这是一篇来自已证抗体库的有关小鼠 Slc17a7的综述,是根据63篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Slc17a7 抗体。
Slc17a7 同义词: 2900052E22Rik; AI851913; Vglut1

Synaptic Systems
小鼠 单克隆(68B7)
  • 免疫印迹; 大鼠; 图 5s1
Synaptic Systems Slc17a7抗体(synaptic systems, 135 011)被用于被用于免疫印迹在大鼠样本上 (图 5s1). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3f
Synaptic Systems Slc17a7抗体(SYSY, 135304)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3f). J Exp Med (2020) ncbi
小鼠 单克隆(317G6)
  • 免疫组化-自由浮动切片; 大鼠; 图 5b
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135511)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 5b). Front Mol Neurosci (2020) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d1
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d1). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 2d1
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 2d1). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 7k
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 7k). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1c
Synaptic Systems Slc17a7抗体(Synaptic system, 135302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2a
Synaptic Systems Slc17a7抗体(SYSY, 135302)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 4c
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4c). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(317G6)
  • 免疫细胞化学; 大鼠; 图 1e
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135511)被用于被用于免疫细胞化学在大鼠样本上 (图 1e). Cell Rep (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:600; 图 4a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 4a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6l
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6l). PLoS Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s7a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135302)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6d
Synaptic Systems Slc17a7抗体(Synaptic systems, 135-302)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6d). J Comp Neurol (2019) ncbi
小鼠 单克隆(68B7)
  • 免疫细胞化学; 小鼠; 1:300; 图 3c
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 3c). Front Mol Neurosci (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:4000; 图 f7s1a
Synaptic Systems Slc17a7抗体(Synaptic System, 135304)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 f7s1a). elife (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 豚鼠; 1:500; 图 3a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 307)被用于被用于免疫细胞化学在豚鼠样本上浓度为1:500 (图 3a). J Neurosci (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 7c
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 7c). J Comp Neurol (2019) ncbi
豚鼠 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 ev2f
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2f). EMBO J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s5b
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135302)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5b). Mol Psychiatry (2019) ncbi
小鼠 单克隆(317G6)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3s1a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135511)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3s1a). elife (2018) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
Synaptic Systems Slc17a7抗体(SySy, 135304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a). EMBO J (2018) ncbi
小鼠 单克隆(317D5)
  • proximity ligation assay; 小鼠; 1:250; 图 s14e
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135311)被用于被用于proximity ligation assay在小鼠样本上浓度为1:250 (图 s14e). Mol Syst Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s4g
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135302)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s4g). Nat Neurosci (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 s7c
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫组化在小鼠样本上 (图 s7c). Cell (2018) ncbi
小鼠 单克隆(317D5)
  • 免疫印迹; 小鼠; 图 1a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135311)被用于被用于免疫印迹在小鼠样本上 (图 1a). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 302)被用于被用于免疫印迹在小鼠样本上 (图 1a). Neuroscience (2018) ncbi
豚鼠 多克隆
  • 免疫印迹; 小鼠; 图 1a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫印迹在小鼠样本上 (图 1a). Neuroscience (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:7500; 图 2a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 303)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:7500 (图 2a). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4c
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 302)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4c). Nat Commun (2017) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 7b
Synaptic Systems Slc17a7抗体(Synaptic System, 135304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 7b). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000
  • 免疫细胞化学; 人类; 1:1000; 图 3f
Synaptic Systems Slc17a7抗体(SYSY, 135302)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3f). Nature (2017) ncbi
小鼠 单克隆(317G6)
  • 免疫印迹; 小鼠; 图 2d
Synaptic Systems Slc17a7抗体(Synaptic Systems, 317G6)被用于被用于免疫印迹在小鼠样本上 (图 2d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 图 1
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135,302)被用于被用于免疫细胞化学在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 1). Front Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 1E
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1E). Eneuro (2017) ncbi
小鼠 单克隆(317D5)
  • 免疫细胞化学; 小鼠; 1:150; 图 5e
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 311)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 5e). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2
Synaptic Systems Slc17a7抗体(Synaptic systems, 135 302)被用于被用于免疫组化在人类样本上 (图 2). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Gen Physiol (2017) ncbi
小鼠 单克隆(317D5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7a
  • 免疫组化; 小鼠; 1:1000
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 311)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135303)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 s4
Synaptic Systems Slc17a7抗体(SYSY, 135303)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 s4). Stem Cell Res (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:4000; 图 s5a
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:4000 (图 s5a). Neuron (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s3). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在大鼠样本上 (图 5). J Neurosci (2016) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4). Front Cell Neurosci (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 s1A-1
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫细胞化学在小鼠样本上 (图 s1A-1). Proc Natl Acad Sci U S A (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135-303)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 表 3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 303)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (表 3). Cell Mol Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s2
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 303)被用于被用于免疫细胞化学在人类样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135303)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s2
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135304)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Nature (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 图 2
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 304)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135 302)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(317D5)
  • 免疫组化; 小鼠; 1:800; 图 4
Synaptic Systems Slc17a7抗体(SynapticSystems, 135 311)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 4). Front Neuroanat (2015) ncbi
小鼠 单克隆(317G6)
  • 免疫组化; 小鼠; 3.3 ug/ml; 图 3
Synaptic Systems Slc17a7抗体(Synaptic Systems, 135511)被用于被用于免疫组化在小鼠样本上浓度为3.3 ug/ml (图 3). J Cell Biol (2012) ncbi
BioLegend
小鼠 单克隆(N28/9)
  • 免疫细胞化学; 人类; 图 s3b
  • 免疫细胞化学; 小鼠; 图 s3a
BioLegend Slc17a7抗体(BioLegend, MMS5245-100)被用于被用于免疫细胞化学在人类样本上 (图 s3b) 和 被用于免疫细胞化学在小鼠样本上 (图 s3a). Nature (2020) ncbi
小鼠 单克隆(N28/9)
  • 免疫组化; 小鼠; 图 st1
BioLegend Slc17a7抗体(Cell Signalling, 821301)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3b
赛默飞世尔 Slc17a7抗体(Thermo Scientific, 48-C2400)被用于被用于免疫细胞化学在人类样本上 (图 s3b). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1a
赛默飞世尔 Slc17a7抗体(Thermo Fisher, 48-2400)被用于被用于免疫印迹在小鼠样本上 (图 s1a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3a
赛默飞世尔 Slc17a7抗体(ThermoFisher Scientific, OSV00007G)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3a). Neurotoxicology (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Slc17a7抗体(Invitrogen, 48-2400)被用于. Brain Res (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-8)
  • 免疫印迹; 人类; 1000 ng/ml; 图 1
圣克鲁斯生物技术 Slc17a7抗体(Santa Cruz, sc-377425)被用于被用于免疫印迹在人类样本上浓度为1000 ng/ml (图 1). Nat Commun (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR10953)
  • 免疫印迹; 小鼠; 1:2000; 图 9a
艾博抗(上海)贸易有限公司 Slc17a7抗体(Abcam, ab180188)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Sci Rep (2016) ncbi
文章列表
  1. Kreutzberger A, Kiessling V, Doyle C, Schenk N, Upchurch C, Elmer Dixon M, et al. Distinct insulin granule subpopulations implicated in the secretory pathology of diabetes types 1 and 2. elife. 2020;9: pubmed 出版商
  2. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson's disease with in situ converted nigral neurons. Nature. 2020;582:550-556 pubmed 出版商
  3. Bączyk M, Alami N, Delestrée N, Martinot C, Tang L, Commisso B, et al. Synaptic restoration by cAMP/PKA drives activity-dependent neuroprotection to motoneurons in ALS. J Exp Med. 2020;217: pubmed 出版商
  4. Kriebel M, Ebel J, Battke F, Griesbach S, Volkmer H. Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity. Front Mol Neurosci. 2020;13:43 pubmed 出版商
  5. McCabe M, Cullen E, Barrows C, Shore A, Tooke K, Laprade K, et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. elife. 2020;9: pubmed 出版商
  6. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  7. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  8. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  9. Collins L, Brunjes P. The mouse olfactory peduncle 4: Development of synapses, perineuronal nets, and capillaries. J Comp Neurol. 2019;: pubmed 出版商
  10. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  11. Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, et al. Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci. 2019;13:217 pubmed 出版商
  12. Rhee H, Shaib A, Rehbach K, Lee C, Seif P, Thomas C, et al. An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep. 2019;27:2212-2228.e7 pubmed 出版商
  13. Dorgans K, Demais V, Bailly Y, Poulain B, Isope P, Doussau F. Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing. elife. 2019;8: pubmed 出版商
  14. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  15. Nagai J, Rajbhandari A, Gangwani M, Hachisuka A, Coppola G, Masmanidis S, et al. Hyperactivity with Disrupted Attention by Activation of an Astrocyte Synaptogenic Cue. Cell. 2019;177:1280-1292.e20 pubmed 出版商
  16. Nguyen U, Imamura F. Regional differences in mitral cell development in mouse olfactory bulb. J Comp Neurol. 2019;: pubmed 出版商
  17. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  18. Quade B, Camacho M, Zhao X, Orlando M, Trimbuch T, Xu J, et al. Membrane bridging by Munc13-1 is crucial for neurotransmitter release. elife. 2019;8: pubmed 出版商
  19. Olthof B, Gartside S, Rees A. Puncta of Neuronal Nitric Oxide Synthase (nNOS) Mediate NMDA Receptor Signaling in the Auditory Midbrain. J Neurosci. 2019;39:876-887 pubmed 出版商
  20. Shepard A, Scheffel J, Yu W. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol. 2019;527:999-1011 pubmed 出版商
  21. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  22. Soiza Reilly M, Meye F, Olusakin J, Telley L, Petit E, Chen X, et al. SSRIs target prefrontal to raphe circuits during development modulating synaptic connectivity and emotional behavior. Mol Psychiatry. 2019;24:726-745 pubmed 出版商
  23. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  24. Muller T, Braud S, Jüttner R, Voigt B, Paulick K, Sheean M, et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 2018;37: pubmed 出版商
  25. Trepte P, Kruse S, Kostova S, Hoffmann S, Buntru A, Tempelmeier A, et al. LuTHy: a double-readout bioluminescence-based two-hybrid technology for quantitative mapping of protein-protein interactions in mammalian cells. Mol Syst Biol. 2018;14:e8071 pubmed 出版商
  26. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  27. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  28. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  29. Richter K, Schmutz I, Darna M, Zander J, Chavan R, Albrecht U, et al. VGLUT1 Binding to Endophilin or Intersectin1 and Dynamin Phosphorylation in a Diurnal Context. Neuroscience. 2018;371:29-37 pubmed 出版商
  30. Hunter D, Manglapus M, Bachay G, Claudepierre T, Dolan M, Gesuelli K, et al. CNS synapses are stabilized trans-synaptically by laminins and laminin-interacting proteins. J Comp Neurol. 2017;: pubmed 出版商
  31. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  32. Zhao Y, Tian J, Sui S, Yuan X, Chen H, Qu C, et al. Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep. 2017;7:7169 pubmed 出版商
  33. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  34. Bobo Jiménez V, Delgado Esteban M, Angibaud J, Sánchez Morán I, de la Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114:4513-4518 pubmed 出版商
  35. Latina V, Caioli S, Zona C, Ciotti M, Amadoro G, Calissano P. Impaired NGF/TrkA Signaling Causes Early AD-Linked Presynaptic Dysfunction in Cholinergic Primary Neurons. Front Cell Neurosci. 2017;11:68 pubmed 出版商
  36. Zhong C, Akmentin W, DU C, Role L, Talmage D. Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. Eneuro. 2017;4: pubmed 出版商
  37. Ripamonti S, Ambrozkiewicz M, Guzzi F, Gravati M, Biella G, Bormuth I, et al. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. elife. 2017;6: pubmed 出版商
  38. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  39. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  40. Matsuno T, Kiyokage E, Toida K. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb. J Comp Neurol. 2017;525:1633-1648 pubmed 出版商
  41. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  42. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  43. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  44. Redmond S, Mei F, Eshed Eisenbach Y, Osso L, Leshkowitz D, Shen Y, et al. Somatodendritic Expression of JAM2 Inhibits Oligodendrocyte Myelination. Neuron. 2016;91:824-836 pubmed 出版商
  45. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  46. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  47. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  48. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  49. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  50. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  51. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  52. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  53. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  54. Bartelt Kirbach B, Moron M, Glomb M, Beck C, Weller M, Golenhofen N. HspB5/?B-crystallin increases dendritic complexity and protects the dendritic arbor during heat shock in cultured rat hippocampal neurons. Cell Mol Life Sci. 2016;73:3761-75 pubmed 出版商
  55. Kim E, Jeon C, Lee S, Hwang I, Chung T. Robust Type-specific Hemisynapses Induced by Artificial Dendrites. Sci Rep. 2016;6:24210 pubmed 出版商
  56. Hayashi Y, Nishimune H, Hozumi K, Saga Y, Harada A, Yuzaki M, et al. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci Rep. 2016;6:23969 pubmed 出版商
  57. Jackman S, Turecek J, Belinsky J, Regehr W. The calcium sensor synaptotagmin 7 is required for synaptic facilitation. Nature. 2016;529:88-91 pubmed 出版商
  58. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  59. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  60. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  61. Blanqué A, Repetto D, Rohlmann A, Brockhaus J, Duning K, Pavenstädt H, et al. Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro. Front Neuroanat. 2015;9:13 pubmed 出版商
  62. McGuire B, Fiorillo B, Ryugo D, Lauer A. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss. Brain Res. 2015;1605:22-30 pubmed 出版商
  63. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu M, Deogracias R, et al. BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol. 2012;196:775-88 pubmed 出版商