这是一篇来自已证抗体库的有关小鼠 Spp1的综述,是根据65篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Spp1 抗体。
Spp1 同义词: 2AR; Apl-1; BNSP; BSPI; Bsp; ETA-1; Eta; OP; Opn; Opnl; Ric; Spp-1

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s2g
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2g). Int J Oral Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在大鼠样本上 (图 3b). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1b
艾博抗(上海)贸易有限公司 Spp1抗体(abcam, ab8448)被用于被用于免疫印迹在人类样本上 (图 s1b). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在人类样本上 (图 4c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 3b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3b). Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 6b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 6b). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司 Spp1抗体(abcam, ab8448)被用于被用于免疫组化在小鼠样本上. Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, Ab8448)被用于被用于免疫印迹在人类样本上 (图 4d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, 8448)被用于被用于免疫印迹在小鼠样本上 (图 4b). Bioact Mater (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 图 4h
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4h). PLoS ONE (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3d
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化在小鼠样本上 (图 3d). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Cell Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 7d, 7h
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 7d, 7h). PLoS Genet (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 2a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2a). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, 53)被用于被用于免疫印迹在人类样本上 (图 4c). Front Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Biomed Pharmacother (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5h
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5h). J Histochem Cytochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1f
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 7c
  • 免疫印迹; 大鼠; 图 3c
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于流式细胞仪在大鼠样本上 (图 7c) 和 被用于免疫印迹在大鼠样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Spp1抗体(abcam, ab8448)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Oncogene (2016) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2016) ncbi
小鼠 单克隆(53)
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncology (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Neural Regen Res (2022) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫组化; 小鼠; 1:100; 图 4c
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4c). FEBS Open Bio (2020) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 Spp1抗体(Santa, sc-73631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Front Immunol (2019) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫印迹; 人类; 1:200; 图 5g
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-73631)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5g). Int J Biol Sci (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠; 图 7d
  • 免疫细胞化学; 大鼠; 图 2c
  • 免疫印迹; 大鼠; 图 3b
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在小鼠样本上 (图 7d), 被用于免疫细胞化学在大鼠样本上 (图 2c) 和 被用于免疫印迹在大鼠样本上 (图 3b). Clin Exp Pharmacol Physiol (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上 (图 8a). PLoS ONE (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫组化-石蜡切片; 小鼠; 图 5h
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc21742)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5h). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-73631)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Spp1抗体(santa Cruz, sc-21742)被用于被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠; 图 8b
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在小鼠样本上 (图 8b). PLoS ONE (2016) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 Spp1抗体(SantaCruz, sc-73631)被用于被用于免疫印迹在人类样本上 (图 7c). Oncogene (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, SC-21742)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 1:1000; 图 8
圣克鲁斯生物技术 Spp1抗体(santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz Biotechnology, sc-21742)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Spp1抗体(santa cruz, sc-21742)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
圣克鲁斯生物技术 Spp1抗体(Santa Cruz Biotechnology, sc-21742)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Mol Med Rep (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc21742)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, SC-21742)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Urology (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 人类; 2 ug/ml
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml. J Tissue Eng Regen Med (2015) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s7b
  • 免疫组化; 小鼠; 1:20; 图 s7c
  • 免疫印迹; 小鼠; 1:500; 图 4n
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s7b), 被用于免疫组化在小鼠样本上浓度为1:20 (图 s7c) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 4n). Acta Neuropathol Commun (2022) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s1b
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s1b). J Cell Sci (2022) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 9c
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 9c). J Neurosci (2022) ncbi
domestic goat 多克隆
  • 流式细胞仪; 小鼠; 图 4b
安迪生物R&D Spp1抗体(R&D System, IC808P)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Immunother Cancer (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6g
安迪生物R&D Spp1抗体(R&D systems, AF808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6g). Sci Adv (2021) ncbi
Novus Biologicals
小鼠 单克隆(1B20)
  • 免疫组化-石蜡切片; domestic rabbit; 图 7b
Novus Biologicals Spp1抗体(Novus Biologicals, 1B20)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上 (图 7b). Sci Rep (2016) ncbi
小鼠 单克隆(1B20)
  • 免疫组化-石蜡切片; domestic rabbit; 1:100
  • 免疫细胞化学; domestic rabbit; 1:200
Novus Biologicals Spp1抗体(Novus Biologicals, NB110-89062)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:100 和 被用于免疫细胞化学在domestic rabbit样本上浓度为1:200. Tissue Eng Part A (2014) ncbi
赛默飞世尔
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
赛默飞世尔 Spp1抗体(ThermoScientific, PA1-25152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Oncotarget (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(MPIIIB10(1))
  • 免疫组化; 鸡; 图 4
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Studies Hybridoma Bank, MPIIIB10)被用于被用于免疫组化在鸡样本上 (图 4). Front Neuroanat (2016) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫细胞化学; 小鼠; 1:2000; 图 2
  • 免疫印迹; 小鼠; 1:50,000; 图 5f
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Studies Hybridoma Bank (DSHB), MPIIIB101)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 5f). PLoS ONE (2015) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 3
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Hybridoma Studies Institute, MPIIIB10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫细胞化学; 人类; 1:5
Developmental Studies Hybridoma Bank Spp1抗体(DSHB, MPIIIB10)被用于被用于免疫细胞化学在人类样本上浓度为1:5. Anticancer Res (2004) ncbi
文章列表
  1. Shi H, Yin Z, Koronyo Y, Fuchs D, Sheyn J, Davis M, et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol Commun. 2022;10:136 pubmed 出版商
  2. Chen Z, Wu W, Zheng C, Lan Y, Xie H, Xie Z. KLF6 facilitates differentiation of odontoblasts through modulating the expression of P21 in vitro. Int J Oral Sci. 2022;14:20 pubmed 出版商
  3. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  4. Kim J, Ahn M, Choi Y, Chun J, Jung K, Tanaka A, et al. Osteopontin is a biomarker for early autoimmune uveoretinitis. Neural Regen Res. 2022;17:1604-1608 pubmed 出版商
  5. Chang L, Masada M, Kojima M, Yamamoto N. Involvement of Denervated Midbrain-Derived Factors in the Formation of Ectopic Cortico-Mesencephalic Projection after Hemispherectomy. J Neurosci. 2022;42:749-761 pubmed 出版商
  6. Lu C, Liu Z, Klement J, Yang D, Merting A, Poschel D, et al. WDR5-H3K4me3 epigenetic axis regulates OPN expression to compensate PD-L1 function to promote pancreatic cancer immune escape. J Immunother Cancer. 2021;9: pubmed 出版商
  7. Han H, Tian T, Huang G, Li D, Yang S. The lncRNA H19/miR-541-3p/Wnt/β-catenin axis plays a vital role in melatonin-mediated osteogenic differentiation of bone marrow mesenchymal stem cells. Aging (Albany NY). 2021;13:18257-18273 pubmed 出版商
  8. Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxid Med Cell Longev. 2021;2021:8836355 pubmed 出版商
  9. Huang J, Hu M, Niu H, Wang J, Si Y, Cheng S, et al. Osteopontin isoform c promotes the survival of cisplatin-treated NSCLC cells involving NFATc2-mediated suppression on calcium-induced ROS levels. BMC Cancer. 2021;21:750 pubmed 出版商
  10. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  11. Wang C, Ying J, Nie X, Zhou T, Xiao D, Swarnkar G, et al. Targeting angiogenesis for fracture nonunion treatment in inflammatory disease. Bone Res. 2021;9:29 pubmed 出版商
  12. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  13. Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest. 2021;131: pubmed 出版商
  14. Kindt K, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, et al. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun. 2021;12:2861 pubmed 出版商
  15. Tsutsui K, Machida H, Nakagawa A, Ahn K, Morita R, Sekiguchi K, et al. Mapping the molecular and structural specialization of the skin basement membrane for inter-tissue interactions. Nat Commun. 2021;12:2577 pubmed 出版商
  16. Chen Q, Liu X, Wang D, Zheng J, Chen L, Xie Q, et al. Periodontal Inflammation-Triggered by Periodontal Ligament Stem Cell Pyroptosis Exacerbates Periodontitis. Front Cell Dev Biol. 2021;9:663037 pubmed 出版商
  17. Huang J, Li R, Yang J, Cai M, Lee Y, Wang A, et al. Bioadaptation of implants to In vitro and In vivo oxidative stress pathological conditions via nanotopography-induced FoxO1 signaling pathways to enhance Osteoimmunal regeneration. Bioact Mater. 2021;6:3164-3176 pubmed 出版商
  18. Brito V, Patrocinio M, Sousa M, Barreto A, Frasnelli S, Lara V, et al. Mast cells contribute to alveolar bone loss in Spontaneously Hypertensive Rats with periodontal disease regulating cytokines production. PLoS ONE. 2021;16:e0247372 pubmed 出版商
  19. Zarb Y, Sridhar S, Nassiri S, Utz S, Schaffenrath J, Maheshwari U, et al. Microglia control small vessel calcification via TREM2. Sci Adv. 2021;7: pubmed 出版商
  20. Zhang Y, Yang Y, Xu M, Zheng J, Xu Y, Chen G, et al. The Dual Effects of Reactive Oxygen Species on the Mandibular Alveolar Bone Formation in SOD1 Knockout Mice: Promotion or Inhibition. Oxid Med Cell Longev. 2021;2021:8847140 pubmed 出版商
  21. Wang Z, Cheng J, Liu B, Xie F, Li C, Qiao W, et al. Protein deglycase DJ-1 deficiency induces phenotypic switching in vascular smooth muscle cells and exacerbates atherosclerotic plaque instability. J Cell Mol Med. 2021;25:2816-2827 pubmed 出版商
  22. Tang C, Wu M, Zhao D, Edwards D, McVicar A, Luo Y, et al. Runx1 is a central regulator of osteogenesis for bone homeostasis by orchestrating BMP and WNT signaling pathways. PLoS Genet. 2021;17:e1009233 pubmed 出版商
  23. Barney L, Hall C, Schwartz A, Parks A, Sparages C, Galarza S, et al. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci Adv. 2020;6:eaaz4157 pubmed 出版商
  24. Hirano Y, Kurosu H, Shiizaki K, Iwazu Y, Tsuruoka S, Kuro O M. Interleukin-36α as a potential biomarker for renal tubular damage induced by dietary phosphate load. FEBS Open Bio. 2020;10:894-903 pubmed 出版商
  25. Wepler M, Preuss J, Merz T, Hartmann C, Wachter U, McCook O, et al. Impaired Glucocorticoid Receptor Dimerization Aggravates LPS-Induced Circulatory and Pulmonary Dysfunction. Front Immunol. 2019;10:3152 pubmed 出版商
  26. Rabenstein M, Unverricht Yeboah M, Keuters M, Pikhovych A, Hucklenbroich J, Vay S, et al. Transcranial Current Stimulation Alters the Expression of Immune-Mediating Genes. Front Cell Neurosci. 2019;13:461 pubmed 出版商
  27. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  28. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  29. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  30. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  31. Wong J, Wei R, Lyu P, Tong O, Zhang S, Wen Q, et al. Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer. Int J Biol Sci. 2017;13:1373-1386 pubmed 出版商
  32. Dickerson M, Vierra N, Milian S, Dadi P, Jacobson D. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS ONE. 2017;12:e0175069 pubmed 出版商
  33. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  34. Jang M, Lee S, Baek S, Park S, Choi Y, Kim C. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression. PLoS ONE. 2017;12:e0170699 pubmed 出版商
  35. Jin F, Jiang K, Ji S, Wang L, Ni Z, Huang F, et al. Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex. Hum Mol Genet. 2017;26:407-419 pubmed 出版商
  36. Feng W, Zhang K, Liu Y, Chen J, Cai Q, Zhang Y, et al. Apocynin attenuates angiotensin II-induced vascular smooth muscle cells osteogenic switching via suppressing extracellular signal-regulated kinase 1/2. Oncotarget. 2016;7:83588-83600 pubmed 出版商
  37. Stanic K, Saldivia N, Förstera B, Torrejon M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat. 2016;10:89 pubmed
  38. Gago Fuentes R, Bechberger J, Varela Eirin M, Varela Vazquez A, Acea B, Fonseca E, et al. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget. 2016;7:73055-73067 pubmed 出版商
  39. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis T, et al. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Front Physiol. 2016;7:354 pubmed 出版商
  40. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  41. Anunobi C, Koli K, Saxena G, Banjo A, Ogbureke K. Expression of the SIBLINGs and their MMP partners in human benign and malignant prostate neoplasms. Oncotarget. 2016;7:48038-48049 pubmed 出版商
  42. Cheng M, Wahafu T, Jiang G, Liu W, Qiao Y, Peng X, et al. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep. 2016;6:24134 pubmed 出版商
  43. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  44. Zhao K, Zhang M, Zhang L, Wang P, Song G, Liu B, et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci Rep. 2016;6:23771 pubmed 出版商
  45. Calyjur P, Almeida C, Ayub Guerrieri D, Ribeiro A, Fernandes S, Ishiba R, et al. The mdx Mutation in the 129/Sv Background Results in a Milder Phenotype: Transcriptome Comparative Analysis Searching for the Protective Factors. PLoS ONE. 2016;11:e0150748 pubmed 出版商
  46. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  47. Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart Vogt E. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors. PLoS ONE. 2015;10:e0143439 pubmed 出版商
  48. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  49. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  50. Felli N, Errico M, Pedini F, Petrini M, Puglisi R, Bellenghi M, et al. AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene. 2016;35:3016-26 pubmed 出版商
  51. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  52. Sun J, Li J, Li C, Yu Y. Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep. 2015;12:4230-4237 pubmed 出版商
  53. Frenay A, Yazdani S, Boersema M, van der Graaf A, Waanders F, van den Born J, et al. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS ONE. 2015;10:e0129732 pubmed 出版商
  54. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  55. Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35:1641-50 pubmed 出版商
  56. Bouet G, Bouleftour W, Juignet L, Linossier M, Thomas M, Vanden Bossche A, et al. The impairment of osteogenesis in bone sialoprotein (BSP) knockout calvaria cell cultures is cell density dependent. PLoS ONE. 2015;10:e0117402 pubmed 出版商
  57. Harada K, Harada T, Ferdous T, Takenawa T, Ueyama Y. Osteogenic cell fractions isolated from mouse tongue muscle. Mol Med Rep. 2015;12:31-6 pubmed 出版商
  58. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  59. Ndisang J, Chibbar R, Lane N. Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol. 2014;734:23-34 pubmed 出版商
  60. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  61. Nguyen T, Lee B. A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A. 2014;20:1993-2004 pubmed 出版商
  62. Jia Z, Wang S, Tang J, He D, Cui L, Liu Z, et al. Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation?. Urology. 2014;83:509.e7-14 pubmed 出版商
  63. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  64. Kaivosoja E, Sariola V, Chen Y, Konttinen Y. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J Tissue Eng Regen Med. 2015;9:31-40 pubmed 出版商
  65. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743-8 pubmed