这是一篇来自已证抗体库的有关小鼠 Slc17a6的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Slc17a6 抗体。
Slc17a6 同义词: 2900073D12Rik; DNPI; VGLUT2

Synaptic Systems
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 s2d
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135403)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 s2d). Neurotherapeutics (2022) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:1000; 图 7a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:1000 (图 7a). Front Neural Circuits (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:200; 图 3e
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3e). Nat Commun (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 12
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 12). J Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 7a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). Neural Plast (2021) ncbi
小鼠 单克隆(9,50E+12)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 8a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135421)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 8a). Dis Model Mech (2021) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 7i
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 404)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 7i). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7e
Synaptic Systems Slc17a6抗体(Synaptic systems, 135402)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7e). iScience (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6m
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6m). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3h
Synaptic Systems Slc17a6抗体(Synaptic systems, 135,403)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3h). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 豚鼠; 1:1000; 图 3a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:1000 (图 3a). J Neurosci (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 s10c
Synaptic Systems Slc17a6抗体(Synaptic sys, 135-404)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s10c). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2s2b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2s2b). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3g
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135403)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3g). Mol Neurobiol (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 ev3f
Synaptic Systems Slc17a6抗体(SySy, 135404)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 ev3f). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 402)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neuroscience (2018) ncbi
豚鼠 多克隆
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 404)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neuroscience (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5c
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5c). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1d
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2017) ncbi
豚鼠 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4
Synaptic Systems Slc17a6抗体(Synaptic Systems, 1354043)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 表 1
Synaptic Systems Slc17a6抗体(Synaptic Sys, 135 404)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). Neuroscience (2016) ncbi
小鼠 单克隆(9,50E+12)
  • 免疫组化; 小鼠; 1:400; 图 1
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135421)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135-402)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 404)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8). J Neurosci Methods (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(8G9.2)
  • 免疫印迹; 小鼠; 表 1
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫印迹在小鼠样本上 (表 1). Front Synaptic Neurosci (2021) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化在小鼠样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 图 11
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 11). Mol Neurodegener (2016) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 6-2b
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 6-2b). Yonsei Med J (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化在人类样本上. Neuropsychopharmacology (2012) ncbi
赛默飞世尔
小鼠 单克隆(S29-29)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4h
赛默飞世尔 Slc17a6抗体(Invitrogen, MA5-27613)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4h). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2
赛默飞世尔 Slc17a6抗体(生活技术, 42-7800)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Slc17a6抗体(Invitrogen, 42-7800)被用于. Brain Struct Funct (2015) ncbi
Frontier Institute
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 12c
Frontier Institute Slc17a6抗体(Frontier Institute, VGluT-GP-Af810)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 12c). Front Neurosci (2019) ncbi
  • 免疫组化; 猫; 1:250; 图 10b
Frontier Institute Slc17a6抗体(Frontier Institute, VGluT2-GP-Af810)被用于被用于免疫组化在猫样本上浓度为1:250 (图 10b). Neuroscience (2017) ncbi
  • 免疫细胞化学; 小鼠; 1:400
Frontier Institute Slc17a6抗体(Frontier Institute, VGluT2-GP-Af810)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. J Neurosci (2015) ncbi
文章列表
  1. Nuber S, Chung C, Tardiff D, Bechade P, McCaffery T, Shimanaka K, et al. A Brain-Penetrant Stearoyl-CoA Desaturase Inhibitor Reverses α-Synuclein Toxicity. Neurotherapeutics. 2022;19:1018-1036 pubmed 出版商
  2. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  3. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  4. Dhanya S, Hasan G. Purkinje Neurons with Loss of STIM1 Exhibit Age-Dependent Changes in Gene Expression and Synaptic Components. J Neurosci. 2021;41:3777-3798 pubmed 出版商
  5. Safari M, Obexer D, Baier Bitterlich G, zur Nedden S. PKN1 Is a Novel Regulator of Hippocampal GluA1 Levels. Front Synaptic Neurosci. 2021;13:640495 pubmed 出版商
  6. Zhang L, Wu C, Martel D, West M, Sutton M, Shore S. Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus. Neural Plast. 2021;2021:8833087 pubmed 出版商
  7. Atkinson R, LEUNG J, Bender J, Kirkcaldie M, Vickers J, King A. TDP-43 mislocalization drives neurofilament changes in a novel model of TDP-43 proteinopathy. Dis Model Mech. 2021;: pubmed 出版商
  8. Zhang J, Chen D, Sweeney P, Yang Y. An excitatory ventromedial hypothalamus to paraventricular thalamus circuit that suppresses food intake. Nat Commun. 2020;11:6326 pubmed 出版商
  9. Yeung J, Palpagama T, Tate W, Peppercorn K, Waldvogel H, Faull R, et al. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front Neurosci. 2019;13:1427 pubmed 出版商
  10. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  11. Mercurio S, Serra L, Motta A, Gesuita L, Sánchez Arrones L, Inverardi F, et al. Sox2 Acts in Thalamic Neurons to Control the Development of Retina-Thalamus-Cortex Connectivity. iScience. 2019;15:257-273 pubmed 出版商
  12. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  13. Ch ng S, Fu J, Brown R, Smith C, Hossain M, McDougall S, et al. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol. 2019;: pubmed 出版商
  14. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  15. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  16. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  17. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  18. Chmielewska J, Kuzniewska B, Milek J, Urbanska K, Dziembowska M. Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol. 2019;56:2741-2759 pubmed 出版商
  19. Muller T, Braud S, Jüttner R, Voigt B, Paulick K, Sheean M, et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 2018;37: pubmed 出版商
  20. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  21. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  22. Richter K, Schmutz I, Darna M, Zander J, Chavan R, Albrecht U, et al. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience. 2018;371:29-37 pubmed 出版商
  23. Turecek J, Jackman S, Regehr W. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature. 2017;551:503-506 pubmed 出版商
  24. Farhan S, Nixon K, Everest M, Edwards T, Long S, Segal D, et al. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy. Hum Mol Genet. 2017;26:4278-4289 pubmed 出版商
  25. Moreno Juan V, Filipchuk A, Antón Bolaños N, Mezzera C, Gezelius H, Andrés B, et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun. 2017;8:14172 pubmed 出版商
  26. Fukuda T. Structural organization of the dendritic reticulum linked by gap junctions in layer 4 of the visual cortex. Neuroscience. 2017;340:76-90 pubmed 出版商
  27. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  28. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  29. Adotevi N, Leitch B. Alterations in AMPA receptor subunit expression in cortical inhibitory interneurons in the epileptic stargazer mutant mouse. Neuroscience. 2016;339:124-138 pubmed 出版商
  30. Dhar M, Brenner J, Sakimura K, Kano M, Nishiyama H. Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun. 2016;7:12938 pubmed 出版商
  31. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  32. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  33. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  34. De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M, et al. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res. 2016;145:235-247 pubmed 出版商
  35. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  36. Hwang H, Zhang E, Park S, Chung W, Lee S, Kim D, et al. TWIK-Related Spinal Cord K⁺ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation. Yonsei Med J. 2015;56:1307-15 pubmed 出版商
  37. Liu Y, Miao Q, Yuan J, Han S, Zhang P, Li S, et al. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo. J Neurosci. 2015;35:9336-55 pubmed 出版商
  38. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  39. Gavin D, Sharma R, Chase K, Matrisciano F, Dong E, Guidotti A. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology. 2012;37:531-42 pubmed 出版商