这是一篇来自已证抗体库的有关小鼠 runt相关转录因子2 (Runx2) 的综述,是根据75篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合runt相关转录因子2 抗体。
runt相关转录因子2 同义词: AML3; Cbf; Cbfa-1; Cbfa1; LS3; Osf2; PEBP2aA; Pebp2a1; Pebpa2a

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3099)
  • 免疫组化-石蜡切片; 小鼠; 图 1i
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1i). Cell Rep (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s5c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s5c). Bone Res (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上 (图 4h). Mol Cells (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EPR22858-106)
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab236639)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Int J Mol Med (2021) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3i
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3i). Biomed Res Int (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Prolif (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). Genes Dev (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化; 人类; 1:1000; 图 s3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab192256)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 s3e). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, Ab23981)被用于被用于免疫印迹在人类样本上 (图 4d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 23981)被用于被用于免疫印迹在小鼠样本上 (图 4b). Bioact Mater (2021) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 9
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 9). Cells (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫组化在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 4c). Int J Mol Sci (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR14334)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, EPR14334)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫细胞化学; 人类; 图 3d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab92336)被用于被用于免疫细胞化学在人类样本上 (图 3d). Cell (2019) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在人类样本上 (图 1d). Leukemia (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EPR14334)
  • 流式细胞仪; 小鼠; 1:50; 图 s3a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab192256)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s3a). Bone Res (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 92336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Rep (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, AB92336)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). Mol Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab23981)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Biomed Res Int (2018) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2018) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫印迹在小鼠样本上 (图 5a). BMC Musculoskelet Disord (2017) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化在小鼠样本上 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EPR3099)
  • 流式细胞仪; 小鼠; 图 3e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Sci Rep (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:500; 图 4
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 1:200; 图 7e
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7e). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s4
  • 免疫印迹; 小鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(abcam, ab23981)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Med (2015) ncbi
domestic rabbit 单克隆(EPR3099)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, 92336)被用于被用于免疫组化在小鼠样本上 (图 4a). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 4b
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b). Stem Cell Res Ther (2015) ncbi
domestic rabbit 单克隆(EPR3099)
  • 染色质免疫沉淀 ; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab92336)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 6). elife (2014) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Int J Mol Sci (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Cell Prolif (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. Int J Biol Sci (2013) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司runt相关转录因子2抗体(Abcam, ab76956)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Prolif (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(C-12)
  • 免疫印迹; 大鼠; 图 1g
圣克鲁斯生物技术runt相关转录因子2抗体(Santa, sc-390715)被用于被用于免疫印迹在大鼠样本上 (图 1g). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠; 图 s7d
  • 免疫组化; 人类; 1:50; 图 s1b
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫细胞化学在小鼠样本上 (图 s7d) 和 被用于免疫组化在人类样本上浓度为1:50 (图 s1b). Nat Commun (2020) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, SC-390351)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(27-K)
  • 免疫细胞化学; 人类; 图 4h
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-101145)被用于被用于免疫细胞化学在人类样本上 (图 4h). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(27-K)
  • 免疫印迹; 大鼠; 1:400; 图 7a
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-101145)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 7a). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-12)
  • 染色质免疫沉淀 ; 小鼠; 图 6d
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, SC-390715)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 6d). Sci Rep (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术runt相关转录因子2抗体(santa Cruz, sc-390351)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Int J Med Sci (2016) ncbi
小鼠 单克隆(27-K)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术runt相关转录因子2抗体(SantaCruz, sc-101145)被用于被用于免疫印迹在人类样本上 (图 7c). Oncogene (2016) ncbi
小鼠 单克隆(27-K)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz Biotechnology, sc-101145)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Pathol Oncol Res (2016) ncbi
小鼠 单克隆(F-2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz, sc-390351)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(27-K)
  • 免疫组化-石蜡切片; 人类
圣克鲁斯生物技术runt相关转录因子2抗体(Santa Cruz Biotechnology, 27-K)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2013) ncbi
Novus Biologicals
domestic rabbit 多克隆(8D5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 1k
Novus Biologicalsrunt相关转录因子2抗体(Novusbio, NBP1-77461)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1k). Nat Commun (2021) ncbi
domestic rabbit 多克隆(8D5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e, 4a
Novus Biologicalsrunt相关转录因子2抗体(Novus, NBP1-77461)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e, 4a). J Clin Med (2019) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7b
赛默飞世尔runt相关转录因子2抗体(ThermoFisher Scientific, PA1-41519)被用于被用于免疫印迹在小鼠样本上 (图 7b). Biomed Mater (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D1H7)
  • 免疫细胞化学; 人类; 1:250; 图 3a
  • 免疫印迹; 人类; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(CST, 8486)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3g
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technology, 8486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 5a). Bone (2018) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 9e
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling Technologies, 8486)被用于被用于免疫印迹在小鼠样本上 (图 9e). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1H7)
  • 免疫印迹; 大鼠; 1:1000; 图 11
赛信通(上海)生物试剂有限公司runt相关转录因子2抗体(Cell Signaling, 8486S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11). Mol Med Rep (2016) ncbi
MBL International
单克隆(8G5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Nat Commun (2020) ncbi
单克隆(8G5)
  • 免疫组化基因敲除验证; 小鼠; 1:200; 图 3a
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:200 (图 3a). J Cell Physiol (2019) ncbi
单克隆(8G5)
  • 免疫印迹; 小鼠; 图 3e
MBL Internationalrunt相关转录因子2抗体(MBL International, 8G5)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Biol Chem (2018) ncbi
单克隆(8G5)
  • 免疫沉淀; 人类; 图 2d
  • 免疫印迹; 人类; 图 2b
  • 免疫沉淀; 小鼠; 图 2i
  • 免疫细胞化学; 小鼠; 图 2i
  • 免疫印迹; 小鼠; 图 2i
MBL Internationalrunt相关转录因子2抗体(MBL, D-130-3)被用于被用于免疫沉淀在人类样本上 (图 2d), 被用于免疫印迹在人类样本上 (图 2b), 被用于免疫沉淀在小鼠样本上 (图 2i), 被用于免疫细胞化学在小鼠样本上 (图 2i) 和 被用于免疫印迹在小鼠样本上 (图 2i). J Clin Invest (2016) ncbi
单克隆(8G5)
  • 免疫印迹; 小鼠; 1:100; 图 5b
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5b). PLoS ONE (2016) ncbi
单克隆(8G5)
  • 免疫沉淀; 人类
  • 酶联免疫吸附测定; 人类; 1:5000
MBL Internationalrunt相关转录因子2抗体(MBL, D130-3)被用于被用于免疫沉淀在人类样本上 和 被用于酶联免疫吸附测定在人类样本上浓度为1:5000. Microvasc Res (2015) ncbi
文章列表
  1. Zhang Y, McGrath K, Ayoub E, Kingsley P, Yu H, Fegan K, et al. Mds1CreERT2, an inducible Cre allele specific to adult-repopulating hematopoietic stem cells. Cell Rep. 2021;36:109562 pubmed 出版商
  2. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  3. Jiang L, Yang Q, Gao J, Yang J, He J, Xin H, et al. BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway. Mol Cells. 2021;44:557-568 pubmed 出版商
  4. Kim J, Kim M, Hong S, Kim E, Lee H, Jung H, et al. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol. 2021;12:690113 pubmed 出版商
  5. Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY). 2021;13:18257-18273 pubmed 出版商
  6. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  7. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  8. Lee B, Hong S, Kim M, Kim E, Park H, Jung H, et al. Lycii radicis cortex inhibits glucocorticoid‑induced bone loss by downregulating Runx2 and BMP‑2 expression. Int J Mol Med. 2021;48: pubmed 出版商
  9. Qin H, Zhao X, Hu Y, Wang S, Ma Y, He S, et al. Inhibition of SDF-1/CXCR4 Axis to Alleviate Abnormal Bone Formation and Angiogenesis Could Improve the Subchondral Bone Microenvironment in Osteoarthritis. Biomed Res Int. 2021;2021:8852574 pubmed 出版商
  10. Yen Y, Chien M, Wu P, Hung S. PP2A in LepR+ mesenchymal stem cells contributes to embryonic and postnatal endochondral ossification through Runx2 dephosphorylation. Commun Biol. 2021;4:658 pubmed 出版商
  11. Zhang W, Dong Z, Li D, Li B, Liu Y, Zheng X, et al. Cathepsin K deficiency promotes alveolar bone regeneration by promoting jaw bone marrow mesenchymal stem cells proliferation and differentiation via glycolysis pathway. Cell Prolif. 2021;54:e13058 pubmed 出版商
  12. Olsen R, Ireland A, Kastner D, Groves S, Spainhower K, Pozo K, et al. ASCL1 represses a SOX9+ neural crest stem-like state in small cell lung cancer. Genes Dev. 2021;35:847-869 pubmed 出版商
  13. Yuan C, Chen H, Tu S, Huang H, Pan Y, Gui X, et al. A systematic dissection of the epigenomic heterogeneity of lung adenocarcinoma reveals two different subclasses with distinct prognosis and core regulatory networks. Genome Biol. 2021;22:156 pubmed 出版商
  14. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal Inflammation-Triggered by Periodontal Ligament Stem Cell Pyroptosis Exacerbates Periodontitis. Front Cell Dev Biol. 2021;9:663037 pubmed 出版商
  15. Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, et al. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater. 2021;6:3164-3176 pubmed 出版商
  16. Ofiteru A, Becheru D, Gharbia S, Baltă C, Herman H, Mladin B, et al. Qualifying Osteogenic Potency Assay Metrics for Human Multipotent Stromal Cells: TGF-β2 a Telling Eligible Biomarker. Cells. 2020;9: pubmed 出版商
  17. Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY). 2020;13:4976-4985 pubmed 出版商
  18. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  19. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  20. Bhat O, Yuan X, Camus S, Salloum F, Li P. Abnormal Lysosomal Positioning and Small Extracellular Vesicle Secretion in Arterial Stiffening and Calcification of Mice Lacking Mucolipin 1 Gene. Int J Mol Sci. 2020;21: pubmed 出版商
  21. Zhao W, Zhang W, Ma H, Yang M. NIPA2 regulates osteoblast function by modulating mitophagy in type 2 diabetes osteoporosis. Sci Rep. 2020;10:3078 pubmed 出版商
  22. Yang X, Yang J, Lei P, Wen T. LncRNA MALAT1 shuttled by bone marrow-derived mesenchymal stem cells-secreted exosomes alleviates osteoporosis through mediating microRNA-34c/SATB2 axis. Aging (Albany NY). 2019;11:8777-8791 pubmed 出版商
  23. Darrieutort Laffite C, Arnolfo P, Garraud T, Adrait A, Coute Y, Louarn G, et al. Rotator Cuff Tenocytes Differentiate into Hypertrophic Chondrocyte-Like Cells to Produce Calcium Deposits in an Alkaline Phosphatase-Dependent Manner. J Clin Med. 2019;8: pubmed 出版商
  24. Iwayama T, Okada T, Ueda T, Tomita K, Matsumoto S, Takedachi M, et al. Osteoblastic lysosome plays a central role in mineralization. Sci Adv. 2019;5:eaax0672 pubmed 出版商
  25. Mokuda S, Nakamichi R, Matsuzaki T, Ito Y, Sato T, Miyata K, et al. Wwp2 maintains cartilage homeostasis through regulation of Adamts5. Nat Commun. 2019;10:2429 pubmed 出版商
  26. Li J, Wang P, Xie Z, Wang S, Cen S, Li M, et al. TRAF4 positively regulates the osteogenic differentiation of mesenchymal stem cells by acting as an E3 ubiquitin ligase to degrade Smurf2. Cell Death Differ. 2019;: pubmed 出版商
  27. Guo L, Wei X, Zhang Z, Wang X, Wang C, Li P, et al. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res Ther. 2019;21:109 pubmed 出版商
  28. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  29. Zhou N, Gutierrez Uzquiza A, Zheng X, Chang R, Vogl D, Garfall A, et al. RUNX proteins desensitize multiple myeloma to lenalidomide via protecting IKZFs from degradation. Leukemia. 2019;: pubmed 出版商
  30. Lin X, Zhan J, Zhong J, Wang Y, Wang Y, Li S, et al. lncRNA-ES3/miR-34c-5p/BMF axis is involved in regulating high-glucose-induced calcification/senescence of VSMCs. Aging (Albany NY). 2019;11:523-535 pubmed 出版商
  31. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  32. Liao L, Zhang S, Zhou G, Ye L, Huang J, Zhao L, et al. Deletion of Runx2 in condylar chondrocytes disrupts TMJ tissue homeostasis. J Cell Physiol. 2019;234:3436-3444 pubmed 出版商
  33. Godfrey T, Wildman B, Beloti M, Kemper A, Ferraz E, Roy B, et al. The microRNA-23a cluster regulates the developmental HoxA cluster function during osteoblast differentiation. J Biol Chem. 2018;293:17646-17660 pubmed 出版商
  34. Tay L, Krishnan V, Sankar H, Chong Y, Chuang L, Tan T, et al. RUNX Poly(ADP-Ribosyl)ation and BLM Interaction Facilitate the Fanconi Anemia Pathway of DNA Repair. Cell Rep. 2018;24:1747-1755 pubmed 出版商
  35. Ghanem L, Kromer A, Silverman I, Ji X, Gazzara M, Nguyen N, et al. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol. 2018;38: pubmed 出版商
  36. Yang R, Yu T, Kou X, Gao X, Chen C, Liu D, et al. Tet1 and Tet2 maintain mesenchymal stem cell homeostasis via demethylation of the P2rX7 promoter. Nat Commun. 2018;9:2143 pubmed 出版商
  37. Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. Biomed Res Int. 2018;2018:7849294 pubmed 出版商
  38. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  39. Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez Anguita N, et al. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. elife. 2018;7: pubmed 出版商
  40. Chen X, Chen J, Xu D, Zhao S, Song H, Peng Y. Effects of Osteoglycin (OGN) on treating senile osteoporosis by regulating MSCs. BMC Musculoskelet Disord. 2017;18:423 pubmed 出版商
  41. Fujita S, Mukai T, Mito T, Kodama S, Nagasu A, Kittaka M, et al. Pharmacological inhibition of tankyrase induces bone loss in mice by increasing osteoclastogenesis. Bone. 2018;106:156-166 pubmed 出版商
  42. Jiang X, Hawkins J, Lee J, Lizama C, Bos F, Zape J, et al. Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun. 2017;8:128 pubmed 出版商
  43. Hadden W, Young J, Holle A, McFetridge M, Kim D, Wijesinghe P, et al. Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci U S A. 2017;114:5647-5652 pubmed 出版商
  44. Li S, Wang J. Salvianolic acid B prevents steroid-induced osteonecrosis of the femoral head via PPAR? expression in rats. Exp Ther Med. 2017;13:651-656 pubmed 出版商
  45. Kasaai B, Caolo V, Peacock H, Lehoux S, Gomez Perdiguero E, Luttun A, et al. Erythro-myeloid progenitors can differentiate from endothelial cells and modulate embryonic vascular remodeling. Sci Rep. 2017;7:43817 pubmed 出版商
  46. Fitter S, Matthews M, Martin S, Xie J, Ooi S, Walkley C, et al. mTORC1 Plays an Important Role in Skeletal Development by Controlling Preosteoblast Differentiation. Mol Cell Biol. 2017;37: pubmed 出版商
  47. Rimando M, Wu H, Liu Y, Lee C, Kuo S, Lo Y, et al. Glucocorticoid receptor and Histone deacetylase 6 mediate the differential effect of dexamethasone during osteogenesis of mesenchymal stromal cells (MSCs). Sci Rep. 2016;6:37371 pubmed 出版商
  48. Matsumoto Y, La Rose J, Kent O, Wagner M, Narimatsu M, Levy A, et al. Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest. 2016;126:4482-4496 pubmed 出版商
  49. Jain S, Krishna Meka S, Chatterjee K. Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering. Biomed Mater. 2016;11:055007 pubmed
  50. Huang X, ZHu B, Wang X, Xiao R, Wang C. Three-dimensional co-culture of mesenchymal stromal cells and differentiated osteoblasts on human bio-derived bone scaffolds supports active multi-lineage hematopoiesis in vitro: Functional implication of the biomimetic HSC niche. Int J Mol Med. 2016;38:1141-51 pubmed 出版商
  51. Li P, Xu Y, Gan Y, Song L, Zhang C, Wang L, et al. Role of the ERK1/2 Signaling Pathway in Osteogenesis of Rat Tendon-Derived Stem Cells in Normoxic and Hypoxic Cultures. Int J Med Sci. 2016;13:629-37 pubmed 出版商
  52. Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, et al. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7:236-48 pubmed 出版商
  53. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  54. Kam J, Dumontier E, Baim C, Brignall A, Mendes da Silva D, Cowan M, et al. RGMB and neogenin control cell differentiation in the developing olfactory epithelium. Development. 2016;143:1534-46 pubmed 出版商
  55. Caron M, Emans P, Sanen K, Surtel D, Cremers A, Ophelders D, et al. The Role of Prostaglandins and COX-Enzymes in Chondrogenic Differentiation of ATDC5 Progenitor Cells. PLoS ONE. 2016;11:e0153162 pubmed 出版商
  56. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  57. Shin M, He Y, Marrogi E, Piperdi S, Ren L, Khanna C, et al. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells. PLoS Genet. 2016;12:e1005884 pubmed 出版商
  58. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  59. El Gendi S, Mostafa M. Runx2 Expression as a Potential Prognostic Marker in Invasive Ductal Breast Carcinoma. Pathol Oncol Res. 2016;22:461-70 pubmed 出版商
  60. Wang Y, Zhu G, Wang J, Chen J. Irradiation alters the differentiation potential of bone marrow mesenchymal stem cells. Mol Med Rep. 2016;13:213-23 pubmed 出版商
  61. Li S, TANG J, Chen J, Zhang P, Wang T, Chen T, et al. Regulation of bone formation by baicalein via the mTORC1 pathway. Drug Des Devel Ther. 2015;9:5169-83 pubmed 出版商
  62. Uchiyama T, Kawabata H, Miura Y, Yoshioka S, Iwasa M, Yao H, et al. The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis. Cancer Med. 2015;4:1558-72 pubmed 出版商
  63. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  64. Guan J, Zhang J, Zhu Z, Niu X, Guo S, Wang Y, et al. Bone morphogenetic protein 2 gene transduction enhances the osteogenic potential of human urine-derived stem cells. Stem Cell Res Ther. 2015;6:5 pubmed 出版商
  65. Van Bragt M, Hu X, Xie Y, Li Z. RUNX1, a transcription factor mutated in breast cancer, controls the fate of ER-positive mammary luminal cells. elife. 2014;3:e03881 pubmed 出版商
  66. Mochin M, Underwood K, Cooper B, McLenithan J, Pierce A, Nalvarte C, et al. Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells. Microvasc Res. 2015;97:55-64 pubmed 出版商
  67. Li X, Liang W, Ye H, Weng X, Liu F, Liu X. Overexpression of Shox2 leads to congenital dysplasia of the temporomandibular joint in mice. Int J Mol Sci. 2014;15:13135-50 pubmed 出版商
  68. Choi Y, Kim Y, Jeong H, Jin Y, Yeo C, Lee K. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281:3656-66 pubmed 出版商
  69. Wang Y, Li J, Song W, Yu J. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways. Cell Prolif. 2014;47:241-8 pubmed 出版商
  70. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/?-catenin pathway. PLoS ONE. 2014;9:e91730 pubmed 出版商
  71. Dai J, Li Y, Zhou H, Chen J, Chen M, Xiao Z. Genistein promotion of osteogenic differentiation through BMP2/SMAD5/RUNX2 signaling. Int J Biol Sci. 2013;9:1089-98 pubmed 出版商
  72. Li X, Liu H, Gu S, Liu C, Sun C, Zheng Y, et al. Replacing Shox2 with human SHOX leads to congenital disc degeneration of the temporomandibular joint in mice. Cell Tissue Res. 2014;355:345-54 pubmed 出版商
  73. Kazantseva J, Kivil A, Tints K, Kazantseva A, Neuman T, Palm K. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8:e74799 pubmed 出版商
  74. Andersen T, Abdelgawad M, Kristensen H, Hauge E, Rolighed L, Bollerslev J, et al. Understanding coupling between bone resorption and formation: are reversal cells the missing link?. Am J Pathol. 2013;183:235-46 pubmed 出版商
  75. Wang L, Yan M, Wang Y, Lei G, Yu Y, Zhao C, et al. Proliferation and osteo/odontoblastic differentiation of stem cells from dental apical papilla in mineralization-inducing medium containing additional KH(2)PO(4). Cell Prolif. 2013;46:214-22 pubmed 出版商