这是一篇来自已证抗体库的有关小鼠 Rbfox3的综述,是根据118篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Rbfox3 抗体。
Rbfox3 同义词: Fox-3; Hrnbp3; NeuN; Neuna60

艾博抗(上海)贸易有限公司
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上 (图 s4). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB177487)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Cell (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Eneuro (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 图 4a
  • 免疫组化-石蜡切片; 大鼠; 图 2e
  • 流式细胞仪; 大鼠; 图 4c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a), 被用于免疫组化-石蜡切片在大鼠样本上 (图 2e) 和 被用于流式细胞仪在大鼠样本上 (图 4c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 s3-1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 s3-1c). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). PLoS Biol (2020) ncbi
单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3b). elife (2020) ncbi
单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab104225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1d). elife (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5a). Mol Ther Methods Clin Dev (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 猕猴; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab128886)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b). Theranostics (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b). Front Pharmacol (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 大鼠; 1:200; 图 2, 3, 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104224)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 2, 3, 4). Bioact Mater (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 2f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2f). Front Mol Neurosci (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:200; 图 s1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 s1c). Acta Neuropathol Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5e). J Nanobiotechnology (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 1:300; 图 s1d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 s1d). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s3c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s3c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Rep (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 图 1a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上 (图 1a). Neural Regen Res (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 大鼠; 图 4, 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在大鼠样本上 (图 4, 7). Peerj (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:1000; 图 2a, 5b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a, 5b). elife (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 5a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab1024224)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 5a). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab104225)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1c). Nat Commun (2020) ncbi
小鼠 单克隆(1B7)
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Cambridge, UK, ab104224)被用于. FASEB J (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:500; 图 10a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 04224)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 10a). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s8p
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s8p). PLoS Biol (2020) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3h). J Neuroinflammation (2020) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 小鼠; 图 8a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). Stroke (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3b). Autophagy (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5e). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; pigs ; 1:2000; 图 4f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在pigs 样本上浓度为1:2000 (图 4f). Nature (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2b). BMC Med Genomics (2019) ncbi
单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 s3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR 12763)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3b). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上 (图 1f). J Exp Med (2019) ncbi
单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:1000; 图 6g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 6g). J Neurosci (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 3m
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3m). Brain Struct Funct (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 大鼠; 1:5000; 图 5g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5g). Behav Brain Res (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; Zonotrichia leucophrys; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在Zonotrichia leucophrys样本上浓度为1:500 (图 2d). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR12763)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). FASEB J (2019) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1b). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). J Histochem Cytochem (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 小鼠; 1:10,000; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7a). F1000Res (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). J Physiol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Acta Neuropathol (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab177487)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s2d). Nature (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 7a). Brain Behav Immun (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2b
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:100; 图 s10a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s10a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6d
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6d). Ann Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1500; 图 4g
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1500 (图 4g). Neurobiol Dis (2017) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 1:800; 图 8e
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, EPR12763)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8e). Development (2016) ncbi
  • 免疫组化; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab134014)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). F1000Res (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 大鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 人类; 1:300; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, Ab177487)被用于被用于免疫组化在人类样本上浓度为1:300 (图 3). J Alzheimers Dis (2017) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 猕猴; 1:200; 图 4
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在猕猴样本上浓度为1:200 (图 4). J Neuroinflammation (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫细胞化学; 小鼠; 1:2000; 图 s3c
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s3c). Neuron (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:750; 图 1b
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, 104,225)被用于被用于免疫组化在小鼠样本上浓度为1:750 (图 1b). Mol Ther Nucleic Acids (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Rbfox3抗体(abcam, ab104225)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2a). Front Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 大鼠; 图 1
  • 免疫细胞化学; 大鼠; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1) 和 被用于免疫细胞化学在大鼠样本上 (图 1). Mol Brain (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-石蜡切片; 大鼠; 图 5
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Prostaglandins Other Lipid Mediat (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:500 (表 2). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 单克隆(EPR12763)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab177487)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, AB104225)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500. Nature (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫印迹; 小鼠; 1:800
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫印迹在小鼠样本上浓度为1:800. Neuropharmacology (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 人类; 1:100; 图 6
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 3). Eur J Neurosci (2016) ncbi
小鼠 单克隆(1B7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Nat Neurosci (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫细胞化学在大鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在小鼠样本上浓度为1:250. Neurobiol Aging (2014) ncbi
小鼠 单克隆(1B7)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Rbfox3抗体(Abcam, ab104224)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c). Sci Rep (2020) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 2d
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2d). Cells (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1). elife (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Cell Rep (2019) ncbi
小鼠 单克隆(350D3)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1c
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1c). elife (2019) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4a
Synaptic Systems Rbfox3抗体(Synaptic Systems, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4a). Physiol Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:200; 图 S1a
Synaptic Systems Rbfox3抗体(SySY, 266-004)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1a). Nat Neurosci (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6
Synaptic Systems Rbfox3抗体(Synaptic System, 266004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6). Front Cell Neurosci (2016) ncbi
EnCor Biotechnology
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7h
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, RPCA-FOX3)被用于被用于免疫组化在小鼠样本上 (图 7h). Cell (2019) ncbi
小鼠 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Rbfox3抗体(EnCor Biotechnology, MCA-1B7)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
GeneTex
小鼠 单克隆
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 4b
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 4b). elife (2020) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 图 1
GeneTex Rbfox3抗体(GeneTex, GTX30773)被用于被用于免疫细胞化学在人类样本上 (图 1). Stem Cells Dev (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s1a
赛默飞世尔 Rbfox3抗体(Thermo Fisher Scientific, PA5-37407)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1a). Neuron (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D4G4O)
  • 免疫组化-冰冻切片; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2e). Nature (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 猕猴; 1:5000; 图 8f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(CST, 12943)被用于被用于免疫组化在猕猴样本上浓度为1:5000 (图 8f). J Comp Neurol (2020) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 1:200; 图 s5g
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1f). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 s6b
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫组化在小鼠样本上 (图 s6b). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 24307)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Brain Res (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, 12943S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a). Brain Behav Immun (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling, D3S3I)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). Front Microbiol (2017) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell signaling, 12943)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 24307)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D3S3I)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signalling, 12943)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D4G4O)
  • 免疫组化; 小鼠; 1:400; 图 s4a
赛信通(上海)生物试剂有限公司 Rbfox3抗体(Cell Signaling Technology, 24307)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s4a). Nat Commun (2016) ncbi
Phosphosolutions
  • 免疫组化; 小鼠; 1:500; 图 4
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4). Cereb Cortex (2017) ncbi
  • 免疫组化; 小鼠; 1:200; 图 2a
Phosphosolutions Rbfox3抗体(PhosphoSolutions, 583-FOX3)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). J Neurosci (2016) ncbi
Biosensis
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 s3e
Biosensis Rbfox3抗体(Biosensis Pty, M-377-100)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Sci Rep (2016) ncbi
文章列表
  1. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  2. Smith S, Chen X, Brier L, Bumstead J, Rensing N, Ringel A, et al. Astrocyte deletion of α2-Na/K ATPase triggers episodic motor paralysis in mice via a metabolic pathway. Nat Commun. 2020;11:6164 pubmed 出版商
  3. Roth J, Muench K, Asokan A, Mallett V, Gai H, Verma Y, et al. 16p11.2 microdeletion imparts transcriptional alterations in human iPSC-derived models of early neural development. elife. 2020;9: pubmed 出版商
  4. Weisblum Y, Schmidt F, Zhang F, DaSilva J, Poston D, Lorenzi J, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. elife. 2020;9: pubmed 出版商
  5. Mukherjee A, Bajwa N, Lam N, Porrero C, Clascá F, Halassa M. Variation of connectivity across exemplar sensory and associative thalamocortical loops in the mouse. elife. 2020;9: pubmed 出版商
  6. Leist S, Dinnon K, Schäfer A, Tse L, Okuda K, Hou Y, et al. A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice. Cell. 2020;183:1070-1085.e12 pubmed 出版商
  7. Saaltink D, van Zwet E, Vreugdenhil E. Doublecortin-Like Is Implicated in Adult Hippocampal Neurogenesis and in Motivational Aspects to Escape from an Aversive Environment in Male Mice. Eneuro. 2020;7: pubmed 出版商
  8. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  9. Cleary C, Moreira T, Takakura A, Nelson M, Longden T, Mulkey D. Vascular control of the CO2/H+-dependent drive to breathe. elife. 2020;9: pubmed 出版商
  10. Rodriguez G, Barrett G, Duff K, Hussaini S. Chemogenetic attenuation of neuronal activity in the entorhinal cortex reduces Aβ and tau pathology in the hippocampus. PLoS Biol. 2020;18:e3000851 pubmed 出版商
  11. Schmid S, Hugel T. Controlling protein function by fine-tuning conformational flexibility. elife. 2020;9: pubmed 出版商
  12. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  13. Voskobiynyk Y, Roth J, Cochran J, Rush T, Carullo N, Mesina J, et al. Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability. elife. 2020;9: pubmed 出版商
  14. Lin C, Lecca D, Yang L, Luo W, Scerba M, Tweedie D, et al. 3,6'-dithiopomalidomide reduces neural loss, inflammation, behavioral deficits in brain injury and microglial activation. elife. 2020;9: pubmed 出版商
  15. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed 出版商
  16. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  17. Tan J, Zhang X, Li D, Liu G, Wang Y, Zhang D, et al. scAAV2-Mediated C3 Transferase Gene Therapy in a Rat Model with Retinal Ischemia/Reperfusion Injuries. Mol Ther Methods Clin Dev. 2020;17:894-903 pubmed 出版商
  18. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  19. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  20. Liu D, Bai X, Ma W, Xin D, Chu X, Yuan H, et al. Purmorphamine Attenuates Neuro-Inflammation and Synaptic Impairments After Hypoxic-Ischemic Injury in Neonatal Mice via Shh Signaling. Front Pharmacol. 2020;11:204 pubmed 出版商
  21. Su J, Li Z, Yamashita A, Kusumoto Yoshida I, Isomichi T, Hao L, et al. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep. 2020;10:4958 pubmed 出版商
  22. Ma X, Agas A, Siddiqui Z, Kim K, Iglesias Montoro P, Kalluru J, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5:124-132 pubmed 出版商
  23. Yu Z, Chen N, Hu D, Chen W, Yuan Y, Meng S, et al. Decreased Density of Perineuronal Net in Prelimbic Cortex Is Linked to Depressive-Like Behavior in Young-Aged Rats. Front Mol Neurosci. 2020;13:4 pubmed 出版商
  24. Liu X, Gao C, Yuan J, Xiang T, Gong Z, Luo H, et al. Subdural haematomas drain into the extracranial lymphatic system through the meningeal lymphatic vessels. Acta Neuropathol Commun. 2020;8:16 pubmed 出版商
  25. Potratz M, Zaeck L, Christen M, Te Kamp V, Klein A, Nolden T, et al. Astrocyte Infection during Rabies Encephalitis Depends on the Virus Strain and Infection Route as Demonstrated by Novel Quantitative 3D Analysis of Cell Tropism. Cells. 2020;9: pubmed 出版商
  26. Holmkvist A, Agorelius J, Forni M, Nilsson U, Linsmeier C, Schouenborg J. Local delivery of minocycline-loaded PLGA nanoparticles from gelatin-coated neural implants attenuates acute brain tissue responses in mice. J Nanobiotechnology. 2020;18:27 pubmed 出版商
  27. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  28. Cooper A, Butto T, Hammer N, Jagannath S, Fend Guella D, Akhtar J, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of Birk-Barel intellectual disability syndrome. Nat Commun. 2020;11:480 pubmed 出版商
  29. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  30. Liu R, Ma J, Wang B, Tian T, Guo N, Liu S. No DCX-positive neurogenesis in the cerebral cortex of the adult primate. Neural Regen Res. 2020;15:1290-1299 pubmed 出版商
  31. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  32. Yu Y, Wu M, Zhang N, Yin H, Shu B, Duan W. A pilot study on searching for peri-nuclear NeuN-positive cells. Peerj. 2020;8:e8254 pubmed 出版商
  33. Bowie E, Goetz S. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. elife. 2020;9: pubmed 出版商
  34. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  35. Borges Merjane C, Kim O, Jonas P. Functional Electron Microscopy, "Flash and Freeze," of Identified Cortical Synapses in Acute Brain Slices. Neuron. 2020;105:992-1006.e6 pubmed 出版商
  36. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  37. Berdugo Vega G, Arias Gil G, López Fernández A, Artegiani B, Wasielewska J, Lee C, et al. Increasing neurogenesis refines hippocampal activity rejuvenating navigational learning strategies and contextual memory throughout life. Nat Commun. 2020;11:135 pubmed 出版商
  38. Huang Y, Gu C, Wang Q, Xu L, Chen J, Zhou W, et al. The protective effort of GPCR kinase 2-interacting protein-1 in neurons via promoting Beclin1-Parkin induced mitophagy at the early stage of spinal cord ischemia-reperfusion injury. FASEB J. 2020;34:2055-2074 pubmed 出版商
  39. Anstötz M, Maccaferri G. A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus. Eneuro. 2020;7: pubmed 出版商
  40. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  41. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  42. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  43. Schoof M, Launspach M, Holdhof D, Nguyen L, Engel V, Filser S, et al. The transcriptional coactivator and histone acetyltransferase CBP regulates neural precursor cell development and migration. Acta Neuropathol Commun. 2019;7:199 pubmed 出版商
  44. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  45. Borra E, Luppino G, Gerbella M, Rozzi S, Rockland K. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol. 2020;528:453-467 pubmed 出版商
  46. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  47. Suh J, Romano D, Nitschke L, Herrick S, DiMarzio B, Dzhala V, et al. Loss of Ataxin-1 Potentiates Alzheimer's Pathogenesis by Elevating Cerebral BACE1 Transcription. Cell. 2019;178:1159-1175.e17 pubmed 出版商
  48. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  49. Nguyen H, Lee J, Sanberg P, Napoli E, Borlongan C. Eye Opener in Stroke. Stroke. 2019;50:2197-2206 pubmed 出版商
  50. Jung S, Choe S, Woo H, Jeong H, An H, Moon H, et al. Autophagic death of neural stem cells mediates chronic stress-induced decline of adult hippocampal neurogenesis and cognitive deficits. Autophagy. 2019;:1-19 pubmed 出版商
  51. Octeau J, Gangwani M, Allam S, Tran D, Huang S, Hoang Trong T, et al. Transient, Consequential Increases in Extracellular Potassium Ions Accompany Channelrhodopsin2 Excitation. Cell Rep. 2019;27:2249-2261.e7 pubmed 出版商
  52. Phillips M, Robinson H, Pozzo Miller L. Ventral hippocampal projections to the medial prefrontal cortex regulate social memory. elife. 2019;8: pubmed 出版商
  53. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  54. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  55. Telegina D, Kolosova N, Kozhevnikova O. Immunohistochemical localization of NGF, BDNF, and their receptors in a normal and AMD-like rat retina. BMC Med Genomics. 2019;12:48 pubmed 出版商
  56. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  57. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  58. Dong J, Pan Y, Wu X, He L, Liu X, Feng D, et al. A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv. 2019;5:eaav4416 pubmed 出版商
  59. Hultman K, Scarlett J, Baquero A, Cornea A, Zhang Y, Salinas C, et al. The central fibroblast growth factor receptor/beta klotho system: Comprehensive mapping in Mus musculus and comparisons to nonhuman primate and human samples using an automated in situ hybridization platform. J Comp Neurol. 2019;527:2069-2085 pubmed 出版商
  60. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  61. Chao H, Lin C, Zuo Q, Liu Y, Xiao M, Xu X, et al. Cardiolipin-Dependent Mitophagy Guides Outcome after Traumatic Brain Injury. J Neurosci. 2019;39:1930-1943 pubmed 出版商
  62. Yu Q, Liu Y, Zhu Y, Wang Y, Li Q, Yin D. Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. Brain Struct Funct. 2019;224:1035-1049 pubmed 出版商
  63. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  64. Shepard A, Scheffel J, Yu W. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol. 2019;527:999-1011 pubmed 出版商
  65. Larson T, Thatra N, Hou D, Hu R, Brenowitz E. Seasonal changes in neuronal turnover in a forebrain nucleus in adult songbirds. J Comp Neurol. 2019;527:767-779 pubmed 出版商
  66. Kanetake T, Sassa T, Nojiri K, Sawai M, Hattori S, Miyakawa T, et al. Neural symptoms in a gene knockout mouse model of Sjögren-Larsson syndrome are associated with a decrease in 2-hydroxygalactosylceramide. FASEB J. 2019;33:928-941 pubmed 出版商
  67. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  68. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  69. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  70. Wang Y, Lin Y, Wu Y, Yao Z, Tang J, Shen L, et al. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem. 2018;66:175-187 pubmed 出版商
  71. McCarthy G, Bridges C, Blednov Y, Harris R. CNS cell-type localization and LPS response of TLR signaling pathways. F1000Res. 2017;6:1144 pubmed 出版商
  72. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  73. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  74. Fu C, Xue J, Wang R, Chen J, Ma L, Liu Y, et al. Chemosensitive Phox2b-expressing neurons are crucial for hypercapnic ventilatory response in the nucleus tractus solitarius. J Physiol. 2017;595:4973-4989 pubmed 出版商
  75. Schludi M, Becker L, Garrett L, Gendron T, Zhou Q, Schreiber F, et al. Spinal poly-GA inclusions in a C9orf72 mouse model trigger motor deficits and inflammation without neuron loss. Acta Neuropathol. 2017;134:241-254 pubmed 出版商
  76. Becker L, Huang B, Bieri G, Ma R, Knowles D, Jafar Nejad P, et al. Therapeutic reduction of ataxin-2 extends lifespan and reduces pathology in TDP-43 mice. Nature. 2017;544:367-371 pubmed 出版商
  77. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  78. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, et al. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun. 2017;5:19 pubmed 出版商
  79. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann A, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci U S A. 2017;114:E2243-E2252 pubmed 出版商
  80. Ronca S, Smith J, Koma T, Miller M, Yun N, Dineley K, et al. Mouse Model of Neurological Complications Resulting from Encephalitic Alphavirus Infection. Front Microbiol. 2017;8:188 pubmed 出版商
  81. Inui K, Chen C, Pauli J, Kuroki C, Tashiro S, Kanmura Y, et al. Nasal TRPA1 mediates irritant-induced bradypnea in mice. Physiol Rep. 2016;4: pubmed 出版商
  82. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  83. Matagne V, Ehinger Y, Saidi L, Borges Correia A, Barkats M, Bartoli M, et al. A codon-optimized Mecp2 transgene corrects breathing deficits and improves survival in a mouse model of Rett syndrome. Neurobiol Dis. 2017;99:1-11 pubmed 出版商
  84. Harris L, Zalucki O, Gobius I, McDonald H, Osinki J, Harvey T, et al. Transcriptional regulation of intermediate progenitor cell generation during hippocampal development. Development. 2016;143:4620-4630 pubmed
  85. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  86. Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269 pubmed
  87. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  88. Dekens D, Naudé P, Engelborghs S, Vermeiren Y, Van Dam D, Oude Voshaar R, et al. Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J Alzheimers Dis. 2017;55:763-776 pubmed
  89. Ramírez Franco J, Munoz Cuevas F, Lujan R, Jurado S. Excitatory and Inhibitory Neurons in the Hippocampus Exhibit Molecularly Distinct Large Dense Core Vesicles. Front Cell Neurosci. 2016;10:202 pubmed 出版商
  90. Schmidt A, Kannan P, Chougnet C, Danzer S, Miller L, Jobe A, et al. Intra-amniotic LPS causes acute neuroinflammation in preterm rhesus macaques. J Neuroinflammation. 2016;13:238 pubmed 出版商
  91. Redmond S, Mei F, Eshed Eisenbach Y, Osso L, Leshkowitz D, Shen Y, et al. Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron. 2016;91:824-836 pubmed 出版商
  92. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  93. Murlidharan G, Sakamoto K, Rao L, Corriher T, Wang D, Gao G, et al. CNS-restricted Transduction and CRISPR/Cas9-mediated Gene Deletion with an Engineered AAV Vector. Mol Ther Nucleic Acids. 2016;5:e338 pubmed 出版商
  94. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  95. Brai E, Alina Raio N, Alberi L. Notch1 hallmarks fibrillary depositions in sporadic Alzheimer's disease. Acta Neuropathol Commun. 2016;4:64 pubmed 出版商
  96. Kolisnyk B, Al Onaizi M, Soreq L, Barbash S, Bekenstein U, Haberman N, et al. Cholinergic Surveillance over Hippocampal RNA Metabolism and Alzheimer's-Like Pathology. Cereb Cortex. 2017;27:3553-3567 pubmed 出版商
  97. de la Rosa Prieto C, Saiz Sanchez D, Ubeda Bañon I, Flores Cuadrado A, Martinez Marcos A. Neurogenesis, Neurodegeneration, Interneuron Vulnerability, and Amyloid-? in the Olfactory Bulb of APP/PS1 Mouse Model of Alzheimer's Disease. Front Neurosci. 2016;10:227 pubmed 出版商
  98. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  99. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  100. Kolisnyk B, Al Onaizi M, Xu J, Parfitt G, Ostapchenko V, Hanin G, et al. Cholinergic Regulation of hnRNPA2/B1 Translation by M1 Muscarinic Receptors. J Neurosci. 2016;36:6287-96 pubmed 出版商
  101. Gebremedhin D, Zhang D, Carver K, Rau N, Rarick K, Roman R, et al. Expression of CYP 4A ?-hydroxylase and formation of 20-hydroxyeicosatetreanoic acid (20-HETE) in cultured rat brain astrocytes. Prostaglandins Other Lipid Mediat. 2016;124:16-26 pubmed 出版商
  102. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  103. Vasilev D, Dubrovskaya N, Tumanova N, Zhuravin I. Prenatal Hypoxia in Different Periods of Embryogenesis Differentially Affects Cell Migration, Neuronal Plasticity, and Rat Behavior in Postnatal Ontogenesis. Front Neurosci. 2016;10:126 pubmed 出版商
  104. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  105. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  106. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  107. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  108. Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component 4. Nature. 2016;530:177-83 pubmed 出版商
  109. Jiang T, Zhang Y, Chen Q, Gao Q, Zhu X, Zhou J, et al. TREM2 modifies microglial phenotype and provides neuroprotection in P301S tau transgenic mice. Neuropharmacology. 2016;105:196-206 pubmed 出版商
  110. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  111. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  112. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  113. Sang H, Liu L, Wang L, Qiu Z, Li M, Yu L, et al. Opposite roles of bradykinin B1 and B2 receptors during cerebral ischaemia-reperfusion injury in experimental diabetic rats. Eur J Neurosci. 2016;43:53-65 pubmed 出版商
  114. Telias M, Mayshar Y, Amit A, Ben Yosef D. Molecular mechanisms regulating impaired neurogenesis of fragile X syndrome human embryonic stem cells. Stem Cells Dev. 2015;24:2353-65 pubmed 出版商
  115. Kang J, Shen W, Zhou C, Xu D, Macdonald R. The human epilepsy mutation GABRG2(Q390X) causes chronic subunit accumulation and neurodegeneration. Nat Neurosci. 2015;18:988-96 pubmed 出版商
  116. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  117. Taylor J, Minter M, Newman A, Zhang M, Adlard P, Crack P. Type-1 interferon signaling mediates neuro-inflammatory events in models of Alzheimer's disease. Neurobiol Aging. 2014;35:1012-23 pubmed 出版商
  118. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商