这是一篇来自已证抗体库的有关小鼠 Spp1的综述,是根据50篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Spp1 抗体。
Spp1 同义词: 2AR; Apl-1; BNSP; BSPI; Bsp; ETA-1; Eta; OP; Opn; Opnl; Ric; Spp-1

圣克鲁斯生物技术
小鼠 单克隆(LFMb-14)
  • 免疫印迹; 人类; 1:200; 图 5g
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-73631)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5g). Int J Biol Sci (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 大鼠; 图 2c
  • 免疫印迹; 大鼠; 图 3b
  • 免疫印迹; 小鼠; 图 7d
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在大鼠样本上 (图 2c), 被用于免疫印迹在大鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 7d). Clin Exp Pharmacol Physiol (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上 (图 8a). PLoS ONE (2017) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫组化-石蜡切片; 小鼠; 图 5h
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc21742)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5h). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-73631)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫沉淀; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Spp1抗体(santa Cruz, sc-21742)被用于被用于免疫沉淀在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠; 图 8b
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在小鼠样本上 (图 8b). PLoS ONE (2016) ncbi
小鼠 单克隆(LFMb-14)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 Spp1抗体(SantaCruz, sc-73631)被用于被用于免疫印迹在人类样本上 (图 7c). Oncogene (2016) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, SC-21742)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 1:1000; 图 8
圣克鲁斯生物技术 Spp1抗体(santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Mol Med Rep (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz Biotechnology, sc-21742)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Spp1抗体(santa cruz, sc-21742)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
圣克鲁斯生物技术 Spp1抗体(Santa Cruz Biotechnology, sc-21742)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Mol Med Rep (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 人类; 1:100; 表 1
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc21742)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫印迹在大鼠样本上. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, SC-21742)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Urology (2014) ncbi
小鼠 单克隆(AKm2A1)
  • 免疫细胞化学; 人类; 2 ug/ml
圣克鲁斯生物技术 Spp1抗体(Santa Cruz, sc-21742)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml. J Tissue Eng Regen Med (2015) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2a). Sci Adv (2020) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, 53)被用于被用于免疫印迹在人类样本上 (图 4c). Front Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Biomed Pharmacother (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 5h
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 5h). J Histochem Cytochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1f
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1f) 和 被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 7c
  • 免疫印迹; 大鼠; 图 3c
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于流式细胞仪在大鼠样本上 (图 7c) 和 被用于免疫印迹在大鼠样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 6
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化-冰冻切片在人类样本上 (图 6). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Spp1抗体(abcam, ab8448)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab8448)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5b). Oncogene (2016) ncbi
小鼠 单克隆(53)
  • 免疫印迹; 人类; 图 s1
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2016) ncbi
小鼠 单克隆(53)
  • 免疫组化-石蜡切片; 人类; 1:400
艾博抗(上海)贸易有限公司 Spp1抗体(Abcam, ab69498)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Oncology (2013) ncbi
安迪生物R&D
domestic goat 多克隆
  • 免疫组化; Renilla koellikeri; 1:25; 图 s2b
  • 免疫印迹; 小鼠; 1:250; 图 s2d
安迪生物R&D Spp1抗体(R&D, AF808)被用于被用于免疫组化在Renilla koellikeri样本上浓度为1:25 (图 s2b) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 s2d). Sci Adv (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4a
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Cell Death Differ (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
安迪生物R&D Spp1抗体(R&D, AF808)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). PLoS ONE (2017) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 图 5f
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫印迹在小鼠样本上 (图 5f). JCI Insight (2016) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 10 ug/ml; 图 13
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于抑制或激活实验在小鼠样本上浓度为10 ug/ml (图 13). J Clin Invest (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3
安迪生物R&D Spp1抗体(R&D system, AF808)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3). Oncotarget (2016) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 图 1
安迪生物R&D Spp1抗体(R&D systems, AF808)被用于被用于抑制或激活实验在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:60; 图 7b
安迪生物R&D Spp1抗体(R&D, AF808)被用于被用于免疫组化在小鼠样本上浓度为1:60 (图 7b). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
安迪生物R&D Spp1抗体(R&D, AF808)被用于被用于免疫组化在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 s3b
安迪生物R&D Spp1抗体(R&D Systems, AF808)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 s3b). Cell Death Differ (2016) ncbi
Rockland Immunochemicals
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8c
Rockland Immunochemicals Spp1抗体(Rockland, 100-401-404)被用于被用于免疫印迹在小鼠样本上 (图 s8c). Nat Med (2016) ncbi
赛默飞世尔
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
赛默飞世尔 Spp1抗体(ThermoScientific, PA1-25152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e). Oncotarget (2016) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(MPIIIB10(1))
  • 免疫组化; 鸡; 图 4
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Studies Hybridoma Bank, MPIIIB10)被用于被用于免疫组化在鸡样本上 (图 4). Front Neuroanat (2016) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫细胞化学; 小鼠; 1:2000; 图 2
  • 免疫印迹; 小鼠; 1:50,000; 图 5f
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Studies Hybridoma Bank (DSHB), MPIIIB101)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:50,000 (图 5f). PLoS ONE (2015) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫组化-石蜡切片; 大鼠; 1:300; 图 3
Developmental Studies Hybridoma Bank Spp1抗体(Developmental Hybridoma Studies Institute, MPIIIB10)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:300 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(MPIIIB10(1))
  • 免疫细胞化学; 人类; 1:5
Developmental Studies Hybridoma Bank Spp1抗体(DSHB, MPIIIB10)被用于被用于免疫细胞化学在人类样本上浓度为1:5. Anticancer Res (2004) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:50; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2a
默克密理博中国 Spp1抗体(Millipore, AB10910)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:50 (图 2a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3d
默克密理博中国 Spp1抗体(Millipore, AB10910)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Sci Rep (2016) ncbi
文章列表
  1. Barney L, Hall C, Schwartz A, Parks A, Sparages C, Galarza S, et al. Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Sci Adv. 2020;6:eaaz4157 pubmed 出版商
  2. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  3. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  4. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  5. Schulien I, Hockenjos B, Schmitt Graeff A, Perdekamp M, Follo M, Thimme R, et al. The transcription factor c-Jun/AP-1 promotes liver fibrosis during non-alcoholic steatohepatitis by regulating Osteopontin expression. Cell Death Differ. 2019;: pubmed 出版商
  6. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  7. Hira V, Wormer J, Kakar H, Breznik B, van der Swaan B, Hulsbos R, et al. Periarteriolar Glioblastoma Stem Cell Niches Express Bone Marrow Hematopoietic Stem Cell Niche Proteins. J Histochem Cytochem. 2018;66:155-173 pubmed 出版商
  8. Wong J, Wei R, Lyu P, Tong O, Zhang S, Wen Q, et al. Clinical and in vitro analysis of Osteopontin as a prognostic indicator and unveil its potential downstream targets in bladder cancer. Int J Biol Sci. 2017;13:1373-1386 pubmed 出版商
  9. Dickerson M, Vierra N, Milian S, Dadi P, Jacobson D. Osteopontin activates the diabetes-associated potassium channel TALK-1 in pancreatic β-cells. PLoS ONE. 2017;12:e0175069 pubmed 出版商
  10. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  11. Gawlik K, Holmberg J, Svensson M, Einerborg M, Oliveira B, Deierborg T, et al. Potent pro-inflammatory and pro-fibrotic molecules, osteopontin and galectin-3, are not major disease modulators of laminin α2 chain-deficient muscular dystrophy. Sci Rep. 2017;7:44059 pubmed 出版商
  12. Grzelak C, Sigglekow N, Tirnitz Parker J, Hamson E, Warren A, Maneck B, et al. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease. PLoS ONE. 2017;12:e0171480 pubmed 出版商
  13. Jang M, Lee S, Baek S, Park S, Choi Y, Kim C. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression. PLoS ONE. 2017;12:e0170699 pubmed 出版商
  14. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  15. Jin F, Jiang K, Ji S, Wang L, Ni Z, Huang F, et al. Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex. Hum Mol Genet. 2017;26:407-419 pubmed 出版商
  16. Feng W, Zhang K, Liu Y, Chen J, Cai Q, Zhang Y, et al. Apocynin attenuates angiotensin II-induced vascular smooth muscle cells osteogenic switching via suppressing extracellular signal-regulated kinase 1/2. Oncotarget. 2016;7:83588-83600 pubmed 出版商
  17. Stanic K, Saldivia N, Förstera B, Torrejon M, Montecinos H, Caprile T. Expression Patterns of Extracellular Matrix Proteins during Posterior Commissure Development. Front Neuroanat. 2016;10:89 pubmed
  18. Gago Fuentes R, Bechberger J, Varela Eirin M, Varela Vazquez A, Acea B, Fonseca E, et al. The C-terminal domain of connexin43 modulates cartilage structure via chondrocyte phenotypic changes. Oncotarget. 2016;7:73055-73067 pubmed 出版商
  19. Spina A, Montella R, Liccardo D, De Rosa A, Laino L, Mitsiadis T, et al. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression. Front Physiol. 2016;7:354 pubmed 出版商
  20. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  21. Leon S, Fernandois D, Sull A, Sull J, Calder M, Hayashi K, et al. Beyond the brain-Peripheral kisspeptin signaling is essential for promoting endometrial gland development and function. Sci Rep. 2016;6:29073 pubmed 出版商
  22. Anunobi C, Koli K, Saxena G, Banjo A, Ogbureke K. Expression of the SIBLINGs and their MMP partners in human benign and malignant prostate neoplasms. Oncotarget. 2016;7:48038-48049 pubmed 出版商
  23. Cherepanova O, Gomez D, Shankman L, Swiatlowska P, Williams J, Sarmento O, et al. Activation of the pluripotency factor OCT4 in smooth muscle cells is atheroprotective. Nat Med. 2016;22:657-65 pubmed 出版商
  24. Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151-66 pubmed 出版商
  25. Chen G, Luo Y, Eriksson D, Meng X, Qian C, Bauerle T, et al. High fat diet increases melanoma cell growth in the bone marrow by inducing osteopontin and interleukin 6. Oncotarget. 2016;7:26653-69 pubmed 出版商
  26. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  27. Zhao K, Zhang M, Zhang L, Wang P, Song G, Liu B, et al. Intracellular osteopontin stabilizes TRAF3 to positively regulate innate antiviral response. Sci Rep. 2016;6:23771 pubmed 出版商
  28. Kaylan K, Ermilova V, Yada R, Underhill G. Combinatorial microenvironmental regulation of liver progenitor differentiation by Notch ligands, TGFβ, and extracellular matrix. Sci Rep. 2016;6:23490 pubmed 出版商
  29. Calyjur P, Almeida C, Ayub Guerrieri D, Ribeiro A, Fernandes S, Ishiba R, et al. The mdx Mutation in the 129/Sv Background Results in a Milder Phenotype: Transcriptome Comparative Analysis Searching for the Protective Factors. PLoS ONE. 2016;11:e0150748 pubmed 出版商
  30. Ying M, Zhang L, Zhou Q, Shao X, Cao J, Zhang N, et al. The E3 ubiquitin protein ligase MDM2 dictates all-trans retinoic acid-induced osteoblastic differentiation of osteosarcoma cells by modulating the degradation of RARα. Oncogene. 2016;35:4358-67 pubmed 出版商
  31. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  32. Qian G, Fan W, Ahlemeyer B, Karnati S, Baumgart Vogt E. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors. PLoS ONE. 2015;10:e0143439 pubmed 出版商
  33. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  34. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  35. Trierweiler C, Hockenjos B, Zatloukal K, Thimme R, Blum H, Wagner E, et al. The transcription factor c-JUN/AP-1 promotes HBV-related liver tumorigenesis in mice. Cell Death Differ. 2016;23:576-82 pubmed 出版商
  36. Felli N, Errico M, Pedini F, Petrini M, Puglisi R, Bellenghi M, et al. AP2α controls the dynamic balance between miR-126&126* and miR-221&222 during melanoma progression. Oncogene. 2016;35:3016-26 pubmed 出版商
  37. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  38. Sun J, Li J, Li C, Yu Y. Role of bone morphogenetic protein-2 in osteogenic differentiation of mesenchymal stem cells. Mol Med Rep. 2015;12:4230-4237 pubmed 出版商
  39. Frenay A, Yazdani S, Boersema M, van der Graaf A, Waanders F, van den Born J, et al. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS ONE. 2015;10:e0129732 pubmed 出版商
  40. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  41. Li L, Dong Q, Wang Y, Feng Q, Zhou P, Ou X, et al. Hedgehog signaling is involved in the BMP9-induced osteogenic differentiation of mesenchymal stem cells. Int J Mol Med. 2015;35:1641-50 pubmed 出版商
  42. Bouet G, Bouleftour W, Juignet L, Linossier M, Thomas M, Vanden Bossche A, et al. The impairment of osteogenesis in bone sialoprotein (BSP) knockout calvaria cell cultures is cell density dependent. PLoS ONE. 2015;10:e0117402 pubmed 出版商
  43. Harada K, Harada T, Ferdous T, Takenawa T, Ueyama Y. Osteogenic cell fractions isolated from mouse tongue muscle. Mol Med Rep. 2015;12:31-6 pubmed 出版商
  44. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  45. Ndisang J, Chibbar R, Lane N. Heme oxygenase suppresses markers of heart failure and ameliorates cardiomyopathy in L-NAME-induced hypertension. Eur J Pharmacol. 2014;734:23-34 pubmed 出版商
  46. Inoue M, Arikawa T, Chen Y, Moriwaki Y, Price M, Brown M, et al. T cells down-regulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 2014;111:5295-300 pubmed 出版商
  47. Jia Z, Wang S, Tang J, He D, Cui L, Liu Z, et al. Does crystal deposition in genetic hypercalciuric rat kidney tissue share similarities with bone formation?. Urology. 2014;83:509.e7-14 pubmed 出版商
  48. Viana L, Affonso R, Silva S, Denadai M, Matos D, Salinas de Souza C, et al. Relationship between the expression of the extracellular matrix genes SPARC, SPP1, FN1, ITGA5 and ITGAV and clinicopathological parameters of tumor progression and colorectal cancer dissemination. Oncology. 2013;84:81-91 pubmed 出版商
  49. Kaivosoja E, Sariola V, Chen Y, Konttinen Y. The effect of pulsed electromagnetic fields and dehydroepiandrosterone on viability and osteo-induction of human mesenchymal stem cells. J Tissue Eng Regen Med. 2015;9:31-40 pubmed 出版商
  50. Pautke C, Schieker M, Tischer T, Kolk A, Neth P, Mutschler W, et al. Characterization of osteosarcoma cell lines MG-63, Saos-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res. 2004;24:3743-8 pubmed