这是一篇来自已证抗体库的有关小鼠 Rbfox3的综述,是根据167篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Rbfox3 抗体。
Rbfox3 同义词: Fox-3; Hrnbp3; NeuN; Neuna60

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 图 4e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4e). Biomedicines (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4a). Antioxidants (Basel) (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 图 7b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (图 7b). Mol Neurodegener (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4d). Front Pharmacol (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2a). J Neuroinflammation (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 1B7)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 5a). Prog Neurobiol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Evid Based Complement Alternat Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 8n
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 8n). J Neuroendocrinol (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s9a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s9a). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 5j
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5j). EBioMedicine (2022) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5a). Brain Behav (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s2c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s2c). Sci Adv (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:3000; 图 7f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000 (图 7f). Nat Commun (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2d). Fluids Barriers CNS (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). J Neuroinflammation (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 s7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7a). Front Endocrinol (Lausanne) (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 6i
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR12763)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 6i). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s6a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s6a). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3b). Cell Death Discov (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 图 s2a
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s2a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c). CNS Neurosci Ther (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上 (图 2d). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). J Neuroinflammation (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4-1a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4-1a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1h
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1h). Development (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:1000; 图 4a, 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4a, 5a). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 s1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 s1b). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:3000; 图 3d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 3d). Mol Brain (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). Aging Cell (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 图 1d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上 (图 1d). Front Mol Biosci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Histochem Cell Biol (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:1000; 图 1g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2b). Sci Rep (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:1000; 图 6??s2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6??s2b). elife (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 s1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 s1b). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2a
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2a) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2a). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 2k
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 2k). J Neuroinflammation (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 2b). BMC Neurosci (2021) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 s5
  • 免疫组化; 人类; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s5) 和 被用于免疫组化在人类样本上浓度为1:500 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:3000; 图 5e, s4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 5e, s4). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Front Neurol (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). BMC Neurosci (2021) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 图 7e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上 (图 7e). Adv Sci (Weinh) (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上 (图 s4). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB177487)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 图 4a
  • 免疫组化-石蜡切片; 大鼠; 图 2e
  • 流式细胞仪; 大鼠; 图 4c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a), 被用于免疫组化-石蜡切片在大鼠样本上 (图 2e) 和 被用于流式细胞仪在大鼠样本上 (图 4c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab104225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1d). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Mol Ther Methods Clin Dev (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 猕猴; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab128886)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Theranostics (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b). Front Pharmacol (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 大鼠; 1:200; 图 2, 3, 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104224)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2, 3, 4). Bioact Mater (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 2f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2f). Front Mol Neurosci (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 s1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s1c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). J Nanobiotechnology (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 1:300; 图 s1d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 s1d). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s3c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 图 1a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上 (图 1a). Neural Regen Res (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 图 4, 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上 (图 4, 7). Peerj (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:1000; 图 2a, 5b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a, 5b). elife (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab1024224)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 5a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Nat Commun (2020) ncbi
小鼠 单克隆(1B7)
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Cambridge, UK, ab104224)被用于. FASEB J (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 10a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 04224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 10a). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s8p
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s8p). PLoS Biol (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3h). J Neuroinflammation (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). Stroke (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b). Autophagy (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; pigs ; 1:2000; 图 4f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在pigs 样本上浓度为1:2000 (图 4f). Nature (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2b). BMC Med Genomics (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR 12763)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3b). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6g). J Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 3m
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3m). Brain Struct Funct (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:5000; 图 5g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5g). Behav Brain Res (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; Zonotrichia leucophrys; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在Zonotrichia leucophrys样本上浓度为1:500 (图 2d). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR12763)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). FASEB J (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). J Histochem Cytochem (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7a). F1000Res (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Physiol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2d). Nature (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 7a). Brain Behav Immun (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:100; 图 s10a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s10a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d). Ann Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1500; 图 4g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1500 (图 4g). Neurobiol Dis (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:800; 图 8e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8e). Development (2016) ncbi
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab134014)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). F1000Res (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 3). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 小鼠; 1:2000; 图 s3c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s3c). Neuron (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 104,225)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Front Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 图 1
  • 免疫细胞化学; 大鼠; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上 (图 1). Mol Brain (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 大鼠; 图 5
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Prostaglandins Other Lipid Mediat (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:500 (表 2). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 小鼠; 1:800
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫印迹在小鼠样本上浓度为1:800. Neuropharmacology (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3). Eur J Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Nat Neurosci (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:250. Neurobiol Aging (2014) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4b
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2022) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 3j
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
  • 免疫组化; 小鼠; 1:1000; 图 s1c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 3j), 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1c). Sci Adv (2022) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Acta Neuropathol Commun (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2f
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2f). Eneuro (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 8b
Synaptic Systems Rbfox3抗体(Synaptic systems, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 8b). J Alzheimers Dis (2021) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 1c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1c). J Neurosci (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c). Sci Rep (2020) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2d
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2d). Cells (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1). elife (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(350D3)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1c). elife (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4a). Physiol Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:200; 图 S1a
Synaptic Systems Rbfox3抗体(SySY, 266-004)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1a). Nat Neurosci (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
Synaptic Systems Rbfox3抗体(Synaptic System, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). Front Cell Neurosci (2016) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7h
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, RPCA-FOX3)被用于被用于免疫组化在小鼠样本上 (图 7h). Cell (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(1B7)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a, 4b, 4c
赛默飞世尔 Rbfox3抗体(Invitrogen, MA5-33103)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a, 4b, 4c). Brain Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s1a
赛默飞世尔 Rbfox3抗体(Thermo Fisher Scientific, PA5-37407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). Neuron (2020) ncbi
GeneTex
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 4b
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 4b). elife (2020) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 1
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cells Dev (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:200; 图 s11a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307s)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s11a). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Mol Brain (2021) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 5a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 5a). Dis Model Mech (2022) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫印迹; 小鼠; 1:250; 图 3a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(CST, 12943)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3a). Gene Ther (2021) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Nature (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 猕猴; 1:5000; 图 8f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(CST, 12943)被用于被用于免疫组化在猕猴样本上浓度为1:5000 (图 8f). J Comp Neurol (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 1:200; 图 s5g
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1f). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Brain Res (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a). Brain Behav Immun (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, D3S3I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). Front Microbiol (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell signaling, 12943)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 24307)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 12943)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling Technology, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2016) ncbi
Phosphosolutions
  • 免疫组化; 小鼠; 1:500; 图 4
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Cereb Cortex (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 2a
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Neurosci (2016) ncbi
文章列表
  1. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  2. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  3. Antequera D, Carrero L, Cunha Alves V, Ferrer I, Hern xe1 ndez Gallego J, Municio C, et al. Differentially Aquaporin 5 Expression in Submandibular Glands and Cerebral Cortex in Alzheimer's Disease. Biomedicines. 2022;10: pubmed 出版商
  4. Ramos H, Bogdanov P, Huerta J, De xe0 s Just A, Hern xe1 ndez C, Sim xf3 R. Antioxidant Effects of DPP-4 Inhibitors in Early Stages of Experimental Diabetic Retinopathy. Antioxidants (Basel). 2022;11: pubmed 出版商
  5. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  6. Hannawi Y, Ewees M, Moore J, Zweier J. Characterizing CD38 Expression and Enzymatic Activity in the Brain of Spontaneously Hypertensive Stroke-Prone Rats. Front Pharmacol. 2022;13:881708 pubmed 出版商
  7. Ding R, Li H, Liu Y, Ou W, Zhang X, Chai H, et al. Activating cGAS-STING axis contributes to neuroinflammation in CVST mouse model and induces inflammasome activation and microglia pyroptosis. J Neuroinflammation. 2022;19:137 pubmed 出版商
  8. Liang B, Thapa R, Zhang G, Moffitt C, Zhang Y, Johnston A, et al. Aberrant neural activity in prefrontal pyramidal neurons lacking TDP-43 precedes neuron loss. Prog Neurobiol. 2022;215:102297 pubmed 出版商
  9. Zhu C, Wang M, Guo J, Su S, Yu G, Yang Y, et al. Angelica dahurica Extracts Attenuate CFA-Induced Inflammatory Pain via TRPV1 in Mice. Evid Based Complement Alternat Med. 2022;2022:4684830 pubmed 出版商
  10. Amaya J, Viho E, Sips H, Lalai R, Sahut Barnola I, Dumontet T, et al. Gene expression changes in the brain of a Cushing's syndrome mouse model. J Neuroendocrinol. 2022;34:e13125 pubmed 出版商
  11. Chen K, Hu Q, Xie Z, Yang G. Monocyte NLRP3-IL-1β Hyperactivation Mediates Neuronal and Synaptic Dysfunction in Perioperative Neurocognitive Disorder. Adv Sci (Weinh). 2022;9:e2104106 pubmed 出版商
  12. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  13. Ma N, Li G, Fu X. Protective role of activating transcription factor 3 against neuronal damage in rats with cerebral ischemia. Brain Behav. 2022;12:e2522 pubmed 出版商
  14. Georgiou L, Echeverr xed a A, Georgiou A, Kuhn B. Ca+ activity maps of astrocytes tagged by axoastrocytic AAV transfer. Sci Adv. 2022;8:eabe5371 pubmed 出版商
  15. Guo X, Kimura A, Namekata K, Harada C, Arai N, Takeda K, et al. ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  16. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  17. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  18. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  19. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  20. Zeng H, Chen H, Li M, Zhuang J, Peng Y, Zhou H, et al. Autophagy protein NRBF2 attenuates endoplasmic reticulum stress-associated neuroinflammation and oxidative stress via promoting autophagosome maturation by interacting with Rab7 after SAH. J Neuroinflammation. 2021;18:210 pubmed 出版商
  21. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  22. Luo R, Fan Y, Yang J, Ye M, Zhang D, Guo K, et al. A novel missense variant in ACAA1 contributes to early-onset Alzheimer's disease, impairs lysosomal function, and facilitates amyloid-β pathology and cognitive decline. Signal Transduct Target Ther. 2021;6:325 pubmed 出版商
  23. Banerjee S, Ghoshal S, Girardet C, Demars K, Yang C, Niehoff M, et al. Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. NPJ Aging Mech Dis. 2021;7:23 pubmed 出版商
  24. Xu X, Shen X, Wang J, Feng W, Wang M, Miao X, et al. YAP prevents premature senescence of astrocytes and cognitive decline of Alzheimer's disease through regulating CDK6 signaling. Aging Cell. 2021;20:e13465 pubmed 出版商
  25. Wehn A, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, et al. RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun. 2021;9:138 pubmed 出版商
  26. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  27. Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, et al. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther. 2021;27:1300-1312 pubmed 出版商
  28. Zhang H, Ben Zablah Y, Liu A, Lee D, Zhang H, Meng Y, et al. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice. Mol Brain. 2021;14:121 pubmed 出版商
  29. Teng Y, Liu Z, Chen X, Liu Y, Geng F, Le W, et al. Conditional deficiency of m6A methyltransferase Mettl14 in substantia nigra alters dopaminergic neuron function. J Cell Mol Med. 2021;25:8567-8572 pubmed 出版商
  30. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  31. O Neil S, Racz B, Brown W, Gao Y, Soderblom E, Yasuda R, et al. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. elife. 2021;10: pubmed 出版商
  32. Ichinose M, Suzuki N, Wang T, Kobayashi H, Vrbanac L, Ng J, et al. The BMP antagonist gremlin 1 contributes to the development of cortical excitatory neurons, motor balance and fear responses. Development. 2021;148: pubmed 出版商
  33. Liu L, Xu X, Qu Z, Zhao L, Zhang C, Li Z, et al. Determining 5HT7R's Involvement in Modifying the Antihyperalgesic Effects of Electroacupuncture on Rats With Recurrent Migraine. Front Neurosci. 2021;15:668616 pubmed 出版商
  34. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  35. Smith E, Farshim P, Flomen R, Jones S, McAteer S, Deverman B, et al. Use of high-content imaging to quantify transduction of AAV-PHP viruses in the brain following systemic delivery. Brain Commun. 2021;3:fcab105 pubmed 出版商
  36. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  37. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  38. Chang B, Guan H, Wang X, Chen Z, Zhu W, Wei X, et al. Cox4i2 Triggers an Increase in Reactive Oxygen Species, Leading to Ferroptosis and Apoptosis in HHV7 Infected Schwann Cells. Front Mol Biosci. 2021;8:660072 pubmed 出版商
  39. Kimura E, Kohda M, Maekawa F, Fujii Kuriyama Y, Tohyama C. Neurons expressing the aryl hydrocarbon receptor in the locus coeruleus and island of Calleja major are novel targets of dioxin in the mouse brain. Histochem Cell Biol. 2021;156:147-163 pubmed 出版商
  40. Mu W, Li S, Xu J, Guo X, Wu H, Chen Z, et al. Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nat Commun. 2021;12:2288 pubmed 出版商
  41. Gulbranson D, Ho K, Yu G, Yu X, Das M, Shao E, et al. Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. Eneuro. 2021;8: pubmed 出版商
  42. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  43. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  44. Fairley L, Sahara N, Aoki I, Ji B, Suhara T, Higuchi M, et al. Neuroprotective effect of mitochondrial translocator protein ligand in a mouse model of tauopathy. J Neuroinflammation. 2021;18:76 pubmed 出版商
  45. Yi M, Liu Y, Umpierre A, Chen T, Ying Y, Zheng J, et al. Optogenetic activation of spinal microglia triggers chronic pain in mice. PLoS Biol. 2021;19:e3001154 pubmed 出版商
  46. Karpinski B, Maynard T, Bryan C, Yitsege G, Horvath A, Lee N, et al. Selective disruption of trigeminal sensory neurogenesis and differentiation in a mouse model of 22q11.2 deletion syndrome. Dis Model Mech. 2022;15: pubmed 出版商
  47. Fang Y, Jiang Q, Li S, Zhu H, Xu R, Song N, et al. Opposing functions of β-arrestin 1 and 2 in Parkinson's disease via microglia inflammation and Nprl3. Cell Death Differ. 2021;28:1822-1836 pubmed 出版商
  48. Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun. 2021;9:37 pubmed 出版商
  49. Su W, Cui H, Wu D, Yu J, Ma L, Zhang X, et al. Suppression of TLR4-MyD88 signaling pathway attenuated chronic mechanical pain in a rat model of endometriosis. J Neuroinflammation. 2021;18:65 pubmed 出版商
  50. Guzmán Ruíz M, Herrera González A, Jiménez A, Candelas Juárez A, Quiroga Lozano C, Castillo Díaz C, et al. Protective effects of intracerebroventricular adiponectin against olfactory impairments in an amyloid β1-42 rat model. BMC Neurosci. 2021;22:14 pubmed 出版商
  51. Hinteregger B, Loeffler T, Flunkert S, Neddens J, Bayer T, Madl T, et al. Metabolic, Phenotypic, and Neuropathological Characterization of the Tg4-42 Mouse Model for Alzheimer's Disease. J Alzheimers Dis. 2021;80:1151-1168 pubmed 出版商
  52. Zhang T, Yu F, Xu H, Chen M, Chen X, Guo L, et al. Dysregulation of REV-ERBα impairs GABAergic function and promotes epileptic seizures in preclinical models. Nat Commun. 2021;12:1216 pubmed 出版商
  53. Torregrosa T, Lehman S, Hana S, Marsh G, Xu S, Koszka K, et al. Use of CRISPR/Cas9-mediated disruption of CNS cell type genes to profile transduction of AAV by neonatal intracerebroventricular delivery in mice. Gene Ther. 2021;28:456-468 pubmed 出版商
  54. Asahina M, Fujinawa R, Fujihira H, Masahara Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89-102 pubmed 出版商
  55. Zareba Paslawska J, Patra K, Kluzer L, Revesz T, Svenningsson P. Tau Isoform-Driven CBD Pathology Transmission in Oligodendrocytes in Humanized Tau Mice. Front Neurol. 2020;11:589471 pubmed 出版商
  56. Luo X, Zhao J, Wu W, Fu J, Li Z, Zhang M, et al. Post-status epilepticus treatment with the Fyn inhibitor, saracatinib, improves cognitive function in mice. BMC Neurosci. 2021;22:2 pubmed 出版商
  57. Zhang D, Liu C, Li H, Jiao J. Deficiency of STING Signaling in Embryonic Cerebral Cortex Leads to Neurogenic Abnormalities and Autistic-Like Behaviors. Adv Sci (Weinh). 2020;7:2002117 pubmed 出版商
  58. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  59. Smith S, Chen X, Brier L, Bumstead J, Rensing N, Ringel A, et al. Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nat Commun. 2020;11:6164 pubmed 出版商
  60. Fiedler D, Sasi M, Blum R, Klinke C, Andreatta M, Pape H, et al. Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling Controls Excitability and Long-Term Depression in Oval Nucleus of the BNST. J Neurosci. 2021;41:435-445 pubmed 出版商
  61. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  62. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  63. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  64. Voskobiynyk Y, Roth J, Cochran J, Rush T, Carullo N, Mesina J, et al. Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability. elife. 2020;9: pubmed 出版商
  65. Lin C, Lecca D, Yang L, Luo W, Scerba M, Tweedie D, et al. 3,6'-dithiopomalidomide reduces neural loss, inflammation, behavioral deficits in brain injury and microglial activation. elife. 2020;9: pubmed 出版商
  66. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed 出版商
  67. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  68. Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, et al. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. Mol Ther Methods Clin Dev. 2020;17:894-903 pubmed 出版商
  69. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  70. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  71. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  72. Su J, Li Z, Yamashita A, Kusumoto Yoshida I, Isomichi T, Hao L, et al. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep. 2020;10:4958 pubmed 出版商
  73. Ma X, Agas A, Siddiqui Z, Kim K, Iglesias Montoro P, Kalluru J, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5:124-132 pubmed 出版商
  74. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci. 2020;13:4 pubmed 出版商
  75. Liu X, Gao C, Yuan J, Xiang T, Gong Z, Luo H, et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun. 2020;8:16 pubmed 出版商
  76. Potratz M, Zaeck L, Christen M, Te Kamp V, Klein A, Nolden T, et al. Astrocyte Infection during Rabies Encephalitis Depends on the Virus Strain and Infection Route as Demonstrated by Novel Quantitative 3D Analysis of Cell Tropism. Cells. 2020;9: pubmed 出版商
  77. Holmkvist A, Agorelius J, Forni M, Nilsson U, Linsmeier C, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020;18:27 pubmed 出版商
  78. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  79. Cooper A, Butto T, Hammer N, Jagannath S, Fend Guella D, Akhtar J, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat Commun. 2020;11:480 pubmed 出版商
  80. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  81. Liu R, Ma J, Wang B, Tian T, Guo N, Liu S. No DCX-positive neurogenesis in the cerebral cortex of the adult primate. Neural Regen Res. 2020;15:1290-1299 pubmed 出版商
  82. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  83. Yu Y, Wu M, Zhang N, Yin H, Shu B, Duan W. A pilot study on searching for peri-nuclear NeuN-positive cells. Peerj. 2020;8:e8254 pubmed 出版商
  84. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  85. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  86. Borges Merjane C, Kim O, Jonas P. Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron. 2020;105:992-1006.e6 pubmed 出版商
  87. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  88. Berdugo Vega G, Arias Gil G, López Fernández A, Artegiani B, Wasielewska J, Lee C, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun. 2020;11:135 pubmed 出版商
  89. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  90. Anstötz M, Maccaferri G. A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. Eneuro. 2020;7: pubmed 出版商
  91. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  92. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  93. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  94. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  95. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  96. Borra E, Luppino G, Gerbella M, Rozzi S, Rockland K. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol. 2020;528:453-467 pubmed 出版商
  97. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  98. Suh J, Romano D, Nitschke L, Herrick S, DiMarzio B, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159-1175.e17 pubmed 出版商
  99. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  100. Nguyen H, Lee J, Sanberg P, Napoli E, Borlongan C. Eye Opener in Stroke. Stroke. 2019;50:2197-2206 pubmed 出版商
  101. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  102. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  103. Phillips M, Robinson H, Pozzo Miller L. Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. elife. 2019;8: pubmed 出版商
  104. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  105. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  106. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  107. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  108. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  109. Dong J, Pan Y, Wu X, He L, Liu X, Feng D, et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv. 2019;5:eaav4416 pubmed 出版商
  110. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  111. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  112. Yu Q, Liu Y, Zhu Y, Wang Y, Li Q, Yin D. Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. Brain Struct Funct. 2019;224:1035-1049 pubmed 出版商
  113. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  114. Shepard A, Scheffel J, Yu W. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol. 2019;527:999-1011 pubmed 出版商
  115. Larson T, Thatra N, Hou D, Hu R, Brenowitz E. Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol. 2019;527:767-779 pubmed 出版商
  116. Kanetake T, Sassa T, Nojiri K, Sawai M, Hattori S, Miyakawa T, et al. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide. FASEB J. 2019;33:928-941 pubmed 出版商
  117. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  118. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  119. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  120. Wang Y, Lin Y, Wu Y, Yao Z, Tang J, Shen L, et al. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem. 2018;66:175-187 pubmed 出版商
  121. McCarthy G, Bridges C, Blednov Y, Harris R. CNS cell-type localization and LPS response of TLR signaling pathways. F1000Res. 2017;6:1144 pubmed 出版商
  122. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  123. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  124. Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol. 2017;595:4973-4989 pubmed 出版商
  125. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  126. Becker L, Huang B, Bieri G, Ma R, Knowles D, Jafar Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367-371 pubmed 出版商
  127. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  128. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, et al. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun. 2017;5:19 pubmed 出版商
  129. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  130. Ronca S, Smith J, Koma T, Miller M, Yun N, Dineley K, et al. Mouse Model of Neurological Complications Resulting from Encephalitic Alphavirus Infection. Front Microbiol. 2017;8:188 pubmed 出版商
  131. Inui K, Chen C, Pauli J, Kuroki C, Tashiro S, Kanmura Y, et al. Nasal TRPA1 mediates irritant-induced bradypnea in mice. Physiol Rep. 2016;4: pubmed 出版商
  132. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  133. Matagne V, Ehinger Y, Saidi L, Borges Correia A, Barkats M, Bartoli M, et al. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 2017;99:1-11 pubmed 出版商
  134. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  135. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  136. Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269 pubmed
  137. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  138. Dekens D, Naudé P, Engelborghs S, Vermeiren Y, Van Dam D, Oude Voshaar R, et al. Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J Alzheimers Dis. 2017;55:763-776 pubmed
  139. Ramírez Franco J, Munoz Cuevas F, Lujan R, Jurado S. Excitatory and Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense Core Vesicles. Front Cell Neurosci. 2016;10:202 pubmed 出版商
  140. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  141. Redmond S, Mei F, Eshed Eisenbach Y, Osso L, Leshkowitz D, Shen Y, et al. Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron. 2016;91:824-836 pubmed 出版商
  142. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  143. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  144. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  145. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  146. Kolisnyk B, Al Onaizi M, Soreq L, Barbash S, Bekenstein U, Haberman N, et al. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex. 2017;27:3553-3567 pubmed 出版商
  147. de la Rosa Prieto C, Saiz Sanchez D, Ubeda Bañon I, Flores Cuadrado A, Martinez Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-? in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci. 2016;10:227 pubmed 出版商
  148. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  149. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  150. Kolisnyk B, Al Onaizi M, Xu J, Parfitt G, Ostapchenko V, Hanin G, et al. Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. J Neurosci. 2016;36:6287-96 pubmed 出版商
  151. Gebremedhin D, Zhang D, Carver K, Rau N, Rarick K, Roman R, et al. Expression of CYP 4A ?-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat. 2016;124:16-26 pubmed 出版商
  152. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  153. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  154. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  155. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  156. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  157. Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177-83 pubmed 出版商
  158. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  159. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  160. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  161. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  162. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  163. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  164. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  165. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  166. Taylor J, Minter M, Newman A, Zhang M, Adlard P, Crack P. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease. Neurobiol Aging. 2014;35:1012-23 pubmed 出版商
  167. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商