这是一篇来自已证抗体库的有关小鼠 Rbfox3的综述,是根据66篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Rbfox3 抗体。
Rbfox3 同义词: Fox-3; Hrnbp3; NeuN; Neuna60

艾博抗(上海)贸易有限公司
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b). Front Pharmacol (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 大鼠; 1:200; 图 2, 3, 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104224)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2, 3, 4). Bioact Mater (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). J Nanobiotechnology (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s3c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab1024224)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 5a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Nat Commun (2020) ncbi
小鼠 单克隆(1B7)
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Cambridge, UK, ab104224)被用于. FASEB J (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 10a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 04224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 10a). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s8p
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s8p). PLoS Biol (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). Stroke (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b). Autophagy (2019) ncbi
单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). J Comp Neurol (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6g). J Neurosci (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 7a). Brain Behav Immun (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1500; 图 4g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1500 (图 4g). Neurobiol Dis (2017) ncbi
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab134014)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 104,225)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Front Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 图 1
  • 免疫细胞化学; 大鼠; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上 (图 1). Mol Brain (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Prostaglandins Other Lipid Mediat (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:500 (表 2). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 小鼠; 1:800
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫印迹在小鼠样本上浓度为1:800. Neuropharmacology (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3). Eur J Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Nat Neurosci (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:250. Neurobiol Aging (2014) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:400; 图 2c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c). Sci Rep (2020) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1). elife (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(350D3)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1c). elife (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4a). Physiol Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:200; 图 S1a
Synaptic Systems Rbfox3抗体(SySY, 266-004)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1a). Nat Neurosci (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
Synaptic Systems Rbfox3抗体(Synaptic System, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). Front Cell Neurosci (2016) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7h
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, RPCA-FOX3)被用于被用于免疫组化在小鼠样本上 (图 7h). Cell (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
GeneTex
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 4b
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 4b). elife (2020) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 1
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cells Dev (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s1a
赛默飞世尔 Rbfox3抗体(Thermo Fisher Scientific, PA5-37407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). Neuron (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4G4O)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Nature (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 猕猴; 1:5000; 图 8f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(CST, 12943)被用于被用于免疫组化在猕猴样本上浓度为1:5000 (图 8f). J Comp Neurol (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 1:200; 图 s5g
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1f). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Brain Res (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a). Brain Behav Immun (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, D3S3I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). Front Microbiol (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell signaling, 12943)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 12943)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 24307)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling Technology, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2016) ncbi
Phosphosolutions
  • 免疫组化; 小鼠; 1:500; 图 4
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Cereb Cortex (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 2a
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Neurosci (2016) ncbi
Biosensis
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s3e
Biosensis Rbfox3抗体(Biosensis Pty, M-377-100)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Sci Rep (2016) ncbi
文章列表
  1. Lin C, Lecca D, Yang L, Luo W, Scerba M, Tweedie D, et al. 3,6'-dithiopomalidomide reduces neural loss, inflammation, behavioral deficits in brain injury and microglial activation. elife. 2020;9: pubmed 出版商
  2. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed 出版商
  3. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  4. Su J, Li Z, Yamashita A, Kusumoto Yoshida I, Isomichi T, Hao L, et al. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep. 2020;10:4958 pubmed 出版商
  5. Ma X, Agas A, Siddiqui Z, Kim K, Iglesias Montoro P, Kalluru J, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5:124-132 pubmed 出版商
  6. Holmkvist A, Agorelius J, Forni M, Nilsson U, Linsmeier C, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020;18:27 pubmed 出版商
  7. Cooper A, Butto T, Hammer N, Jagannath S, Fend Guella D, Akhtar J, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat Commun. 2020;11:480 pubmed 出版商
  8. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  9. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  10. Borges Merjane C, Kim O, Jonas P. Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron. 2020;105:992-1006.e6 pubmed 出版商
  11. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  12. Berdugo Vega G, Arias Gil G, López Fernández A, Artegiani B, Wasielewska J, Lee C, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun. 2020;11:135 pubmed 出版商
  13. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  14. Anstötz M, Maccaferri G. A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. Eneuro. 2020;7: pubmed 出版商
  15. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  16. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  17. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  18. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  19. Borra E, Luppino G, Gerbella M, Rozzi S, Rockland K. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol. 2020;528:453-467 pubmed 出版商
  20. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  21. Suh J, Romano D, Nitschke L, Herrick S, DiMarzio B, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159-1175.e17 pubmed 出版商
  22. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  23. Nguyen H, Lee J, Sanberg P, Napoli E, Borlongan C. Eye Opener in Stroke. Stroke. 2019;50:2197-2206 pubmed 出版商
  24. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  25. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  26. Phillips M, Robinson H, Pozzo Miller L. Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. elife. 2019;8: pubmed 出版商
  27. Dong J, Pan Y, Wu X, He L, Liu X, Feng D, et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv. 2019;5:eaav4416 pubmed 出版商
  28. Hultman K, Scarlett J, Baquero A, Cornea A, Zhang Y, Salinas C, et al. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J Comp Neurol. 2019;527:2069-2085 pubmed 出版商
  29. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  30. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  31. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  32. Wang Y, Lin Y, Wu Y, Yao Z, Tang J, Shen L, et al. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem. 2018;66:175-187 pubmed 出版商
  33. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  34. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  35. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, et al. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun. 2017;5:19 pubmed 出版商
  36. Ronca S, Smith J, Koma T, Miller M, Yun N, Dineley K, et al. Mouse Model of Neurological Complications Resulting from Encephalitic Alphavirus Infection. Front Microbiol. 2017;8:188 pubmed 出版商
  37. Inui K, Chen C, Pauli J, Kuroki C, Tashiro S, Kanmura Y, et al. Nasal TRPA1 mediates irritant-induced bradypnea in mice. Physiol Rep. 2016;4: pubmed 出版商
  38. Matagne V, Ehinger Y, Saidi L, Borges Correia A, Barkats M, Bartoli M, et al. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 2017;99:1-11 pubmed 出版商
  39. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  40. Ramírez Franco J, Munoz Cuevas F, Lujan R, Jurado S. Excitatory and Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense Core Vesicles. Front Cell Neurosci. 2016;10:202 pubmed 出版商
  41. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  42. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  43. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  44. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  45. Kolisnyk B, Al Onaizi M, Soreq L, Barbash S, Bekenstein U, Haberman N, et al. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex. 2017;27:3553-3567 pubmed 出版商
  46. de la Rosa Prieto C, Saiz Sanchez D, Ubeda Bañon I, Flores Cuadrado A, Martinez Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-? in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci. 2016;10:227 pubmed 出版商
  47. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  48. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  49. Kolisnyk B, Al Onaizi M, Xu J, Parfitt G, Ostapchenko V, Hanin G, et al. Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. J Neurosci. 2016;36:6287-96 pubmed 出版商
  50. Gebremedhin D, Zhang D, Carver K, Rau N, Rarick K, Roman R, et al. Expression of CYP 4A ?-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat. 2016;124:16-26 pubmed 出版商
  51. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  52. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  53. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  54. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  55. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  56. Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177-83 pubmed 出版商
  57. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  58. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  59. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  60. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  61. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  62. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  63. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  64. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  65. Taylor J, Minter M, Newman A, Zhang M, Adlard P, Crack P. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease. Neurobiol Aging. 2014;35:1012-23 pubmed 出版商
  66. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商