这是一篇来自已证抗体库的有关小鼠 Slc17a6的综述,是根据63篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Slc17a6 抗体。
Slc17a6 同义词: 2900073D12Rik; DNPI; VGLUT2

Synaptic Systems
domestic rabbit 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 图 6m
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6m). PLoS Biol (2019) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化; 小鼠; 1:1000; 图 3h
Synaptic Systems Slc17a6抗体(Synaptic systems, 135,403)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3h). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆(/)
  • 免疫细胞化学; 豚鼠; 1:1000; 图 3a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:1000 (图 3a). J Neurosci (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:2000; 图 s10c
Synaptic Systems Slc17a6抗体(Synaptic sys, 135-404)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 s10c). Science (2018) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Neuron (2018) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2s2b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2s2b). elife (2018) ncbi
domestic rabbit 多克隆(/)
  • 免疫印迹; 小鼠; 1:5000; 图 3g
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135403)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3g). Mol Neurobiol (2019) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 小鼠; 1:300; 图 ev3f
Synaptic Systems Slc17a6抗体(SySy, 135404)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 ev3f). EMBO J (2018) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 402)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). Neuron (2018) ncbi
domestic rabbit 多克隆(/)
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 402)被用于被用于免疫印迹在小鼠样本上 (图 3a). Neuroscience (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:200; 图 4b
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4b). Nature (2017) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化; brown rat; 1:2000; 图 5c
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在brown rat样本上浓度为1:2000 (图 5c). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 图 1d
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135402)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1d). Nat Commun (2017) ncbi
豚鼠 多克隆(/)
  • 免疫印迹; brown rat; 1:1000; 图 5a
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135404)被用于被用于免疫印迹在brown rat样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
豚鼠 多克隆(/)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4
Synaptic Systems Slc17a6抗体(Synaptic Systems, 1354043)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:500; 表 1
Synaptic Systems Slc17a6抗体(Synaptic Sys, 135 404)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). Neuroscience (2016) ncbi
小鼠 单克隆(9,50E+12)
  • 免疫组化; 小鼠; 1:400; 图 1
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135421)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化; 小鼠; 图 2d
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135-402)被用于被用于免疫组化在小鼠样本上 (图 2d). elife (2016) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 404)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆(/)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8
Synaptic Systems Slc17a6抗体(Synaptic Systems, 135 403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8). J Neurosci Methods (2016) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化在小鼠样本上 (图 1a). J Clin Invest (2018) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 图 11
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 11). Mol Neurodegener (2016) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-石蜡切片; brown rat; 1:1000; 图 6-2b
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化-石蜡切片在brown rat样本上浓度为1:1000 (图 6-2b). Yonsei Med J (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Slc17a6抗体(Abcam, ab79157)被用于被用于免疫组化在人类样本上. Neuropsychopharmacology (2012) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2
赛默飞世尔 Slc17a6抗体(生活技术, 42-7800)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Exp Eye Res (2016) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 1
西格玛奥德里奇 Slc17a6抗体(Sigma, V-2514)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
默克密理博中国
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). Science (2019) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; grey mouse lemur; 1:5000
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在grey mouse lemur样本上浓度为1:5000. J Comp Neurol (2019) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; Tree pangolin; 1:4000; 图 6c
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在Tree pangolin样本上浓度为1:4000 (图 6c). J Comp Neurol (2019) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; grey mouse lemur; 1:5000; 图 2a
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在grey mouse lemur样本上浓度为1:5000 (图 2a). J Comp Neurol (2019) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-自由浮动切片; brown rat; 图 3a
  • 免疫组化-自由浮动切片; 小鼠; 图 3b
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-自由浮动切片在brown rat样本上 (图 3a) 和 被用于免疫组化-自由浮动切片在小鼠样本上 (图 3b). J Comp Neurol (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 3a
默克密理博中国 Slc17a6抗体(EMD Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 3a). PLoS ONE (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫印迹; 小鼠; 表 1
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 1:100; 图 4p
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4p). Sci Rep (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; Northern elephant seal; 0.2 ug/ml; 表 1
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在Northern elephant seal样本上浓度为0.2 ug/ml (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7q
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7q). J Comp Neurol (2017) ncbi
小鼠 单克隆(8G9.2)
  • 免疫印迹; 小鼠; 1:500; 图 2
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 1:300; 图 4h
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4h). Cell Rep (2016) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-自由浮动切片; 家羊; 1:500
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-自由浮动切片在家羊样本上浓度为1:500. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4b
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4b). Nat Commun (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 1:500; 图 3f
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). Nat Commun (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫印迹; brown rat; 1:2000; 图 s3
默克密理博中国 Slc17a6抗体(EMD Millipore, MAB5504)被用于被用于免疫印迹在brown rat样本上浓度为1:2000 (图 s3). Nat Neurosci (2015) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; brown rat; 1:500
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. J Neurosci (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Front Neural Circuits (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 猕猴; 1:2,000
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化在猕猴样本上浓度为1:2,000. J Comp Neurol (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; Saimiri boliviensis peruviensis
  • 免疫组化-冰冻切片; small-eared galago
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在Saimiri boliviensis peruviensis样本上 和 被用于免疫组化-冰冻切片在small-eared galago样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫印迹; brown rat
默克密理博中国 Slc17a6抗体(EMD Millipore, MAB5504)被用于被用于免疫印迹在brown rat样本上. CNS Neurosci Ther (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; small-eared galago; 1:5000
  • 免疫印迹; small-eared galago
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在small-eared galago样本上浓度为1:5000 和 被用于免疫印迹在small-eared galago样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; African green monkey; 1:5000
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:5000. J Comp Neurol (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 猕猴; 1:4000
  • 免疫组化-冰冻切片; 人类; 1:4000
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:4000 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:4000. J Comp Neurol (2013) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; white-toothed pygmy shrew; 1:1000
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在white-toothed pygmy shrew样本上浓度为1:1000. J Comp Neurol (2012) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; eastern gray squirrel; 1:5000
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在eastern gray squirrel样本上浓度为1:5000. J Comp Neurol (2011) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; 猕猴; 1:2000
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; brown rat; 1:500
  • 免疫印迹; brown rat; 1:500
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化在brown rat样本上浓度为1:500 和 被用于免疫印迹在brown rat样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; brown rat; 1:400
默克密理博中国 Slc17a6抗体(Millipore, MAB5504)被用于被用于免疫组化-冰冻切片在brown rat样本上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化; brown rat
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化在brown rat样本上. J Comp Neurol (2009) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-冰冻切片; eastern gray squirrel; 1:2000
默克密理博中国 Slc17a6抗体(Chemicon, MAB5504)被用于被用于免疫组化-冰冻切片在eastern gray squirrel样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(8G9.2)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
默克密理博中国 Slc17a6抗体(Chemicon, MAB 5504)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. J Comp Neurol (2006) ncbi
文章列表
  1. Otsu Y, Darcq E, Pietrajtis K, Matyas F, Schwartz E, Bessaih T, et al. Control of aversion by glycine-gated GluN1/GluN3A NMDA receptors in the adult medial habenula. Science. 2019;366:250-254 pubmed 出版商
  2. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  3. Ch ng S, Fu J, Brown R, Smith C, Hossain M, McDougall S, et al. Characterization of the relaxin family peptide receptor 3 system in the mouse bed nucleus of the stria terminalis. J Comp Neurol. 2019;: pubmed 出版商
  4. Saraf M, Balaram P, Pifferi F, Kennedy H, Kaas J. The sensory thalamus and visual midbrain in mouse lemurs. J Comp Neurol. 2019;527:2599-2611 pubmed 出版商
  5. Imam A, Bhagwandin A, Ajao M, Ihunwo A, Manger P. The brain of the tree pangolin (Manis tricuspis). IV. The hippocampal formation. J Comp Neurol. 2019;527:2393-2412 pubmed 出版商
  6. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  7. Real R, Peter M, Trabalza A, Khan S, Smith M, Dopp J, et al. In vivo modeling of human neuron dynamics and Down syndrome. Science. 2018;362: pubmed 出版商
  8. Zhu F, Cizeron M, Qiu Z, Benavides Piccione R, Kopanitsa M, Skene N, et al. Architecture of the Mouse Brain Synaptome. Neuron. 2018;99:781-799.e10 pubmed 出版商
  9. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  10. Chmielewska J, Kuzniewska B, Milek J, Urbanska K, Dziembowska M. Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol. 2019;56:2741-2759 pubmed 出版商
  11. Muller T, Braud S, Jüttner R, Voigt B, Paulick K, Sheean M, et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 2018;37: pubmed 出版商
  12. Rousseaux M, Tschumperlin T, Lu H, Lackey E, Bondar V, Wan Y, et al. ATXN1-CIC Complex Is the Primary Driver of Cerebellar Pathology in Spinocerebellar Ataxia Type 1 through a Gain-of-Function Mechanism. Neuron. 2018;97:1235-1243.e5 pubmed 出版商
  13. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  14. Saraf M, Balaram P, Pifferi F, Gămănuţ R, Kennedy H, Kaas J. Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. J Comp Neurol. 2019;527:625-639 pubmed 出版商
  15. Richter K, Schmutz I, Darna M, Zander J, Chavan R, Albrecht U, et al. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience. 2018;371:29-37 pubmed 出版商
  16. Turecek J, Jackman S, Regehr W. Synaptotagmin 7 confers frequency invariance onto specialized depressing synapses. Nature. 2017;551:503-506 pubmed 出版商
  17. Farhan S, Nixon K, Everest M, Edwards T, Long S, Segal D, et al. Identification of a novel synaptic protein, TMTC3, involved in periventricular nodular heterotopia with intellectual disability and epilepsy. Hum Mol Genet. 2017;26:4278-4289 pubmed 出版商
  18. Lauer S, Lenschow C, Brecht M. Sexually selected size differences and conserved sexual monomorphism of genital cortex. J Comp Neurol. 2017;525:2706-2718 pubmed 出版商
  19. Hayashi K, Furuya A, Sakamaki Y, Akagi T, Shinoda Y, Sadakata T, et al. The brain-specific RasGEF very-KIND is required for normal dendritic growth in cerebellar granule cells and proper motor coordination. PLoS ONE. 2017;12:e0173175 pubmed 出版商
  20. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  21. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  22. Turner E, Sawyer E, Kaas J. Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (Mirounga angustirostris) and California sea lion (Zalophus californianus). J Comp Neurol. 2017;525:2109-2132 pubmed 出版商
  23. Moreno Juan V, Filipchuk A, Antón Bolaños N, Mezzera C, Gezelius H, Andrés B, et al. Prenatal thalamic waves regulate cortical area size prior to sensory processing. Nat Commun. 2017;8:14172 pubmed 出版商
  24. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  25. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  26. Adotevi N, Leitch B. Alterations in AMPA receptor subunit expression in cortical inhibitory interneurons in the epileptic stargazer mutant mouse. Neuroscience. 2016;339:124-138 pubmed 出版商
  27. Dhar M, Brenner J, Sakimura K, Kano M, Nishiyama H. Spatiotemporal dynamics of lesion-induced axonal sprouting and its relation to functional architecture of the cerebellum. Nat Commun. 2016;7:12938 pubmed 出版商
  28. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  29. Milinkeviciute G, Muniak M, Ryugo D. Descending projections from the inferior colliculus to the dorsal cochlear nucleus are excitatory. J Comp Neurol. 2017;525:773-793 pubmed 出版商
  30. Laramée M, Smolders K, Hu T, Bronchti G, Boire D, Arckens L. Congenital Anophthalmia and Binocular Neonatal Enucleation Differently Affect the Proteome of Primary and Secondary Visual Cortices in Mice. PLoS ONE. 2016;11:e0159320 pubmed 出版商
  31. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  32. Wang Y, Hersheson J, López D, Hammer M, Liu Y, Lee K, et al. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep. 2016;16:79-91 pubmed 出版商
  33. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  34. Kim B, Silverman S, Liu Y, Wordinger R, Pang I, Clark A. In vitro and in vivo neuroprotective effects of cJun N-terminal kinase inhibitors on retinal ganglion cells. Mol Neurodegener. 2016;11:30 pubmed 出版商
  35. De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M, et al. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res. 2016;145:235-247 pubmed 出版商
  36. White J, Lin T, Brown A, Arancillo M, Lackey E, Stay T, et al. An optimized surgical approach for obtaining stable extracellular single-unit recordings from the cerebellum of head-fixed behaving mice. J Neurosci Methods. 2016;262:21-31 pubmed 出版商
  37. Hwang H, Zhang E, Park S, Chung W, Lee S, Kim D, et al. TWIK-Related Spinal Cord K⁺ Channel Expression Is Increased in the Spinal Dorsal Horn after Spinal Nerve Ligation. Yonsei Med J. 2015;56:1307-15 pubmed 出版商
  38. Merkley C, Coolen L, Goodman R, Lehman M. Evidence for Changes in Numbers of Synaptic Inputs onto KNDy and GnRH Neurones during the Preovulatory LH Surge in the Ewe. J Neuroendocrinol. 2015;27:624-35 pubmed 出版商
  39. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun. 2015;6:6756 pubmed 出版商
  40. Lee D, Jeong J, Chun S, Chua S, Jo Y. Interplay between glucose and leptin signalling determines the strength of GABAergic synapses at POMC neurons. Nat Commun. 2015;6:6618 pubmed 出版商
  41. Zhang S, Qi J, Li X, Wang H, Britt J, Hoffman A, et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386-92 pubmed 出版商
  42. White J, Arancillo M, Stay T, George Jones N, Levy S, Heck D, et al. Cerebellar zonal patterning relies on Purkinje cell neurotransmission. J Neurosci. 2014;34:8231-45 pubmed 出版商
  43. Manca P, Mameli O, Caria M, Torrej n Escribano B, Blasi J. Distribution of SNAP25, VAMP1 and VAMP2 in mature and developing deep cerebellar nuclei after estrogen administration. Neuroscience. 2014;266:102-15 pubmed 出版商
  44. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  45. Reeber S, Loeschel C, Franklin A, Sillitoe R. Establishment of topographic circuit zones in the cerebellum of scrambler mutant mice. Front Neural Circuits. 2013;7:122 pubmed 出版商
  46. Cerkevich C, Qi H, Kaas J. Thalamic input to representations of the teeth, tongue, and face in somatosensory area 3b of macaque monkeys. J Comp Neurol. 2013;521:3954-71 pubmed 出版商
  47. Puglisi F, Vanni V, Ponterio G, Tassone A, Sciamanna G, Bonsi P, et al. Torsin A Localization in the Mouse Cerebellar Synaptic Circuitry. PLoS ONE. 2013;8:e68063 pubmed 出版商
  48. Liao C, Gharbawie O, Qi H, Kaas J. Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. J Comp Neurol. 2013;521:3768-90 pubmed 出版商
  49. Ebner B, Ingram M, Barnes J, Duvick L, Frisch J, Clark H, et al. Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. J Neurosci. 2013;33:5806-20 pubmed 出版商
  50. Zha Y, Wang Y, Deng Y, Zhang R, Tan X, Yuan W, et al. Exercise training lowers the enhanced tonically active glutamatergic input to the rostral ventrolateral medulla in hypertensive rats. CNS Neurosci Ther. 2013;19:244-51 pubmed 出版商
  51. Baldwin M, Balaram P, Kaas J. Projections of the superior colliculus to the pulvinar in prosimian galagos (Otolemur garnettii) and VGLUT2 staining of the visual pulvinar. J Comp Neurol. 2013;521:1664-82 pubmed 出版商
  52. Marion R, Li K, Purushothaman G, Jiang Y, Casagrande V. Morphological and neurochemical comparisons between pulvinar and V1 projections to V2. J Comp Neurol. 2013;521:813-32 pubmed 出版商
  53. Garcia Marin V, Ahmed T, Afzal Y, Hawken M. Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human. J Comp Neurol. 2013;521:130-51 pubmed 出版商
  54. Naumann R, Anjum F, Roth Alpermann C, Brecht M. Cytoarchitecture, areas, and neuron numbers of the Etruscan shrew cortex. J Comp Neurol. 2012;520:2512-30 pubmed 出版商
  55. Kadriu B, Guidotti A, Chen Y, Grayson D. DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol. 2012;520:1951-64 pubmed 出版商
  56. Gavin D, Sharma R, Chase K, Matrisciano F, Dong E, Guidotti A. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology. 2012;37:531-42 pubmed 出版商
  57. Baldwin M, Wong P, Reed J, Kaas J. Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): evidence for four subdivisions within the pulvinar complex. J Comp Neurol. 2011;519:1071-94 pubmed 出版商
  58. Qi H, Gharbawie O, Wong P, Kaas J. Cell-poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. J Comp Neurol. 2011;519:738-58 pubmed 出版商
  59. Griffin G, Ferri Kolwicz S, Reyes B, Van Bockstaele E, Flanagan Cato L. Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol. 2010;518:4531-45 pubmed 出版商
  60. Issa A, Zhan W, Sieck G, Mantilla C. Neuregulin-1 at synapses on phrenic motoneurons. J Comp Neurol. 2010;518:4213-25 pubmed 出版商
  61. Gómez Nieto R, Rubio M. A bushy cell network in the rat ventral cochlear nucleus. J Comp Neurol. 2009;516:241-63 pubmed 出版商
  62. Wong P, Gharbawie O, Luethke L, Kaas J. Thalamic connections of architectonic subdivisions of temporal cortex in grey squirrels (Sciurus carolinensis). J Comp Neurol. 2008;510:440-61 pubmed 出版商
  63. Wässle H, Regus Leidig H, Haverkamp S. Expression of the vesicular glutamate transporter vGluT2 in a subset of cones of the mouse retina. J Comp Neurol. 2006;496:544-55 pubmed