这是一篇来自已证抗体库的有关小鼠 Pvalb的综述,是根据73篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Pvalb 抗体。
Pvalb 同义词: PV; Parv; Pva

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4s2a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4s2a). elife (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, 32895)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s5b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s5b). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上 (图 7e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:2500; 图 s21b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, b11427)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 s21b). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). J Neurosci (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab32895)被用于被用于免疫印迹在小鼠样本上 (图 5a). Physiol Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4b
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4b). Transl Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3Ac
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3Ac). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 5a
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1B-1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫细胞化学在小鼠样本上 (图 s1B-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, Ab11427)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, ab11427)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 6). J Neuroimmune Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Pvalb抗体(Abcam, AB11427)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Am J Pathol (2016) ncbi
SWant
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Cell Rep (2021) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1a
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1a). Front Cell Neurosci (2021) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 猕猴; 1:2000; 图 11
SWant Pvalb抗体(Swiss Antibodies, 235)被用于被用于免疫组化在猕猴样本上浓度为1:2000 (图 11). PLoS Biol (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Nat Commun (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2c
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2c). Eneuro (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 3c
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 3c). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000; 图 2e
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 2e). Brain Struct Funct (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1a
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1a). elife (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4b
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4b). elife (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:7000; 图 1s1a
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:7000 (图 1s1a). elife (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 5a, 8a, 11a
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 5a, 8a, 11a). J Comp Neurol (2020) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 1c1
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 1c1). J Neurosci (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:1000; 图 1b
SWant Pvalb抗体(SWANT, 235)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). J Comp Neurol (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3a
SWant Pvalb抗体(SWant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4n
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4n). J Comp Neurol (2019) ncbi
小鼠 单克隆(McAB235)
  • 免疫细胞化学; 人类; 1:1000; 图 s4c
SWant Pvalb抗体(Swant, PV-235)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4c). Nat Neurosci (2018) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼; 1:250; 表 2
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:250 (表 2). Dev Biol (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000; 图 2e
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 2e). J Comp Neurol (2017) ncbi
小鼠 单克隆(McAB235)
SWant Pvalb抗体(SWANT, 235)被用于. J Comp Neurol (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:5000; 图 1
SWant Pvalb抗体(swant, 235)被用于被用于免疫组化在人类样本上浓度为1:5000 (图 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:2000; 表 1
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). Neuroscience (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:100; 图 2
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neuroscience (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:2500; 图 3
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在人类样本上浓度为1:2500 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
  • 免疫组化; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000 和 被用于免疫组化在大鼠样本上浓度为1:5000. Cereb Cortex (2016) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:20000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:20000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 人类; 1:1,000
SWant Pvalb抗体(SWANT, 235)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:2000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:2000. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:100
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 家羊; 1:1,000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在家羊样本上浓度为1:1,000. Ann Neurol (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; zebra finch; 1:1000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在zebra finch样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 人类; 1:5,000
SWant Pvalb抗体(SWANT, 235)被用于被用于免疫组化在人类样本上浓度为1:5,000. J Cereb Blood Flow Metab (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上. J Clin Invest (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Brain Struct Funct (2013) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 大鼠; 1:10000 or 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10000 or 1:5000. J Comp Neurol (2012) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:4000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:4000. J Comp Neurol (2012) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:4000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 人类; 1:4000
SWant Pvalb抗体(SWant, 235)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 小鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在小鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上. J Comp Neurol (2010) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 小鼠; 1:500
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 猕猴; 1:5,000
SWant Pvalb抗体(SWANT, 235)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:5,000. J Comp Neurol (2009) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化在大鼠样本上浓度为1:5000. J Comp Neurol (2008) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 斑马鱼; 1:2,500-1:5,000
SWant Pvalb抗体(SWant, 235)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:2,500-1:5,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2007) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-冰冻切片; 猕猴; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:5000. J Comp Neurol (2006) ncbi
小鼠 单克隆(McAB235)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
SWant Pvalb抗体(Swant, 235)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
文章列表
  1. Zhang M, Wang J, Zhang K, Lu G, Liu Y, Ren K, et al. Ten-eleven translocation 1 mediated-DNA hydroxymethylation is required for myelination and remyelination in the mouse brain. Nat Commun. 2021;12:5091 pubmed 出版商
  2. Magno L, Asgarian Z, Pendolino V, Velona T, Mackintosh A, Lee F, et al. Transient developmental imbalance of cortical interneuron subtypes presages long-term changes in behavior. Cell Rep. 2021;35:109249 pubmed 出版商
  3. Panthi S, Leitch B. Chemogenetic Activation of Feed-Forward Inhibitory Parvalbumin-Expressing Interneurons in the Cortico-Thalamocortical Network During Absence Seizures. Front Cell Neurosci. 2021;15:688905 pubmed 出版商
  4. Vaden R, González J, Tsai M, Niver A, Fusilier A, Griffith C, et al. Parvalbumin interneurons provide spillover to newborn and mature dentate granule cells. elife. 2020;9: pubmed 出版商
  5. TIMBIE C, García Cabezas M, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol. 2020;18:e3000639 pubmed 出版商
  6. Bicks L, Yamamuro K, Flanigan M, Kim J, Kato D, Lucas E, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat Commun. 2020;11:1003 pubmed 出版商
  7. Agoglia A, Zhu M, Ying R, Sidhu H, Natividad L, Wolfe S, et al. Corticotropin-Releasing Factor Receptor-1 Neurons in the Lateral Amygdala Display Selective Sensitivity to Acute and Chronic Ethanol Exposure. Eneuro. 2020;7: pubmed 出版商
  8. Crevier Sorbo G, Rymar V, Crevier Sorbo R, Sadikot A. Thalamostriatal degeneration contributes to dystonia and cholinergic interneuron dysfunction in a mouse model of Huntington's disease. Acta Neuropathol Commun. 2020;8:14 pubmed 出版商
  9. Katona L, Hartwich K, Tomioka R, Somogyi J, Roberts J, Wagner K, et al. Synaptic organisation and behaviour-dependent activity of mGluR8a-innervated GABAergic trilaminar cells projecting from the hippocampus to the subiculum. Brain Struct Funct. 2020;225:705-734 pubmed 出版商
  10. Szegedi V, Paizs M, Baka J, Barzo P, Molnár G, Tamas G, et al. Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex. elife. 2020;9: pubmed 出版商
  11. Rice H, Marcassa G, Chrysidou I, Horré K, Young Pearse T, Müller U, et al. Contribution of GABAergic interneurons to amyloid-β plaque pathology in an APP knock-in mouse model. Mol Neurodegener. 2020;15:3 pubmed 出版商
  12. He Y, Li W, Zheng Z, Zhao L, Li W, Wang Y, et al. Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death. Theranostics. 2020;10:133-150 pubmed 出版商
  13. Stedehouder J, Brizee D, Slotman J, Pascual Garcia M, Leyrer M, Bouwen B, et al. Local axonal morphology guides the topography of interneuron myelination in mouse and human neocortex. elife. 2019;8: pubmed 出版商
  14. Wong A, Borst J. Tonotopic and non-auditory organization of the mouse dorsal inferior colliculus revealed by two-photon imaging. elife. 2019;8: pubmed 出版商
  15. Carron S, Sun M, Shultz S, Rajan R. Inhibitory neuronal changes following a mixed diffuse-focal model of traumatic brain injury. J Comp Neurol. 2020;528:175-198 pubmed 出版商
  16. Inoue M, Takeuchi A, Manita S, Horigane S, Sakamoto M, Kawakami R, et al. Rational Engineering of XCaMPs, a Multicolor GECI Suite for In Vivo Imaging of Complex Brain Circuit Dynamics. Cell. 2019;: pubmed 出版商
  17. Ast T, Meisel J, Patra S, Wang H, Grange R, Kim S, et al. Hypoxia Rescues Frataxin Loss by Restoring Iron Sulfur Cluster Biogenesis. Cell. 2019;: pubmed 出版商
  18. Baho E, Chattopadhyaya B, Lavertu Jolin M, Mazziotti R, Awad P, Chehrazi P, et al. p75 Neurotrophin Receptor Activation Regulates the Timing of the Maturation of Cortical Parvalbumin Interneuron Connectivity and Promotes Juvenile-like Plasticity in Adult Visual Cortex. J Neurosci. 2019;39:4489-4510 pubmed 出版商
  19. Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol. 2019;: pubmed 出版商
  20. Boccalaro I, Cristiá Lara L, Schwerdel C, Fritschy J, Rubi L. Cell type-specific distribution of GABAA receptor subtypes in the mouse dorsal striatum. J Comp Neurol. 2019;527:2030-2046 pubmed 出版商
  21. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  22. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  23. Sousa A, Zhu Y, Raghanti M, Kitchen R, Onorati M, Tebbenkamp A, et al. Molecular and cellular reorganization of neural circuits in the human lineage. Science. 2017;358:1027-1032 pubmed 出版商
  24. Bayguinov P, Ma Y, Gao Y, Zhao X, Jackson M. Imaging Voltage in Genetically Defined Neuronal Subpopulations with a Cre Recombinase-Targeted Hybrid Voltage Sensor. J Neurosci. 2017;37:9305-9319 pubmed 出版商
  25. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  26. Eshima H, Tamura Y, Kakehi S, Kurebayashi N, Murayama T, Nakamura K, et al. Long-term, but not short-term high-fat diet induces fiber composition changes and impaired contractile force in mouse fast-twitch skeletal muscle. Physiol Rep. 2017;5: pubmed 出版商
  27. Kawata M, Morikawa S, Shiosaka S, Tamura H. Ablation of neuropsin-neuregulin 1 signaling imbalances ErbB4 inhibitory networks and disrupts hippocampal gamma oscillation. Transl Psychiatry. 2017;7:e1052 pubmed 出版商
  28. Soares D, Goldrick I, Lemon R, Kraskov A, Greensmith L, Kalmar B. Expression of Kv3.1b potassium channel is widespread in macaque motor cortex pyramidal cells: A histological comparison between rat and macaque. J Comp Neurol. 2017;525:2164-2174 pubmed 出版商
  29. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  30. Yu T, Qi Y, Zhu J, Xu J, Gong H, Luo Q, et al. Elevated-temperature-induced acceleration of PACT clearing process of mouse brain tissue. Sci Rep. 2017;7:38848 pubmed 出版商
  31. Wild J. Dorsal pallidal neurons directly link the nidopallium and midbrain in the zebra finch (Taeniopygia guttata). J Comp Neurol. 2017;525:1731-1742 pubmed 出版商
  32. Glausier J, Roberts R, Lewis D. Ultrastructural analysis of parvalbumin synapses in human dorsolateral prefrontal cortex. J Comp Neurol. 2017;525:2075-2089 pubmed 出版商
  33. Berryer M, Chattopadhyaya B, Xing P, Riebe I, Bosoi C, Sanon N, et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat Commun. 2016;7:13340 pubmed 出版商
  34. Adotevi N, Leitch B. Alterations in AMPA receptor subunit expression in cortical inhibitory interneurons in the epileptic stargazer mutant mouse. Neuroscience. 2016;339:124-138 pubmed 出版商
  35. Phillips J, Laude A, Lightowlers R, Morris C, Turnbull D, Lax N. Development of passive CLARITY and immunofluorescent labelling of multiple proteins in human cerebellum: understanding mechanisms of neurodegeneration in mitochondrial disease. Sci Rep. 2016;6:26013 pubmed 出版商
  36. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  37. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  38. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  39. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. J Neuroimmune Pharmacol. 2016;11:279-93 pubmed 出版商
  40. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  41. Erbs E, Faget L, Ceredig R, Matifas A, Vonesch J, Kieffer B, et al. Impact of chronic morphine on delta opioid receptor-expressing neurons in the mouse hippocampus. Neuroscience. 2016;313:46-56 pubmed 出版商
  42. Eggers S, Horn A, Roeber S, Härtig W, Nair G, Reich D, et al. Saccadic Palsy following Cardiac Surgery: Possible Role of Perineuronal Nets. PLoS ONE. 2015;10:e0132075 pubmed 出版商
  43. Shigematsu N, Ueta Y, Mohamed A, Hatada S, Fukuda T, Kubota Y, et al. Selective Thalamic Innervation of Rat Frontal Cortical Neurons. Cereb Cortex. 2016;26:2689-2704 pubmed 出版商
  44. Wang W, Cheng C, Tsaur M. Immunohistochemical localization of DPP10 in rat brain supports the existence of a Kv4/KChIP/DPPL ternary complex in neurons. J Comp Neurol. 2015;523:608-28 pubmed 出版商
  45. Sánchez Pérez A, Arnal Vicente I, Santos F, Pereira C, ElMlili N, Sanjuan J, et al. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol. 2015;523:565-88 pubmed 出版商
  46. Weltzien F, Percival K, Martin P, Grünert U. Analysis of bipolar and amacrine populations in marmoset retina. J Comp Neurol. 2015;523:313-34 pubmed 出版商
  47. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  48. TIMBIE C, Barbas H. Specialized pathways from the primate amygdala to posterior orbitofrontal cortex. J Neurosci. 2014;34:8106-18 pubmed 出版商
  49. Kay R, Brunjes P. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus. Front Cell Neurosci. 2014;8:111 pubmed 出版商
  50. Mishra A, Traut M, Becker L, Klopstock T, Stein V, Klein R. Genetic evidence for the adhesion protein IgSF9/Dasm1 to regulate inhibitory synapse development independent of its intracellular domain. J Neurosci. 2014;34:4187-99 pubmed 出版商
  51. Deboer E, Azevedo R, Vega T, Brodkin J, Akamatsu W, Okano H, et al. Prenatal deletion of the RNA-binding protein HuD disrupts postnatal cortical circuit maturation and behavior. J Neurosci. 2014;34:3674-86 pubmed 出版商
  52. McClendon E, Chen K, Gong X, Sharifnia E, Hagen M, Cai V, et al. Prenatal cerebral ischemia triggers dysmaturation of caudate projection neurons. Ann Neurol. 2014;75:508-24 pubmed 出版商
  53. Condro M, White S. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning. J Comp Neurol. 2014;522:169-85 pubmed 出版商
  54. Lowe M, Kim E, Faull R, Christie D, Waldvogel H. Dissociated expression of mitochondrial and cytosolic creatine kinases in the human brain: a new perspective on the role of creatine in brain energy metabolism. J Cereb Blood Flow Metab. 2013;33:1295-306 pubmed 出版商
  55. Cox D, Racca C. Differential dendritic targeting of AMPA receptor subunit mRNAs in adult rat hippocampal principal neurons and interneurons. J Comp Neurol. 2013;521:1954-2007 pubmed 出版商
  56. Mittag J, Lyons D, Sällström J, Vujovic M, Dudazy Gralla S, Warner A, et al. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest. 2013;123:509-16 pubmed 出版商
  57. Chapman R, Lall V, Maxeiner S, Willecke K, Deuchars J, King A. Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice. Brain Struct Funct. 2013;218:751-65 pubmed 出版商
  58. Olucha Bordonau F, Otero García M, Sánchez Pérez A, Nunez A, Ma S, Gundlach A. Distribution and targets of the relaxin-3 innervation of the septal area in the rat. J Comp Neurol. 2012;520:1903-39 pubmed 出版商
  59. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  60. Brunjes P, Kay R, Arrivillaga J. The mouse olfactory peduncle. J Comp Neurol. 2011;519:2870-86 pubmed 出版商
  61. Blazquez Llorca L, Garcia Marin V, DeFelipe J. GABAergic complex basket formations in the human neocortex. J Comp Neurol. 2010;518:4917-37 pubmed 出版商
  62. Garcia Marin V, Blazquez Llorca L, Rodriguez J, Gonzalez Soriano J, Defelipe J. Differential distribution of neurons in the gyral white matter of the human cerebral cortex. J Comp Neurol. 2010;518:4740-59 pubmed 出版商
  63. Suzuki N, Bekkers J. Inhibitory neurons in the anterior piriform cortex of the mouse: classification using molecular markers. J Comp Neurol. 2010;518:1670-87 pubmed 出版商
  64. Gavrilovici C, D Alfonso S, Poulter M. Diverse interneuron populations have highly specific interconnectivity in the rat piriform cortex. J Comp Neurol. 2010;518:1570-88 pubmed 出版商
  65. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  66. Muzzi P, Camera P, Di Cunto F, Vercelli A. Deletion of the citron kinase gene selectively affects the number and distribution of interneurons in barrelfield cortex. J Comp Neurol. 2009;513:249-64 pubmed 出版商
  67. Stillman A, Krsnik Z, Sun J, Rasin M, State M, Sestan N, et al. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513:21-37 pubmed 出版商
  68. Lavenex P, Lavenex P, Bennett J, Amaral D. Postmortem changes in the neuroanatomical characteristics of the primate brain: hippocampal formation. J Comp Neurol. 2009;512:27-51 pubmed 出版商
  69. Cox D, Racca C, LeBeau F. Beta-adrenergic receptors are differentially expressed in distinct interneuron subtypes in the rat hippocampus. J Comp Neurol. 2008;509:551-65 pubmed 出版商
  70. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  71. Parrish Aungst S, Shipley M, Erdelyi F, Szabo G, Puche A. Quantitative analysis of neuronal diversity in the mouse olfactory bulb. J Comp Neurol. 2007;501:825-36 pubmed
  72. Imura K, Rockland K. Long-range interneurons within the medial pulvinar nucleus of macaque monkeys. J Comp Neurol. 2006;498:649-66 pubmed
  73. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed