; 图 1
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Tumour Biol (2016) ncbi
小鼠 单克隆(H-3)
  • 免疫细胞化学; 大鼠; 图 6
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-376764)被用于被用于免疫细胞化学在大鼠样本上 (图 6). Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(D-11)
  • 免疫组化; 小鼠; 1:50; 图 S3c
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-46694)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 S3c). Acta Neuropathol (2015) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-101454)被用于被用于免疫组化在小鼠样本上. AIMS Genet (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc376764)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-18916)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(P2B1)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-20071)被用于被用于免疫细胞化学在人类样本上. J Cell Mol Med (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-18916)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Kidney Int (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz Biotechnology, sc-376764)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Respir Res (2013) ncbi
大鼠 单克隆(RM0032-1D12)
  • 免疫组化-冰冻切片; 小鼠
圣克鲁斯生物技术 Pecam1抗体(Santa Cruz, sc-101454)被用于被用于免疫组化-冰冻切片在小鼠样本上. Clin Exp Metastasis (2014) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; 人类; 1:300; 图 1e
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化在人类样本上浓度为1:300 (图 1e). Cell Death Dis (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3). Nat Cardiovasc Res (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s4a
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s4a). Proc Natl Acad Sci U S A (2022) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). J Bone Miner Res (2022) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3c
安迪生物R&D Pecam1抗体(RnD systems, AF3628)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Transl Vis Sci Technol (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Theranostics (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2f
安迪生物R&D Pecam1抗体(R&D Systems, FAB3628G)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2f). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3e
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:50; 图 4f
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50 (图 4f). Brain Behav Immun (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化在人类样本上. Nat Immunol (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1h
安迪生物R&D Pecam1抗体(R&D, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1h). Front Cell Dev Biol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1i
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Thromb Haemost (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 10 ug/ml; 图 4d
安迪生物R&D Pecam1抗体(R&D system, AF3628)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为10 ug/ml (图 4d). Histochem Cell Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2m
安迪生物R&D Pecam1抗体(R&D Systems, AF3628)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2m). Nat Commun (2021) ncbi
Novus Biologicals
大鼠 单克隆(MEC 7.46)
  • 免疫组化-冰冻切片; 小鼠; 图 s2a
Novus Biologicals Pecam1抗体(Novus, NB-100-1642)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2a). Hepatol Commun (2022) ncbi
大鼠 单克隆(MEC 7.46)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 6m
Novus Biologicals Pecam1抗体(Novus Biologicals, NB-80639)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 6m). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 人类; 图 6d
Novus Biologicals Pecam1抗体(Novus Biologicals, NB100-2284)被用于被用于免疫组化在人类样本上 (图 6d). Sci Adv (2021) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4b
Novus Biologicals Pecam1抗体(Novus, NB100-2284)被用于被用于免疫组化在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2019) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 人类; 1:500; 图 s1a
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1c
Novus Biologicals Pecam1抗体(Novus, NB600-1475)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1c). J Cell Biol (2019) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 大鼠; 1:500; 图 7b
Novus Biologicals Pecam1抗体(Novus, NB100-2284)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7b). Physiol Rep (2017) ncbi
domestic rabbit 多克隆(6C5cc)
  • 免疫组化; 小鼠; 1:100; 图 5
Novus Biologicals Pecam1抗体(Novus Biologicals, NB100-2284)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC13.3)
  • 免疫细胞化学; 小鼠; 图 1
Novus Biologicals Pecam1抗体(Novus Biologicals, MEC13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
伯乐(Bio-Rad)公司 Pecam1抗体(Bio-Rad, MCA2388GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). Int J Mol Sci (2021) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化; 小鼠; 1:100; 图 1a
伯乐(Bio-Rad)公司 Pecam1抗体(Bio-Rad, MCA2388)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). elife (2019) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫细胞化学; 小鼠; 图 2a
伯乐(Bio-Rad)公司 Pecam1抗体(Bio-Rad, MCA2388T)被用于被用于免疫细胞化学在小鼠样本上 (图 2a). Int J Mol Sci (2018) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 6e
伯乐(Bio-Rad)公司 Pecam1抗体(Serotec, ER-MP12)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6e). J Virol (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 1f
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA-2388)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1f). J Mol Cell Cardiol (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
  • 免疫印迹; 小鼠; 1:1000; 图 3a
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388GA)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Stem Cell Res (2016) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4
伯乐(Bio-Rad)公司 Pecam1抗体(Serotec, MCA1370Z)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4). Development (2016) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 图 3
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388A647)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Theranostics (2015) ncbi
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, 2H8)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
大鼠 单克隆(ER-MP12)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
伯乐(Bio-Rad)公司 Pecam1抗体(AbD Serotec, MCA2388GA)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
北京傲锐东源
大鼠 单克隆(ER-MP12)
  • 免疫组化; 小鼠; 1:200; 图 2a
北京傲锐东源 Pecam1抗体(Acris Antibodies, BM4086)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Proc Natl Acad Sci U S A (2021) ncbi
美天旎
人类 单克隆(REA784)
  • 流式细胞仪; 小鼠; 1:25
美天旎 Pecam1抗体(Miltenyi, 130-111-541)被用于被用于流式细胞仪在小鼠样本上浓度为1:25. Nat Commun (2021) ncbi
碧迪BD
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:800; 图 6h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 6h). Ann Clin Transl Neurol (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6b, 6c
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 6b, 6c). Int J Mol Sci (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1b). Front Immunol (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 s1a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1a). JCI Insight (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3e
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3e). elife (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s4a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s4a). Theranostics (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 3a, 3i
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3a, 3i). Nat Cell Biol (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 s5b
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s5b). Clin Transl Med (2022) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a, s1c
碧迪BD Pecam1抗体(BD Bioscience, 558738)被用于被用于流式细胞仪在小鼠样本上 (图 2a, s1c). Cell Rep (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BD Pecam1抗体(BD, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Cells (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:30; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:30 (图 2b). Proc Natl Acad Sci U S A (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:30; 图 1g
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:30 (图 1g). Sci Adv (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2d
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2d). J Cell Sci (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 4h
碧迪BD Pecam1抗体(BD, 553372)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4h). elife (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s1f
碧迪BD Pecam1抗体(BD Pharmingen, MCC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s1f). J Exp Med (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). J Clin Invest (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6j
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6j). Commun Biol (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3e). Gastric Cancer (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化在小鼠样本上 (图 4a). J Clin Invest (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5o
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5o). Nat Nanotechnol (2022) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3c
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 3c). EBioMedicine (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 4a
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Am J Physiol Heart Circ Physiol (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 5i
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5i). Nat Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 1f). Int J Mol Sci (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 558736)被用于被用于免疫组化在小鼠样本上 (图 2a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 1f). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 s8a
碧迪BD Pecam1抗体(BD Biosciences, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s8a). Nat Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上. Exp Mol Med (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5c
碧迪BD Pecam1抗体(BD Biosciences, 550,274)被用于被用于免疫组化在小鼠样本上 (图 5c). Acta Neuropathol Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6d
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6d). J Am Heart Assoc (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s1h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s1h). Sci Adv (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1c). Clin Exp Metastasis (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1h
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1h). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:250; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1c). Brain Behav Immun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2h
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 2h). Cancers (Basel) (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Pharmingen, 558738)被用于被用于免疫组化在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BDBiosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 s6e
  • 免疫组化; 小鼠; 图 s6f
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上 (图 s6e) 和 被用于免疫组化在小鼠样本上 (图 s6f). Adv Sci (Weinh) (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 5a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Nat Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6b
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6b). J Clin Invest (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 5e). J Clin Invest (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2j
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 2j). J Immunother Cancer (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Biosciences, clone 390)被用于被用于免疫组化在小鼠样本上浓度为1:200. Hum Mol Genet (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5d
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化在小鼠样本上 (图 5d). J Biol Chem (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5j
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 5j). Sci Rep (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50. iScience (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:200; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, 558738)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2b). PLoS ONE (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 561073)被用于被用于流式细胞仪在小鼠样本上浓度为1:500. NPJ Regen Med (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5g
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 5g). Biomolecules (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5c
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1g
碧迪BD Pecam1抗体(BD PharMingen, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Rep (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). elife (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5e
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5e). Commun Biol (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). Mol Med Rep (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Nat Neurosci (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 4 ug/ml; 图 s1
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上浓度为4 ug/ml (图 s1). Front Cell Dev Biol (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b). Nat Neurosci (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 5e
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5e). Int J Mol Sci (2021) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 图 3d
碧迪BD Pecam1抗体(BD Pharmigen, 558736)被用于被用于免疫组化在小鼠样本上 (图 3d). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 1:500; 图 1d
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1d). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 3d
碧迪BD Pecam1抗体(BD Pharmingen, 553369)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3d). JCI Insight (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 1j, s3d, 2c, 2k
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1j, s3d, 2c, 2k). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1b
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1b). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 s19a
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s19a). PLoS Biol (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 3c
  • 免疫组化; 小鼠; 1:50; 图 3a
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3c) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 3a). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1-2d
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Biosciences, 553372)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1-2d) 和 被用于免疫组化在小鼠样本上 (图 2a). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 5a). Diabetes (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Pecam1抗体(BD PharMingen, 553372)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD, 563616)被用于. Aging Cell (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 2d
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2d). J Clin Invest (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:5000
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Sci Rep (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 7c
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 7c). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200; 图 s3f
  • 免疫组化; 小鼠; 1:200; 图 s10c
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3f) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 s10c). Hepatology (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 5c
碧迪BD Pecam1抗体(BD biosciences, 550,274)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5c). J Comp Neurol (2021) ncbi
大鼠 单克隆(MEC 13.3)
  • 其他; 小鼠; 图 3a, 5c
碧迪BD Pecam1抗体(BD, 553370)被用于被用于其他在小鼠样本上 (图 3a, 5c). PLoS ONE (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 2c
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2c). Int J Mol Sci (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3k
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 3k). Redox Biol (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1f
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:300; 图 s2b
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s2b). Angiogenesis (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 6g
碧迪BD Pecam1抗体(Biolegend, 561814)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6g). elife (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c). Sci Rep (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2e
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2e). PLoS Biol (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Int J Mol Sci (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1c). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4c
  • 免疫组化; 小鼠; 1:500; 图 s4a
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4c) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 s4a). Cell Res (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 s2c
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2c). Proc Natl Acad Sci U S A (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1c, 1d
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1c, 1d). Sci Rep (2020) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Pharmingen, clone MEC 13.3;550274)被用于. J Virol (2020) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Biosciences, #550274))被用于. Eneuro (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1a
  • 免疫组化; 小鼠; 1:400; 图 5a
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Cell Death Dis (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 2i
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 2i). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Biosciences, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). FEBS Open Bio (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s14a, s14b
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s14a, s14b). Nat Commun (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1l
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1l). Sci Adv (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:300; 图 1s1a
碧迪BD Pecam1抗体(BD BioSciences, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1s1a). elife (2020) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
碧迪BD Pecam1抗体(BD, 553708)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Cancer Cell Int (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 图 s1c, s1d
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫印迹在小鼠样本上 (图 s1c, s1d). Cell Death Dis (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s2b
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2b). Sci Adv (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 7e
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7e). EMBO Mol Med (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5s1g
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5s1g). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2e
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2e). Nature (2020) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1g, 1m
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1g, 1m). Sci Rep (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
碧迪BD Pecam1抗体(BD Bioscience, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Science (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2j
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 2j). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 2a
碧迪BD Pecam1抗体(BD Biosciences, 55337)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 s2a
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 s2a). Cell Rep (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 5a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1s1a
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1s1a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3s1c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上 (图 3s1c). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:200; 图 5i
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5i). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3s4
碧迪BD Pecam1抗体(Beckton Dickinson, 550274)被用于被用于免疫组化在小鼠样本上 (图 3s4). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1s1a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1s1a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s2m
碧迪BD Pecam1抗体(BD Bioscences, 553370)被用于被用于免疫组化在小鼠样本上 (图 s2m). Cell (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400; 图 4d
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4d). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3e
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3e). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s3b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell Rep (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 e3a
  • 免疫组化; 小鼠; 图 e9b
碧迪BD Pecam1抗体(BD, 557355)被用于被用于流式细胞仪在小鼠样本上 (图 e3a) 和 被用于免疫组化在小鼠样本上 (图 e9b). Nature (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1a). elife (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:1000; 图 s3
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s3). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类; 图 3a
碧迪BD Pecam1抗体(BD, 55027)被用于被用于流式细胞仪在人类样本上 (图 3a). J Clin Invest (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6e-6g
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 6e-6g). Cancer Res (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1g
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化在小鼠样本上 (图 1g). Cell Rep (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1h
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1h). Dev Cell (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Cell Rep (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s8c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8c). Oncoimmunology (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). EMBO J (2019) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5c
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Br J Cancer (2019) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Bioscience, 390)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 500 ug/ml; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为500 ug/ml (图 1b). Science (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Stem Cell Reports (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1b). J Pathol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Hum Mol Genet (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 1s1c
碧迪BD Pecam1抗体(BD Pharmingen, 553373)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1s1c). elife (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). J Immunol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3f
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 3f). Int J Cancer (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, 5533370)被用于被用于免疫组化在小鼠样本上 (图 1c). Nature (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f). J Clin Invest (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Cell (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3a
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Science (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Leukemia (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4a
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4a). Oncotarget (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). J Immunol (2018) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1c). Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 4b
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4b). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1d
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1d). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7c
碧迪BD Pecam1抗体(R&D Systems, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7c). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s12
  • 酶联免疫吸附测定; 人类
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s12) 和 被用于酶联免疫吸附测定在人类样本上. Sci Transl Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 2b). J Biol Chem (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6f
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 6f). Neuron (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD bioscience, 553372)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 s5b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s5b). Science (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 4f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4f). Dev Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
碧迪BD Pecam1抗体(Pharmingen, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Circulation (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3c
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 ev1a
碧迪BD Pecam1抗体(BD Biosciences, Mec13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 ev1a). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3f
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化在小鼠样本上 (图 3f). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1h
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1h). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:400; 图 3a
碧迪BD Pecam1抗体(BD, 553369)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3a). Nat Protoc (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 猕猴; 1:100; 图 5b
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:100 (图 5b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 1:300; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 1c). Nucleic Acids Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1b
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上 (图 1b). elife (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 9b
碧迪BD Pecam1抗体(Pharmingen, 553371)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 9b). J Biol Chem (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
碧迪BD Pecam1抗体(bd, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). PLoS ONE (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2c). PLoS Pathog (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1f
碧迪BD Pecam1抗体(BD Bioscience, 553371)被用于被用于免疫细胞化学在小鼠样本上 (图 1f). Sci Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 图 4f
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在人类样本上 (图 4f). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 3d
碧迪BD Pecam1抗体(BD Pharmingen, 390)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Methods Mol Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 st4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 st4). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上 (图 5c). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b). Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s5b
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s5b). Arterioscler Thromb Vasc Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Skelet Muscle (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell Stem Cell (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 af2
碧迪BD Pecam1抗体(BD, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 af2). Breast Cancer Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). J Cell Sci (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 7a
碧迪BD Pecam1抗体(PharMingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 7a). elife (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2n
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2n). Haematologica (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5d
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 5d). FASEB J (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2b). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上 (图 5e). Nature (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f). J Comp Neurol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Clin Invest (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类; 1:200
碧迪BD Pecam1抗体(BD Pharmigen, 553371)被用于被用于流式细胞仪在人类样本上浓度为1:200. Nature (2017) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
碧迪BD Pecam1抗体(BD Pharmingen, 558736)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Circ Res (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1). Mol Med Rep (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). Dev Biol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 2b
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2b). Dev Cell (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Genes Cells (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 5b
碧迪BD Pecam1抗体(Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 5b). Neoplasia (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
  • 免疫细胞化学; 人类; 1:500; 图 1b
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3b
碧迪BD Pecam1抗体(BD Pharminogen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3b). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BD Pecam1抗体(Becton, Dickinson, and Company, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Cytotherapy (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 7c
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 7c). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:1000; 图 1e
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 表 1
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (表 1). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 3l
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3l). Exp Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 3d
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3d). Stroke (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:20; 图 s1e
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 s1e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1n
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 1n). J Mol Histol (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 4). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在人类样本上 (图 1a). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上 (图 3e). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 4C
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4C). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). Nat Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2c
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化在小鼠样本上 (图 2c). Cancer Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:200; 图 1e
碧迪BD Pecam1抗体(BD-Pharmingen, 553370)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). J Exp Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6i
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6i). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3c
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3c). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
  • 免疫组化-冰冻切片; 人类; 1:100; 图 s3b
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 s3b). Nat Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 图 s9b
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s9b). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 S7
碧迪BD Pecam1抗体(Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 S7). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6d
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s2
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Stem Cell Reports (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1i
碧迪BD Pecam1抗体(BD Biosciences, 558736)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1i). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 1a, S2a, S2c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1a, S2a, S2c). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 2b). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1 ug/ml; 图 2g
碧迪BD Pecam1抗体(BD Biosciences, Mec 13.3)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 2g). Lab Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s4
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上 (图 s4). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 (图 6). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:400; 图 1
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1e
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1e). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 图 s3a
碧迪BD Pecam1抗体(BD Pharmigen, 558738)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Eur J Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 5j
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.33)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5j). Genes Dev (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 4). Theranostics (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:75
碧迪BD Pecam1抗体(BD Bioscience, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:75. Nat Biotechnol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 1a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1a). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
碧迪BD Pecam1抗体(BD, 561814)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 1h
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1h). J Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫沉淀; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫沉淀在小鼠样本上 (图 1). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 5
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cardiovasc Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s4
  • 免疫细胞化学; 小鼠; 1:500; 图 st1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s4) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 st1). Circ Res (2016) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 558738)被用于被用于流式细胞仪在小鼠样本上. Nat Cell Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Cell Adh Migr (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:50; 图 1
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 st1
碧迪BD Pecam1抗体(BD Pharmigen, MEC 13.3)被用于被用于免疫细胞化学在小鼠样本上 (图 st1). Nature (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50; 图 11
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 11). J Immunol Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 53370)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:800; 图 4
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:800 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 561073)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 7
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 7). Onco Targets Ther (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Lipid Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 s4
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s4). Mol Cancer (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 3a). JCI Insight (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s3b
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3b). J Clin Invest (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
碧迪BD Pecam1抗体(BD Biosciences, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Nat Commun (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 551262)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2). Stem Cells Transl Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 1). Acta Neuropathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). J Pathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 大鼠; 图 2d
碧迪BD Pecam1抗体(BD, 561073)被用于被用于流式细胞仪在大鼠样本上 (图 2d). Stem Cell Reports (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 5
碧迪BD Pecam1抗体(BD PharMingen, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5). EMBO Mol Med (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 5a
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a). Development (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5). Am J Pathol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Cell Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 550,274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). EBioMedicine (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3a
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于免疫组化在小鼠样本上 (图 3a). elife (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 6
碧迪BD Pecam1抗体(BD Biociences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 6b
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 6b). Dev Biol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). EJNMMI Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 s13
  • 免疫组化-冰冻切片; 小鼠; 图 3
碧迪BD Pecam1抗体(BD PharMingen, 561814)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s13) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 1). Oncotarget (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 1h). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 s3
碧迪BD Pecam1抗体(BD, 553371)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 3). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). Front Cell Neurosci (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 表 s6
碧迪BD Pecam1抗体(BD, 553372)被用于被用于流式细胞仪在小鼠样本上 (表 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Cell Res (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). J Am Soc Nephrol (2016) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 55370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Development (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 s2
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 图 2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在人类样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s6
碧迪BD Pecam1抗体(BD, 561814)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:100
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 561814)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BD Pecam1抗体(BD, 550 274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, #553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:300; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4). ASN Neuro (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 2
碧迪BD Pecam1抗体(Becton-Dickinson, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1 ug/ml; 表 1
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (表 1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5h
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5h). Nat Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Glia (2016) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上. Fluids Barriers CNS (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 4
碧迪BD Pecam1抗体(BD Pharmigen, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). PLoS Genet (2015) ncbi
大鼠 单克隆(390)
  • 免疫组化-石蜡切片; 小鼠; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 390)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 1:200; 图 5
碧迪BD Pecam1抗体(Millipore, 550274)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5). Naunyn Schmiedebergs Arch Pharmacol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3h
  • 流式细胞仪; 小鼠; 1:100; 图 s17a
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3h) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s17a). J Clin Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 人类
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 s2
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 3e
碧迪BD Pecam1抗体(BD, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3e). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 5
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 8f
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 8f). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 ed2g
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 ed2g). Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
碧迪BD Pecam1抗体(BD Pharminogen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 20 ug/ml; 图 3
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为20 ug/ml (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD BioScience, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50. Mol Neurodegener (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 s1). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500; 图 3a
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). J Exp Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD Pecam1抗体(Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Cancer Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
碧迪BD Pecam1抗体(Bioscience, MEC 13.3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Tissue Eng Regen Med (2017) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s4
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s4). Cancer Cell (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Mol Cell Cardiol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cardiovasc Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. Matrix Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上. Angiogenesis (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(bD Bioscience, 550274)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50; 图 s8
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s8). Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2
碧迪BD Pecam1抗体(BD-Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:10; 图 2
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10 (图 2). Lab Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Acta Biomater (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:250; 图 6
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2a
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上 (图 2a). BMC Cancer (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 553372)被用于被用于免疫组化在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫细胞化学在小鼠样本上 (图 1c). Mol Cell Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 图 s2
碧迪BD Pecam1抗体(BD, 553372)被用于被用于免疫组化-冰冻切片在人类样本上 (图 s2). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:25; 图 2j
  • 免疫细胞化学; 小鼠; 1:25; 图 2c
碧迪BD Pecam1抗体(BD, 550274)被用于被用于流式细胞仪在小鼠样本上浓度为1:25 (图 2j) 和 被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 2c). Stem Cell Reports (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. Neuroscience (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:50; 图 1
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). J Neurosci (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠; 1:250
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫印迹在小鼠样本上浓度为1:250. Endocrinology (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Biol Chem (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫细胞化学在人类样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1). Sci Transl Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Cell Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200; 图 4d
碧迪BD Pecam1抗体(BD, 561073)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4d). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS Med (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Development (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:400. F1000Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 551262)被用于被用于流式细胞仪在小鼠样本上. Skelet Muscle (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 5
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). PLoS Pathog (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
碧迪BD Pecam1抗体(BD Bioscience, 557355)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 550274BD)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Methods Mol Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Invest Dermatol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 561073)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD, MEC 13.3)被用于被用于流式细胞仪在小鼠样本上. J Proteome Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5). Mol Pharm (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 其他; 小鼠; 图 7
  • 免疫组化; 小鼠; 图 s2
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于其他在小鼠样本上 (图 7) 和 被用于免疫组化在小鼠样本上 (图 s2). Matrix Biol (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 3
碧迪BD Pecam1抗体(BD Biosciences, 557355)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Front Cell Neurosci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). J Am Heart Assoc (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2
碧迪BD Pecam1抗体(BD Pharmingen, MEC 13.3)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2). Br J Cancer (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 人类; 1:100
碧迪BD Pecam1抗体(BD-Pharmingen, 550274)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nucleic Acids Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Stem Cells (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS Pathog (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Cancer Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:250; 图 s3
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s3). Nat Biotechnol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1). Development (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 人类; 1:100; 图 3
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Mol Cancer Ther (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-石蜡切片; 大鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-石蜡切片在大鼠样本上. J Pharmacol Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 2d
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于被用于免疫组化在小鼠样本上 (图 2d). FASEB J (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:400. ASN Neuro (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化在小鼠样本上浓度为1:100. Curr Eye Res (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫印迹; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫印迹在小鼠样本上. J Thyroid Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Bioscience, 553370)被用于. Hum Mol Genet (2015) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200; 图 s9
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s9). Nat Commun (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Genesis (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7). Cardiovasc Res (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Biosciences, 553373)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Vis Exp (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:30
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:30. Development (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BD Pecam1抗体(BD PharMingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Mech Dev (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫组化; 小鼠; 1:100; 图 1
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6), 被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Nat Commun (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. J Clin Invest (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 人类
碧迪BD Pecam1抗体(BD Bioscience, 550274)被用于被用于免疫组化-石蜡切片在人类样本上. Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:1,000
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1,000. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于流式细胞仪在人类样本上. Angiogenesis (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:300
碧迪BD Pecam1抗体(BD, BD553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. FASEB J (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫组化在小鼠样本上. Int J Biochem Cell Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Nature (2014) ncbi
大鼠 单克隆(390)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 558738)被用于被用于免疫组化-冰冻切片在小鼠样本上. Hum Mol Genet (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. Oncotarget (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharmigen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD, 553370)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(390)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 558738)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cornea (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 5
碧迪BD Pecam1抗体(Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Nephrol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫沉淀; 人类
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫沉淀在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在人类样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen / Fisher, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Thromb Haemost (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Pharmigen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 和 被用于免疫细胞化学在小鼠样本上. J Biol Chem (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. FASEB J (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 557355)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Neuro Oncol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 图 6
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6). J Cell Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Hepatol (2014) ncbi
大鼠 单克隆(MEC 13.3)
碧迪BD Pecam1抗体(BD Biosciences, BD 550274)被用于. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(Becton Dickinson, 553371)被用于被用于免疫组化在小鼠样本上浓度为1:50. Genes Dev (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. J Gerontol A Biol Sci Med Sci (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:400
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:400. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 图 1c
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上 (图 1c). Oncogene (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Respir Res (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:350
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:350. Biol Reprod (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:100
碧迪BD Pecam1抗体(BD, 553371)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
  • 免疫印迹; 人类
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 553369)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫印迹在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. J Biol Chem (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences PharMingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. J Neurosci (2013) ncbi
大鼠 单克隆(390)
  • 流式细胞仪; 小鼠; 1:125
碧迪BD Pecam1抗体(BD, 558738)被用于被用于流式细胞仪在小鼠样本上浓度为1:125. Stem Cells (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类; 1:50
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Neurosci (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD Pharmingen, 553371)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
碧迪BD Pecam1抗体(BD, 557355)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Angiogenesis (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠; 1:20
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上浓度为1:20. Vasc Cell (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:100
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:100. Oncogene (2014) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:200
碧迪BD Pecam1抗体(BD Pharminogen, 550274)被用于被用于免疫组化在小鼠样本上浓度为1:200. Cell Tissue Res (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, MEC13.3)被用于被用于免疫组化-冰冻切片在小鼠样本上. Am J Pathol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(Pharmingen, 553369)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553372)被用于被用于免疫组化在小鼠样本上浓度为1:500. Blood (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Soc Nephrol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:250
碧迪BD Pecam1抗体(BD Pharmingen, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. Biol Reprod (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Development (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Biosciences, MEC 13.3)被用于被用于免疫组化在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 人类
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在人类样本上. Cell Cycle (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
碧迪BD Pecam1抗体(BD Pharmingen, Mec13.3)被用于被用于流式细胞仪在小鼠样本上. J Pharmacol Exp Ther (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上. Dev Biol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于免疫组化在小鼠样本上. Mol Cell Biol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 小鼠
碧迪BD Pecam1抗体(BD Biosciences PharMingen, MEC13.3)被用于被用于免疫细胞化学在大鼠样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在小鼠样本上. Biol Cell (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 流式细胞仪; 小鼠
  • 免疫沉淀; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, MEC13.3)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫沉淀在小鼠样本上. Am J Physiol Renal Physiol (2013) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-石蜡切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences, 550274)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Comp Neurol (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 1:500
碧迪BD Pecam1抗体(BD Biosciences, 553370)被用于被用于免疫组化在小鼠样本上浓度为1:500. Mol Cell Biol (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化; 小鼠; 5 ug/ml
碧迪BD Pecam1抗体(BD, 550274)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml. FASEB J (2012) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
碧迪BD Pecam1抗体(BD Pharmingen, 550274)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Comp Neurol (2008) ncbi
大鼠 单克隆(MEC 13.3)
  • 免疫组化-自由浮动切片; 小鼠
碧迪BD Pecam1抗体(BD Biosciences / PharMingen, 553370)被用于被用于免疫组化-自由浮动切片在小鼠样本上. J Comp Neurol (2006) ncbi
大鼠 单克隆(390)
  • 抑制或激活实验; 小鼠; 2 mg/kg
碧迪BD Pecam1抗体(PharMingen, 390)被用于被用于抑制或激活实验在小鼠样本上浓度为2 mg/kg. Stroke (1996) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Pecam1抗体(Sigma, SAB4502167)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2021) ncbi
Developmental Studies Hybridoma Bank
仓鼠 单克隆(2H8)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
  • 免疫细胞化学; 小鼠; 图 5a
Developmental Studies Hybridoma Bank Pecam1抗体(Developmental Studies Hybridoma Bank, 2H8-C)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a) 和 被用于免疫细胞化学在小鼠样本上 (图 5a). J Exp Med (2016) ncbi
文章列表
  1. Zimmerli D, Brambillasca C, Talens F, Bhin J, Linstra R, Romanens L, et al. MYC promotes immune-suppression in triple-negative breast cancer via inhibition of interferon signaling. Nat Commun. 2022;13:6579 pubmed 出版商
  2. Hamdi L, Nabat H, Goldberg Y, Fainstein N, Segal S, Mediouni E, et al. Exercise training alters autoimmune cell invasion into the brain in autoimmune encephalomyelitis. Ann Clin Transl Neurol. 2022;9:1792-1806 pubmed 出版商
  3. Huang Q, Xiao R, Lu J, Zhang Y, Xu L, Gao J, et al. Endoglin aggravates peritoneal fibrosis by regulating the activation of TGF-β/ALK/Smads signaling. Front Pharmacol. 2022;13:973182 pubmed 出版商
  4. Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock C, et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. elife. 2022;11: pubmed 出版商
  5. Ahamed W, Yu R, Pan Y, Iwata T, Barathi V, Wey Y, et al. HTRA1 Regulates Subclinical Inflammation and Activates Proangiogenic Response in the Retina and Choroid. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Iwanishi H, Yamanaka O, Sumioka T, Yasuda S, Miyajima M, Saika S. Delayed regression of laser-induced choroidal neovascularization in TNFα-null mice. J Cell Mol Med. 2022;26:5315-5325 pubmed 出版商
  7. Fan P, Qiang H, Liu Z, Zhao Q, Wang Y, Liu T, et al. Effective low-dose Anlotinib induces long-term tumor vascular normalization and improves anti-PD-1 therapy. Front Immunol. 2022;13:937924 pubmed 出版商
  8. Sun Q, Wang Y, Ji H, Sun X, Xie S, Chen L, et al. Lenvatinib for effectively treating antiangiogenic drug-resistant nasopharyngeal carcinoma. Cell Death Dis. 2022;13:724 pubmed 出版商
  9. Yuan X, Duan X, Li Z, Yao B, Enhejirigala -, Song W, et al. Collagen triple helix repeat containing-1 promotes functional recovery of sweat glands by inducing adjacent microvascular network reconstruction in vivo. Burns Trauma. 2022;10:tkac035 pubmed 出版商
  10. Ren Y, Liu J, Xu H, Wang S, Li S, Xiang M, et al. Knockout of integrin β1 in induced pluripotent stem cells accelerates skin-wound healing by promoting cell migration in extracellular matrix. Stem Cell Res Ther. 2022;13:389 pubmed 出版商
  11. De Bock M, De Smet M, Verwaerde S, Tahiri H, Schumacher S, Van Haver V, et al. Targeting gliovascular connexins prevents inflammatory blood-brain barrier leakage and astrogliosis. JCI Insight. 2022;7: pubmed 出版商
  12. Richards M, Nwadozi E, Pal S, Martinsson P, Kaakinen M, Gloger M, et al. Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner. elife. 2022;11: pubmed 出版商
  13. Al Ahmady Z, Dickie B, Aldred I, Jasim D, Barrington J, Haley M, et al. Selective brain entry of lipid nanoparticles in haemorrhagic stroke is linked to biphasic blood-brain barrier disruption. Theranostics. 2022;12:4477-4497 pubmed 出版商
  14. Bhattacharya N, INDRA A, Ganguli Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells. 2022;11: pubmed 出版商
  15. Garnier L, Pick R, Montorfani J, Sun M, Brighouse D, Liaudet N, et al. IFN-γ-dependent tumor-antigen cross-presentation by lymphatic endothelial cells promotes their killing by T cells and inhibits metastasis. Sci Adv. 2022;8:eabl5162 pubmed 出版商
  16. De Marchi E, Pegoraro A, Turiello R, Di Virgilio F, Morello S, Adinolfi E. A2A Receptor Contributes to Tumor Progression in P2X7 Null Mice. Front Cell Dev Biol. 2022;10:876510 pubmed 出版商
  17. Verginadis I, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 2022;24:940-953 pubmed 出版商
  18. Baik J, Park H, Kataru R, Savetsky I, Ly C, Shin J, et al. TGF-β1 mediates pathologic changes of secondary lymphedema by promoting fibrosis and inflammation. Clin Transl Med. 2022;12:e758 pubmed 出版商
  19. Yue X, Yin J, Wang X, Heidecke H, Hackel A, Dong X, et al. Induced antibodies directed to the angiotensin receptor type 1 provoke skin and lung inflammation, dermal fibrosis and act species overarching. Ann Rheum Dis. 2022;81:1281-9 pubmed 出版商
  20. Luo Y, Li Z, Kong Y, He W, Zheng H, An M, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest. 2022;132: pubmed 出版商
  21. Krolak T, Chan K, Kaplan L, Huang Q, Wu J, Zheng Q, et al. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. Nat Cardiovasc Res. 2022;1:389-400 pubmed 出版商
  22. Mancinelli R, Ceci L, Kennedy L, Francis H, Meadows V, Chen L, et al. The Effects of Taurocholic Acid on Biliary Damage and Liver Fibrosis Are Mediated by Calcitonin-Gene-Related Peptide Signaling. Cells. 2022;11: pubmed 出版商
  23. Omatsu Y, Aiba S, Maeta T, Higaki K, Aoki K, Watanabe H, et al. Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nat Commun. 2022;13:2654 pubmed 出版商
  24. Fernandes H, Zonnari A, Abreu R, Aday S, Bar xe3 o M, Albino I, et al. Extracellular vesicles enriched with an endothelial cell pro-survival microRNA affects skin tissue regeneration. Mol Ther Nucleic Acids. 2022;28:307-327 pubmed 出版商
  25. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  26. Saxena V, Piao W, Li L, Paluskievicz C, Xiong Y, Simon T, et al. Treg tissue stability depends on lymphotoxin beta-receptor- and adenosine-receptor-driven lymphatic endothelial cell responses. Cell Rep. 2022;39:110727 pubmed 出版商
  27. Ngamsri K, Fuhr A, Schindler K, Simelitidis M, Hagen M, Zhang Y, et al. Sevoflurane Dampens Acute Pulmonary Inflammation via the Adenosine Receptor A2B and Heme Oxygenase-1. Cells. 2022;11: pubmed 出版商
  28. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  29. Reinitz F, Chen E, Nicolis Di Robilant B, Chuluun B, Antony J, Jones R, et al. Inhibiting USP16 rescues stem cell aging and memory in an Alzheimer's model. elife. 2022;11: pubmed 出版商
  30. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  31. Du M, Wang C, Yang L, Liu B, Zheng Z, Yang L, et al. The role of long noncoding RNA Nron in atherosclerosis development and plaque stability. iScience. 2022;25:103978 pubmed 出版商
  32. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  33. Wang J, Liu C, He L, Xie Z, Bai L, Yu W, et al. Selective YAP activation in Procr cells is essential for ovarian stem/progenitor expansion and epithelium repair. elife. 2022;11: pubmed 出版商
  34. O Brien A, Zhou T, White T, Medford A, Chen L, Kyritsi K, et al. FGF1 Signaling Modulates Biliary Injury and Liver Fibrosis in the Mdr2-/- Mouse Model of Primary Sclerosing Cholangitis. Hepatol Commun. 2022;6:1574-1588 pubmed 出版商
  35. Le A, Park S, Le M, Lee U, Ko B, Lim H, et al. DRG2 Depletion Promotes Endothelial Cell Senescence and Vascular Endothelial Dysfunction. Int J Mol Sci. 2022;23: pubmed 出版商
  36. Maderna C, Pisati F, Tripodo C, Dejana E, Malinverno M. A murine model of cerebral cavernous malformations with acute hemorrhage. iScience. 2022;25:103943 pubmed 出版商
  37. Maul A, Huebner A, Strenzke N, Moser T, Rubsamen R, Jovanovic S, et al. The Cl--channel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice. elife. 2022;11: pubmed 出版商
  38. Duan J, Zhou Z, Ruan B, Fang Z, Ding J, Liu J, et al. Notch-Regulated c-Kit-Positive Liver Sinusoidal Endothelial Cells Contribute to Liver Zonation and Regeneration. Cell Mol Gastroenterol Hepatol. 2022;13:1741-1756 pubmed 出版商
  39. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, et al. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  40. Gopal A, Ibrahim R, Fuller M, Umlandt P, Parker J, Tran J, et al. TIRAP drives myelosuppression through an Ifnγ-Hmgb1 axis that disrupts the endothelial niche in mice. J Exp Med. 2022;219: pubmed 出版商
  41. Coveney C, Samvelyan H, Miotla Zarebska J, Carnegie J, Chang E, Corrin C, et al. Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. J Bone Miner Res. 2022;37:1081-1096 pubmed 出版商
  42. Bartoli F, Debant M, Chuntharpursat Bon E, Evans E, Musialowski K, Parsonage G, et al. Endothelial Piezo1 sustains muscle capillary density and contributes to physical activity. J Clin Invest. 2022;132: pubmed 出版商
  43. Kumar B, Adebayo A, Prasad M, Capitano M, Wang R, Bhat Nakshatri P, et al. Tumor collection/processing under physioxia uncovers highly relevant signaling networks and drug sensitivity. Sci Adv. 2022;8:eabh3375 pubmed 出版商
  44. Machino H, Kaneko S, Komatsu M, Ikawa N, Asada K, Nakato R, et al. The metabolic stress-activated checkpoint LKB1-MARK3 axis acts as a tumor suppressor in high-grade serous ovarian carcinoma. Commun Biol. 2022;5:39 pubmed 出版商
  45. Ouyang L, Sun Y, Lv D, Peng X, Liu X, Ci L, et al. miR-29cb2 promotes angiogenesis and osteogenesis by inhibiting HIF-3α in bone. iScience. 2022;25:103604 pubmed 出版商
  46. Nakamura Y, Kinoshita J, Yamaguchi T, Aoki T, Saito H, Hamabe Horiike T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: inhibition in the migration of M2 macrophages and mast cells by Tranilast. Gastric Cancer. 2022;25:515-526 pubmed 出版商
  47. Dave J, Chakraborty R, Ntokou A, Saito J, Saddouk F, Feng Z, et al. JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency. J Clin Invest. 2022;132: pubmed 出版商
  48. Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, et al. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol. 2021;12:796260 pubmed 出版商
  49. Liu Y, Wang L, Song Q, Ali M, Crowe W, Kucera G, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion. Nat Nanotechnol. 2022;17:206-216 pubmed 出版商
  50. Humeres C, Shinde A, Hanna A, Alex L, Hern xe1 ndez S, Li R, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 2022;132: pubmed 出版商
  51. Bhagat S, Biswas I, Alam M, Khan M, Khan G. Key role of Extracellular RNA in hypoxic stress induced myocardial injury. PLoS ONE. 2021;16:e0260835 pubmed 出版商
  52. Wang T, Zhou P, Xie X, Tomita Y, Cho S, Tsirukis D, et al. Myeloid lineage contributes to pathological choroidal neovascularization formation via SOCS3. EBioMedicine. 2021;73:103632 pubmed 出版商
  53. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  54. Methner C, Cao Z, Mishra A, Kaul S. Mechanism and potential treatment of the "no reflow" phenomenon after acute myocardial infarction: role of pericytes and GPR39. Am J Physiol Heart Circ Physiol. 2021;321:H1030-H1041 pubmed 出版商
  55. Squair J, Gautier M, Kathe C, Anderson M, James N, Hutson T, et al. Confronting false discoveries in single-cell differential expression. Nat Commun. 2021;12:5692 pubmed 出版商
  56. Martínez Nieto G, Heljasvaara R, Heikkinen A, Kaski H, Devarajan R, Rinne O, et al. Deletion of Col15a1 Modulates the Tumour Extracellular Matrix and Leads to Increased Tumour Growth in the MMTV-PyMT Mouse Mammary Carcinoma Model. Int J Mol Sci. 2021;22: pubmed 出版商
  57. Su R, Breidenbach J, Alganem K, Khalaf F, French B, Dube P, et al. Microcystin-LR (MC-LR) Triggers Inflammatory Responses in Macrophages. Int J Mol Sci. 2021;22: pubmed 出版商
  58. Marr N, Meeson R, Kelly E, Fang Y, Peffers M, Pitsillides A, et al. CD146 Delineates an Interfascicular Cell Sub-Population in Tendon That Is Recruited during Injury through Its Ligand Laminin-α4. Int J Mol Sci. 2021;22: pubmed 出版商
  59. Wen Z, Huang S, Kuo H, Chen C, Chen N, Chen W, et al. Fumagillin Attenuates Spinal Angiogenesis, Neuroinflammation, and Pain in Neuropathic Rats after Chronic Constriction Injury. Biomedicines. 2021;9: pubmed 出版商
  60. Qian S, Huang Q, Chen R, Mo J, Zhou L, Zhao Y, et al. Single-Cell RNA Sequencing Identifies New Inflammation-Promoting Cell Subsets in Asian Patients With Chronic Periodontitis. Front Immunol. 2021;12:711337 pubmed 出版商
  61. Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed 出版商
  62. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  63. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  64. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  65. Lee Y, Kim T, Kim Y, Kim S, Lee S, Seo S, et al. Microbiota-derived lactate promotes hematopoiesis and erythropoiesis by inducing stem cell factor production from leptin receptor+ niche cells. Exp Mol Med. 2021;53:1319-1331 pubmed 出版商
  66. Banerjee S, Ghoshal S, Girardet C, Demars K, Yang C, Niehoff M, et al. Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. NPJ Aging Mech Dis. 2021;7:23 pubmed 出版商
  67. Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, et al. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci Adv. 2021;7: pubmed 出版商
  68. Xu L, Liu Y, Cheng Q, Shen Y, Yuan Y, Jiang X, et al. Bmal1 Downregulation Worsens Critical Limb Ischemia by Promoting Inflammation and Impairing Angiogenesis. Front Cardiovasc Med. 2021;8:712903 pubmed 出版商
  69. Drzyzga A, Cichon T, Czapla J, Jarosz Biej M, Pilny E, Matuszczak S, et al. The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent-DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  70. Ridge L, Kewbank D, Schütz D, Stumm R, Scambler P, Ivins S. Dual role for CXCL12 signaling in semilunar valve development. Cell Rep. 2021;36:109610 pubmed 出版商
  71. Wei X, Meel M, Breur M, Bugiani M, Hulleman E, Phoenix T. Defining tumor-associated vascular heterogeneity in pediatric high-grade and diffuse midline gliomas. Acta Neuropathol Commun. 2021;9:142 pubmed 出版商
  72. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  73. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, et al. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab. 2021;: pubmed 出版商
  74. Xue Q, Chen L, Yu J, Sun K, Ye L, Zheng J. Downregulation of Interleukin-13 Receptor α2 Inhibits Angiogenic Formation Mediated by Chitinase 3-Like 1 in Late Atherosclerotic Lesions of apoE-/- Mice. Front Physiol. 2021;12:690109 pubmed 出版商
  75. Shao C, Lou P, Liu R, Bi X, Li G, Yang X, et al. Hormone-Responsive BMP Signaling Expands Myoepithelial Cell Lineages and Prevents Alveolar Precocity in Mammary Gland. Front Cell Dev Biol. 2021;9:691050 pubmed 出版商
  76. Qin Z, Liu F, Blair R, Wang C, Yang H, Mudd J, et al. Endothelial cell infection and dysfunction, immune activation in severe COVID-19. Theranostics. 2021;11:8076-8091 pubmed 出版商
  77. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  78. Srivastava S, Zhou H, Setia O, Dardik A, Fernandez Hernando C, GOODWIN J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. J Am Heart Assoc. 2021;10:e019437 pubmed 出版商
  79. Gholami S, Mazidi Z, Pahlavan S, Moslem F, Hosseini M, Taei A, et al. A Novel Insight into Endothelial and Cardiac Cells Phenotype in Systemic Sclerosis Using Patient-Derived Induced Pluripotent Stem Cell. Cell J. 2021;23:273-287 pubmed 出版商
  80. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  81. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  82. Hayakawa M, Sakata A, Hayakawa H, Matsumoto H, Hiramoto T, Kashiwakura Y, et al. Characterization and visualization of murine coagulation factor VIII-producing cells in vivo. Sci Rep. 2021;11:14824 pubmed 出版商
  83. Adori C, Daraio T, Kuiper R, Barde S, Horvathova L, Yoshitake T, et al. Disorganization and degeneration of liver sympathetic innervations in nonalcoholic fatty liver disease revealed by 3D imaging. Sci Adv. 2021;7: pubmed 出版商
  84. Osborne J, Kinney M, Han A, Akinnola K, Yermalovich A, Vo L, et al. Lin28 paralogs regulate lung branching morphogenesis. Cell Rep. 2021;36:109408 pubmed 出版商
  85. Wutschka J, Kast B, Sator Schmitt M, Appak Baskoy S, Hess J, Sinn H, et al. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis. 2021;38:411-423 pubmed 出版商
  86. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  87. Ambrosi T, Sinha R, Steininger H, Hoover M, Murphy M, Koepke L, et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. elife. 2021;10: pubmed 出版商
  88. Kaucka M, Szarowska B, Kavkova M, Kastriti M, Kameneva P, Schmidt I, et al. Nerve-associated Schwann cell precursors contribute extracutaneous melanocytes to the heart, inner ear, supraorbital locations and brain meninges. Cell Mol Life Sci. 2021;78:6033-6049 pubmed 出版商
  89. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  90. Han E, Wang J, Kural M, Jiang B, Leiby K, Chowdhury N, et al. Development of a Bioartificial Vascular Pancreas. J Tissue Eng. 2021;12:20417314211027714 pubmed 出版商
  91. Olson B, Zhu X, Norgard M, Diba P, Levasseur P, Buenafe A, et al. Chronic cerebral lipocalin 2 exposure elicits hippocampal neuronal dysfunction and cognitive impairment. Brain Behav Immun. 2021;97:102-118 pubmed 出版商
  92. Sato M, Inohaya A, Yasuda E, Mogami H, Chigusa Y, Kawasaki K, et al. Three-dimensional human placenta-like bud synthesized from induced pluripotent stem cells. Sci Rep. 2021;11:14167 pubmed 出版商
  93. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  94. Kwan Y, Teo M, Lim J, Tan M, Rosellinny G, Wahli W, et al. LRG1 Promotes Metastatic Dissemination of Melanoma through Regulating EGFR/STAT3 Signalling. Cancers (Basel). 2021;13: pubmed 出版商
  95. Gehlsen U, Stary D, Maass M, Riesner K, Musial G, Stern M, et al. Ocular Graft-versus-Host Disease in a Chemotherapy-Based Minor-Mismatch Mouse Model Features Corneal (Lymph-) Angiogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  96. Mori Y, Gonzalez Medina M, Liu Z, Guo J, Dingwell L, Chiang S, et al. Roles of vascular endothelial and smooth muscle cells in the vasculoprotective effect of insulin in a mouse model of restenosis. Diab Vasc Dis Res. 2021;18:14791641211027324 pubmed 出版商
  97. Busch A, Pauli J, Winski G, Bleichert S, Chernogubova E, Metschl S, et al. Lenvatinib halts aortic aneurysm growth by restoring smooth muscle cell contractility. JCI Insight. 2021;6: pubmed 出版商
  98. Shen Y, Shami A, Moritz L, Larose H, Manske G, Ma Q, et al. TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun. 2021;12:3876 pubmed 出版商
  99. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  100. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  101. Tan H, Song Y, Chen J, Zhang N, Wang Q, Li Q, et al. Platelet-Like Fusogenic Liposome-Mediated Targeting Delivery of miR-21 Improves Myocardial Remodeling by Reprogramming Macrophages Post Myocardial Ischemia-Reperfusion Injury. Adv Sci (Weinh). 2021;8:e2100787 pubmed 出版商
  102. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  103. Qian J, Xu Q, Xu W, Cai R, Huang G. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16:379 pubmed 出版商
  104. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  105. Kalisch Smith J, Ved N, Szumska D, Munro J, Troup M, Harris S, et al. Maternal iron deficiency perturbs embryonic cardiovascular development in mice. Nat Commun. 2021;12:3447 pubmed 出版商
  106. Nakatani T, Tsujimoto K, Park J, Jo T, Kimura T, Hayama Y, et al. The lysosomal Ragulator complex plays an essential role in leukocyte trafficking by activating myosin II. Nat Commun. 2021;12:3333 pubmed 出版商
  107. Cabanes Creus M, Navarro R, Liao S, Baltazar G, Drouyer M, Zhu E, et al. Single amino acid insertion allows functional transduction of murine hepatocytes with human liver tropic AAV capsids. Mol Ther Methods Clin Dev. 2021;21:607-620 pubmed 出版商
  108. Nam J, Kim A, Choi S, Kim J, Choi K, Cho S, et al. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun. 2021;12:3279 pubmed 出版商
  109. Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa Ankerhold H, Lasch M, et al. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci. 2021;22: pubmed 出版商
  110. Stetter C, Lopez Caperuchipi S, Hopp Krämer S, Bieber M, Kleinschnitz C, SIREN A, et al. Amelioration of Cognitive and Behavioral Deficits after Traumatic Brain Injury in Coagulation Factor XII Deficient Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  111. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  112. Lopez Ramirez M, Lai C, Soliman S, Hale P, Pham A, Estrada E, et al. Astrocytes propel neurovascular dysfunction during cerebral cavernous malformation lesion formation. J Clin Invest. 2021;131: pubmed 出版商
  113. Kundumani Sridharan V, Subramani J, Owens C, Das K. Nrg1β Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and Abrogation of Trx2 Autophagy. Arterioscler Thromb Vasc Biol. 2021;41:2293-2314 pubmed 出版商
  114. Grol M, Haelterman N, Lim J, Munivez E, Archer M, Hudson D, et al. Tendon and motor phenotypes in the Crtap-/- mouse model of recessive osteogenesis imperfecta. elife. 2021;10: pubmed 出版商
  115. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  116. Lu Z, Ortiz A, Verginadis I, Peck A, Zahedi F, Cho C, et al. Regulation of intercellular biomolecule transfer-driven tumor angiogenesis and responses to anticancer therapies. J Clin Invest. 2021;131: pubmed 出版商
  117. Visniauskas B, Perry J, Gomes G, Nogueira Pedro A, Paredes Gamero E, Tufik S, et al. Intermittent hypoxia changes the interaction of the kinin-VEGF system and impairs myocardial angiogenesis in the hypertrophic heart. Physiol Rep. 2021;9:e14863 pubmed 出版商
  118. Zhou S, Meng F, Du S, Qian H, Ding N, Sha H, et al. Bifunctional iRGD-anti-CD3 enhances antitumor potency of T cells by facilitating tumor infiltration and T-cell activation. J Immunother Cancer. 2021;9: pubmed 出版商
  119. Tichy E, Ma N, Sidibe D, Loro E, Kocan J, Chen D, et al. Persistent NF-κB activation in muscle stem cells induces proliferation-independent telomere shortening. Cell Rep. 2021;35:109098 pubmed 出版商
  120. Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, et al. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 2021;12:470 pubmed 出版商
  121. Tsutsui K, Machida H, Nakagawa A, Ahn K, Morita R, Sekiguchi K, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12:2577 pubmed 出版商
  122. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  123. Chen S, Jiang J, Chao G, Hong X, Cao H, Zhang S. Pure Total Flavonoids From Citrus Protect Against Nonsteroidal Anti-inflammatory Drug-Induced Small Intestine Injury by Promoting Autophagy in vivo and in vitro. Front Pharmacol. 2021;12:622744 pubmed 出版商
  124. Wang H, Marrosu E, Brayson D, Wasala N, Johnson E, Scott C, et al. Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum Mol Genet. 2021;30:1321-1336 pubmed 出版商
  125. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  126. Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, et al. Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 2021;11:5650-5674 pubmed 出版商
  127. Muramatsu M, Osawa T, Miyamura Y, Nakagawa S, Tanaka T, Kodama T, et al. Loss of Down syndrome critical region-1 leads to cholesterol metabolic dysfunction that exaggerates hypercholesterolemia in ApoE-null background. J Biol Chem. 2021;296:100697 pubmed 出版商
  128. Kimura K, Ramirez K, Nguyen T, Yamashiro Y, Sada A, Yanagisawa H. Contribution of PDGFRα-positive cells in maintenance and injury responses in mouse large vessels. Sci Rep. 2021;11:8683 pubmed 出版商
  129. Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, et al. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience. 2021;24:102305 pubmed 出版商
  130. Huang Y, Happonen K, Burrola P, O Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22:586-594 pubmed 出版商
  131. Dong Y, Hsu F, Koziol White C, Stepanova V, Jude J, Gritsiuta A, et al. Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep. 2021;11:8205 pubmed 出版商
  132. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  133. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  134. Rupert J, Narasimhan A, Jengelley D, Jiang Y, Liu J, Au E, et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218: pubmed 出版商
  135. He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12:2141 pubmed 出版商
  136. Maier A, Reichhart N, Gonnermann J, Kociok N, Riechardt A, Gundlach E, et al. Effects of TNFα receptor TNF-Rp55- or TNF-Rp75- deficiency on corneal neovascularization and lymphangiogenesis in the mouse. PLoS ONE. 2021;16:e0245143 pubmed 出版商
  137. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  138. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  139. Wang X, Fu Y, Xie Z, Cao M, Qu W, Xi X, et al. Establishment of a Novel Mouse Model for Atherosclerotic Vulnerable Plaque. Front Cardiovasc Med. 2021;8:642751 pubmed 出版商
  140. Strowitzki M, Kimmer G, Wehrmann J, Ritter A, Radhakrishnan P, Opitz V, et al. Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses. JCI Insight. 2021;6: pubmed 出版商
  141. Barcia Durán J, Lu T, Houghton S, Geng F, Schreiner R, Xiang J, et al. Endothelial Jak3 expression enhances pro-hematopoietic angiocrine function in mice. Commun Biol. 2021;4:406 pubmed 出版商
  142. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  143. Hurtado de Mendoza T, Mose E, Botta G, Braun G, Kotamraju V, French R, et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat Commun. 2021;12:1541 pubmed 出版商
  144. Bi X, Du C, Wang X, Wang X, Han W, Wang Y, et al. Mitochondrial Damage-Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease-Associated Plaque Vulnerability. Adv Sci (Weinh). 2021;8:2002738 pubmed 出版商
  145. Yang Y, Leonard M, Luo Z, Yeo S, Bick G, Hao M, et al. Functional cooperation between co-amplified genes promotes aggressive phenotypes of HER2-positive breast cancer. Cell Rep. 2021;34:108822 pubmed 出版商
  146. Uhl B, Braun C, Dominik J, Luft J, Canis M, Reichel C. A Novel Experimental Approach for In Vivo Analyses of the Salivary Gland Microvasculature. Front Immunol. 2020;11:604470 pubmed 出版商
  147. Jiang S, Xu W, Chen Z, Cui C, Fan X, Cai J, et al. Hydrogen sulphide reduces hyperhomocysteinaemia-induced endothelial ER stress by sulfhydrating protein disulphide isomerase to attenuate atherosclerosis. J Cell Mol Med. 2021;25:3437-3448 pubmed 出版商
  148. Thanabalasuriar A, Chiang A, Morehouse C, Camara M, Hawkins S, Keller A, et al. PD-L1+ neutrophils contribute to injury-induced infection susceptibility. Sci Adv. 2021;7: pubmed 出版商
  149. Hemanthakumar K, Fang S, Anisimov A, Mäyränpää M, Mervaala E, Kivela R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. elife. 2021;10: pubmed 出版商
  150. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  151. Mehatre S, Roy I, Biswas A, Prit D, Schouteden S, Huelsken J, et al. Niche-Mediated Integrin Signaling Supports Steady-State Hematopoiesis in the Spleen. J Immunol. 2021;206:1549-1560 pubmed 出版商
  152. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  153. Alghanem A, Abello J, Maurer J, Kumar A, Ta C, Gunasekar S, et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. elife. 2021;10: pubmed 出版商
  154. Wan B, Li C, Wang M, Kong F, Ding Q, Zhang C, et al. GIT1 protects traumatically injured spinal cord by prompting microvascular endothelial cells to clear myelin debris. Aging (Albany NY). 2021;13:7067-7083 pubmed 出版商
  155. Newman A, Serbulea V, Baylis R, Shankman L, Bradley X, Alencar G, et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab. 2021;3:166-181 pubmed 出版商
  156. Kameritsch P, Singer M, Nuernbergk C, Ríos N, Reyes A, Schmidt K, et al. The mitochondrial thioredoxin reductase system (TrxR2) in vascular endothelium controls peroxynitrite levels and tissue integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  157. Helms T, Mullins R, Thomas Ahner J, Kulp S, Campbell M, Lucas F, et al. Inhibition of androgen/AR signaling inhibits diethylnitrosamine (DEN) induced tumour initiation and remodels liver immune cell networks. Sci Rep. 2021;11:3646 pubmed 出版商
  158. Dufies M, Verbiest A, Cooley L, Ndiaye P, He X, Nottet N, et al. Plk1, upregulated by HIF-2, mediates metastasis and drug resistance of clear cell renal cell carcinoma. Commun Biol. 2021;4:166 pubmed 出版商
  159. Chen L, Wu H, Ren C, Liu G, Zhang W, Liu W, et al. Inhibition of PDGF-BB reduces alkali-induced corneal neovascularization in mice. Mol Med Rep. 2021;23:1 pubmed 出版商
  160. Haraguchi R, Yamada G, Murashima A, Matsumaru D, Kitazawa R, Kitazawa S. New Insights into Development of Female Reproductive Tract-Hedgehog-Signal Response in Wolffian Tissues Directly Contributes to Uterus Development. Int J Mol Sci. 2021;22: pubmed 出版商
  161. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  162. Vong K, Ma T, Li B, Leung T, Nong W, Ngai S, et al. SOX9-COL9A3-dependent regulation of choroid plexus epithelial polarity governs blood-cerebrospinal fluid barrier integrity. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  163. Chelvanambi M, Fecek R, Taylor J, Storkus W. STING agonist-based treatment promotes vascular normalization and tertiary lymphoid structure formation in the therapeutic melanoma microenvironment. J Immunother Cancer. 2021;9: pubmed 出版商
  164. Yang Q, Ma Q, Xu J, Liu Z, Zou J, Shen J, et al. Prkaa1 Metabolically Regulates Monocyte/Macrophage Recruitment and Viability in Diet-Induced Murine Metabolic Disorders. Front Cell Dev Biol. 2020;8:611354 pubmed 出版商
  165. Paredes I, Vieira J, Shah B, Ramunno C, Dyckow J, Adler H, et al. Oligodendrocyte precursor cell specification is regulated by bidirectional neural progenitor-endothelial cell crosstalk. Nat Neurosci. 2021;24:478-488 pubmed 出版商
  166. Li B, Yin J, Chang J, Zhang J, Wang Y, Huang H, et al. Apelin/APJ relieve diabetic cardiomyopathy by reducing microvascular dysfunction. J Endocrinol. 2021;249:1-18 pubmed 出版商
  167. Díaz Lezama N, Wolf A, Koch S, Pfaller A, Biber J, Guillonneau X, et al. PDGF Receptor Alpha Signaling Is Key for Müller Cell Homeostasis Functions. Int J Mol Sci. 2021;22: pubmed 出版商
  168. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  169. Lv J, Wang H, Cui H, Liu Z, Zhang R, Lu M, et al. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol. 2020;8:609090 pubmed 出版商
  170. Devilbiss A, Zhao Z, Martin Sandoval M, Ubellacker J, Tasdogan A, Agathocleous M, et al. Metabolomic profiling of rare cell populations isolated by flow cytometry from tissues. elife. 2021;10: pubmed 出版商
  171. Henning C, Branopolski A, Follert P, Lewandowska O, Ayhan A, Benkhoff M, et al. Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia. Thromb Haemost. 2021;121:741-754 pubmed 出版商
  172. Chen Y, Jhao P, Hung C, Wu Y, Lin S, Chiang W, et al. Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest. 2021;131: pubmed 出版商
  173. Ma L, Zhao X, Liu Y, Wu J, Yang X, Jin Q. Dihydroartemisinin attenuates osteoarthritis by inhibiting abnormal bone remodeling and angiogenesis in subchondral bone. Int J Mol Med. 2021;47: pubmed 出版商
  174. Harding A, Goff M, Froggatt H, Lim J, Heaton N. GPER1 is required to protect fetal health from maternal inflammation. Science. 2021;371:271-276 pubmed 出版商
  175. Yoneyama T, Hatakeyama S, Sutoh Yoneyama M, Yoshiya T, Uemura T, Ishizu T, et al. Tumor vasculature-targeted 10B delivery by an Annexin A1-binding peptide boosts effects of boron neutron capture therapy. BMC Cancer. 2021;21:72 pubmed 出版商
  176. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  177. Kumar A, Sundaram K, Mu J, Dryden G, Sriwastva M, Lei C, et al. High-fat diet-induced upregulation of exosomal phosphatidylcholine contributes to insulin resistance. Nat Commun. 2021;12:213 pubmed 出版商
  178. Bando Y, Tokuda N, Ogasawara Y, Onozawa G, Nagasaka A, Sakiyama K, et al. Expression and enhancement of FABP4 in septoclasts of the growth plate in FABP5-deficient mouse tibiae. Histochem Cell Biol. 2021;155:439-449 pubmed 出版商
  179. Gladka M, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer Kloots J, et al. Cardiomyocytes stimulate angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun. 2021;12:84 pubmed 出版商
  180. Tong W, Hui H, Shang W, Zhang Y, Tian F, Ma Q, et al. Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles. Theranostics. 2021;11:506-521 pubmed 出版商
  181. Luo R, Cheng Y, Chang D, Liu T, Liu L, Pei G, et al. Tertiary lymphoid organs are associated with the progression of kidney damage and regulated by interleukin-17A. Theranostics. 2021;11:117-131 pubmed 出版商
  182. Yucel N, Axsom J, Yang Y, Li L, Rhoades J, Arany Z. Cardiac endothelial cells maintain open chromatin and expression of cardiomyocyte myofibrillar genes. elife. 2020;9: pubmed 出版商
  183. Malsy J, Alvarado A, Lamontagne J, Strittmatter K, Marneros A. Distinct effects of complement and of NLRP3- and non-NLRP3 inflammasomes for choroidal neovascularization. elife. 2020;9: pubmed 出版商
  184. Parchem J, Kanasaki K, Lee S, Kanasaki M, Yang J, Xu Y, et al. STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight. 2021;6: pubmed 出版商
  185. Tai Nagara I, Hasumi Y, Kusumoto D, Hasumi H, Okabe K, Ando T, et al. Blood and lymphatic systems are segregated by the FLCN tumor suppressor. Nat Commun. 2020;11:6314 pubmed 出版商
  186. Crespo M, González Terán B, Nikolic I, Mora A, Folgueira C, Rodriguez E, et al. Neutrophil infiltration regulates clock-gene expression to organize daily hepatic metabolism. elife. 2020;9: pubmed 出版商
  187. Mia M, Cibi D, Abdul Ghani S, Song W, Tee N, Ghosh S, et al. YAP/TAZ deficiency reprograms macrophage phenotype and improves infarct healing and cardiac function after myocardial infarction. PLoS Biol. 2020;18:e3000941 pubmed 出版商
  188. Li N, Rignault Clerc S, Bielmann C, Bon Mathier A, Déglise T, Carboni A, et al. Increasing heart vascularisation after myocardial infarction using brain natriuretic peptide stimulation of endothelial and WT1+ epicardial cells. elife. 2020;9: pubmed 出版商
  189. Quijada H, Bermudez T, Kempf C, Valera D, Garcia A, Camp S, et al. Endothelial eNAMPT amplifies pre-clinical acute lung injury: efficacy of an eNAMPT-neutralising monoclonal antibody. Eur Respir J. 2021;57: pubmed 出版商
  190. Lian C, Zhao L, Qiu J, Wang Y, Chen R, Liu Z, et al. miR-25-3p promotes endothelial cell angiogenesis in aging mice via TULA-2/SYK/VEGFR-2 downregulation. Aging (Albany NY). 2020;12:22599-22613 pubmed 出版商
  191. Uezumi A, Ikemoto Uezumi M, Zhou H, Kurosawa T, Yoshimoto Y, Nakatani M, et al. Mesenchymal Bmp3b expression maintains skeletal muscle integrity and decreases in age-related sarcopenia. J Clin Invest. 2021;131: pubmed 出版商
  192. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  193. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  194. Xu J, Wang Y, Hsu C, Negri S, Tower R, Gao Y, et al. Lysosomal protein surface expression discriminates fat- from bone-forming human mesenchymal precursor cells. elife. 2020;9: pubmed 出版商
  195. Xu B, Chen X, Ding Y, Chen C, Liu T, Zhang H. Abnormal angiogenesis of placenta in progranulin‑deficient mice. Mol Med Rep. 2020;22:3482-3492 pubmed 出版商
  196. Tremblay M, Viala S, Shafer M, Graham Paquin A, Liu C, Bouchard M. Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. elife. 2020;9: pubmed 出版商
  197. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  198. Xi L, Carroll T, Matos I, Luo J, Polak L, Pasolli H, et al. m6A RNA methylation impacts fate choices during skin morphogenesis. elife. 2020;9: pubmed 出版商
  199. Yeo S, Zhu X, Okamoto T, Hao M, Wang C, Lu P, et al. Single-cell RNA-sequencing reveals distinct patterns of cell state heterogeneity in mouse models of breast cancer. elife. 2020;9: pubmed 出版商
  200. An X, Ogawa Wong A, Carmody C, Ambrosio R, Cicatiello A, Luongo C, et al. A Type 2 Deiodinase-Dependent Increase in Vegfa Mediates Myoblast-Endothelial Cell Crosstalk During Skeletal Muscle Regeneration. Thyroid. 2021;31:115-127 pubmed 出版商
  201. Geng A, Wu T, Cai C, Song W, Wang J, Yu Q, et al. A novel function of R-spondin1 in regulating estrogen receptor expression independent of Wnt/β-catenin signaling. elife. 2020;9: pubmed 出版商
  202. Yang C, Eleftheriadou M, Kelaini S, Morrison T, González M, Caines R, et al. Targeting QKI-7 in vivo restores endothelial cell function in diabetes. Nat Commun. 2020;11:3812 pubmed 出版商
  203. Piersma S, Poursine Laurent J, Yang L, Barber G, Parikh B, Yokoyama W. Virus infection is controlled by hematopoietic and stromal cell sensing of murine cytomegalovirus through STING. elife. 2020;9: pubmed 出版商
  204. Runyan C, Welch L, Lecuona E, Shigemura M, Amarelle L, Abdala Valencia H, et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;: pubmed 出版商
  205. Harrison I, Ismail O, Machhada A, Colgan N, Ohene Y, Nahavandi P, et al. Impaired glymphatic function and clearance of tau in an Alzheimer's disease model. Brain. 2020;143:2576-2593 pubmed 出版商
  206. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  207. Schiffmann L, Werthenbach J, Heintges Kleinhofer F, Seeger J, Fritsch M, Günther S, et al. Mitochondrial respiration controls neoangiogenesis during wound healing and tumour growth. Nat Commun. 2020;11:3653 pubmed 出版商
  208. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  209. Lee Thacker S, Jeon H, Choi Y, Taniuchi I, Takarada T, Yoneda Y, et al. Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Sci Rep. 2020;10:9921 pubmed 出版商
  210. Shin S, Pang Y, Park J, Liu L, Lukas B, Kim S, et al. Dynamic control of adipose tissue development and adult tissue homeostasis by platelet-derived growth factor receptor alpha. elife. 2020;9: pubmed 出版商
  211. Zhang J, Li Y, Liu Q, Huang Y, Li R, Wu T, et al. Sirt6 Alleviated Liver Fibrosis by Deacetylating Conserved Lysine 54 on Smad2 in Hepatic Stellate Cells. Hepatology. 2021;73:1140-1157 pubmed 出版商
  212. Pasquettaz R, Kolotuev I, Rohrbach A, Gouelle C, Pellerin L, Langlet F. Peculiar protrusions along tanycyte processes face diverse neural and nonneural cell types in the hypothalamic parenchyma. J Comp Neurol. 2021;529:553-575 pubmed 出版商
  213. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  214. Kojima M, Otabi H, Kumanogoh H, Toyoda A, Ikawa M, Okabe M, et al. Reduction in BDNF from Inefficient Precursor Conversion Influences Nest Building and Promotes Depressive-Like Behavior in Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  215. Jakubowska M, Pyka J, Michalczyk Wetula D, Baczynski K, Ciesla M, Susz A, et al. Electron paramagnetic resonance spectroscopy reveals alterations in the redox state of endogenous copper and iron complexes in photodynamic stress-induced ischemic mouse liver. Redox Biol. 2020;34:101566 pubmed 出版商
  216. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  217. Baba T, Miyazaki D, Inata K, Uotani R, Miyake H, Sasaki S, et al. Role of IL-4 in bone marrow driven dysregulated angiogenesis and age-related macular degeneration. elife. 2020;9: pubmed 出版商
  218. Fulgenzi G, Hong Z, Tomassoni Ardori F, Barella L, Becker J, Barrick C, et al. Novel metabolic role for BDNF in pancreatic β-cell insulin secretion. Nat Commun. 2020;11:1950 pubmed 出版商
  219. Gualandi M, Iorio M, Engeler O, Serra Roma A, Gasparre G, Schulte J, et al. Oncogenic ALK F1174L drives tumorigenesis in cutaneous squamous cell carcinoma. Life Sci Alliance. 2020;3: pubmed 出版商
  220. Dieterich L, Tacconi C, Menzi F, Proulx S, Kapaklikaya K, Hamada M, et al. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis. 2020;23:411-423 pubmed 出版商
  221. Zhong L, Yao L, Tower R, Wei Y, Miao Z, Park J, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. elife. 2020;9: pubmed 出版商
  222. Rana S, Espinosa Díez C, Ruhl R, Chatterjee N, Hudson C, Fraile Bethencourt E, et al. Differential regulation of microRNA-15a by radiation affects angiogenesis and tumor growth via modulation of acid sphingomyelinase. Sci Rep. 2020;10:5581 pubmed 出版商
  223. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  224. Kur I, Prouvot P, Fu T, Fan W, Müller Braun F, Das A, et al. Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo. PLoS Biol. 2020;18:e3000643 pubmed 出版商
  225. Reventun P, Sanchez Esteban S, Cook A, Cuadrado I, Roza C, Moreno Gómez Toledano R, et al. Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 2020;10:4190 pubmed 出版商
  226. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  227. Honarpisheh P, Reynolds C, Blasco Conesa M, Moruno Manchon J, Putluri N, Bhattacharjee M, et al. Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-β in Tg2576 Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  228. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  229. Miyawaki T, Morikawa S, Susaki E, Nakashima A, Takeuchi H, Yamaguchi S, et al. Visualization and molecular characterization of whole-brain vascular networks with capillary resolution. Nat Commun. 2020;11:1104 pubmed 出版商
  230. Darrigrand J, Valente M, Comai G, Martinez P, Petit M, Nishinakamura R, et al. Dullard-mediated Smad1/5/8 inhibition controls mouse cardiac neural crest cells condensation and outflow tract septation. elife. 2020;9: pubmed 出版商
  231. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  232. Hu H, Hone E, Provencher E, Sprowls S, Farooqi I, Corbin D, et al. MiR-34a Interacts with Cytochrome c and Shapes Stroke Outcomes. Sci Rep. 2020;10:3233 pubmed 出版商
  233. Lu H, Kim S, Steelman A, Tracy K, Zhou B, Michaud D, et al. STAT3 signaling in myeloid cells promotes pathogenic myelin-specific T cell differentiation and autoimmune demyelination. Proc Natl Acad Sci U S A. 2020;117:5430-5441 pubmed 出版商
  234. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  235. Niethamer T, Stabler C, Leach J, Zepp J, Morley M, Babu A, et al. Defining the role of pulmonary endothelial cell heterogeneity in the response to acute lung injury. elife. 2020;9: pubmed 出版商
  236. Yang M, Li C, Xiao Y, Guo Q, Huang Y, Su T, et al. Ophiopogonin D promotes bone regeneration by stimulating CD31hi EMCNhi vessel formation. Cell Prolif. 2020;53:e12784 pubmed 出版商
  237. Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J, Funahashi Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939 pubmed 出版商
  238. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  239. Martinez L, Garcia G, Contreras D, Gong D, Sun R, Arumugaswami V. Zika Virus Mucosal Infection Provides Protective Immunity. J Virol. 2020;94: pubmed 出版商
  240. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  241. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  242. Li Q, Aalling N, Förstera B, Erturk A, Nedergaard M, Møllgård K, et al. Aquaporin 1 and the Na+/K+/2Cl- cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS. 2020;17:15 pubmed 出版商
  243. Durrant C, Ruscher K, Sheppard O, Coleman M, Ozen I. Beta secretase 1-dependent amyloid precursor protein processing promotes excessive vascular sprouting through NOTCH3 signalling. Cell Death Dis. 2020;11:98 pubmed 出版商
  244. Taniguchi Y, Oyama N, Fumoto S, Kinoshita H, Yamashita F, Shimizu K, et al. Tissue suction-mediated gene transfer to the beating heart in mice. PLoS ONE. 2020;15:e0228203 pubmed 出版商
  245. Kang H, Kwon H, Kim I, Ban W, Kim S, Kang H, et al. Intermittent hypoxia exacerbates tumor progression in a mouse model of lung cancer. Sci Rep. 2020;10:1854 pubmed 出版商
  246. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  247. Jaiprasart P, Dogra S, Neelakantan D, Devapatla B, Woo S. Identification of signature genes associated with therapeutic resistance to anti-VEGF therapy. Oncotarget. 2020;11:99-114 pubmed 出版商
  248. Yoshida H, Koodie L, Jacobsen K, Hanzawa K, Miyamoto Y, Yamamoto M. B4GALNT1 induces angiogenesis, anchorage independence growth and motility, and promotes tumorigenesis in melanoma by induction of ganglioside GM2/GD2. Sci Rep. 2020;10:1199 pubmed 出版商
  249. Choi S, Bae H, Jeong S, Park I, Cho H, Hong S, et al. YAP/TAZ direct commitment and maturation of lymph node fibroblastic reticular cells. Nat Commun. 2020;11:519 pubmed 出版商
  250. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  251. Jin Y, Shi C, Wu Y, Sun J, Gao J, Yang Y. Encapsulated three-dimensional bioprinted structure seeded with urothelial cells: a new construction technique for tissue-engineered urinary tract patch. Chin Med J (Engl). 2020;133:424-434 pubmed 出版商
  252. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  253. Sharma S, Plotkin M. Id1 expression in kidney endothelial cells protects against diabetes-induced microvascular injury. FEBS Open Bio. 2020;: pubmed 出版商
  254. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  255. Barbeito Andrés J, Pezzuto P, Higa L, Dias A, Vasconcelos J, Santos T, et al. Congenital Zika syndrome is associated with maternal protein malnutrition. Sci Adv. 2020;6:eaaw6284 pubmed 出版商
  256. Rao L, Giannico D, Leone P, Solimando A, Maiorano E, Caporusso C, et al. HB-EGF-EGFR Signaling in Bone Marrow Endothelial Cells Mediates Angiogenesis Associated with Multiple Myeloma. Cancers (Basel). 2020;12: pubmed 出版商
  257. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  258. Benhadou F, Glitzner E, Brisebarre A, Swedlund B, Song Y, Dubois C, et al. Epidermal autonomous VEGFA/Flt1/Nrp1 functions mediate psoriasis-like disease. Sci Adv. 2020;6:eaax5849 pubmed 出版商
  259. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  260. Sabbagh M, Nathans J. A genome-wide view of the de-differentiation of central nervous system endothelial cells in culture. elife. 2020;9: pubmed 出版商
  261. Zeng W, Tang Z, Li Y, Yin G, Liu Z, Gao J, et al. Patient-derived xenografts of different grade gliomas retain the heterogeneous histological and genetic features of human gliomas. Cancer Cell Int. 2020;20:1 pubmed 出版商
  262. Yoo H, Lee Y, Park C, Son D, Choi D, Park J, et al. Epigenetic priming by Dot1l in lymphatic endothelial progenitors ensures normal lymphatic development and function. Cell Death Dis. 2020;11:14 pubmed 出版商
  263. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  264. Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS ONE. 2019;14:e0226163 pubmed 出版商
  265. Li W, Zhang X, Wu F, Zhou Y, Bao Z, Li H, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer. Cell Death Dis. 2019;10:918 pubmed 出版商
  266. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  267. Travisano S, Oliveira V, Prados B, Grego Bessa J, Piñeiro Sabarís R, Bou V, et al. Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. elife. 2019;8: pubmed 出版商
  268. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  269. Vagnozzi R, Maillet M, Sargent M, Khalil H, Johansen A, Schwanekamp J, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405-409 pubmed 出版商
  270. Song Y, Lu H, Wang Q, Xiang R. Targeting Angiogenesis by Blocking the ATM-SerRS-VEGFA Pathway for UV-Induced Skin Photodamage and Melanoma Growth. Cancers (Basel). 2019;11: pubmed 出版商
  271. Henning C, Branopolski A, Schuler D, Dimitroulis D, Huelsemann P, Nicolaus C, et al. Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia. Sci Rep. 2019;9:16931 pubmed 出版商
  272. de Morrée A, Klein J, Gan Q, Farup J, Urtasun A, Kanugovi A, et al. Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science. 2019;366:734-738 pubmed 出版商
  273. Massa L pez D, Thelen M, Stahl F, Thiel C, Linhorst A, Sylvester M, et al. The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP. elife. 2019;8: pubmed 出版商
  274. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  275. Liu D, Wu L, Wu Y, Wei X, Wang W, Zhang S, et al. Heat shock factor 1-mediated transcription activation of Omi/HtrA2 induces myocardial mitochondrial apoptosis in the aging heart. Aging (Albany NY). 2019;11:8982-8997 pubmed 出版商
  276. Thomson B, Carota I, Souma T, Soman S, Vestweber D, Quaggin S. Targeting the vascular-specific phosphatase PTPRB protects against retinal ganglion cell loss in a pre-clinical model of glaucoma. elife. 2019;8: pubmed 出版商
  277. Grüneboom A, Hawwari I, Weidner D, Culemann S, Müller S, Henneberg S, et al. A network of trans-cortical capillaries as mainstay for blood circulation in long bones. Nat Metab. 2019;1:236-250 pubmed 出版商
  278. Arai H, Sato F, Yamamoto T, Woltjen K, Kiyonari H, Yoshimoto Y, et al. Metalloprotease-Dependent Attenuation of BMP Signaling Restricts Cardiac Neural Crest Cell Fate. Cell Rep. 2019;29:603-616.e5 pubmed 出版商
  279. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  280. Zhao X, Nedvetsky P, Stanchi F, Vion A, Popp O, Zühlke K, et al. Endothelial PKA activity regulates angiogenesis by limiting autophagy through phosphorylation of ATG16L1. elife. 2019;8: pubmed 出版商
  281. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  282. Laurin M, Gomez N, Levorse J, Sendoel A, Sribour M, Fuchs E. An RNAi screen unravels the complexities of Rho GTPase networks in skin morphogenesis. elife. 2019;8: pubmed 出版商
  283. Grinstein M, Dingwall H, O Connor L, Zou K, Capellini T, Galloway J. A distinct transition from cell growth to physiological homeostasis in the tendon. elife. 2019;8: pubmed 出版商
  284. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  285. Amezcua Vesely M, Pallis P, Bielecki P, Low J, Zhao J, Harman C, et al. Effector TH17 Cells Give Rise to Long-Lived TRM Cells that Are Essential for an Immediate Response against Bacterial Infection. Cell. 2019;178:1176-1188.e15 pubmed 出版商
  286. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  287. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  288. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  289. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  290. Culemann S, Grüneboom A, Nicolás Ávila J, Weidner D, Lämmle K, Rothe T, et al. Locally renewing resident synovial macrophages provide a protective barrier for the joint. Nature. 2019;572:670-675 pubmed 出版商
  291. Overman J, Fontaine F, Wylie Sears J, Moustaqil M, Huang L, Meurer M, et al. R-propranolol is a small molecule inhibitor of the SOX18 transcription factor in a rare vascular syndrome and hemangioma. elife. 2019;8: pubmed 出版商
  292. Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10:3322 pubmed 出版商
  293. Li K, Jain P, He C, Eun F, Kang S, Tumbar T. Skin vasculature and hair follicle cross-talking associated with stem cell activation and tissue homeostasis. elife. 2019;8: pubmed 出版商
  294. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  295. Wolock S, Krishnan I, Tenen D, Matkins V, Camacho V, Patel S, et al. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28:302-311.e5 pubmed 出版商
  296. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  297. Ponzetta A, Carriero R, Carnevale S, Barbagallo M, Molgora M, Perucchini C, et al. Neutrophils Driving Unconventional T Cells Mediate Resistance against Murine Sarcomas and Selected Human Tumors. Cell. 2019;178:346-360.e24 pubmed 出版商
  298. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  299. Cho C, Wang Y, Smallwood P, Williams J, Nathans J. Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. elife. 2019;8: pubmed 出版商
  300. Schwarz A, Möller Hackbarth K, Ebarasi L, Unnersjö Jess D, Zambrano S, Blom H, et al. Coro2b, a podocyte protein downregulated in human diabetic nephropathy, is involved in the development of protamine sulphate-induced foot process effacement. Sci Rep. 2019;9:8888 pubmed 出版商
  301. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  302. Iring A, Jin Y, Albarrán Juárez J, Siragusa M, Wang S, Dancs P, et al. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129:2775-2791 pubmed 出版商
  303. Oh J, Iijima N, Song E, Lu P, Klein J, Jiang R, et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019;: pubmed 出版商
  304. Bayer S, Grither W, Brenot A, Hwang P, Barcus C, Ernst M, et al. DDR2 controls breast tumor stiffness and metastasis by regulating integrin mediated mechanotransduction in CAFs. elife. 2019;8: pubmed 出版商
  305. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  306. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  307. Guiu J, Hannezo E, Yui S, Demharter S, Ulyanchenko S, Maimets M, et al. Tracing the origin of adult intestinal stem cells. Nature. 2019;570:107-111 pubmed 出版商
  308. Harding J, Herbáth M, Chen Y, Rayasam A, Ritter A, Csóka B, et al. VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Rep. 2019;27:2119-2131.e6 pubmed 出版商
  309. Xanthis I, Souilhol C, Serbanovic Canic J, Roddie H, Kalli A, Fragiadaki M, et al. β1 integrin is a sensor of blood flow direction. J Cell Sci. 2019;132: pubmed 出版商
  310. Coulombe P, Paliouras G, Clayton A, Hussainkhel A, Fuller M, Jovanovic V, et al. Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling. Cell Rep. 2019;27:1769-1780.e4 pubmed 出版商
  311. Norwood J, Zhang Q, CARD D, Craine A, Ryan T, Drew P. Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate. elife. 2019;8: pubmed 出版商
  312. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  313. Cunin P, Bouslama R, Machlus K, Martínez Bonet M, Lee P, Wactor A, et al. Megakaryocyte emperipolesis mediates membrane transfer from intracytoplasmic neutrophils to platelets. elife. 2019;8: pubmed 出版商
  314. Zhang J, Supakorndej T, Krambs J, Rao M, Abou Ezzi G, Ye R, et al. Bone marrow dendritic cells regulate hematopoietic stem/progenitor cell trafficking. J Clin Invest. 2019;129:2920-2931 pubmed 出版商
  315. Lu D, Liao Y, Zhu S, Chen Q, Xie D, Liao J, et al. Bone-derived Nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction. Stem Cell Res Ther. 2019;10:127 pubmed 出版商
  316. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  317. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  318. Benz F, Wichitnaowarat V, Lehmann M, Germano R, Mihova D, Macas J, et al. Low wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice. elife. 2019;8: pubmed 出版商
  319. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  320. Lucotti S, Cerutti C, Soyer M, Gil Bernabé A, Gomes A, Allen P, et al. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest. 2019;130:1845-1862 pubmed 出版商
  321. Zhu Y, Zhang Y, Huang X, Xie Y, Qu Y, Long H, et al. Z-Ligustilide protects vascular endothelial cells from oxidative stress and rescues high fat diet-induced atherosclerosis by activating multiple NRF2 downstream genes. Atherosclerosis. 2019;284:110-120 pubmed 出版商
  322. Li W, Feng G, Gauthier J, Lokshina I, Higashikubo R, Evans S, et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J Clin Invest. 2019;129:2293-2304 pubmed 出版商
  323. Crippa S, Rossella V, Aprile A, Silvestri L, Rivis S, Scaramuzza S, et al. Bone marrow stromal cells from β-thalassemia patients have impaired hematopoietic supportive capacity. J Clin Invest. 2019;129:1566-1580 pubmed 出版商
  324. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  325. Liu X, Dong H, Huang B, Miao H, Xu Z, Yuan Y, et al. Native Coronary Collateral Microcirculation Reserve in Rat Hearts. J Am Heart Assoc. 2019;8:e011220 pubmed 出版商
  326. Kurelac I, Iommarini L, Vatrinet R, Amato L, De Luise M, Leone G, et al. Inducing cancer indolence by targeting mitochondrial Complex I is potentiated by blocking macrophage-mediated adaptive responses. Nat Commun. 2019;10:903 pubmed 出版商
  327. Furuyama K, Chera S, van Gurp L, Oropeza D, Ghila L, Damond N, et al. Diabetes relief in mice by glucose-sensing insulin-secreting human α-cells. Nature. 2019;567:43-48 pubmed 出版商
  328. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  329. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J. 2019;38: pubmed 出版商
  330. Rowe R, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527-538 pubmed 出版商
  331. Georgouli M, Herraiz C, Crosas Molist E, Fanshawe B, Maiques O, Perdrix A, et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757-774.e23 pubmed 出版商
  332. Karnezis T, Farnsworth R, Harris N, Williams S, Caesar C, Byrne D, et al. CCL27/CCL28-CCR10 Chemokine Signaling Mediates Migration of Lymphatic Endothelial Cells. Cancer Res. 2019;79:1558-1572 pubmed 出版商
  333. Hendrikx S, Coso S, Prat Luri B, Wetterwald L, Sabine A, Franco C, et al. Endothelial Calcineurin Signaling Restrains Metastatic Outgrowth by Regulating Bmp2. Cell Rep. 2019;26:1227-1241.e6 pubmed 出版商
  334. Hutchinson E, Chatterjee M, Reyes L, Djankpa F, Valiant W, Dardzinski B, et al. The effect of Zika virus infection in the ferret. J Comp Neurol. 2019;527:1706-1719 pubmed 出版商
  335. Ma W, Silverman S, Zhao L, Villasmil R, Campos M, Amaral J, et al. Absence of TGFβ signaling in retinal microglia induces retinal degeneration and exacerbates choroidal neovascularization. elife. 2019;8: pubmed 出版商
  336. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  337. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  338. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  339. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  340. Keklikoglou I, Cianciaruso C, Güç E, Squadrito M, Spring L, Tazzyman S, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models. Nat Cell Biol. 2019;21:190-202 pubmed 出版商
  341. Commerford C, Dieterich L, He Y, Hell T, Montoya Zegarra J, Noerrelykke S, et al. Mechanisms of Tumor-Induced Lymphovascular Niche Formation in Draining Lymph Nodes. Cell Rep. 2018;25:3554-3563.e4 pubmed 出版商
  342. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  343. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  344. Quandt J, Schlude C, Bartoschek M, Will R, Cid Arregui A, Schölch S, et al. Long-peptide vaccination with driver gene mutations in p53 and Kras induces cancer mutation-specific effector as well as regulatory T cell responses. Oncoimmunology. 2018;7:e1500671 pubmed 出版商
  345. Urner S, Planas Paz L, Hilger L, Henning C, Branopolski A, Kelly Goss M, et al. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J. 2019;38: pubmed 出版商
  346. Uccellini M, Garcia Sastre A. ISRE-Reporter Mouse Reveals High Basal and Induced Type I IFN Responses in Inflammatory Monocytes. Cell Rep. 2018;25:2784-2796.e3 pubmed 出版商
  347. Wu F, Xu P, Chow A, Man S, Kruger J, Khan K, et al. Pre- and post-operative anti-PD-L1 plus anti-angiogenic therapies in mouse breast or renal cancer models of micro- or macro-metastatic disease. Br J Cancer. 2019;120:196-206 pubmed 出版商
  348. Chen R, Miao Y, Hu Z. Dynamic Nestin expression during hair follicle maturation and the normal hair cycle. Mol Med Rep. 2019;19:549-554 pubmed 出版商
  349. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  350. Choi H, Suwanpradid J, Kim I, Staats H, Haniffa M, Macleod A, et al. Perivascular dendritic cells elicit anaphylaxis by relaying allergens to mast cells via microvesicles. Science. 2018;362: pubmed 出版商
  351. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  352. Jürgensen H, Nørregaard K, Sibree M, Santoni Rugiu E, Madsen D, Wassilew K, et al. Immune regulation by fibroblasts in tissue injury depends on uPARAP-mediated uptake of collectins. J Cell Biol. 2019;218:333-349 pubmed 出版商
  353. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  354. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, et al. Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation. Stem Cell Reports. 2018;11:988-997 pubmed 出版商
  355. Stephens J, Bailey J, Hang H, Rittell V, Dietrich M, Mynatt R, et al. Adipose Tissue Dysfunction Occurs Independently of Obesity in Adipocyte-Specific Oncostatin Receptor Knockout Mice. Obesity (Silver Spring). 2018;26:1439-1447 pubmed 出版商
  356. Li L, Guturi K, Gautreau B, Patel P, Saad A, Morii M, et al. Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 2018;128:4525-4542 pubmed 出版商
  357. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  358. Oldstone M, Ware B, Horton L, Welch M, Aiolfi R, Zarpellon A, et al. Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A. 2018;115:E7814-E7823 pubmed 出版商
  359. Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22 pubmed 出版商
  360. Morin E, Sjöberg E, Tjomsland V, Testini C, Lindskog C, Franklin O, et al. VEGF receptor-2/neuropilin 1 trans-complex formation between endothelial and tumor cells is an independent predictor of pancreatic cancer survival. J Pathol. 2018;246:311-322 pubmed 出版商
  361. Gallot Y, Straughn A, Bohnert K, Xiong G, Hindi S, Kumar A. MyD88 is required for satellite cell-mediated myofiber regeneration in dystrophin-deficient mdx mice. Hum Mol Genet. 2018;27:3449-3463 pubmed 出版商
  362. Maeda K, Otomo K, Yoshida N, Abu Asab M, Ichinose K, Nishino T, et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J Clin Invest. 2018;128:3445-3459 pubmed 出版商
  363. Casey A, Sinha A, Singhania R, Livingstone J, Waterhouse P, Tharmapalan P, et al. Mammary molecular portraits reveal lineage-specific features and progenitor cell vulnerabilities. J Cell Biol. 2018;217:2951-2974 pubmed 出版商
  364. Alonso Martin S, Aurade F, Mademtzoglou D, Rochat A, Zammit P, Relaix F. SOXF factors regulate murine satellite cell self-renewal and function through inhibition of β-catenin activity. elife. 2018;7: pubmed 出版商
  365. Feng Y, Liao Y, Huang W, Lai X, Luo J, Du C, et al. Mesenchymal stromal cells-derived matrix Gla protein contribute to the alleviation of experimental colitis. Cell Death Dis. 2018;9:691 pubmed 出版商
  366. Gurevich D, Severn C, Twomey C, Greenhough A, Cash J, Toye A, et al. Live imaging of wound angiogenesis reveals macrophage orchestrated vessel sprouting and regression. EMBO J. 2018;37: pubmed 出版商
  367. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  368. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  369. Stefani F, Eberstål S, Vergani S, Kristiansen T, Bengzon J. Low-dose irradiated mesenchymal stromal cells break tumor defensive properties in vivo. Int J Cancer. 2018;143:2200-2212 pubmed 出版商
  370. Peltzer N, Darding M, Montinaro A, Dráber P, Draberova H, Kupka S, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature. 2018;557:112-117 pubmed 出版商
  371. Lv W, Deng B, Duan W, Li Y, Liu Y, Li Z, et al. Schwann Cell Plasticity is Regulated by a Weakened Intrinsic Antioxidant Defense System in Acute Peripheral Nerve Injury. Neuroscience. 2018;382:1-13 pubmed 出版商
  372. Zheng X, Fang Z, Liu X, Deng S, Zhou P, Wang X, et al. Increased vessel perfusion predicts the efficacy of immune checkpoint blockade. J Clin Invest. 2018;128:2104-2115 pubmed 出版商
  373. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  374. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  375. Das A, Huang G, Bonkowski M, Longchamp A, Li C, Schultz M, et al. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging. Cell. 2018;173:74-89.e20 pubmed 出版商
  376. Longchamp A, Mirabella T, Arduini A, MacArthur M, Das A, Treviño Villarreal J, et al. Amino Acid Restriction Triggers Angiogenesis via GCN2/ATF4 Regulation of VEGF and H2S Production. Cell. 2018;173:117-129.e14 pubmed 出版商
  377. Brown M, Assen F, Leithner A, Abe J, Schachner H, Asfour G, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science. 2018;359:1408-1411 pubmed 出版商
  378. Pereira E, Kedrin D, Seano G, Gautier O, Meijer E, Jones D, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science. 2018;359:1403-1407 pubmed 出版商
  379. Verbiest T, Finnon R, Brown N, Cruz Garcia L, Finnon P, O Brien G, et al. Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia. 2018;32:1435-1444 pubmed 出版商
  380. Tsubaki T, Kadonosono T, Sakurai S, Shiozawa T, Goto T, Sakai S, et al. Novel adherent CD11b+ Gr-1+ tumor-infiltrating cells initiate an immunosuppressive tumor microenvironment. Oncotarget. 2018;9:11209-11226 pubmed 出版商
  381. Gechijian L, Buckley D, Lawlor M, Reyes J, Paulk J, Ott C, et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat Chem Biol. 2018;14:405-412 pubmed 出版商
  382. Zacharias W, Frank D, Zepp J, Morley M, Alkhaleel F, Kong J, et al. Regeneration of the lung alveolus by an evolutionarily conserved epithelial progenitor. Nature. 2018;555:251-255 pubmed 出版商
  383. Yang J, Cornelissen F, Papazian N, Reijmers R, Llorian M, Cupedo T, et al. IL-7-dependent maintenance of ILC3s is required for normal entry of lymphocytes into lymph nodes. J Exp Med. 2018;215:1069-1077 pubmed 出版商
  384. Lee C, Zhang H, Singh S, Koo L, Kabat J, Tsang H, et al. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. elife. 2018;7: pubmed 出版商
  385. Böttcher J, Bonavita E, Chakravarty P, Blees H, Cabeza Cabrerizo M, Sammicheli S, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022-1037.e14 pubmed 出版商
  386. Chennupati V, Veiga D, Maslowski K, Andina N, Tardivel A, Yu E, et al. Ribonuclease inhibitor 1 regulates erythropoiesis by controlling GATA1 translation. J Clin Invest. 2018;128:1597-1614 pubmed 出版商
  387. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  388. Liang H, Xiao J, Zhou Z, Wu J, Ge F, Li Z, et al. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis. Oncogene. 2018;37:1961-1975 pubmed 出版商
  389. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  390. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  391. Stremmel C, Schuchert R, Wagner F, Thaler R, Weinberger T, Pick R, et al. Yolk sac macrophage progenitors traffic to the embryo during defined stages of development. Nat Commun. 2018;9:75 pubmed 出版商
  392. Guarnerio J, Mendez L, Asada N, Menon A, Fung J, Berry K, et al. A non-cell-autonomous role for Pml in the maintenance of leukemia from the niche. Nat Commun. 2018;9:66 pubmed 出版商
  393. Matsuo K, Nagakubo D, Yamamoto S, Shigeta A, Tomida S, Fujita M, et al. CCL28-Deficient Mice Have Reduced IgA Antibody-Secreting Cells and an Altered Microbiota in the Colon. J Immunol. 2018;200:800-809 pubmed 出版商
  394. Heimsath E, Yim Y, Mustapha M, Hammer J, Cheney R. Myosin-X knockout is semi-lethal and demonstrates that myosin-X functions in neural tube closure, pigmentation, hyaloid vasculature regression, and filopodia formation. Sci Rep. 2017;7:17354 pubmed 出版商
  395. Qin D, Yan Y, Hu B, Zhang W, Li H, Li X, et al. Wisp2 disruption represses Cxcr4 expression and inhibits BMSCs homing to injured liver. Oncotarget. 2017;8:98823-98836 pubmed 出版商
  396. Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, et al. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest. 2018;128:125-140 pubmed 出版商
  397. Kortlever R, Sodir N, Wilson C, Burkhart D, Pellegrinet L, Brown Swigart L, et al. Myc Cooperates with Ras by Programming Inflammation and Immune Suppression. Cell. 2017;171:1301-1315.e14 pubmed 出版商
  398. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  399. Yamazaki R, Yamazoe K, Yoshida S, Hatou S, Inagaki E, Okano H, et al. The Semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Sci Rep. 2017;7:15584 pubmed 出版商
  400. Singh P, Hoggatt J, Kamocka M, Mohammad K, Saunders M, Li H, et al. Neuropeptide Y regulates a vascular gateway for hematopoietic stem and progenitor cells. J Clin Invest. 2017;127:4527-4540 pubmed 出版商
  401. Li Y, Yang Y, Yang L, Zeng Y, Gao X, Xu H. Poly(ethylene glycol)-modified silk fibroin membrane as a carrier for limbal epithelial stem cell transplantation in a rabbit LSCD model. Stem Cell Res Ther. 2017;8:256 pubmed 出版商
  402. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  403. Kang H, Kumar D, Liao G, Lichti Kaiser K, Gerrish K, Liao X, et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest. 2017;127:4326-4337 pubmed 出版商
  404. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  405. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  406. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  407. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  408. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  409. Song K, Fu J, Song J, Herzog B, Bergstrom K, Kondo Y, et al. Loss of mucin-type O-glycans impairs the integrity of the glomerular filtration barrier in the mouse kidney. J Biol Chem. 2017;292:16491-16497 pubmed 出版商
  410. Degn S, van der Poel C, Firl D, Ayoglu B, Al Qureshah F, Bajic G, et al. Clonal Evolution of Autoreactive Germinal Centers. Cell. 2017;170:913-926.e19 pubmed 出版商
  411. Kumar B, Garcia M, Weng L, Jung X, Murakami J, Hu X, et al. Acute myeloid leukemia transforms the bone marrow niche into a leukemia-permissive microenvironment through exosome secretion. Leukemia. 2018;32:575-587 pubmed 出版商
  412. Cho C, Smallwood P, Nathans J. Reck and Gpr124 Are Essential Receptor Cofactors for Wnt7a/Wnt7b-Specific Signaling in Mammalian CNS Angiogenesis and Blood-Brain Barrier Regulation. Neuron. 2017;95:1056-1073.e5 pubmed 出版商
  413. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  414. Jiang X, Hawkins J, Lee J, Lizama C, Bos F, Zape J, et al. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun. 2017;8:128 pubmed 出版商
  415. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  416. van Vliet P, Lin L, Boogerd C, Martin J, Andelfinger G, Grossfeld P, et al. Tissue specific requirements for WNT11 in developing outflow tract and dorsal mesenchymal protrusion. Dev Biol. 2017;429:249-259 pubmed 出版商
  417. Ho L, van Dijk M, Chye S, Messerschmidt D, Chng S, Ong S, et al. ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 2017;357:707-713 pubmed 出版商
  418. Reinhard J, Lin S, McKee K, Meinen S, Crosson S, Sury M, et al. Linker proteins restore basement membrane and correct LAMA2-related muscular dystrophy in mice. Sci Transl Med. 2017;9: pubmed 出版商
  419. Kraus R, Yu X, Cordes B, Sathiamoorthi S, Iempridee T, Nawandar D, et al. Hypoxia-inducible factor-1α plays roles in Epstein-Barr virus's natural life cycle and tumorigenesis by inducing lytic infection through direct binding to the immediate-early BZLF1 gene promoter. PLoS Pathog. 2017;13:e1006404 pubmed 出版商
  420. Heggermont W, Papageorgiou A, Quaegebeur A, Deckx S, Carai P, Verhesen W, et al. Inhibition of MicroRNA-146a and Overexpression of Its Target Dihydrolipoyl Succinyltransferase Protect Against Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. Circulation. 2017;136:747-761 pubmed 出版商
  421. Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nat Commun. 2017;8:15426 pubmed 出版商
  422. Hara T, Nakaoka H, Hayashi T, Mimura K, Hoshino D, Inoue M, et al. Control of metastatic niche formation by targeting APBA3/Mint3 in inflammatory monocytes. Proc Natl Acad Sci U S A. 2017;114:E4416-E4424 pubmed 出版商
  423. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  424. Tammela T, Sanchez Rivera F, Cetinbas N, Wu K, Joshi N, Helenius K, et al. A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature. 2017;545:355-359 pubmed 出版商
  425. Aroor A, Habibi J, Kandikattu H, Garro Kacher M, Barron B, Chen D, et al. Dipeptidyl peptidase-4 (DPP-4) inhibition with linagliptin reduces western diet-induced myocardial TRAF3IP2 expression, inflammation and fibrosis in female mice. Cardiovasc Diabetol. 2017;16:61 pubmed 出版商
  426. Kwan B, Zhu E, Tzeng A, Sugito H, Eltahir A, Ma B, et al. Integrin-targeted cancer immunotherapy elicits protective adaptive immune responses. J Exp Med. 2017;214:1679-1690 pubmed 出版商
  427. Yu P, Wilhelm K, Dubrac A, Tung J, Alves T, Fang J, et al. FGF-dependent metabolic control of vascular development. Nature. 2017;545:224-228 pubmed 出版商
  428. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  429. Kammertoens T, Friese C, Arina A, Idel C, Briesemeister D, Rothe M, et al. Tumour ischaemia by interferon-? resembles physiological blood vessel regression. Nature. 2017;545:98-102 pubmed 出版商
  430. Ge Y, Gomez N, Adam R, Nikolova M, Yang H, Verma A, et al. Stem Cell Lineage Infidelity Drives Wound Repair and Cancer. Cell. 2017;169:636-650.e14 pubmed 出版商
  431. Lalit P, Rodriguez A, Downs K, Kamp T. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc. 2017;12:1029-1054 pubmed 出版商
  432. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. elife. 2017;6: pubmed 出版商
  433. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  434. Tian L, Goldstein A, Wang H, Ching Lo H, Sun Kim I, Welte T, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature. 2017;544:250-254 pubmed 出版商
  435. Li Q, Xia S, Fang H, Pan J, Jia Y, Deng G. VEGF treatment promotes bone marrow-derived CXCR4+ mesenchymal stromal stem cell differentiation into vessel endothelial cells. Exp Ther Med. 2017;13:449-454 pubmed 出版商
  436. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  437. Heim J, Squirewell E, Neu A, Zocher G, Sominidi Damodaran S, Wyles S, et al. Myosin-1E interacts with FAK proline-rich region 1 to induce fibronectin-type matrix. Proc Natl Acad Sci U S A. 2017;114:3933-3938 pubmed 出版商
  438. Kanki Y, Nakaki R, Shimamura T, Matsunaga T, Yamamizu K, Katayama S, et al. Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is indispensable for endothelial cell differentiation. Nucleic Acids Res. 2017;45:4344-4358 pubmed 出版商
  439. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  440. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  441. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  442. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  443. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  444. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  445. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  446. Zhao C, Cai S, Shin K, Lim A, Kalisky T, Lu W, et al. Stromal Gli2 activity coordinates a niche signaling program for mammary epithelial stem cells. Science. 2017;356: pubmed 出版商
  447. Strangward P, Haley M, Shaw T, Schwartz J, Greig R, Mironov A, et al. A quantitative brain map of experimental cerebral malaria pathology. PLoS Pathog. 2017;13:e1006267 pubmed 出版商
  448. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  449. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  450. Gatto S, Puri P, Malecova B. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells. Methods Mol Biol. 2017;1556:191-219 pubmed 出版商
  451. Carmona Fontaine C, Deforet M, Akkari L, Thompson C, Joyce J, Xavier J. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114:2934-2939 pubmed 出版商
  452. Meyers M, Rink J, Jiang Q, Kelly M, Vercammen J, Thaxton C, et al. Systemically administered collagen-targeted gold nanoparticles bind to arterial injury following vascular interventions. Physiol Rep. 2017;5: pubmed 出版商
  453. Li H, Liu P, Xu S, Li Y, Dekker J, Li B, et al. FOXP1 controls mesenchymal stem cell commitment and senescence during skeletal aging. J Clin Invest. 2017;127:1241-1253 pubmed 出版商
  454. Moestrup K, Andersen M, Jensen K. Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods Mol Biol. 2017;1553:67-83 pubmed 出版商
  455. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  456. Turner V, Mabbott N. Structural and functional changes to lymph nodes in ageing mice. Immunology. 2017;151:239-247 pubmed 出版商
  457. Cen M, Hu P, Cai Z, Fang T, Zhang J, Lu M. TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med. 2017;39:569-578 pubmed 出版商
  458. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  459. Daniels B, Jujjavarapu H, Durrant D, Williams J, Green R, White J, et al. Regional astrocyte IFN signaling restricts pathogenesis during neurotropic viral infection. J Clin Invest. 2017;127:843-856 pubmed 出版商
  460. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  461. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  462. Weeden C, Chen Y, Ma S, Hu Y, Ramm G, Sutherland K, et al. Lung Basal Stem Cells Rapidly Repair DNA Damage Using the Error-Prone Nonhomologous End-Joining Pathway. PLoS Biol. 2017;15:e2000731 pubmed 出版商
  463. van Nieuwenhuijze A, Dooley J, Humblet Baron S, Sreenivasan J, Koenders M, Schlenner S, et al. Defective germinal center B-cell response and reduced arthritic pathology in microRNA-29a-deficient mice. Cell Mol Life Sci. 2017;74:2095-2106 pubmed 出版商
  464. Zhu X, Zhou H, Luo J, Cui Y, Li H, Zhang W, et al. Different but synergistic effects of bone marrow-derived VEGFR2+ and VEGFR2-CD45+ cells during hepatocellular carcinoma progression. Oncol Lett. 2017;13:63-68 pubmed 出版商
  465. Gopinath S. Inhibition of Stat3 signaling ameliorates atrophy of the soleus muscles in mice lacking the vitamin D receptor. Skelet Muscle. 2017;7:2 pubmed 出版商
  466. Edwards R, Kopp S, Ifergan I, Shui J, Kronenberg M, Miller S, et al. Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. Invest Ophthalmol Vis Sci. 2017;58:282-291 pubmed 出版商
  467. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  468. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  469. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  470. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  471. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  472. Benito Jardón M, Klapproth S, Gimeno LLuch I, Petzold T, Bharadwaj M, Müller D, et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. elife. 2017;6: pubmed 出版商
  473. Lo Nigro A, de Jaime Soguero A, Khoueiry R, Cho D, Ferlazzo G, Perini I, et al. PDGFR?+ Cells in Embryonic Stem Cell Cultures Represent the In Vitro Equivalent of the Pre-implantation Primitive Endoderm Precursors. Stem Cell Reports. 2017;8:318-333 pubmed 出版商
  474. Wang Q, Wu S, Zhu H, Ding Y, Dai X, Ouyang C, et al. Deletion of PRKAA triggers mitochondrial fission by inhibiting the autophagy-dependent degradation of DNM1L. Autophagy. 2017;13:404-422 pubmed 出版商
  475. Stzepourginski I, Nigro G, Jacob J, Dulauroy S, Sansonetti P, Eberl G, et al. CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proc Natl Acad Sci U S A. 2017;114:E506-E513 pubmed 出版商
  476. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  477. Bai H, Lee J, Chen E, Wang M, Xing Y, Fahmy T, et al. Covalent modification of pericardial patches for sustained rapamycin delivery inhibits venous neointimal hyperplasia. Sci Rep. 2017;7:40142 pubmed 出版商
  478. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  479. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  480. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  481. Lesage J, Suarez Carmona M, Neyrinck Leglantier D, Grelet S, Blacher S, Hunziker W, et al. Zonula occludens-1/NF-?B/CXCL8: a new regulatory axis for tumor angiogenesis. FASEB J. 2017;31:1678-1688 pubmed 出版商
  482. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  483. Xavier S, Sahu R, Landes S, Yu J, Taylor R, Ayyadevara S, et al. Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. Am J Physiol Renal Physiol. 2017;312:F516-F532 pubmed 出版商
  484. Wong B, Wang X, Zecchin A, Thienpont B, Cornelissen I, Kalucka J, et al. The role of fatty acid ?-oxidation in lymphangiogenesis. Nature. 2017;542:49-54 pubmed 出版商
  485. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  486. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  487. Campa C, Germena G, Ciraolo E, Copperi F, Sapienza A, Franco I, et al. Rac signal adaptation controls neutrophil mobilization from the bone marrow. Sci Signal. 2016;9:ra124 pubmed 出版商
  488. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  489. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  490. Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini C, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41-45 pubmed 出版商
  491. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  492. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  493. Feng L, Shu Y, Wu Q, Liu T, Long H, Yang H, et al. EphA4 may contribute to microvessel remodeling in the hippocampal CA1 and CA3 areas in a mouse model of temporal lobe epilepsy. Mol Med Rep. 2017;15:37-46 pubmed 出版商
  494. Wang X, Chen D, Chen K, Jubran A, Ramirez A, Astrof S. Endothelium in the pharyngeal arches 3, 4 and 6 is derived from the second heart field. Dev Biol. 2017;421:108-117 pubmed 出版商
  495. Rux D, Song J, Swinehart I, Pineault K, Schlientz A, Trulik K, et al. Regionally Restricted Hox Function in Adult Bone Marrow Multipotent Mesenchymal Stem/Stromal Cells. Dev Cell. 2016;39:653-666 pubmed 出版商
  496. Tanegashima K, Sato Miyata Y, Funakoshi M, Nishito Y, Aigaki T, Hara T. Epigenetic regulation of the glucose transporter gene Slc2a1 by ?-hydroxybutyrate underlies preferential glucose supply to the brain of fasted mice. Genes Cells. 2017;22:71-83 pubmed 出版商
  497. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  498. Nakaya M, Watari K, Tajima M, Nakaya T, Matsuda S, Ohara H, et al. Cardiac myofibroblast engulfment of dead cells facilitates recovery after myocardial infarction. J Clin Invest. 2017;127:383-401 pubmed 出版商
  499. Zhang H, Zhang P, Gao Y, Li C, Wang H, Chen L, et al. Early VEGF inhibition attenuates blood-brain barrier disruption in ischemic rat brains by regulating the expression of MMPs. Mol Med Rep. 2017;15:57-64 pubmed 出版商
  500. Swanson P, Hart G, Russo M, Nayak D, Yazew T, Pena M, et al. CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathog. 2016;12:e1006022 pubmed 出版商
  501. Palpant N, Pabon L, Friedman C, Roberts M, Hadland B, Zaunbrecher R, et al. Generating high-purity cardiac and endothelial derivatives from patterned mesoderm using human pluripotent stem cells. Nat Protoc. 2017;12:15-31 pubmed 出版商
  502. Monsuur H, Weijers E, Niessen F, Gefen A, Koolwijk P, Gibbs S, et al. Extensive Characterization and Comparison of Endothelial Cells Derived from Dermis and Adipose Tissue: Potential Use in Tissue Engineering. PLoS ONE. 2016;11:e0167056 pubmed 出版商
  503. Zhang Y, Yang J, Ding M, Li L, Lu Z, Zhang Q, et al. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol Lett. 2016;12:3241-3249 pubmed
  504. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  505. Voutouri C, Polydorou C, Papageorgis P, Gkretsi V, Stylianopoulos T. Hyaluronan-Derived Swelling of Solid Tumors, the Contribution of Collagen and Cancer Cells, and Implications for Cancer Therapy. Neoplasia. 2016;18:732-741 pubmed 出版商
  506. Yadav V, Zamler D, Baker G, Kadiyala P, Erdreich Epstein A, deCarvalho A, et al. CXCR4 increases in-vivo glioma perivascular invasion, and reduces radiation induced apoptosis: A genetic knockdown study. Oncotarget. 2016;7:83701-83719 pubmed 出版商
  507. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  508. Leibacher J, Dauber K, Ehser S, Brixner V, Kollar K, Vogel A, et al. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy. 2017;19:61-74 pubmed 出版商
  509. Barnett F, Rosenfeld M, Wood M, Kiosses W, Usui Y, Marchetti V, et al. Macrophages form functional vascular mimicry channels in vivo. Sci Rep. 2016;6:36659 pubmed 出版商
  510. Mouillesseaux K, Wiley D, Saunders L, Wylie L, Kushner E, Chong D, et al. Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun. 2016;7:13247 pubmed 出版商
  511. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  512. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  513. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  514. Gallini R, Lindblom P, Bondjers C, Betsholtz C, Andrae J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res. 2016;349:282-290 pubmed 出版商
  515. Lucitti J, Sealock R, Buckley B, Zhang H, Xiao L, Dudley A, et al. Variants of Rab GTPase-Effector Binding Protein-2 Cause Variation in the Collateral Circulation and Severity of Stroke. Stroke. 2016;47:3022-3031 pubmed
  516. Scully K, Skowronska Krawczyk D, Krawczyk M, Merkurjev D, Taylor H, Livolsi A, et al. Epithelial cell integrin β1 is required for developmental angiogenesis in the pituitary gland. Proc Natl Acad Sci U S A. 2016;113:13408-13413 pubmed
  517. Zamora Pineda J, Kumar A, Suh J, Zhang M, Saba J. Dendritic cell sphingosine-1-phosphate lyase regulates thymic egress. J Exp Med. 2016;213:2773-2791 pubmed
  518. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  519. Iyer S, Chhabra Y, Harvey T, Wang R, Chiu H, Smith A, et al. CRIM1 is necessary for coronary vascular endothelial cell development and homeostasis. J Mol Histol. 2017;48:53-61 pubmed 出版商
  520. Dong L, Yu W, Zheng H, Loh M, Bunting S, Pauly M, et al. Leukaemogenic effects of Ptpn11 activating mutations in the stem cell microenvironment. Nature. 2016;539:304-308 pubmed 出版商
  521. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  522. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  523. Yu H, Moran C, Trollope A, Woodward L, Kinobe R, Rush C, et al. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 2016;6:35190 pubmed 出版商
  524. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  525. Prendergast A, Kück A, van Essen M, Haas S, Blaszkiewicz S, Essers M. IFN?-mediated remodeling of endothelial cells in the bone marrow niche. Haematologica. 2017;102:445-453 pubmed 出版商
  526. Rantakari P, Jäppinen N, Lokka E, Mokkala E, Gerke H, Peuhu E, et al. Fetal liver endothelium regulates the seeding of tissue-resident macrophages. Nature. 2016;538:392-396 pubmed 出版商
  527. Illingworth R, Hölzenspies J, Roske F, Bickmore W, Brickman J. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. elife. 2016;5: pubmed 出版商
  528. Hu X, García M, Weng L, Jung X, Murakami J, Kumar B, et al. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun. 2016;7:13095 pubmed 出版商
  529. Shenoy A, Jin Y, Luo H, Tang M, Pampo C, Shao R, et al. Epithelial-to-mesenchymal transition confers pericyte properties on cancer cells. J Clin Invest. 2016;126:4174-4186 pubmed 出版商
  530. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  531. Adachi E, Sakai K, Nishiuchi T, Imamura R, Sato H, Matsumoto K. Different growth and metastatic phenotypes associated with a cell-intrinsic change of Met in metastatic melanoma. Oncotarget. 2016;7:70779-70793 pubmed 出版商
  532. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  533. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  534. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  535. Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, et al. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med. 2016;5:2920-2933 pubmed 出版商
  536. Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut Landmann S. IL-1 Coordinates the Neutrophil Response to C. albicans in the Oral Mucosa. PLoS Pathog. 2016;12:e1005882 pubmed 出版商
  537. Hosaka K, Yang Y, Seki T, Fischer C, Dubey O, Fredlund E, et al. Pericyte-fibroblast transition promotes tumor growth and metastasis. Proc Natl Acad Sci U S A. 2016;113:E5618-27 pubmed 出版商
  538. Yang J, Feng X, Zhou Q, Cheng W, Shang C, Han P, et al. Pathological Ace2-to-Ace enzyme switch in the stressed heart is transcriptionally controlled by the endothelial Brg1-FoxM1 complex. Proc Natl Acad Sci U S A. 2016;113:E5628-35 pubmed 出版商
  539. Lu X, Chen Q, Rong Y, Yang G, Li C, Xu N, et al. LECT2 drives haematopoietic stem cell expansion and mobilization via regulating the macrophages and osteolineage cells. Nat Commun. 2016;7:12719 pubmed 出版商
  540. Stock A, Hansen J, Sleeman M, McKenzie B, Wicks I. GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease. J Exp Med. 2016;213:1983-98 pubmed 出版商
  541. Zhang K, Cai H, Gao S, Yang G, Deng H, Xu G, et al. TNFSF15 suppresses VEGF production in endothelial cells by stimulating miR-29b expression via activation of JNK-GATA3 signals. Oncotarget. 2016;7:69436-69449 pubmed 出版商
  542. Huang H, Huang Q, Wang F, Milner R, Li L. Cerebral ischemia-induced angiogenesis is dependent on tumor necrosis factor receptor 1-mediated upregulation of α5β1 and αVβ3 integrins. J Neuroinflammation. 2016;13:227 pubmed 出版商
  543. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  544. Vasilopoulou E, Kolatsi Joannou M, Lindenmeyer M, White K, Robson M, Cohen C, et al. Loss of endogenous thymosin β4 accelerates glomerular disease. Kidney Int. 2016;90:1056-1070 pubmed 出版商
  545. Jaaks P, D Alessandro V, Grob N, Büel S, Hajdin K, Schafer B, et al. The Proprotein Convertase Furin Contributes to Rhabdomyosarcoma Malignancy by Promoting Vascularization, Migration and Invasion. PLoS ONE. 2016;11:e0161396 pubmed 出版商
  546. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  547. Kim M, Allen B, Korhonen E, Nitschké M, Yang H, Baluk P, et al. Opposing actions of angiopoietin-2 on Tie2 signaling and FOXO1 activation. J Clin Invest. 2016;126:3511-25 pubmed 出版商
  548. Klose R, Krzywinska E, Castells M, Gotthardt D, Putz E, Kantari Mimoun C, et al. Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nat Commun. 2016;7:12528 pubmed 出版商
  549. Thienpont B, Steinbacher J, Zhao H, D Anna F, Kuchnio A, Ploumakis A, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature. 2016;537:63-68 pubmed 出版商
  550. Zhang P, He D, Chen Z, Pan Q, Du F, Zang X, et al. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer. Biochem Pharmacol. 2016;118:18-30 pubmed 出版商
  551. Navarro Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, et al. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS ONE. 2016;11:e0160979 pubmed 出版商
  552. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  553. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  554. Martin Gonzalez J, Morgani S, Bone R, Bonderup K, Abelchian S, Brakebusch C, et al. Embryonic Stem Cell Culture Conditions Support Distinct States Associated with Different Developmental Stages and Potency. Stem Cell Reports. 2016;7:177-91 pubmed 出版商
  555. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  556. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  557. Agarwal S, Drake J, Qureshi A, Loder S, Li S, Shigemori K, et al. Characterization of Cells Isolated from Genetic and Trauma-Induced Heterotopic Ossification. PLoS ONE. 2016;11:e0156253 pubmed 出版商
  558. Shi Y, Wu W, Chai Q, Li Q, Hou Y, Xia H, et al. LTβR controls thymic portal endothelial cells for haematopoietic progenitor cell homing and T-cell regeneration. Nat Commun. 2016;7:12369 pubmed 出版商
  559. Seki T, Hosaka K, Lim S, Fischer C, Honek J, Yang Y, et al. Endothelial PDGF-CC regulates angiogenesis-dependent thermogenesis in beige fat. Nat Commun. 2016;7:12152 pubmed 出版商
  560. Strilic B, Yang L, Albarrán Juárez J, Wachsmuth L, Han K, Müller U, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536:215-8 pubmed
  561. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  562. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  563. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  564. Cox A, Barrandon O, Cai E, Rios J, Chavez J, Bonnyman C, et al. Resolving Discrepant Findings on ANGPTL8 in ?-Cell Proliferation: A Collaborative Approach to Resolving the Betatrophin Controversy. PLoS ONE. 2016;11:e0159276 pubmed 出版商
  565. Kretschmer S, Pieper M, Hüttmann G, Bölke T, Wollenberg B, Marsh L, et al. Autofluorescence multiphoton microscopy for visualization of tissue morphology and cellular dynamics in murine and human airways. Lab Invest. 2016;96:918-31 pubmed 出版商
  566. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  567. Martin Almedina S, Martínez Corral I, Holdhus R, Vicente A, Fotiou E, Lin S, et al. EPHB4 kinase-inactivating mutations cause autosomal dominant lymphatic-related hydrops fetalis. J Clin Invest. 2016;126:3080-8 pubmed 出版商
  568. Lukjanenko L, Jung M, Hegde N, Perruisseau Carrier C, Migliavacca E, Rozo M, et al. Loss of fibronectin from the aged stem cell niche affects the regenerative capacity of skeletal muscle in mice. Nat Med. 2016;22:897-905 pubmed 出版商
  569. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  570. Yu Q, Song W, Wang D, Zeng Y. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26:1079-1098 pubmed 出版商
  571. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  572. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, et al. SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun. 2016;7:11996 pubmed 出版商
  573. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  574. Legeay S, Clere N, Hilairet G, Do Q, Bernard P, Quignard J, et al. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. Sci Rep. 2016;6:28546 pubmed 出版商
  575. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  576. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  577. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  578. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  579. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  580. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  581. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  582. Quantius J, Schmoldt C, Vazquez Armendariz A, Becker C, El Agha E, Wilhelm J, et al. Influenza Virus Infects Epithelial Stem/Progenitor Cells of the Distal Lung: Impact on Fgfr2b-Driven Epithelial Repair. PLoS Pathog. 2016;12:e1005544 pubmed 出版商
  583. Terashima A, Okamoto K, Nakashima T, Akira S, Ikuta K, Takayanagi H. Sepsis-Induced Osteoblast Ablation Causes Immunodeficiency. Immunity. 2016;44:1434-43 pubmed 出版商
  584. Löffler T, Flunkert S, Temmel M, Hutter Paier B. Decreased Plasma A? in Hyperlipidemic APPSL Transgenic Mice Is Associated with BBB Dysfunction. Front Neurosci. 2016;10:232 pubmed 出版商
  585. Du C, Narayanan K, Leong M, Ibrahim M, Chua Y, Khoo V, et al. Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater. 2016;5:2080-91 pubmed 出版商
  586. Horrillo A, Porras G, Ayuso M, González Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol. 2016;95:265-76 pubmed 出版商
  587. Wuidart A, Ousset M, Rulands S, Simons B, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261-77 pubmed 出版商
  588. Deveza L, Choi J, Lee J, HUANG N, Cooke J, Yang F. Polymer-DNA Nanoparticle-Induced CXCR4 Overexpression Improves Stem Cell Engraftment and Tissue Regeneration in a Mouse Hindlimb Ischemia Model. Theranostics. 2016;6:1176-89 pubmed 出版商
  589. Ryan T, Schmidt C, Alleman R, Tsang A, Green T, Neufer P, et al. Mitochondrial therapy improves limb perfusion and myopathy following hindlimb ischemia. J Mol Cell Cardiol. 2016;97:191-6 pubmed 出版商
  590. Bian Q, Jain A, Xu X, Kebaish K, Crane J, Zhang Z, et al. Excessive Activation of TGFβ by Spinal Instability Causes Vertebral Endplate Sclerosis. Sci Rep. 2016;6:27093 pubmed 出版商
  591. Quarta M, Brett J, DiMarco R, de Morrée A, Boutet S, Chacon R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy. Nat Biotechnol. 2016;34:752-9 pubmed 出版商
  592. Pumberger M, Qazi T, Ehrentraut M, Textor M, Kueper J, Stoltenburg Didinger G, et al. Synthetic niche to modulate regenerative potential of MSCs and enhance skeletal muscle regeneration. Biomaterials. 2016;99:95-108 pubmed 出版商
  593. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  594. Roy A, Femel J, Huijbers E, Spillmann D, Larsson E, Ringvall M, et al. Targeting Serglycin Prevents Metastasis in Murine Mammary Carcinoma. PLoS ONE. 2016;11:e0156151 pubmed 出版商
  595. Torrano V, Valcarcel Jimenez L, Cortazar A, Liu X, Urosevic J, Castillo Martin M, et al. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol. 2016;18:645-656 pubmed 出版商
  596. Lim S, Hosaka K, Nakamura M, Cao Y. Co-option of pre-existing vascular beds in adipose tissue controls tumor growth rates and angiogenesis. Oncotarget. 2016;7:38282-38291 pubmed 出版商
  597. Zhang J, Guan J, Qi X, Ding H, Yuan H, Xie Z, et al. Dimethyloxaloylglycine Promotes the Angiogenic Activity of Mesenchymal Stem Cells Derived from iPSCs via Activation of the PI3K/Akt Pathway for Bone Regeneration. Int J Biol Sci. 2016;12:639-52 pubmed 出版商
  598. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  599. Chiapparo G, Lin X, Lescroart F, Chabab S, Paulissen C, Pitisci L, et al. Mesp1 controls the speed, polarity, and directionality of cardiovascular progenitor migration. J Cell Biol. 2016;213:463-77 pubmed 出版商
  600. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  601. Ishibashi R, Takemoto M, Akimoto Y, Ishikawa T, He P, Maezawa Y, et al. A novel podocyte gene, semaphorin 3G, protects glomerular podocyte from lipopolysaccharide-induced inflammation. Sci Rep. 2016;6:25955 pubmed 出版商
  602. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  603. Antony N, McDougall A, Mantamadiotis T, Cole T, Bird A. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep. 2016;6:25569 pubmed 出版商
  604. Wen S, Dooner M, Cheng Y, Papa E, Del Tatto M, Pereira M, et al. Mesenchymal stromal cell-derived extracellular vesicles rescue radiation damage to murine marrow hematopoietic cells. Leukemia. 2016;30:2221-2231 pubmed 出版商
  605. Villaseñor R, Ozmen L, Messaddeq N, Grüninger F, Loetscher H, Keller A, et al. Trafficking of Endogenous Immunoglobulins by Endothelial Cells at the Blood-Brain Barrier. Sci Rep. 2016;6:25658 pubmed 出版商
  606. Nakagawa A, Naito A, Sumida T, Nomura S, Shibamoto M, Higo T, et al. Activation of endothelial β-catenin signaling induces heart failure. Sci Rep. 2016;6:25009 pubmed 出版商
  607. Yao Y, Norris E, Mason C, Strickland S. Laminin regulates PDGFR?(+) cell stemness and muscle development. Nat Commun. 2016;7:11415 pubmed 出版商
  608. Körbelin J, Dogbevia G, Michelfelder S, Ridder D, Hunger A, Wenzel J, et al. A brain microvasculature endothelial cell-specific viral vector with the potential to treat neurovascular and neurological diseases. EMBO Mol Med. 2016;8:609-25 pubmed 出版商
  609. Jiménez Valerio G, Martínez Lozano M, Bassani N, Vidal A, Ochoa de Olza M, Suarez C, et al. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients. Cell Rep. 2016;15:1134-43 pubmed 出版商
  610. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  611. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  612. Wu C, Sheu S, Hsu L, Yang K, Tseng C, Kuo T. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2017;105:1536-1543 pubmed 出版商
  613. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  614. Li Y, Nishikawa T, Kaneda Y. Platelet-cytokine Complex Suppresses Tumour Growth by Exploiting Intratumoural Thrombin-dependent Platelet Aggregation. Sci Rep. 2016;6:25077 pubmed 出版商
  615. Pietras E, Mirantes Barbeito C, Fong S, Loeffler D, Kovtonyuk L, Zhang S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 2016;18:607-18 pubmed 出版商
  616. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  617. Rios A, Fu N, Jamieson P, Pal B, Whitehead L, Nicholas K, et al. Essential role for a novel population of binucleated mammary epithelial cells in lactation. Nat Commun. 2016;7:11400 pubmed 出版商
  618. Raredon M, Rocco K, Gheorghe C, Sivarapatna A, Ghaedi M, Balestrini J, et al. Biomimetic Culture Reactor for Whole-Lung Engineering. Biores Open Access. 2016;5:72-83 pubmed 出版商
  619. Lim S, Yuzhalin A, Gordon Weeks A, Muschel R. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene. 2016;35:5735-5745 pubmed 出版商
  620. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  621. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  622. Fujiwara M, Kanayama K, Hirokawa Y, Shiraishi T. ASF-4-1 fibroblast-rich culture increases chemoresistance and mTOR expression of pancreatic cancer BxPC-3 cells at the invasive front in vitro, and promotes tumor growth and invasion in vivo. Oncol Lett. 2016;11:2773-2779 pubmed
  623. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  624. Chang C, Petrie T, Clark A, Lin X, Sondergaard C, Griffiths L. Mesenchymal Stem Cell Seeding of Porcine Small Intestinal Submucosal Extracellular Matrix for Cardiovascular Applications. PLoS ONE. 2016;11:e0153412 pubmed 出版商
  625. Chen W, Cao Z, Sugaya S, Lopez M, Sendra V, Laver N, et al. Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun. 2016;7:11302 pubmed 出版商
  626. Ufimtseva E. Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res. 2016;2016:4325646 pubmed 出版商
  627. Haemmerle M, Bottsford Miller J, Pradeep S, Taylor M, Choi H, Hansen J, et al. FAK regulates platelet extravasation and tumor growth after antiangiogenic therapy withdrawal. J Clin Invest. 2016;126:1885-96 pubmed 出版商
  628. Cozzo A, Sundaram S, Zattra O, Qin Y, Freemerman A, Essaid L, et al. cMET inhibitor crizotinib impairs angiogenesis and reduces tumor burden in the C3(1)-Tag model of basal-like breast cancer. Springerplus. 2016;5:348 pubmed 出版商
  629. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  630. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  631. Wu S, Rupaimoole R, Shen F, Pradeep S, Pecot C, Ivan C, et al. A miR-192-EGR1-HOXB9 regulatory network controls the angiogenic switch in cancer. Nat Commun. 2016;7:11169 pubmed 出版商
  632. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  633. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  634. Aikawa H, Hayashi M, Ryu S, Yamashita M, Ohtsuka N, Nishidate M, et al. Visualizing spatial distribution of alectinib in murine brain using quantitative mass spectrometry imaging. Sci Rep. 2016;6:23749 pubmed 出版商
  635. Ding X, Qiu L, Zhang L, Xi J, Li D, Huang X, et al. The role of semaphorin 4D as a potential biomarker for antiangiogenic therapy in colorectal cancer. Onco Targets Ther. 2016;9:1189-204 pubmed 出版商
  636. Körbelin J, Sieber T, Michelfelder S, Lunding L, Spies E, Hunger A, et al. Pulmonary Targeting of Adeno-associated Viral Vectors by Next-generation Sequencing-guided Screening of Random Capsid Displayed Peptide Libraries. Mol Ther. 2016;24:1050-1061 pubmed 出版商
  637. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  638. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  639. Cordeiro O, Chypre M, Brouard N, Rauber S, Alloush F, Romera Hernandez M, et al. Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL. PLoS ONE. 2016;11:e0151848 pubmed 出版商
  640. Tao W, Moore R, Meng Y, Smith E, Xu X. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res. 2016;57:809-17 pubmed 出版商
  641. Brooks D, Schwab L, Krutilina R, Parke D, Sethuraman A, Hoogewijs D, et al. ITGA6 is directly regulated by hypoxia-inducible factors and enriches for cancer stem cell activity and invasion in metastatic breast cancer models. Mol Cancer. 2016;15:26 pubmed 出版商
  642. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  643. Tan S, Krasnow M. Developmental origin of lung macrophage diversity. Development. 2016;143:1318-27 pubmed 出版商
  644. Wang C, Inzana J, Mirando A, Ren Y, Liu Z, Shen J, et al. NOTCH signaling in skeletal progenitors is critical for fracture repair. J Clin Invest. 2016;126:1471-81 pubmed 出版商
  645. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  646. Stabler C, Caires L, Mondrinos M, Marcinkiewicz C, Lazarovici P, Wolfson M, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22:439-50 pubmed 出版商
  647. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  648. Cruz F, Borg Z, Goodwin M, Coffey A, Wagner D, Rocco P, et al. CD11b+ and Sca-1+ Cells Exert the Main Beneficial Effects of Systemically Administered Bone Marrow-Derived Mononuclear Cells in a Murine Model of Mixed Th2/Th17 Allergic Airway Inflammation. Stem Cells Transl Med. 2016;5:488-99 pubmed 出版商
  649. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  650. Sato T, Paquet Fifield S, Harris N, Roufail S, Turner D, Yuan Y, et al. VEGF-D promotes pulmonary oedema in hyperoxic acute lung injury. J Pathol. 2016;239:152-61 pubmed 出版商
  651. Crisan M, Solaimani Kartalaei P, Neagu A, Karkanpouna S, Yamada Inagawa T, Purini C, et al. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo. Stem Cell Reports. 2016;6:383-95 pubmed 出版商
  652. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  653. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  654. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  655. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  656. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  657. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  658. Shahrabi Farahani S, Gallottini M, Martins F, Li E, Mudge D, Nakayama H, et al. Neuropilin 1 Receptor Is Up-Regulated in Dysplastic Epithelium and Oral Squamous Cell Carcinoma. Am J Pathol. 2016;186:1055-64 pubmed 出版商
  659. Passer D, van de Vrugt A, Atmanli A, Domian I. Atypical Protein Kinase C-Dependent Polarized Cell Division Is Required for Myocardial Trabeculation. Cell Rep. 2016;14:1662-1672 pubmed 出版商
  660. Singh N, Kotla S, Kumar R, Rao G. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine. 2015;2:1767-84 pubmed 出版商
  661. Gawade S, Mayer C, Hafen K, Barthlott T, Krenger W, Szinnai G. Cell Growth Dynamics in Embryonic and Adult Mouse Thyroid Revealed by a Novel Approach to Detect Thyroid Gland Subpopulations. Thyroid. 2016;26:591-9 pubmed 出版商
  662. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, et al. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Oncotarget. 2016;7:9859-75 pubmed 出版商
  663. Ha D, Carpenter L, Koutakis P, Swanson S, Zhu Z, Hanna M, et al. Transforming growth factor-beta 1 produced by vascular smooth muscle cells predicts fibrosis in the gastrocnemius of patients with peripheral artery disease. J Transl Med. 2016;14:39 pubmed 出版商
  664. Li M, Li M, Yin T, Shi H, Wen Y, Zhang B, et al. Targeting of cancer‑associated fibroblasts enhances the efficacy of cancer chemotherapy by regulating the tumor microenvironment. Mol Med Rep. 2016;13:2476-84 pubmed 出版商
  665. Franco C, Jones M, Bernabeu M, Vion A, Barbacena P, Fan J, et al. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. elife. 2016;5:e07727 pubmed 出版商
  666. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  667. Kowalewska P, Nguyen U, Burrows L, Fox Robichaud A. Syndecan-1 (CD138) deficiency increases Staphylococcus aureus infection but has no effect on pathology in a mouse model of peritoneal dialysis. J Biomed Sci. 2016;23:20 pubmed 出版商
  668. Cheung K, Padmanaban V, Silvestri V, Schipper K, Cohen J, Fairchild A, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci U S A. 2016;113:E854-63 pubmed 出版商
  669. Deverman B, Pravdo P, Simpson B, Kumar S, Chan K, Banerjee A, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34:204-9 pubmed 出版商
  670. Soriano A, París Coderch L, Jubierre L, Martínez A, Zhou X, Piskareva O, et al. MicroRNA-497 impairs the growth of chemoresistant neuroblastoma cells by targeting cell cycle, survival and vascular permeability genes. Oncotarget. 2016;7:9271-87 pubmed 出版商
  671. Solomon I, O Reilly M, Ionescu L, Alphonse R, Rajabali S, Zhong S, et al. Functional Differences Between Placental Micro- and Macrovascular Endothelial Colony-Forming Cells. Stem Cells Transl Med. 2016;5:291-300 pubmed 出版商
  672. Norden P, Kim D, Barry D, CLEAVER O, Davis G. Cdc42 and k-Ras Control Endothelial Tubulogenesis through Apical Membrane and Cytoskeletal Polarization: Novel Stimulatory Roles for GTPase Effectors, the Small GTPases, Rac2 and Rap1b, and Inhibitory Influence of Arhgap31 and Rasa1. PLoS ONE. 2016;11:e0147758 pubmed 出版商
  673. Chandler R, Magnuson T. The SWI/SNF BAF-A complex is essential for neural crest development. Dev Biol. 2016;411:15-24 pubmed 出版商
  674. Crowley C, Klanrit P, Butler C, Varanou A, Platé M, Hynds R, et al. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials. 2016;83:283-93 pubmed 出版商
  675. Rusckowski M, Wang Y, Blankenberg F, Levashova Z, Backer M, Backer J. Targeted scVEGF/(177)Lu radiopharmaceutical inhibits growth of metastases and can be effectively combined with chemotherapy. EJNMMI Res. 2016;6:4 pubmed 出版商
  676. Nitta Y, Shimizu S, Shishido Hara Y, Suzuki K, Shiokawa Y, Nagane M. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo. Cancer Med. 2016;5:486-99 pubmed 出版商
  677. Zhao C, Zhang W, Zhao Y, Yang Y, Luo H, Ji G, et al. Endothelial Cords Promote Tumor Initial Growth prior to Vascular Function through a Paracrine Mechanism. Sci Rep. 2016;6:19404 pubmed 出版商
  678. Merk H, Zhang S, Lehr T, Müller C, Ulrich M, Bibb J, et al. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget. 2016;7:6088-104 pubmed 出版商
  679. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  680. Cano E, Carmona R, Ruiz Villalba A, Rojas A, Chau Y, Wagner K, et al. Extracardiac septum transversum/proepicardial endothelial cells pattern embryonic coronary arterio-venous connections. Proc Natl Acad Sci U S A. 2016;113:656-61 pubmed 出版商
  681. García Prat L, Martínez Vicente M, Perdiguero E, Ortet L, Rodríguez Ubreva J, Rebollo E, et al. Autophagy maintains stemness by preventing senescence. Nature. 2016;529:37-42 pubmed 出版商
  682. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  683. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  684. SINGLA D, Wang J. Fibroblast Growth Factor-9 Activates c-Kit Progenitor Cells and Enhances Angiogenesis in the Infarcted Diabetic Heart. Oxid Med Cell Longev. 2016;2016:5810908 pubmed 出版商
  685. Poczobutt J, Nguyen T, Hanson D, Li H, Sippel T, Weiser Evans M, et al. Deletion of 5-Lipoxygenase in the Tumor Microenvironment Promotes Lung Cancer Progression and Metastasis through Regulating T Cell Recruitment. J Immunol. 2016;196:891-901 pubmed 出版商
  686. de Almeida G, Yamamoto M, Morioka Y, Ogawa S, Matsuzaki T, Noda M. Critical roles for murine Reck in the regulation of vascular patterning and stabilization. Sci Rep. 2015;5:17860 pubmed 出版商
  687. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  688. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  689. Ogura Y, Hindi S, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun. 2015;6:10123 pubmed 出版商
  690. Ensan S, Li A, Besla R, Degousee N, Cosme J, Roufaiel M, et al. Self-renewing resident arterial macrophages arise from embryonic CX3CR1(+) precursors and circulating monocytes immediately after birth. Nat Immunol. 2016;17:159-68 pubmed 出版商
  691. Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L, et al. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes. Cell Res. 2016;26:119-30 pubmed 出版商
  692. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21(∗) in SCC progression. Nat Cell Biol. 2016;18:111-21 pubmed 出版商
  693. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  694. Hirota S, Clements T, Tang L, Morales J, Lee H, Oh S, et al. Neuropilin 1 balances β8 integrin-activated TGFβ signaling to control sprouting angiogenesis in the brain. Development. 2015;142:4363-73 pubmed 出版商
  695. Beaudet M, Yang Q, Cadau S, Blais M, Bellenfant S, Gros Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep. 2015;5:16763 pubmed 出版商
  696. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  697. Dumont N, Wang Y, von Maltzahn J, Pasut A, Bentzinger C, Brun C, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21:1455-63 pubmed 出版商
  698. Lau W, Pandey V, Kong X, Wang X, Wu Z, Zhu T, et al. Trefoil Factor-3 (TFF3) Stimulates De Novo Angiogenesis in Mammary Carcinoma both Directly and Indirectly via IL-8/CXCR2. PLoS ONE. 2015;10:e0141947 pubmed 出版商
  699. Rath S, Salinas M, Villegas A, Ramaswamy S. Differentiation and Distribution of Marrow Stem Cells in Flex-Flow Environments Demonstrate Support of the Valvular Phenotype. PLoS ONE. 2015;10:e0141802 pubmed 出版商
  700. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  701. Hoshino A, Costa Silva B, Shen T, Rodrigues G, Hashimoto A, Tesic Mark M, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329-35 pubmed 出版商
  702. Stein Merlob A, Kessinger C, Erdem S, Zelada H, Hilderbrand S, Lin C, et al. Blood Accessibility to Fibrin in Venous Thrombosis is Thrombus Age-Dependent and Predicts Fibrinolytic Efficacy: An In Vivo Fibrin Molecular Imaging Study. Theranostics. 2015;5:1317-27 pubmed 出版商
  703. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701 pubmed 出版商
  704. Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE. 2015;10:e0140831 pubmed 出版商
  705. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  706. Tsukui T, Ueha S, Shichino S, Inagaki Y, Matsushima K. Intratracheal cell transfer demonstrates the profibrotic potential of resident fibroblasts in pulmonary fibrosis. Am J Pathol. 2015;185:2939-48 pubmed 出版商
  707. Yu D, Makkar G, Strickland D, Blanpied T, Stumpo D, Blackshear P, et al. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc. 2015;4:e002255 pubmed 出版商
  708. Sun L, Sun C, Liang Z, Li H, Chen L, Luo H, et al. FSP1(+) fibroblast subpopulation is essential for the maintenance and regeneration of medullary thymic epithelial cells. Sci Rep. 2015;5:14871 pubmed 出版商
  709. Moen I, Gebre M, Alonso Camino V, Chen D, Epstein D, McDonald D. Anti-metastatic action of FAK inhibitor OXA-11 in combination with VEGFR-2 signaling blockade in pancreatic neuroendocrine tumors. Clin Exp Metastasis. 2015;32:799-817 pubmed 出版商
  710. Suarez Mier G, Buckwalter M. Glial Fibrillary Acidic Protein-Expressing Glia in the Mouse Lung. ASN Neuro. 2015;7: pubmed 出版商
  711. Ishida R, Kami D, Kusaba T, Kirita Y, Kishida T, Mazda O, et al. Kidney-specific Sonoporation-mediated Gene Transfer. Mol Ther. 2016;24:125-34 pubmed 出版商
  712. Dyer L, Lockyer P, Wu Y, Saha A, Cyr C, Moser M, et al. BMPER Promotes Epithelial-Mesenchymal Transition in the Developing Cardiac Cushions. PLoS ONE. 2015;10:e0139209 pubmed 出版商
  713. Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou A. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS ONE. 2015;10:e0139199 pubmed 出版商
  714. Liu L, Cheung T, Charville G, Rando T. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting. Nat Protoc. 2015;10:1612-24 pubmed 出版商
  715. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  716. Yeung H, Lo P, Ng D, Fong W. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model. Cell Mol Immunol. 2017;14:223-234 pubmed 出版商
  717. Mu X, Español Suñer R, Mederacke I, Affò S, Manco R, Sempoux C, et al. Hepatocellular carcinoma originates from hepatocytes and not from the progenitor/biliary compartment. J Clin Invest. 2015;125:3891-903 pubmed 出版商
  718. ZiÄ™tara N, Łyszkiewicz M, PuchaÅ‚ka J, Witzlau K, Reinhardt A, Förster R, et al. Multicongenic fate mapping quantification of dynamics of thymus colonization. J Exp Med. 2015;212:1589-601 pubmed 出版商
  719. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  720. Wittmann G, Mohácsik P, Balkhi M, Gereben B, Lechan R. Endotoxin-induced inflammation down-regulates L-type amino acid transporter 1 (LAT1) expression at the blood-brain barrier of male rats and mice. Fluids Barriers CNS. 2015;12:21 pubmed 出版商
  721. Tang D, Gao J, Wang S, Ye N, Chong Y, Huang Y, et al. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour Biol. 2016;37:1889-99 pubmed 出版商
  722. Davila J, Laws M, Kannan A, Li Q, Taylor R, Bagchi M, et al. Rac1 Regulates Endometrial Secretory Function to Control Placental Development. PLoS Genet. 2015;11:e1005458 pubmed 出版商
  723. Wang T, Cheng C, Yang W, Chen W, Chang P. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep. 2015;12:6435-44 pubmed 出版商
  724. Zhang R, Cao P, Yang Z, Wang Z, Wu J, Chen Y, et al. Heparan Sulfate Biosynthesis Enzyme, Ext1, Contributes to Outflow Tract Development of Mouse Heart via Modulation of FGF Signaling. PLoS ONE. 2015;10:e0136518 pubmed 出版商
  725. Sereni F, Dal Monte M, Filippi L, Bagnoli P. Role of host β1- and β2-adrenergic receptors in a murine model of B16 melanoma: functional involvement of β3-adrenergic receptors. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:1317-31 pubmed 出版商
  726. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  727. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  728. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  729. Church C, Brown M, Rodeheffer M. Conditional immortalization of primary adipocyte precursor cells. Adipocyte. 2015;4:203-11 pubmed 出版商
  730. Yin T, He S, Su C, Chen X, Zhang D, Wan Y, et al. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia. Mol Med Rep. 2015;12:5093-9 pubmed 出版商
  731. Hossain M, Qadri S, Xu N, Su Y, Cayabyab F, Heit B, et al. Endothelial LSP1 Modulates Extravascular Neutrophil Chemotaxis by Regulating Nonhematopoietic Vascular PECAM-1 Expression. J Immunol. 2015;195:2408-16 pubmed 出版商
  732. Fisher O, Deng H, Liu D, Zhang Y, Wei R, Deng Y, et al. Structure and vascular function of MEKK3-cerebral cavernous malformations 2 complex. Nat Commun. 2015;6:7937 pubmed 出版商
  733. Torow N, Yu K, Hassani K, Freitag J, Schulz O, Basic M, et al. Active suppression of intestinal CD4(+)TCRαβ(+) T-lymphocyte maturation during the postnatal period. Nat Commun. 2015;6:7725 pubmed 出版商
  734. ELDREDGE L, Treuting P, MANICONE A, Ziegler S, Parks W, McGuire J. CD11b(+) Mononuclear Cells Mitigate Hyperoxia-Induced Lung Injury in Neonatal Mice. Am J Respir Cell Mol Biol. 2016;54:273-83 pubmed 出版商
  735. Lu W, Bird T, Boulter L, Tsuchiya A, Cole A, Hay T, et al. Hepatic progenitor cells of biliary origin with liver repopulation capacity. Nat Cell Biol. 2015;17:971-983 pubmed 出版商
  736. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  737. Johnson V, Xiang M, Chen Z, Junge H. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice. PLoS ONE. 2015;10:e0132013 pubmed 出版商
  738. Raissadati A, Nykänen A, Tuuminen R, Syrjälä S, Krebs R, Arnaudova R, et al. Systemic overexpression of matricellular protein CCN1 exacerbates obliterative bronchiolitis in mouse tracheal allografts. Transpl Int. 2015;28:1416-25 pubmed 出版商
  739. Dokun A, Chen L, Okutsu M, Farber C, Hazarika S, Jones W, et al. ADAM12: a genetic modifier of preclinical peripheral arterial disease. Am J Physiol Heart Circ Physiol. 2015;309:H790-803 pubmed 出版商
  740. Pardo Saganta A, Tata P, Law B, Saez B, Chow R, Prabhu M, et al. Parent stem cells can serve as niches for their daughter cells. Nature. 2015;523:597-601 pubmed 出版商
  741. Yotsumoto F, You W, Cejudo Martin P, Kucharova K, Sakimura K, Stallcup W. NG2 proteoglycan-dependent recruitment of tumor macrophages promotes pericyte-endothelial cell interactions required for brain tumor vascularization. Oncoimmunology. 2015;4:e1001204 pubmed
  742. May U, Prince S, Vähätupa M, Laitinen A, Nieminen K, Uusitalo Järvinen H, et al. Resistance of R-Ras knockout mice to skin tumour induction. Sci Rep. 2015;5:11663 pubmed 出版商
  743. Mikucki M, Fisher D, Matsuzaki J, Skitzki J, Gaulin N, Muhitch J, et al. Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nat Commun. 2015;6:7458 pubmed 出版商
  744. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  745. Nobutani K, Shimono Y, Mizutani K, Ueda Y, Suzuki T, Kitayama M, et al. Downregulation of CXCR4 in Metastasized Breast Cancer Cells and Implication in Their Dormancy. PLoS ONE. 2015;10:e0130032 pubmed 出版商
  746. Aspalter I, Gordon E, Dubrac A, Ragab A, Narloch J, Vizan P, et al. Alk1 and Alk5 inhibition by Nrp1 controls vascular sprouting downstream of Notch. Nat Commun. 2015;6:7264 pubmed 出版商
  747. Aspelund A, Antila S, Proulx S, Karlsen T, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991-9 pubmed 出版商
  748. Cunha S, Bocci M, Lövrot J, Eleftheriou N, Roswall P, Cordero E, et al. Endothelial ALK1 Is a Therapeutic Target to Block Metastatic Dissemination of Breast Cancer. Cancer Res. 2015;75:2445-56 pubmed 出版商
  749. Tchang L, Pippenger B, Todorov A, Wolf F, Burger M, Jaquiery C, et al. Pooled thrombin-activated platelet-rich plasma: a substitute for fetal bovine serum in the engineering of osteogenic/vasculogenic grafts. J Tissue Eng Regen Med. 2017;11:1542-1552 pubmed 出版商
  750. de Melo S, Bittencourt S, Ferrazoli E, da Silva C, da Cunha F, da Silva F, et al. The Anti-Tumor Effects of Adipose Tissue Mesenchymal Stem Cell Transduced with HSV-Tk Gene on U-87-Driven Brain Tumor. PLoS ONE. 2015;10:e0128922 pubmed 出版商
  751. Liu Z, Brunskill E, Varnum Finney B, Zhang C, Zhang A, Jay P, et al. The intracellular domains of Notch1 and Notch2 are functionally equivalent during development and carcinogenesis. Development. 2015;142:2452-63 pubmed 出版商
  752. Selvaraj D, Gangadharan V, Michalski C, Kurejova M, Stösser S, Srivastava K, et al. A Functional Role for VEGFR1 Expressed in Peripheral Sensory Neurons in Cancer Pain. Cancer Cell. 2015;27:780-96 pubmed 出版商
  753. Yoshida Y, Shimizu I, Katsuumi G, Jiao S, Suda M, Hayashi Y, et al. p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol. 2015;85:183-98 pubmed 出版商
  754. Wei K, Díaz Trelles R, Liu Q, Diez Cuñado M, Scimia M, Cai W, et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287-94 pubmed 出版商
  755. Roche F, Sipilä K, Honjo S, Johansson S, Tugues S, Heino J, et al. Histidine-rich glycoprotein blocks collagen-binding integrins and adhesion of endothelial cells through low-affinity interaction with α2 integrin. Matrix Biol. 2015;48:89-99 pubmed 出版商
  756. Huang J, Woolf A, Kolatsi Joannou M, Baluk P, Sandford R, Peters D, et al. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol. 2016;27:69-77 pubmed 出版商
  757. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  758. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  759. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  760. Fagiani E, Bill R, Pisarsky L, Ivanek R, Rüegg C, Christofori G. An immature B cell population from peripheral blood serves as surrogate marker for monitoring tumor angiogenesis and anti-angiogenic therapy in mouse models. Angiogenesis. 2015;18:327-45 pubmed 出版商
  761. Yousef H, Conboy M, Morgenthaler A, Schlesinger C, Bugaj L, Paliwal P, et al. Systemic attenuation of the TGF-β pathway by a single drug simultaneously rejuvenates hippocampal neurogenesis and myogenesis in the same old mammal. Oncotarget. 2015;6:11959-78 pubmed
  762. Wang H, Hong L, Huang J, Jiang Q, Tao R, Tan C, et al. P2RX7 sensitizes Mac-1/ICAM-1-dependent leukocyte-endothelial adhesion and promotes neurovascular injury during septic encephalopathy. Cell Res. 2015;25:674-90 pubmed 出版商
  763. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  764. Yang X, Zhang Y, Hosaka K, Andersson P, Wang J, Tholander F, et al. VEGF-B promotes cancer metastasis through a VEGF-A-independent mechanism and serves as a marker of poor prognosis for cancer patients. Proc Natl Acad Sci U S A. 2015;112:E2900-9 pubmed 出版商
  765. Hamilton A, Basic V, Andersson S, Abrink M, Ringvall M. Loss of Serglycin Promotes Primary Tumor Growth and Vessel Functionality in the RIP1-Tag2 Mouse Model for Spontaneous Insulinoma Formation. PLoS ONE. 2015;10:e0126688 pubmed 出版商
  766. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  767. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  768. Tsuneki M, Hardee S, Michaud M, Morotti R, Lavik E, Madri J. A hydrogel-endothelial cell implant mimics infantile hemangioma: modulation by survivin and the Hippo pathway. Lab Invest. 2015;95:765-80 pubmed 出版商
  769. Morissette Martin P, Maux A, Laterreur V, Mayrand D, L Gagné V, Moulin V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater. 2015;22:39-49 pubmed 出版商
  770. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  771. Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, et al. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS ONE. 2015;10:e0124213 pubmed 出版商
  772. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  773. Guidotti L, Inverso D, Sironi L, Di Lucia P, Fioravanti J, Ganzer L, et al. Immunosurveillance of the liver by intravascular effector CD8(+) T cells. Cell. 2015;161:486-500 pubmed 出版商
  774. Henry L, Labied S, Fransolet M, Kirschvink N, Blacher S, Noel A, et al. Isoform 165 of vascular endothelial growth factor in collagen matrix improves ovine cryopreserved ovarian tissue revascularisation after xenotransplantation in mice. Reprod Biol Endocrinol. 2015;13:12 pubmed 出版商
  775. Zang G, Gustafsson K, Jamalpour M, Hong J, Genové G, Welsh M. Vascular dysfunction and increased metastasis of B16F10 melanomas in Shb deficient mice as compared with their wild type counterparts. BMC Cancer. 2015;15:234 pubmed 出版商
  776. Liu L, Yu H, Huang X, Tan H, Li S, Luo Y, et al. A novel engineered VEGF blocker with an excellent pharmacokinetic profile and robust anti-tumor activity. BMC Cancer. 2015;15:170 pubmed 出版商
  777. Crawford G, Boldison J, Copland D, Adamson P, Gale D, Brandt M, et al. The role of lipoprotein-associated phospholipase A2 in a murine model of experimental autoimmune uveoretinitis. PLoS ONE. 2015;10:e0122093 pubmed 出版商
  778. Marks Bluth J, Khanna A, Chandrakanthan V, Thoms J, Bee T, Eich C, et al. SMAD1 and SMAD5 Expression Is Coordinately Regulated by FLI1 and GATA2 during Endothelial Development. Mol Cell Biol. 2015;35:2165-72 pubmed 出版商
  779. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  780. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  781. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  782. Zhang Z, Zhang T, Zhou Y, Wei X, Zhu J, Zhang J, et al. Activated phosphatidylinositol 3-kinase/Akt inhibits the transition of endothelial progenitor cells to mesenchymal cells by regulating the forkhead box subgroup O-3a signaling. Cell Physiol Biochem. 2015;35:1643-53 pubmed 出版商
  783. Sugimoto M, Kondo M, Koga Y, Shiura H, Ikeda R, Hirose M, et al. A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition. Stem Cell Reports. 2015;4:744-57 pubmed 出版商
  784. Salvucci O, Ohnuki H, Maric D, Hou X, Li X, Yoon S, et al. EphrinB2 controls vessel pruning through STAT1-JNK3 signalling. Nat Commun. 2015;6:6576 pubmed 出版商
  785. Dal Secco D, Wang J, Zeng Z, Kolaczkowska E, Wong C, Petri B, et al. A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. J Exp Med. 2015;212:447-56 pubmed 出版商
  786. Chen Z, Shojaee S, Buchner M, Geng H, Lee J, Klemm L, et al. Signalling thresholds and negative B-cell selection in acute lymphoblastic leukaemia. Nature. 2015;521:357-61 pubmed 出版商
  787. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  788. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  789. Watanabe S, Chan K, Wang J, Rivino L, Lok S, Vasudevan S. Dengue Virus Infection with Highly Neutralizing Levels of Cross-Reactive Antibodies Causes Acute Lethal Small Intestinal Pathology without a High Level of Viremia in Mice. J Virol. 2015;89:5847-61 pubmed 出版商
  790. Elahy M, Jackaman C, Mamo J, Lam V, Dhaliwal S, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2 pubmed 出版商
  791. Luo J, Liang M, Mitch W, Danesh F, Yu M, Cheng J. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice. Endocrinology. 2015;156:2200-10 pubmed 出版商
  792. You L, Yan K, Zou J, Zhao H, Bertos N, Park M, et al. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem. 2015;290:11349-64 pubmed 出版商
  793. Woods S, Waite A, O Dea K, Halford P, Takata M, Wilson M. Kinetic profiling of in vivo lung cellular inflammatory responses to mechanical ventilation. Am J Physiol Lung Cell Mol Physiol. 2015;308:L912-21 pubmed 出版商
  794. Le A, Huang Y, Pingle S, Kesari S, Wang H, Yong R, et al. Plexin-B2 promotes invasive growth of malignant glioma. Oncotarget. 2015;6:7293-304 pubmed
  795. Moding E, Castle K, Perez B, Oh P, Min H, Norris H, et al. Tumor cells, but not endothelial cells, mediate eradication of primary sarcomas by stereotactic body radiation therapy. Sci Transl Med. 2015;7:278ra34 pubmed 出版商
  796. Sohet F, Lin C, Munji R, Lee S, Ruderisch N, Soung A, et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol. 2015;208:703-11 pubmed 出版商
  797. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  798. Martínez Torres A, Quiney C, Attout T, Boullet H, Herbi L, Vela L, et al. CD47 agonist peptides induce programmed cell death in refractory chronic lymphocytic leukemia B cells via PLCγ1 activation: evidence from mice and humans. PLoS Med. 2015;12:e1001796 pubmed 出版商
  799. Jeffery E, Church C, Holtrup B, Colman L, Rodeheffer M. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376-85 pubmed 出版商
  800. Liu Z, Brunskill E, Boyle S, Chen S, Turkoz M, Guo Y, et al. Second-generation Notch1 activity-trap mouse line (N1IP::CreHI) provides a more comprehensive map of cells experiencing Notch1 activity. Development. 2015;142:1193-202 pubmed 出版商
  801. McCoy E, Street S, Taylor Blake B, Yi J, Edwards M, Wightman M, et al. Deletion of ENTPD3 does not impair nucleotide hydrolysis in primary somatosensory neurons or spinal cord. F1000Res. 2014;3:163 pubmed 出版商
  802. Fernandes S, Salta S, Summavielle T. Methamphetamine promotes α-tubulin deacetylation in endothelial cells: the protective role of acetyl-l-carnitine. Toxicol Lett. 2015;234:131-8 pubmed 出版商
  803. Singhal N, Martin P. A role for Galgt1 in skeletal muscle regeneration. Skelet Muscle. 2015;5:3 pubmed 出版商
  804. Stack G, Jones E, Marsden M, Stacey M, Snelgrove R, Lacaze P, et al. CD200 receptor restriction of myeloid cell responses antagonizes antiviral immunity and facilitates cytomegalovirus persistence within mucosal tissue. PLoS Pathog. 2015;11:e1004641 pubmed 出版商
  805. Tran K, Jackson S, Olufs Z, Zaidan N, Leng N, Kendziorski C, et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun. 2015;6:6188 pubmed 出版商
  806. Maione F, Giraudo E. Tumor angiogenesis: methods to analyze tumor vasculature and vessel normalization in mouse models of cancer. Methods Mol Biol. 2015;1267:349-65 pubmed 出版商
  807. Schulz J, Zeltz C, Sørensen I, Barczyk M, Carracedo S, Hallinger R, et al. Reduced granulation tissue and wound strength in the absence of α11β1 integrin. J Invest Dermatol. 2015;135:1435-1444 pubmed 出版商
  808. Funakoshi S, Shimizu T, Numata O, Ato M, Melchers F, Ohnishi K. BILL-cadherin/cadherin-17 contributes to the survival of memory B cells. PLoS ONE. 2015;10:e0117566 pubmed 出版商
  809. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  810. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:6020 pubmed 出版商
  811. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  812. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortalization of mouse liver sinusoidal endothelial cells. Int J Mol Med. 2015;35:617-24 pubmed 出版商
  813. Hong H, Yan Y, Shi S, Graves S, Krasteva L, Nickles R, et al. PET of follicle-stimulating hormone receptor: broad applicability to cancer imaging. Mol Pharm. 2015;12:403-10 pubmed 出版商
  814. Besschetnova T, Ichimura T, Katebi N, St Croix B, Bonventre J, Olsen B. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biol. 2015;42:56-73 pubmed 出版商
  815. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  816. Kilic E, Reitmeir R, Kilic Ã, Caglayan A, Beker M, Kelestemur T, et al. HMG-CoA Reductase Inhibition Promotes Neurological Recovery, Peri-Lesional Tissue Remodeling, and Contralesional Pyramidal Tract Plasticity after Focal Cerebral Ischemia. Front Cell Neurosci. 2014;8:422 pubmed 出版商
  817. Chen W, Cao Z, Truong L, Sugaya S, Panjwani N. Fingerprinting of galectins in normal, P. aeruginosa-infected, and chemically burned mouse corneas. Invest Ophthalmol Vis Sci. 2015;56:515-25 pubmed 出版商
  818. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  819. Coutelle O, Schiffmann L, Liwschitz M, Brunold M, Goede V, Hallek M, et al. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer. 2015;112:495-503 pubmed 出版商
  820. Kim H, Huang L, Critser P, Yang Z, Chan R, Wang L, et al. Notch ligand Delta-like 1 promotes in vivo vasculogenesis in human cord blood-derived endothelial colony forming cells. Cytotherapy. 2015;17:579-92 pubmed 出版商
  821. Cuellar T, Barnes D, Nelson C, Tanguay J, Yu S, Wen X, et al. Systematic evaluation of antibody-mediated siRNA delivery using an industrial platform of THIOMAB-siRNA conjugates. Nucleic Acids Res. 2015;43:1189-203 pubmed 出版商
  822. Pérez de Puig I, Miró Mur F, Ferrer Ferrer M, Gelpi E, Pedragosa J, Justicia C, et al. Neutrophil recruitment to the brain in mouse and human ischemic stroke. Acta Neuropathol. 2015;129:239-57 pubmed 出版商
  823. Yousef H, Morgenthaler A, Schlesinger C, Bugaj L, Conboy I, Schaffer D. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis. Stem Cells. 2015;33:1577-88 pubmed 出版商
  824. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  825. Yuan L, Liu X. Platelets are associated with xenograft tumor growth and the clinical malignancy of ovarian cancer through an angiogenesis-dependent mechanism. Mol Med Rep. 2015;11:2449-58 pubmed 出版商
  826. Nacer A, Movila A, Sohet F, Girgis N, Gundra U, Loke P, et al. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog. 2014;10:e1004528 pubmed 出版商
  827. Ito A, Fujimura M, Niizuma K, Kanoke A, Sakata H, Morita Fujimura Y, et al. Enhanced post-ischemic angiogenesis in mice lacking RNF213; a susceptibility gene for moyamoya disease. Brain Res. 2015;1594:310-20 pubmed 出版商
  828. Ding X, Lucas T, Marcuzzi G, Pfister H, Eming S. Distinct functions of epidermal and myeloid-derived VEGF-A in skin tumorigenesis mediated by HPV8. Cancer Res. 2015;75:330-43 pubmed 出版商
  829. Baptista A, Roozendaal R, Reijmers R, Koning J, Unger W, Greuter M, et al. Lymph node stromal cells constrain immunity via MHC class II self-antigen presentation. elife. 2014;3: pubmed 出版商
  830. Li W, Cavelti Weder C, Zhang Y, Zhang Y, Clement K, Donovan S, et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat Biotechnol. 2014;32:1223-30 pubmed 出版商
  831. Plosa E, Young L, Gulleman P, Polosukhin V, Zaynagetdinov R, Benjamin J, et al. Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development. 2014;141:4751-62 pubmed 出版商
  832. Ciamporcero E, Miles K, Adelaiye R, Ramakrishnan S, Shen L, Ku S, et al. Combination strategy targeting VEGF and HGF/c-met in human renal cell carcinoma models. Mol Cancer Ther. 2015;14:101-10 pubmed 出版商
  833. Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc). 2014;79:797-804 pubmed 出版商
  834. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  835. Femel J, Huijbers E, Saupe F, Cedervall J, Zhang L, Roswall P, et al. Therapeutic vaccination against fibronectin ED-A attenuates progression of metastatic breast cancer. Oncotarget. 2014;5:12418-27 pubmed
  836. Santoro S, Kim S, Motz G, Alatzoglou D, Li C, Irving M, et al. T cells bearing a chimeric antigen receptor against prostate-specific membrane antigen mediate vascular disruption and result in tumor regression. Cancer Immunol Res. 2015;3:68-84 pubmed 出版商
  837. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  838. Redig J, Fouad G, Babcock D, Reshey B, Feingold E, Reeves R, et al. Allelic Interaction between CRELD1 and VEGFA in the Pathogenesis of Cardiac Atrioventricular Septal Defects. AIMS Genet. 2014;1:1-19 pubmed
  839. Niu G, Ye T, Qin L, Bourbon P, Chang C, Zhao S, et al. Orphan nuclear receptor TR3/Nur77 improves wound healing by upregulating the expression of integrin β4. FASEB J. 2015;29:131-40 pubmed 出版商
  840. Chuang D, Cui J, Simonyi A, Engel V, Chen S, Fritsche K, et al. Dietary Sutherlandia and elderberry mitigate cerebral ischemia-induced neuronal damage and attenuate p47phox and phospho-ERK1/2 expression in microglial cells. ASN Neuro. 2014;6: pubmed 出版商
  841. Schuhmann M, Kraft P, Stoll G, Lorenz K, Meuth S, Wiendl H, et al. CD28 superagonist-mediated boost of regulatory T cells increases thrombo-inflammation and ischemic neurodegeneration during the acute phase of experimental stroke. J Cereb Blood Flow Metab. 2015;35:6-10 pubmed 出版商
  842. Liu G, Zhang W, Xiao Y, Lu P. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization. Curr Eye Res. 2015;40:891-901 pubmed 出版商
  843. He L, Tian X, Zhang H, Hu T, Huang X, Zhang L, et al. BAF200 is required for heart morphogenesis and coronary artery development. PLoS ONE. 2014;9:e109493 pubmed 出版商
  844. Tohyama O, Matsui J, Kodama K, Hata Sugi N, Kimura T, Okamoto K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J Thyroid Res. 2014;2014:638747 pubmed 出版商
  845. Aoto K, Trainor P. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet. 2015;24:698-713 pubmed 出版商
  846. Pang H, Braun G, Friman T, Aza Blanc P, Ruidiaz M, Sugahara K, et al. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat Commun. 2014;5:4904 pubmed 出版商
  847. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  848. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed 出版商
  849. Menhofer M, Bartel D, Liebl J, Kubisch R, Busse J, Wagner E, et al. In vitro and in vivo characterization of the actin polymerizing compound chondramide as an angiogenic inhibitor. Cardiovasc Res. 2014;104:303-14 pubmed 出版商
  850. Wang W, Kissig M, Rajakumari S, Huang L, Lim H, Won K, et al. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A. 2014;111:14466-71 pubmed 出版商
  851. Miller L, Lincoln J. Isolation of murine valve endothelial cells. J Vis Exp. 2014;: pubmed 出版商
  852. Niu F, Yao H, Zhang W, Sutliff R, Buch S. Tat 101-mediated enhancement of brain pericyte migration involves platelet-derived growth factor subunit B homodimer: implications for human immunodeficiency virus-associated neurocognitive disorders. J Neurosci. 2014;34:11812-25 pubmed 出版商
  853. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  854. Bajwa A, Rosin D, Chrościcki P, Lee S, Dondeti K, Ye H, et al. Sphingosine 1-phosphate receptor-1 enhances mitochondrial function and reduces cisplatin-induced tubule injury. J Am Soc Nephrol. 2015;26:908-25 pubmed 出版商
  855. Liakhovitskaia A, Rybtsov S, Smith T, Batsivari A, Rybtsova N, Rode C, et al. Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. Development. 2014;141:3319-23 pubmed 出版商
  856. Wallingford M, Giachelli C. Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm. Mech Dev. 2014;133:189-202 pubmed 出版商
  857. Senturk S, Yao Z, Camiolo M, Stiles B, Rathod T, Walsh A, et al. p53? is a transcriptionally inactive p53 isoform able to reprogram cells toward a metastatic-like state. Proc Natl Acad Sci U S A. 2014;111:E3287-96 pubmed 出版商
  858. Arita Y, Nakaoka Y, Matsunaga T, Kidoya H, Yamamizu K, Arima Y, et al. Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. Nat Commun. 2014;5:4552 pubmed 出版商
  859. Moding E, Lee C, Castle K, Oh P, Mao L, Zha S, et al. Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest. 2014;124:3325-38 pubmed 出版商
  860. Mésange P, Poindessous V, Sabbah M, Escargueil A, de Gramont A, Larsen A. Intrinsic bevacizumab resistance is associated with prolonged activation of autocrine VEGF signaling and hypoxia tolerance in colorectal cancer cells and can be overcome by nintedanib, a small molecule angiokinase inhibitor. Oncotarget. 2014;5:4709-21 pubmed
  861. Prakash A, Udager A, Saenz D, Gumucio D. Roles for Nkx2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol. 2014;307:G430-6 pubmed 出版商
  862. Wang C, Cai Y, Zhang Y, Xiong Z, Li G, Cui L. Local injection of deferoxamine improves neovascularization in ischemic diabetic random flap by increasing HIF-1? and VEGF expression. PLoS ONE. 2014;9:e100818 pubmed 出版商
  863. Sanchez Gurmaches J, Guertin D. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun. 2014;5:4099 pubmed 出版商
  864. Forgèt M, Voorhees J, Cole S, Dakhlallah D, Patterson I, Gross A, et al. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer. PLoS ONE. 2014;9:e98623 pubmed 出版商
  865. Pogoda K, Füller M, Pohl U, Kameritsch P. NO, via its target Cx37, modulates calcium signal propagation selectively at myoendothelial gap junctions. Cell Commun Signal. 2014;12:33 pubmed 出版商
  866. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  867. Gao X, Usas A, Proto J, Lu A, Cummins J, Proctor A, et al. Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects. FASEB J. 2014;28:3792-809 pubmed 出版商
  868. Wang Y, Zhao W, Zhang L, Zhao Y, Li F, Zhang Z, et al. Molecular and cellular basis of the regulation of lymphatic contractility and lymphatic absorption. Int J Biochem Cell Biol. 2014;53:134-40 pubmed 出版商
  869. Ben Zvi A, Lacoste B, Kur E, Andreone B, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507-11 pubmed 出版商
  870. Vincent S, Mayeuf Louchart A, Watanabe Y, Brzezinski J, Miyagawa Tomita S, Kelly R, et al. Prdm1 functions in the mesoderm of the second heart field, where it interacts genetically with Tbx1, during outflow tract morphogenesis in the mouse embryo. Hum Mol Genet. 2014;23:5087-101 pubmed 出版商
  871. Katuri V, Gerber S, Qiu X, McCarty G, Goldstein S, Hammers H, et al. WT1 regulates angiogenesis in Ewing Sarcoma. Oncotarget. 2014;5:2436-49 pubmed
  872. Moreau J, Artap S, Shi H, Chapman G, Leone G, Sparrow D, et al. Cited2 is required in trophoblasts for correct placental capillary patterning. Dev Biol. 2014;392:62-79 pubmed 出版商
  873. Wu M, Lou J, Song B, Gong Y, Li Y, Yu C, et al. Hypoxia augments the calcium-activated chloride current carried by anoctamin-1 in cardiac vascular endothelial cells of neonatal mice. Br J Pharmacol. 2014;171:3680-92 pubmed 出版商
  874. Seki M, Masaki H, Arauchi T, Nakauchi H, Sugano S, Suzuki Y. A comparison of the rest complex binding patterns in embryonic stem cells and epiblast stem cells. PLoS ONE. 2014;9:e95374 pubmed 出版商
  875. Caswell D, Chuang C, Yang D, Chiou S, Cheemalavagu S, Kim Kiselak C, et al. Obligate progression precedes lung adenocarcinoma dissemination. Cancer Discov. 2014;4:781-9 pubmed 出版商
  876. Xu Y, Hyun Y, Lim K, Lee H, Cummings R, Gerber S, et al. Optogenetic control of chemokine receptor signal and T-cell migration. Proc Natl Acad Sci U S A. 2014;111:6371-6 pubmed 出版商
  877. Xu J, Nie X, Cai X, Cai C, Xu P. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol. 2014;391:17-31 pubmed 出版商
  878. Cho Y, Archer B, Ambati B. Dry eye predisposes to corneal neovascularization and lymphangiogenesis after corneal injury in a murine model. Cornea. 2014;33:621-7 pubmed 出版商
  879. Baluk P, Phillips K, Yao L, Adams A, Nitschké M, McDonald D. Neutrophil dependence of vascular remodeling after Mycoplasma infection of mouse airways. Am J Pathol. 2014;184:1877-89 pubmed 出版商
  880. Edwards J, Bruno J, Key P, Cheng Y. Absence of chloride intracellular channel 4 (CLIC4) predisposes to acute kidney injury but has minimal impact on recovery. BMC Nephrol. 2014;15:54 pubmed 出版商
  881. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  882. Savchenko A, Martinod K, Seidman M, Wong S, Borissoff J, Piazza G, et al. Neutrophil extracellular traps form predominantly during the organizing stage of human venous thromboembolism development. J Thromb Haemost. 2014;12:860-70 pubmed 出版商
  883. Eskilsson A, Tachikawa M, Hosoya K, Blomqvist A. Distribution of microsomal prostaglandin E synthase-1 in the mouse brain. J Comp Neurol. 2014;522:3229-44 pubmed 出版商
  884. Hayes B, Riehle K, Shimizu Albergine M, Bauer R, Hudkins K, Johansson F, et al. Activation of platelet-derived growth factor receptor alpha contributes to liver fibrosis. PLoS ONE. 2014;9:e92925 pubmed 出版商
  885. Liu X, McMurphy T, Xiao R, Slater A, Huang W, Cao L. Hypothalamic gene transfer of BDNF inhibits breast cancer progression and metastasis in middle age obese mice. Mol Ther. 2014;22:1275-1284 pubmed 出版商
  886. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres A. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56:255-75 pubmed 出版商
  887. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  888. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  889. Hale A, Tian H, Anih E, Recio F, Shatat M, Johnson T, et al. Endothelial Kruppel-like factor 4 regulates angiogenesis and the Notch signaling pathway. J Biol Chem. 2014;289:12016-28 pubmed 出版商
  890. Giacomini C, Ferrari G, Bignami F, Rama P. Alkali burn versus suture-induced corneal neovascularization in C57BL/6 mice: an overview of two common animal models of corneal neovascularization. Exp Eye Res. 2014;121:1-4 pubmed 出版商
  891. Ablonczy Z, Dahrouj M, Marneros A. Progressive dysfunction of the retinal pigment epithelium and retina due to increased VEGF-A levels. FASEB J. 2014;28:2369-79 pubmed 出版商
  892. Cosgrove B, Gilbert P, Porpiglia E, Mourkioti F, Lee S, Corbel S, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat Med. 2014;20:255-64 pubmed 出版商
  893. Haba R, Shintani N, Onaka Y, Kanoh T, Wang H, Takenaga R, et al. Central CRTH2, a second prostaglandin D2 receptor, mediates emotional impairment in the lipopolysaccharide and tumor-induced sickness behavior model. J Neurosci. 2014;34:2514-23 pubmed 出版商
  894. Sousa Victor P, Gutarra S, García Prat L, Rodriguez Ubreva J, Ortet L, Ruiz Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316-21 pubmed 出版商
  895. Hum S, Rymer C, Schaefer C, Bushnell D, Sims Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE. 2014;9:e88400 pubmed 出版商
  896. Anastasía A, Deinhardt K, Wang S, Martin L, Nichol D, Irmady K, et al. Trkb signaling in pericytes is required for cardiac microvessel stabilization. PLoS ONE. 2014;9:e87406 pubmed 出版商
  897. Chen Q, Lu G, Cai Y, Li Y, Xu R, Ke Y, et al. MiR-124-5p inhibits the growth of high-grade gliomas through posttranscriptional regulation of LAMB1. Neuro Oncol. 2014;16:637-51 pubmed 出版商
  898. Takeda K, Duan L, Takeda H, Fong G. Improved vascular survival and growth in the mouse model of hindlimb ischemia by a remote signaling mechanism. Am J Pathol. 2014;184:686-96 pubmed 出版商
  899. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  900. Berger M, Neth O, Ilmer M, Garnier A, Salinas Martín M, de Agustín Asencio J, et al. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol. 2014;60:985-94 pubmed 出版商
  901. Kohler E, Wary K, Li F, Chatterjee I, Urao N, Toth P, et al. Flk1+ and VE-cadherin+ endothelial cells derived from iPSCs recapitulates vascular development during differentiation and display similar angiogenic potential as ESC-derived cells. PLoS ONE. 2013;8:e85549 pubmed 出版商
  902. Costa R, Bergwerf I, Santermans E, De Vocht N, Praet J, Daans J, et al. Distinct in vitro properties of embryonic and extraembryonic fibroblast-like cells are reflected in their in vivo behavior following grafting in the adult mouse brain. Cell Transplant. 2015;24:223-33 pubmed 出版商
  903. Ribeiro V, Garcia M, Oliveira R, Gomes P, Colaço B, Fernandes M. Bisphosphonates induce the osteogenic gene expression in co-cultured human endothelial and mesenchymal stem cells. J Cell Mol Med. 2014;18:27-37 pubmed 出版商
  904. Yamane T, Washino A, Yamazaki H. Common developmental pathway for primitive erythrocytes and multipotent hematopoietic progenitors in early mouse development. Stem Cell Reports. 2013;1:590-603 pubmed 出版商
  905. Driskell R, Lichtenberger B, Hoste E, Kretzschmar K, Simons B, Charalambous M, et al. Distinct fibroblast lineages determine dermal architecture in skin development and repair. Nature. 2013;504:277-281 pubmed 出版商
  906. Ding H, Gao Y, Wang Y, Hu C, Sun Y, Zhang C. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 2014;23:990-1000 pubmed 出版商
  907. Shin E, Sorenson C, Sheibani N. PEDF expression regulates the proangiogenic and proinflammatory phenotype of the lung endothelium. Am J Physiol Lung Cell Mol Physiol. 2014;306:L620-34 pubmed 出版商
  908. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  909. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  910. Pascal L, Ai J, Masoodi K, Wang Y, Wang D, Eisermann K, et al. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice. PLoS ONE. 2013;8:e79542 pubmed 出版商
  911. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  912. Lu Q, Li M, Zou Y, Cao T. Delivery of basic fibroblast growth factors from heparinized decellularized adipose tissue stimulates potent de novo adipogenesis. J Control Release. 2014;174:43-50 pubmed 出版商
  913. Tan M, Li H, Sun Y. Endothelial deletion of Sag/Rbx2/Roc2 E3 ubiquitin ligase causes embryonic lethality and blocks tumor angiogenesis. Oncogene. 2014;33:5211-20 pubmed 出版商
  914. Fretz J, Nelson T, Velazquez H, Xi Y, Moeckel G, Horowitz M. Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int. 2014;85:1091-102 pubmed 出版商
  915. Alessio A, Beltrame M, Nascimento M, Vicente C, de Godoy J, Silva J, et al. Circulating progenitor and mature endothelial cells in deep vein thrombosis. Int J Med Sci. 2013;10:1746-54 pubmed 出版商
  916. Iwata A, Kawashima S, Kobayashi M, Okubo A, Kawashima H, Suto A, et al. Th2-type inflammation instructs inflammatory dendritic cells to induce airway hyperreactivity. Int Immunol. 2014;26:103-14 pubmed 出版商
  917. Winden D, Ferguson N, Bukey B, Geyer A, Wright A, Jergensen Z, et al. Conditional over-expression of RAGE by embryonic alveolar epithelium compromises the respiratory membrane and impairs endothelial cell differentiation. Respir Res. 2013;14:108 pubmed 出版商
  918. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed 出版商
  919. Douglas N, Arora R, Chen C, Sauer M, Papaioannou V. Investigating the role of tbx4 in the female germline in mice. Biol Reprod. 2013;89:148 pubmed 出版商
  920. Cagnet S, Faraldo M, Kreft M, Sonnenberg A, Raymond K, Glukhova M. Signaling events mediated by ?3?1 integrin are essential for mammary tumorigenesis. Oncogene. 2014;33:4286-95 pubmed 出版商
  921. Ghazvini M, Sonneveld P, Kremer A, Franken P, Sacchetti A, Atlasi Y, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis. PLoS ONE. 2013;8:e73872 pubmed 出版商
  922. Zeng L, Wang G, Ummarino D, Margariti A, Xu Q, Xiao Q, et al. Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor ?2. J Biol Chem. 2013;288:31853-66 pubmed 出版商
  923. Li S, Haigh K, Haigh J, Vasudevan A. Endothelial VEGF sculpts cortical cytoarchitecture. J Neurosci. 2013;33:14809-15 pubmed 出版商
  924. Zhang H, Nieves J, Fraser S, Isern J, Douvaras P, Papatsenko D, et al. Expression of podocalyxin separates the hematopoietic and vascular potentials of mouse embryonic stem cell-derived mesoderm. Stem Cells. 2014;32:191-203 pubmed 出版商
  925. Gray B, McGuire M, Brown K. A liposomal drug platform overrides peptide ligand targeting to a cancer biomarker, irrespective of ligand affinity or density. PLoS ONE. 2013;8:e72938 pubmed 出版商
  926. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  927. Subramanian V, Moorleghen J, Balakrishnan A, Howatt D, Chishti A, Uchida H. Calpain-2 compensation promotes angiotensin II-induced ascending and abdominal aortic aneurysms in calpain-1 deficient mice. PLoS ONE. 2013;8:e72214 pubmed 出版商
  928. Harrell J, Pfefferle A, Zalles N, Prat A, Fan C, Khramtsov A, et al. Endothelial-like properties of claudin-low breast cancer cells promote tumor vascular permeability and metastasis. Clin Exp Metastasis. 2014;31:33-45 pubmed 出版商
  929. Rakian A, Yang W, Gluhak Heinrich J, Cui Y, Harris M, Villarreal D, et al. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. Int J Oral Sci. 2013;5:75-84 pubmed 出版商
  930. Cedervall J, Zhang Y, Ringvall M, Thulin A, Moustakas A, Jahnen Dechent W, et al. HRG regulates tumor progression, epithelial to mesenchymal transition and metastasis via platelet-induced signaling in the pre-tumorigenic microenvironment. Angiogenesis. 2013;16:889-902 pubmed 出版商
  931. Ghebeh H, Sleiman G, Manogaran P, Al Mazrou A, Barhoush E, Al Mohanna F, et al. Profiling of normal and malignant breast tissue show CD44high/CD24low phenotype as a predominant stem/progenitor marker when used in combination with Ep-CAM/CD49f markers. BMC Cancer. 2013;13:289 pubmed 出版商
  932. Ding H, Gao Y, Hu C, Wang Y, Wang C, Yin J, et al. HIF-1? transgenic bone marrow cells can promote tissue repair in cases of corticosteroid-induced osteonecrosis of the femoral head in rabbits. PLoS ONE. 2013;8:e63628 pubmed 出版商
  933. Navone S, Marfia G, Nava S, Invernici G, Cristini S, Balbi S, et al. Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vasc Cell. 2013;5:10 pubmed 出版商
  934. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  935. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  936. Li S, Li B, Jiang H, Wang Y, Qu M, Duan H, et al. Macrophage depletion impairs corneal wound healing after autologous transplantation in mice. PLoS ONE. 2013;8:e61799 pubmed 出版商
  937. Campbell L, Trendell J, Spears N. Identification of cells migrating from the thecal layer of ovarian follicles. Cell Tissue Res. 2013;353:189-94 pubmed 出版商
  938. He L, Marneros A. Macrophages are essential for the early wound healing response and the formation of a fibrovascular scar. Am J Pathol. 2013;182:2407-17 pubmed 出版商
  939. Rhee S, Guerrero Zayas M, Wallingford M, Ortíz Pineda P, Mager J, Tremblay K. Visceral endoderm expression of Yin-Yang1 (YY1) is required for VEGFA maintenance and yolk sac development. PLoS ONE. 2013;8:e58828 pubmed 出版商
  940. Martín Saavedra F, Wilson C, Voellmy R, Vilaboa N, Franceschi R. Spatiotemporal control of vascular endothelial growth factor expression using a heat-shock-activated, rapamycin-dependent gene switch. Hum Gene Ther Methods. 2013;24:160-70 pubmed 出版商
  941. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  942. Singh N, Tiem M, Watkins R, Cho Y, Wang Y, Olsen T, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121:4242-9 pubmed 出版商
  943. Schell C, Baumhakl L, Salou S, Conzelmann A, Meyer C, Helmstädter M, et al. N-wasp is required for stabilization of podocyte foot processes. J Am Soc Nephrol. 2013;24:713-21 pubmed 出版商
  944. DeFalco T, Saraswathula A, Briot A, Iruela Arispe M, Capel B. Testosterone levels influence mouse fetal Leydig cell progenitors through notch signaling. Biol Reprod. 2013;88:91 pubmed 出版商
  945. Davis R, Curtis C, Griffin C. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 2013;140:1272-81 pubmed 出版商
  946. Roubelakis M, Tsaknakis G, Pappa K, Anagnou N, Watt S. Spindle shaped human mesenchymal stem/stromal cells from amniotic fluid promote neovascularization. PLoS ONE. 2013;8:e54747 pubmed 出版商
  947. Berdnikovs S, Abdala Valencia H, Cook Mills J. Endothelial cell PTP1B regulates leukocyte recruitment during allergic inflammation. Am J Physiol Lung Cell Mol Physiol. 2013;304:L240-9 pubmed 出版商
  948. Sánchez Alvarez R, Martinez Outschoorn U, Lamb R, Hulit J, Howell A, Gandara R, et al. Mitochondrial dysfunction in breast cancer cells prevents tumor growth: understanding chemoprevention with metformin. Cell Cycle. 2013;12:172-82 pubmed 出版商
  949. Shah G, Price T, Banks W, Morofuji Y, Kovac A, Ercal N, et al. Pharmacological inhibition of mitochondrial carbonic anhydrases protects mouse cerebral pericytes from high glucose-induced oxidative stress and apoptosis. J Pharmacol Exp Ther. 2013;344:637-45 pubmed 出版商
  950. Qian H, Badaloni A, Chiara F, Stjernberg J, Polisetti N, Nihlberg K, et al. Molecular characterization of prospectively isolated multipotent mesenchymal progenitors provides new insight into the cellular identity of mesenchymal stem cells in mouse bone marrow. Mol Cell Biol. 2013;33:661-77 pubmed 出版商
  951. Munger S, Kanady J, Simon A. Absence of venous valves in mice lacking Connexin37. Dev Biol. 2013;373:338-48 pubmed 出版商
  952. Chandler R, Brennan J, Schisler J, Serber D, Patterson C, Magnuson T. ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol. 2013;33:265-80 pubmed 出版商
  953. Juin A, Planus E, Guillemot F, Horáková P, Albiges Rizo C, Genot E, et al. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell. 2013;105:46-57 pubmed 出版商
  954. Grutzmacher C, Park S, Zhao Y, Morrison M, Sheibani N, Sorenson C. Aberrant production of extracellular matrix proteins and dysfunction in kidney endothelial cells with a short duration of diabetes. Am J Physiol Renal Physiol. 2013;304:F19-30 pubmed 出版商
  955. PELUSO C, Jang W, DRAGER U, Schwob J. Differential expression of components of the retinoic acid signaling pathway in the adult mouse olfactory epithelium. J Comp Neurol. 2012;520:3707-26 pubmed 出版商
  956. Curtis C, Griffin C. The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling. Mol Cell Biol. 2012;32:1312-20 pubmed 出版商
  957. Nakao S, Zandi S, Faez S, Kohno R, Hafezi Moghadam A. Discontinuous LYVE-1 expression in corneal limbal lymphatics: dual function as microvalves and immunological hot spots. FASEB J. 2012;26:808-17 pubmed 出版商
  958. Tortelli F, Tasso R, Loiacono F, Cancedda R. The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials. 2010;31:242-9 pubmed 出版商
  959. Benton R, Maddie M, Minnillo D, Hagg T, Whittemore S. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol. 2008;507:1031-52 pubmed
  960. Baker K, Daniels S, Lennington J, Lardaro T, Czap A, Notti R, et al. Neuroblast protuberances in the subventricular zone of the regenerative MRL/MpJ mouse. J Comp Neurol. 2006;498:747-61 pubmed
  961. DeLisser H, Christofidou Solomidou M, Strieter R, Burdick M, Robinson C, Wexler R, et al. Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol. 1997;151:671-7 pubmed
  962. Rosenblum W, Nelson G, Wormley B, Werner P, Wang J, Shih C. Role of platelet-endothelial cell adhesion molecule (PECAM) in platelet adhesion/aggregation over injured but not denuded endothelium in vivo and ex vivo. Stroke. 1996;27:709-11 pubmed