这是一篇来自已证抗体库的有关小鼠 Rhoa的综述,是根据116篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Rhoa 抗体。
Rhoa 同义词: Arha; Arha1; Arha2

圣克鲁斯生物技术
小鼠 单克隆(26C4)
  • 免疫组化-冰冻切片; 小鼠; 图 1di
  • 免疫细胞化学; 小鼠; 1:500; 图 6b
圣克鲁斯生物技术 Rhoa抗体(Santa, sc-418)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1di) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6b). elife (2020) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 犬; 1:2000; 图 6a
圣克鲁斯生物技术 Rhoa抗体(Santa, sc-418)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 6a). Sci Rep (2019) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 s7a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, SC-418)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Cell Rep (2018) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹基因敲除验证; 小鼠; 图 3a
圣克鲁斯生物技术 Rhoa抗体(Santa, sc-418)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3a). J Biol Chem (2018) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, 26C4)被用于被用于免疫印迹在小鼠样本上 (图 3a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 7S1C
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 7S1C). elife (2017) ncbi
小鼠 单克隆(26C4)
  • 其他; 人类; 图 s2b
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于其他在人类样本上 (图 s2b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 大鼠; 图 3d
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在大鼠样本上 (图 3d). J Clin Invest (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 1:500; 图 4e
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC-418)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4e). Sci Rep (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 6a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Genet (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 1:100; 图 s3a
  • 免疫印迹; 人类; 1:100; 图 s3c
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3a) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s3c). Mol Biol Cell (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:1000; 图 6a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). J Cell Biol (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:500; 图 4g
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫组化-石蜡切片; marine lamprey; 1:200; 表 1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC-418)被用于被用于免疫组化-石蜡切片在marine lamprey样本上浓度为1:200 (表 1). Neurobiol Dis (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 7b
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 7b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:1000; 图 1d
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC-418)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Mol Cancer Ther (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 1e
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 1e). J Cell Sci (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 1:500; 图 2l
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, 418)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2l). J Neurosci Res (2017) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:5000; 图 1j
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1j). BMC Cancer (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; African green monkey; 1:1000; 图 3f
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 3f). J Cell Sci (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 1:100; 图 3a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc418)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Cell Cycle (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫组化; 人类; 图 2a
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫组化在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 小鼠; 1:100; 图 1d
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1d). Mol Reprod Dev (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 s10b
圣克鲁斯生物技术 Rhoa抗体(Santacruz, 26C4)被用于被用于免疫印迹在小鼠样本上 (图 s10b). Nat Chem Biol (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫组化; 小鼠; 1:500; 图 4h
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4h). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 1:200; 图 1
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上. Nat Immunol (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 3B
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 3B). PLoS ONE (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 6c). J Biol Chem (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:200; 图 6c
圣克鲁斯生物技术 Rhoa抗体(SantaCruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC-418)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Cell Res (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, 26C4)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 图 4
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC418)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz,, sc-418)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 7). Mol Biol Cell (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3). Mol Biol Cell (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在人类样本上. EMBO Rep (2016) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 1:100; 图 s3
  • 免疫印迹; 人类; 1:100; 图 s1i
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnolog, . sc418)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s3) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 s1i). Nat Cell Biol (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在大鼠样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Commun (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:200; 图 4
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 1:200; 图 s4c
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, 418)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s4c). Nat Med (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 大鼠; 1:500; 图 4
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Rhoa抗体(Santa-Cruz, sc-418)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, SC-418)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, 26C4)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在大鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(F-1)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-166399)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Cell Death Dis (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在大鼠样本上浓度为1:200. J Neurosci (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 图  5
圣克鲁斯生物技术 Rhoa抗体(SantaCruz, sc-418)被用于被用于免疫印迹在人类样本上 (图  5). PLoS ONE (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 11
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc- 418)被用于被用于免疫印迹在小鼠样本上 (图 11). J Neuroinflammation (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz biotechnology, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Biochem (2015) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 图 5, 7
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, 26C4)被用于被用于免疫印迹在大鼠样本上. Neuropsychopharmacology (2014) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, sc-418)被用于被用于免疫印迹在人类样本上浓度为1:200. Cell Signal (2013) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 人类; 1:50-500
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc418)被用于被用于免疫印迹在人类样本上浓度为1:50-500. Reprod Biol Endocrinol (2013) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫印迹在小鼠样本上. Stem Cells (2013) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, 26C4)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(26C4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz, 26C4)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(26C4)
  • 免疫印迹; 小鼠; 1:250; 图 7
圣克鲁斯生物技术 Rhoa抗体(SCBT, 26C4)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7). Development (2011) ncbi
小鼠 单克隆(26C4)
  • 免疫组化-石蜡切片; 大鼠; 1:100
圣克鲁斯生物技术 Rhoa抗体(Santa Cruz Biotechnology, sc-418)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Comp Neurol (2005) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 2c
赛默飞世尔 Rhoa抗体(Thermo Scientific, OSR00266W)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2c). Mol Neurobiol (2018) ncbi
小鼠 单克隆(1B8-1C7)
  • 免疫印迹; 人类; 1:500; 图 2b
赛默飞世尔 Rhoa抗体(Thermo Fisher, MA1-134)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Ann Biomed Eng (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛默飞世尔 Rhoa抗体(Thermo Scientific, OSR00266W)被用于被用于免疫印迹在小鼠样本上 (图 2d). Food Chem Toxicol (2017) ncbi
小鼠 单克隆(1A11-4G10)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛默飞世尔 Rhoa抗体(Thermo Fisher Scientific, MA1-011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Mol Cells (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(1B12)
  • 免疫印迹; 人类; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Rhoa抗体(Abcam, ab54835)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2016) ncbi
小鼠 单克隆(1B12)
  • 免疫印迹; 牛; 1:100; 图 1
艾博抗(上海)贸易有限公司 Rhoa抗体(Abcam, ab54835)被用于被用于免疫印迹在牛样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1B12)
  • 免疫印迹; Clostridioides difficile; 图 4
艾博抗(上海)贸易有限公司 Rhoa抗体(Abcam, ab54835)被用于被用于免疫印迹在Clostridioides difficile样本上 (图 4). Infect Immun (2016) ncbi
小鼠 单克隆(1B12)
  • 免疫细胞化学; 人类; 图 s4g
艾博抗(上海)贸易有限公司 Rhoa抗体(Abcam, AB54835)被用于被用于免疫细胞化学在人类样本上 (图 s4g). J Cell Biol (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(67B9)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 4s2a
  • 免疫印迹; 人类; 1:1000; 图 4s2d
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 4s2a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4s2d). elife (2019) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 图 s1d
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在小鼠样本上 (图 s1d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 3f). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:2000; 图 5b
赛信通(上海)生物试剂有限公司 Rhoa抗体(CST, 2117)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(67B9)
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于. Nature (2019) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, 2117S)被用于被用于免疫印迹在人类样本上 (图 3e). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). EMBO Mol Med (2018) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在小鼠样本上 (图 3c). FASEB J (2018) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, 2117)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nature (2017) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Rhoa抗体(cell signalling, 2117)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:400; 图 s5d
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell signaling, 67B9)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 s5d). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Am J Pathol (2017) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell signaling, 2117P)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 犬; 1:500; 图 s1d
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在犬样本上浓度为1:500 (图 s1d). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 斑马鱼; 1:500; 图 9
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在斑马鱼样本上浓度为1:500 (图 9). Development (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2017) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 67B9)被用于被用于免疫印迹在大鼠样本上 (图 2a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell signaling, 2117)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 2). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在小鼠样本上 (图 s4). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 67B9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 2117)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, #2117)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 1:250; 图 3g
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 67B9)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 3g). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, 67B9)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, 2117)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2015) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠
  • 免疫印迹; 豚鼠
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling Technology, 2117S)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在豚鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
domestic rabbit 单克隆(67B9)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Rhoa抗体(Cell Signaling, 67B9)被用于被用于免疫印迹在小鼠样本上 (图 3). EMBO Mol Med (2014) ncbi
文章列表
  1. Moon H, Hippenmeyer S, Luo L, Wynshaw Boris A. LIS1 determines cleavage plane positioning by regulating actomyosin-mediated cell membrane contractility. elife. 2020;9: pubmed 出版商
  2. Zeng H, Castillo Cabrera J, Manser M, Lu B, Yang Z, Strande V, et al. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. elife. 2019;8: pubmed 出版商
  3. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  4. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  5. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  6. Rangel L, Bernabé Rubio M, Fernández Barrera J, Casares Arias J, Millan J, Alonso M, et al. Caveolin-1α regulates primary cilium length by controlling RhoA GTPase activity. Sci Rep. 2019;9:1116 pubmed 出版商
  7. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  8. Bouafia A, Lofek S, Bruneau J, Chentout L, Lamrini H, Trinquand A, et al. Loss of ARHGEF1 causes a human primary antibody deficiency. J Clin Invest. 2019;129:1047-1060 pubmed 出版商
  9. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  10. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  11. Khalifeh Soltani A, Gupta D, Ha A, Podolsky M, Datta R, Atabai K. The Mfge8-α8β1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation. FASEB J. 2018;:fj201800109R pubmed 出版商
  12. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  13. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  14. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed 出版商
  15. Shah M, Garcia Pak I, Darling E. Influence of Inherent Mechanophenotype on Competitive Cellular Adherence. Ann Biomed Eng. 2017;45:2036-2047 pubmed 出版商
  16. Bobo Jiménez V, Delgado Esteban M, Angibaud J, Sánchez Morán I, de la Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114:4513-4518 pubmed 出版商
  17. Ding Y, Lu L, Xuan C, Han J, Ye S, Cao T, et al. Di-n-butyl phthalate exposure negatively influences structural and functional neuroplasticity via Rho-GTPase signaling pathways. Food Chem Toxicol. 2017;105:34-43 pubmed 出版商
  18. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  19. Jeannot P, Nowosad A, Perchey R, Callot C, Bennana E, Katsube T, et al. p27Kip1 promotes invadopodia turnover and invasion through the regulation of the PAK1/Cortactin pathway. elife. 2017;6: pubmed 出版商
  20. Alkasalias T, Alexeyenko A, Hennig K, Danielsson F, Lebbink R, Fielden M, et al. RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo. Proc Natl Acad Sci U S A. 2017;114:E1413-E1421 pubmed 出版商
  21. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  22. Chen Z, Givens C, Reader J, Tzima E. Haemodynamics Regulate Fibronectin Assembly via PECAM. Sci Rep. 2017;7:41223 pubmed 出版商
  23. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  24. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  25. Rafiq N, Lieu Z, Jiang T, Yu C, Matsudaira P, Jones G, et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J Cell Biol. 2017;216:181-197 pubmed 出版商
  26. Sun T, Yang L, Kaur H, Pestel J, Looso M, Nolte H, et al. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J Cell Biol. 2017;216:199-215 pubmed 出版商
  27. Wang L, Luo J, Li B, Tian X, Chen L, Huang Y, et al. Integrin-YAP/TAZ-JNK cascade mediates atheroprotective effect of unidirectional shear flow. Nature. 2016;540:579-582 pubmed 出版商
  28. Jørgensen L, Jepsen P, Boysen A, Dalgaard L, Hvid L, Ørtenblad N, et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am J Pathol. 2017;187:457-474 pubmed 出版商
  29. Bonan S, Albrengues J, Grasset E, Kuzet S, Nottet N, Bourget I, et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304-1320 pubmed 出版商
  30. Hu J, Zhang G, Rodemer W, Jin L, Shifman M, Selzer M. The role of RhoA in retrograde neuronal death and axon regeneration after spinal cord injury. Neurobiol Dis. 2017;98:25-35 pubmed 出版商
  31. Yoo S, Leng L, Kim B, Du X, Tilstam P, Kim K, et al. MIF allele-dependent regulation of the MIF coreceptor CD44 and role in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113:E7917-E7926 pubmed
  32. Haak A, Appleton K, Lisabeth E, Misek S, Ji Y, Wade S, et al. Pharmacological Inhibition of Myocardin-related Transcription Factor Pathway Blocks Lung Metastases of RhoC-Overexpressing Melanoma. Mol Cancer Ther. 2017;16:193-204 pubmed 出版商
  33. Mardakheh F, Self A, Marshall C. RHO binding to FAM65A regulates Golgi reorientation during cell migration. J Cell Sci. 2016;129:4466-4479 pubmed
  34. Shapiro L, Parsons R, Koleske A, Gourley S. Differential expression of cytoskeletal regulatory factors in the adolescent prefrontal cortex: Implications for cortical development. J Neurosci Res. 2017;95:1123-1143 pubmed 出版商
  35. Forrest C, McNair K, Vincenten M, Darlington L, Stone T. Selective depletion of tumour suppressors Deleted in Colorectal Cancer (DCC) and neogenin by environmental and endogenous serine proteases: linking diet and cancer. BMC Cancer. 2016;16:772 pubmed
  36. Kishi T, Mayanagi T, Iwabuchi S, Akasaka T, Sobue K. Myocardin-related transcription factor A (MRTF-A) activity-dependent cell adhesion is correlated to focal adhesion kinase (FAK) activity. Oncotarget. 2016;7:72113-72130 pubmed 出版商
  37. McColl B, Garg R, Riou P, Riento K, Ridley A. Rnd3-induced cell rounding requires interaction with Plexin-B2. J Cell Sci. 2016;129:4046-4056 pubmed
  38. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  39. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  40. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  41. Yuan W, Guo Y, Li X, Deng M, Shen Z, Bo C, et al. MicroRNA-126 inhibits colon cancer cell proliferation and invasion by targeting the chemokine (C-X-C motif) receptor 4 and Ras homolog gene family, member A, signaling pathway. Oncotarget. 2016;7:60230-60244 pubmed 出版商
  42. Lee S, Jo Y, Namgoong S, Kim N. Anillin controls cleavage furrow formation in the course of asymmetric division during mouse oocyte maturation. Mol Reprod Dev. 2016;83:792-801 pubmed 出版商
  43. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  44. Hodgson L, Spiering D, Sabouri Ghomi M, Dagliyan O, DerMardirossian C, Danuser G, et al. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol. 2016;12:802-809 pubmed 出版商
  45. Shi D, Shi G, Xie J, Du X, Yang H. MicroRNA-27a Inhibits Cell Migration and Invasion of Fibroblast-Like Synoviocytes by Targeting Follistatin-Like Protein 1 in Rheumatoid Arthritis. Mol Cells. 2016;39:611-8 pubmed 出版商
  46. Whiting J, Ogier L, Forbush K, Bucko P, Gopalan J, Seternes O, et al. AKAP220 manages apical actin networks that coordinate aquaporin-2 location and renal water reabsorption. Proc Natl Acad Sci U S A. 2016;113:E4328-37 pubmed 出版商
  47. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  48. Li Y, Hu Y, Che L, Jia J, Chen M. Nucleolar localization of Small G protein RhoA is associated with active RNA synthesis in human carcinoma HEp-2 cells. Oncol Lett. 2016;11:3605-3610 pubmed
  49. Matsumura S, Kojidani T, Kamioka Y, Uchida S, Haraguchi T, Kimura A, et al. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1. Nat Commun. 2016;7:ncomms11858 pubmed 出版商
  50. Zhang J, Jiang Z, Liu X, Meng A. Eph/ephrin signaling maintains the boundary of dorsal forerunner cell cluster during morphogenesis of the zebrafish embryonic left-right organizer. Development. 2016;143:2603-15 pubmed 出版商
  51. Park Y, Wood G, Kastner D, Chae J. Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol. 2016;17:914-21 pubmed 出版商
  52. Zuckerwise L, Li J, Lu L, Men Y, Geng T, Buhimschi C, et al. H19 long noncoding RNA alters trophoblast cell migration and invasion by regulating TβR3 in placentae with fetal growth restriction. Oncotarget. 2016;7:38398-38407 pubmed 出版商
  53. Bianchi Smiraglia A, Bagati A, Fink E, Moparthy S, Wawrzyniak J, Marvin E, et al. Microphthalmia-associated transcription factor suppresses invasion by reducing intracellular GTP pools. Oncogene. 2017;36:84-96 pubmed 出版商
  54. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  55. Marcos Ramiro B, García Weber D, Barroso S, Feito J, Ortega M, Cernuda Morollón E, et al. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border. J Cell Biol. 2016;213:385-402 pubmed 出版商
  56. Boateng L, Bennin D, de Oliveira S, Huttenlocher A. Mammalian Actin-binding Protein-1/Hip-55 Interacts with FHL2 and Negatively Regulates Cell Invasion. J Biol Chem. 2016;291:13987-98 pubmed 出版商
  57. Wynn M, Yates J, Evans C, Van Wassenhove L, Wu Z, Bridges S, et al. RhoC GTPase Is a Potent Regulator of Glutamine Metabolism and N-Acetylaspartate Production in Inflammatory Breast Cancer Cells. J Biol Chem. 2016;291:13715-29 pubmed 出版商
  58. Bzymek R, Horsthemke M, Isfort K, Mohr S, Tjaden K, Muller Tidow C, et al. Real-time two- and three-dimensional imaging of monocyte motility and navigation on planar surfaces and in collagen matrices: roles of Rho. Sci Rep. 2016;6:25016 pubmed 出版商
  59. Guen V, Gamble C, Perez D, Bourassa S, Zappel H, Gartner J, et al. STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle. 2016;15:678-88 pubmed 出版商
  60. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  61. Chen H, Gao Z, He C, Xiang R, van Kuppevelt T, Belting M, et al. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA. Exp Cell Res. 2016;343:223-236 pubmed 出版商
  62. von Mässenhausen A, SANDERS C, Thewes B, Deng M, Queisser A, Vogel W, et al. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget. 2016;7:32678-94 pubmed 出版商
  63. Muramatsu T, Kozaki K, Imoto S, Yamaguchi R, Tsuda H, Kawano T, et al. The hypusine cascade promotes cancer progression and metastasis through the regulation of RhoA in squamous cell carcinoma. Oncogene. 2016;35:5304-5316 pubmed 出版商
  64. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  65. Jo D, Bae J, Chae S, Kim J, Han J, Hwang D, et al. Quantitative Proteomics Reveals β2 Integrin-mediated Cytoskeletal Rearrangement in Vascular Endothelial Growth Factor (VEGF)-induced Retinal Vascular Hyperpermeability. Mol Cell Proteomics. 2016;15:1681-91 pubmed 出版商
  66. Lasek A, McPherson B, Trueman N, Burkard M. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS ONE. 2016;11:e0150225 pubmed 出版商
  67. Marei H, Carpy A, Woroniuk A, Vennin C, White G, Timpson P, et al. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration. Nat Commun. 2016;7:10664 pubmed 出版商
  68. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  69. Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell. 2016;27:954-66 pubmed 出版商
  70. Heemskerk N, Schimmel L, Oort C, van Rijssel J, Yin T, Ma B, et al. F-actin-rich contractile endothelial pores prevent vascular leakage during leukocyte diapedesis through local RhoA signalling. Nat Commun. 2016;7:10493 pubmed 出版商
  71. Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, et al. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell. 2016;27:812-27 pubmed 出版商
  72. Lampi M, Faber C, Huynh J, Bordeleau F, Zanotelli M, Reinhart King C. Simvastatin Ameliorates Matrix Stiffness-Mediated Endothelial Monolayer Disruption. PLoS ONE. 2016;11:e0147033 pubmed 出版商
  73. Quesada Gómez C, López Ureña D, Chumbler N, Kroh H, Castro Peña C, Rodriguez C, et al. Analysis of TcdB Proteins within the Hypervirulent Clade 2 Reveals an Impact of RhoA Glucosylation on Clostridium difficile Proinflammatory Activities. Infect Immun. 2016;84:856-65 pubmed 出版商
  74. Cui H, Wang S, Miao J, Fu Z, Feng F, Wu J, et al. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling. Oncotarget. 2016;7:5613-29 pubmed 出版商
  75. O Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis C, Drummond R, et al. Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene. 2016;35:3771-80 pubmed 出版商
  76. Kim M, Kim M, Park S, Lee C, Lim D. Role of Angiomotin-like 2 mono-ubiquitination on YAP inhibition. EMBO Rep. 2016;17:64-78 pubmed 出版商
  77. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  78. Fujimura K, Choi S, Wyse M, Strnadel J, Wright T, Klemke R. Eukaryotic Translation Initiation Factor 5A (EIF5A) Regulates Pancreatic Cancer Metastasis by Modulating RhoA and Rho-associated Kinase (ROCK) Protein Expression Levels. J Biol Chem. 2015;290:29907-19 pubmed 出版商
  79. Leyme A, Marivin A, Perez Gutierrez L, Nguyen L, Garcia Marcos M. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. J Cell Biol. 2015;210:1165-84 pubmed 出版商
  80. Priya R, Gomez G, Budnar S, Verma S, Cox H, Hamilton N, et al. Feedback regulation through myosin II confers robustness on RhoA signalling at E-cadherin junctions. Nat Cell Biol. 2015;17:1282-93 pubmed 出版商
  81. Namachivayam K, Mohankumar K, Arbach D, Jagadeeswaran R, Jain S, Natarajan V, et al. All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE. 2015;10:e0134003 pubmed 出版商
  82. Cao X, Kaneko T, Li J, Liu A, Voss C, Li S. A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun. 2015;6:7721 pubmed 出版商
  83. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  84. Ibeawuchi S, Agbor L, Quelle F, Sigmund C. Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. J Biol Chem. 2015;290:19208-17 pubmed 出版商
  85. Schiffer M, Teng B, Gu C, Shchedrina V, Kasaikina M, Pham V, et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat Med. 2015;21:601-9 pubmed 出版商
  86. Deglincerti A, Liu Y, Colak D, Hengst U, Xu G, Jaffrey S. Coupled local translation and degradation regulate growth cone collapse. Nat Commun. 2015;6:6888 pubmed 出版商
  87. Fukumoto M, Kurisu S, Yamada T, Takenawa T. α-Actinin-4 enhances colorectal cancer cell invasion by suppressing focal adhesion maturation. PLoS ONE. 2015;10:e0120616 pubmed 出版商
  88. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  89. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  90. Ferru Clément R, Fresquet F, Norez C, Métayé T, Becq F, Kitzis A, et al. Involvement of the Cdc42 pathway in CFTR post-translational turnover and in its plasma membrane stability in airway epithelial cells. PLoS ONE. 2015;10:e0118943 pubmed 出版商
  91. Zhang Z, Li J, Wang Q, Zhao W, Hong J, Lou S, et al. WNK1 is involved in Nogo66 inhibition of OPC differentiation. Mol Cell Neurosci. 2015;65:135-42 pubmed 出版商
  92. Miyake S, Muramatsu R, Hamaguchi M, Yamashita T. Prolyl hydroxylase regulates axonal rewiring and motor recovery after traumatic brain injury. Cell Death Dis. 2015;6:e1638 pubmed 出版商
  93. Briz V, Zhu G, Wang Y, Liu Y, Avetisyan M, Bi X, et al. Activity-dependent rapid local RhoA synthesis is required for hippocampal synaptic plasticity. J Neurosci. 2015;35:2269-82 pubmed 出版商
  94. Artym V, Swatkoski S, Matsumoto K, Campbell C, Petrie R, Dimitriadis E, et al. Dense fibrillar collagen is a potent inducer of invadopodia via a specific signaling network. J Cell Biol. 2015;208:331-50 pubmed 出版商
  95. Kaihola H, Olivier J, Poromaa I, Akerud H. The effect of antenatal depression and selective serotonin reuptake inhibitor treatment on nerve growth factor signaling in human placenta. PLoS ONE. 2015;10:e0116459 pubmed 出版商
  96. Yuan Y, Rangarajan P, Kan E, Wu Y, Wu C, Ling E. Scutellarin regulates the Notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated BV-2 microglia. J Neuroinflammation. 2015;12:11 pubmed 出版商
  97. Gao K, Tang W, Li Y, Zhang P, Wang D, Yu L, et al. Front-signal-dependent accumulation of the RHOA inhibitor FAM65B at leading edges polarizes neutrophils. J Cell Sci. 2015;128:992-1000 pubmed 出版商
  98. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  99. Toyo oka K, Wachi T, Hunt R, Baraban S, Taya S, Ramshaw H, et al. 14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci. 2014;34:12168-81 pubmed 出版商
  100. Zuo Y, Wu Y, Wehrli B, Chakrabarti S, Chakraborty C. Modulation of ERK5 is a novel mechanism by which Cdc42 regulates migration of breast cancer cells. J Cell Biochem. 2015;116:124-32 pubmed 出版商
  101. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  102. Liu X, Yao J, Tripathi D, Ding Z, Xu Y, Sun M, et al. Autophagy mediates HIF2α degradation and suppresses renal tumorigenesis. Oncogene. 2015;34:2450-60 pubmed 出版商
  103. Mamouni K, Cristini A, Guirouilh Barbat J, Monferran S, Lemarie A, Faye J, et al. RhoB promotes ?H2AX dephosphorylation and DNA double-strand break repair. Mol Cell Biol. 2014;34:3144-55 pubmed 出版商
  104. Tang J, Ip J, Ye T, Ng Y, Yung W, Wu Z, et al. Cdk5-dependent Mst3 phosphorylation and activity regulate neuronal migration through RhoA inhibition. J Neurosci. 2014;34:7425-36 pubmed 出版商
  105. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  106. Arroyo A, Camoletto P, Morando L, Sassoè Pognetto M, Giustetto M, Van Veldhoven P, et al. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model. EMBO Mol Med. 2014;6:398-413 pubmed 出版商
  107. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  108. Nam H, Lee I, Jang S, Bae C, Kwak S, Lee J. p90 ribosomal S6 kinase 1 (RSK1) isoenzyme specifically regulates cytokinesis progression. Cell Signal. 2014;26:208-19 pubmed 出版商
  109. Segatto M, Manduca A, Lecis C, Rosso P, Jozwiak A, Swiezewska E, et al. Simvastatin treatment highlights a new role for the isoprenoid/cholesterol biosynthetic pathway in the modulation of emotional reactivity and cognitive performance in rats. Neuropsychopharmacology. 2014;39:841-54 pubmed 出版商
  110. Del Galdo S, Vettel C, Heringdorf D, Wieland T. The activation of RhoC in vascular endothelial cells is required for the S1P receptor type 2-induced inhibition of angiogenesis. Cell Signal. 2013;25:2478-84 pubmed 出版商
  111. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  112. Thompson W, Guilluy C, Xie Z, Sen B, Brobst K, Yen S, et al. Mechanically activated Fyn utilizes mTORC2 to regulate RhoA and adipogenesis in mesenchymal stem cells. Stem Cells. 2013;31:2528-37 pubmed 出版商
  113. Kitagawa M, Fung S, Onishi N, Saya H, Lee S. Targeting Aurora B to the equatorial cortex by MKlp2 is required for cytokinesis. PLoS ONE. 2013;8:e64826 pubmed 出版商
  114. Stergiou L, Bauer M, Mair W, Bausch Fluck D, Drayman N, Wollscheid B, et al. Integrin-mediated signaling induced by simian virus 40 leads to transient uncoupling of cortical actin and the plasma membrane. PLoS ONE. 2013;8:e55799 pubmed 出版商
  115. MARCIANO D, BRAKEMAN P, Lee C, Spivak N, Eastburn D, Bryant D, et al. p120 catenin is required for normal renal tubulogenesis and glomerulogenesis. Development. 2011;138:2099-109 pubmed 出版商
  116. Conrad S, Schluesener H, Trautmann K, Joannin N, Meyermann R, Schwab J. Prolonged lesional expression of RhoA and RhoB following spinal cord injury. J Comp Neurol. 2005;487:166-75 pubmed