这是一篇来自已证抗体库的有关小鼠 Tcrb的综述,是根据229篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Tcrb 抗体。
Tcrb 同义词: TCRbeta; Tib

BioLegend
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Front Immunol (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:400; 图 s2f
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s2f). PLoS Pathog (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:50; 图 s8
BioLegend Tcrb抗体(Biolegend, 109227)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s8). Nat Commun (2022) ncbi
小鼠 单克隆(MR5-2)
  • 流式细胞仪; 小鼠; 1:300; 图 7b
BioLegend Tcrb抗体(BioLegend, 140103)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 7b). elife (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 6e
BioLegend Tcrb抗体(Biolegend, 109205)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 6e). Proc Natl Acad Sci U S A (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s2e
BioLegend Tcrb抗体(BioLegend, 109204)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). Sci Immunol (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Tcrb抗体(BioLegend, 109224)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
小鼠 单克隆(MR9-4)
  • 流式细胞仪; 小鼠; 1:300; 图 s4d
BioLegend Tcrb抗体(Biolegend, MR9-4)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s4d). Nat Commun (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Endocrinol Metab (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
小鼠 单克隆(MR9-4)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Tcrb抗体(BioLegend, MR9-4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Cancer Res (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(Biolegend, 109202)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100
BioLegend Tcrb抗体(Biolegend, 109245)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 1b
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1b). Front Immunol (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:400
BioLegend Tcrb抗体(BioLegend, 109243)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nature (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 e10e
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 e10e). Nat Neurosci (2021) ncbi
仓鼠 单克隆(H57-597)
BioLegend Tcrb抗体(BioLegend, 109208)被用于. Antioxidants (Basel) (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4c). elife (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:500; 图 3k
BioLegend Tcrb抗体(BioLegend, 109222)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 3k). elife (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 1a
BioLegend Tcrb抗体(Biolegend, 109221)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a). Nat Commun (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:400; 图 3c
BioLegend Tcrb抗体(Biolegend, 109209)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3c). Nat Commun (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1). elife (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 7b
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 7b). elife (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 s19c
BioLegend Tcrb抗体(Biolegend, 109219)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s19c). Nat Commun (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 1s1a
BioLegend Tcrb抗体(BioLegend, 109233)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 1s1a). elife (2019) ncbi
大鼠 单克隆(TR310)
  • 流式细胞仪; 小鼠; 1:200; 图 1a, 1s1b
BioLegend Tcrb抗体(BioLegend, 118306)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1a, 1s1b). elife (2019) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 人类; 图 3c
BioLegend Tcrb抗体(BioLegend, 109217)被用于被用于免疫细胞化学在人类样本上 (图 3c). Immunity (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2s2a
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2s2a). elife (2019) ncbi
小鼠 单克隆(MR9-4)
  • 流式细胞仪; 小鼠; 图 5c, 5f
BioLegend Tcrb抗体(Biolegend, 139508)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5f). Cell Rep (2019) ncbi
小鼠 单克隆(MR10-2)
  • 流式细胞仪; 小鼠; 图 5c, 5f
BioLegend Tcrb抗体(Biolegend, 139804)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5f). Cell Rep (2019) ncbi
大鼠 单克隆(B20.6)
  • 流式细胞仪; 小鼠; 图 5c, 5f
BioLegend Tcrb抗体(Biolegend, 127908)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5f). Cell Rep (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s5b
BioLegend Tcrb抗体(Biolegend, 109207)被用于被用于流式细胞仪在小鼠样本上 (图 s5b). Cell (2019) ncbi
大鼠 单克隆(B20.6)
  • 流式细胞仪; 小鼠; 1:400; 图 4d
BioLegend Tcrb抗体(Biolegend, 127908)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d). Nat Commun (2019) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3f, 4b, s2c
  • 流式细胞仪; 小鼠; 图 3a, 3d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3f, 4b, s2c) 和 被用于流式细胞仪在小鼠样本上 (图 3a, 3d). J Clin Invest (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegend Tcrb抗体(BioLegend, 109235)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 e6a
BioLegend Tcrb抗体(Biolegend, H97-597)被用于被用于流式细胞仪在小鼠样本上 (图 e6a). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegend Tcrb抗体(Biolegend, 109240)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 7h
BioLegend Tcrb抗体(BioLegend, 109222)被用于被用于流式细胞仪在小鼠样本上 (图 7h). Immunity (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4e
BioLegend Tcrb抗体(Biolegend, 109227)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Cell (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 2d
BioLegend Tcrb抗体(Biolegend, 109221)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2d). elife (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2d, e5m
BioLegend Tcrb抗体(Biolegend, 109220)被用于被用于流式细胞仪在小鼠样本上 (图 2d, e5m). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s8b
BioLegend Tcrb抗体(BioLegend, 109212)被用于被用于流式细胞仪在小鼠样本上 (图 s8b). Nat Commun (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Tcrb抗体(Biolegend, 109220)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 ex5c
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 ex5c). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1e, e1b, e3b
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1e, e1b, e3b). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nature (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2c, 2g, s2j
BioLegend Tcrb抗体(Biolegend, 109228)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2g, s2j). Cell Rep (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 人类; 图 1d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在人类样本上 (图 1d). J Clin Invest (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s3). JCI Insight (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1a, 2c
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 2c). Proc Natl Acad Sci U S A (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4f
BioLegend Tcrb抗体(BioLegend, H57.597)被用于被用于流式细胞仪在小鼠样本上 (图 4f). J Exp Med (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Clin Invest (2019) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). EMBO J (2018) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 人类; 图 5a
BioLegend Tcrb抗体(BioLegend, 109217)被用于被用于免疫细胞化学在人类样本上 (图 5a). Cell Rep (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegend Tcrb抗体(BioLegend, H57)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Nature (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s4e
BioLegend Tcrb抗体(BioLegend, H57-587)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Science (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3g
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3g). Nat Med (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 s5d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s5d). J Exp Med (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2). Infect Immun (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Science (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Mucosal Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Tcrb抗体(BioLegend, 109228)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Nat Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1b
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(KJ16-133.18)
  • 流式细胞仪; 小鼠; 1:20; 图 s10c
BioLegend Tcrb抗体(Biolegend, KJ16-133.18)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 s10c). Nat Commun (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4a
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s7a
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Nature (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 s2a
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2a). J Cell Biol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 图 1e
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于抑制或激活实验在小鼠样本上 (图 1e). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cancer Immunol Immunother (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:20; 图 6
BioLegend Tcrb抗体(BioLegend, 109206)被用于被用于流式细胞仪在小鼠样本上浓度为1:20 (图 6). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Tcrb抗体(BioLegend, 109208)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS ONE (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Tcrb抗体(BioLegend, 109212)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell (2016) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 图 2b
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于抑制或激活实验在小鼠样本上 (图 2b). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 小鼠; 图 6
BioLegend Tcrb抗体(Biolegend, 109218)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5d). J Immunol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Tcrb抗体(biolegend, 109222)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
BioLegend Tcrb抗体(BioLegend, 109212)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
BioLegend Tcrb抗体(Biolegend, 109206)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 4
BioLegend Tcrb抗体(Biolegend, 109222)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 4). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 人类; 图 2
BioLegend Tcrb抗体(Biolegends, H57-597)被用于被用于流式细胞仪在人类样本上 (图 2). Oncogene (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Mucosal Immunol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 2g
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2g). Nat Commun (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
BioLegend Tcrb抗体(biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Immunity (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4h
BioLegend Tcrb抗体(BIoLegend, 109212)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Proc Natl Acad Sci U S A (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
BioLegend Tcrb抗体(Biolegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Tcrb抗体(Biolegend, clone H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5). Eur J Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 3 ug/ml
BioLegend Tcrb抗体(BioLegend, H57-597)被用于被用于抑制或激活实验在小鼠样本上浓度为3 ug/ml. Nat Commun (2014) ncbi
赛默飞世尔
仓鼠 单克隆(H57-597)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 5a
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 5a) 和 被用于流式细胞仪在小鼠样本上 (图 3a). Front Immunol (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Tcrb抗体(Thermo Fisher, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 7a). PLoS ONE (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 8a, s7a
赛默飞世尔 Tcrb抗体(eBioscience, 11-5961-85)被用于被用于流式细胞仪在小鼠样本上 (图 8a, s7a). PLoS Pathog (2022) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔 Tcrb抗体(eBioscience, 17-5961-83)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2d). BMC Res Notes (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Tcrb抗体(Thermo Fisher Scientific, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Autoimmun (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s9b
赛默飞世尔 Tcrb抗体(eBioscience, 12-5961-83)被用于被用于流式细胞仪在小鼠样本上 (图 s9b). Sci Adv (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Thermo Fisher, H57-597)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2021) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4e). BMC Infect Dis (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell (2020) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Tcrb抗体(eBioscience, 17-5961-82)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Science (2019) ncbi
小鼠 单克隆(MR11-1)
  • 流式细胞仪; 小鼠; 图 5c, 5f
赛默飞世尔 Tcrb抗体(ThermoFisher, 46-5798-80)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5f). Cell Rep (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 8e
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 8e). Nat Commun (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Tcrb抗体(eBioscience, 47-5961-82)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 ev2c
赛默飞世尔 Tcrb抗体(eBioscience, H57?\597)被用于被用于流式细胞仪在小鼠样本上 (图 ev2c). EMBO J (2019) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 s7d
赛默飞世尔 Tcrb抗体(eBiosciences, 12-5961-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s7d). Nat Neurosci (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:300; 图 1c
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 1c). Nat Commun (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Tcrb抗体(eBioscience, H57?\597)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Eur J Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Front Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Tcrb抗体(ebioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Commun (2018) ncbi
仓鼠 单克隆(H57-597)
  • 免疫印迹; 小鼠; 图 5f
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫印迹在小鼠样本上 (图 5f). Front Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100; 图 s1a
赛默飞世尔 Tcrb抗体(eBioscience, 11-5961-85)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1a). Development (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Eur J Immunol (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Tcrb抗体(Thermo Fisher Scientific, 17-5961-82)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Cell (2018) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:400
赛默飞世尔 Tcrb抗体(ebioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:400. Nat Commun (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔 Tcrb抗体(eBioscience, 47-5961-82)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). Nature (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Immunology (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Tcrb抗体(eBiosciences, 17-5961-81)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 图 8a
赛默飞世尔 Tcrb抗体(Affymatrix-eBiosciences, H57)被用于被用于抑制或激活实验在小鼠样本上 (图 8a). Front Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化; 小鼠; 图 5c
赛默飞世尔 Tcrb抗体(Tonbo Biosciences, 17-5961-82)被用于被用于免疫组化在小鼠样本上 (图 5c). J Exp Med (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57-)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Tcrb抗体(eBiosciences, 45-5961)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Oncotarget (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5b
赛默飞世尔 Tcrb抗体(Affymetrix eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Exp Med (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1b
赛默飞世尔 Tcrb抗体(ThermoFisher, HM3621)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Tcrb抗体(eBioscience, 16-5961)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 表 1
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 1). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Clin Invest (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Exp Med (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, 109228)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 6A
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 6A). Oncoimmunology (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 4e
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 4e). Am J Pathol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1h
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Nature (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, 25-5961-82)被用于被用于流式细胞仪在小鼠样本上. Front Cell Neurosci (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1c
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). J Allergy Clin Immunol (2017) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Science (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5). elife (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). Mucosal Immunol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Nat Commun (2016) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 图 1
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于抑制或激活实验在小鼠样本上 (图 1) 和 被用于流式细胞仪在小鼠样本上. Dis Model Mech (2016) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于免疫细胞化学在小鼠样本上. J Leukoc Biol (2016) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nat Med (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 1:200; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, 45-5961-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3). Nat Commun (2015) ncbi
仓鼠 单克隆(H57-597)
  • 抑制或激活实验; 小鼠; 图 5a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于抑制或激活实验在小鼠样本上 (图 5a). Nat Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Nat Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, clone H57-597)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunol Lett (2015) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(Invitrogen, H57-597)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Immunol Cell Biol (2015) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, 17-5961-81)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
仓鼠 单克隆(H57-597)
  • 免疫组化; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 人类; 表 2
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫细胞化学在人类样本上 (表 2). J Clin Invest (2014) ncbi
仓鼠 单克隆(H57-597)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunol Lett (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 人类
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2014) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Cell Biol (2013) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 表 2
赛默飞世尔 Tcrb抗体(Invitrogen, H57-597)被用于被用于流式细胞仪在小鼠样本上 (表 2). Brain Behav Immun (2013) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(e-Bioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Arthritis Res Ther (2012) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5). Mol Biol Cell (2011) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2011) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Cell Biol (2012) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Tcrb抗体(eBioscience, 85-12-5961-81)被用于被用于流式细胞仪在小鼠样本上 (图 5). Immunol Lett (2011) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(Invitrogen, clone H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). Brain Behav Immun (2011) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). Nat Immunol (2010) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Blood (2009) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBiosciences, H57-597)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2009) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Tcrb抗体(eBioscience, H57)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2009) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 5). Cell Tissue Res (2008) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBiosciences, H57)被用于被用于流式细胞仪在小鼠样本上. Gastroenterology (2008) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57)被用于被用于流式细胞仪在小鼠样本上 (图 1). Infect Immun (2008) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(eBioscience, H57)被用于被用于流式细胞仪在小鼠样本上. Blood (2008) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1A
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1A). J Immunol (2007) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Invitrogen Life Technologies, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(eBioscience, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2006) ncbi
仓鼠 单克隆(H57-597)
  • 其他; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于其他在小鼠样本上. J Immunol (2005) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Cancer Gene Ther (2004) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(Caltag, H57597)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Histochem Cytochem (2003) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Gen Virol (2003) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2003) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Cell Immunol (2002) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Blood (2003) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2002) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Mol Cell Biol (2002) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2002) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3, 4
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3, 4). J Immunol (2001) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2000) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2000) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Blood (2000) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1994) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(CALTAG, H57-597)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1995) ncbi
仓鼠 单克隆(H57-597)
  • 流式细胞仪; 小鼠
赛默飞世尔 Tcrb抗体(Caltag, H57-597)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (1995) ncbi
文章列表
  1. Costain A, Phythian Adams A, Colombo S, Marley A, Owusu C, Cook P, et al. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol. 2022;13:906338 pubmed 出版商
  2. Huang C, Schuring J, Skinner J, Mok L, Chong M. MYL9 deficiency is neonatal lethal in mice due to abnormalities in the lung and the muscularis propria of the bladder and intestine. PLoS ONE. 2022;17:e0270820 pubmed 出版商
  3. Laffey K, Stiles R, Ludescher M, Davis T, Khwaja S, Bram R, et al. Early expression of mature αβ TCR in CD4-CD8- T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations. Proc Natl Acad Sci U S A. 2022;119:e2118529119 pubmed 出版商
  4. Shi Z, Takeuchi T, Nakanishi Y, Kato T, Beck K, Nagata R, et al. A Japanese Herbal Formula, Daikenchuto, Alleviates Experimental Colitis by Reshaping Microbial Profiles and Enhancing Group 3 Innate Lymphoid Cells. Front Immunol. 2022;13:903459 pubmed 出版商
  5. Lu L, Li T, Feng X, Liu Z, Liu Y, Chao T, et al. Excessive immunosuppression by regulatory T cells antagonizes T cell response to schistosome infection in PD-1-deficient mice. PLoS Pathog. 2022;18:e1010596 pubmed 出版商
  6. Wang Q, Bergholz J, Ding L, Lin Z, Kabraji S, Hughes M, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022 pubmed 出版商
  7. Bartsch P, Kilian C, Hellmig M, Paust H, Borchers A, Sivayoganathan A, et al. Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in Staphylococcus aureus infection. PLoS Pathog. 2022;18:e1010430 pubmed 出版商
  8. Xiong W, Gao X, Zhang T, Jiang B, Hu M, Bu X, et al. USP8 inhibition reshapes an inflamed tumor microenvironment that potentiates the immunotherapy. Nat Commun. 2022;13:1700 pubmed 出版商
  9. Lopes N, Boucherit N, Santamaria J, Provin N, Charaix J, Ferrier P, et al. Thymocytes trigger self-antigen-controlling pathways in immature medullary thymic epithelial stages. elife. 2022;11: pubmed 出版商
  10. Wolpaw A, Grossmann L, Dessau J, Dong M, Aaron B, Brafford P, et al. Epigenetic state determines inflammatory sensing in neuroblastoma. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  11. Tatsumi N, Codrington A, El Fenej J, Phondge V, Kumamoto Y. Effective CD4 T cell priming requires repertoire scanning by CD301b+ migratory cDC2 cells upon lymph node entry. Sci Immunol. 2021;6:eabg0336 pubmed 出版商
  12. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  13. Moreira T, Mangani D, Cox L, Leibowitz J, Lobo E, Oliveira M, et al. PD-L1+ and XCR1+ dendritic cells are region-specific regulators of gut homeostasis. Nat Commun. 2021;12:4907 pubmed 出版商
  14. Winn N, Wolf E, Cottam M, Bhanot M, Hasty A. Myeloid-specific deletion of ferroportin impairs macrophage bioenergetics but is disconnected from systemic insulin action in adult mice. Am J Physiol Endocrinol Metab. 2021;321:E376-E391 pubmed 出版商
  15. Forman R, Logunova L, Smith H, Wemyss K, Mair I, Boon L, et al. Trichuris muris infection drives cell-intrinsic IL4R alpha independent colonic RELMα+ macrophages. PLoS Pathog. 2021;17:e1009768 pubmed 出版商
  16. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  17. Van De Velde L, Allen E, Crawford J, Wilson T, Guy C, Russier M, et al. Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1-Dependent Myeloid Cells. Cancer Res. 2021;81:5047-5059 pubmed 出版商
  18. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  19. James O, Vandereyken M, Marchingo J, Singh F, Bray S, Wilson J, et al. IL-15 and PIM kinases direct the metabolic programming of intestinal intraepithelial lymphocytes. Nat Commun. 2021;12:4290 pubmed 出版商
  20. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  21. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  22. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  23. Hamminger P, Marchetti L, Preglej T, Platzer R, Zhu C, Kamnev A, et al. Histone deacetylase 1 controls CD4+ T cell trafficking in autoinflammatory diseases. J Autoimmun. 2021;119:102610 pubmed 出版商
  24. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  25. Chen J, Sivan U, Tan S, Lippo L, De Angelis J, Labella R, et al. High-resolution 3D imaging uncovers organ-specific vascular control of tissue aging. Sci Adv. 2021;7: pubmed 出版商
  26. Mastorakos P, Mihelson N, Luby M, Burks S, Johnson K, Hsia A, et al. Temporally distinct myeloid cell responses mediate damage and repair after cerebrovascular injury. Nat Neurosci. 2021;24:245-258 pubmed 出版商
  27. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  28. Lee H, Park J, Yoo H, Lee H, Lee B, Kim J. The Selenoprotein MsrB1 Instructs Dendritic Cells to Induce T-Helper 1 Immune Responses. Antioxidants (Basel). 2020;9: pubmed 出版商
  29. Zhao L, Hu S, Davila M, Yang J, Lin Y, Albanese J, et al. Coordinated co-migration of CCR10+ antibody-producing B cells with helper T cells for colonic homeostatic regulation. Mucosal Immunol. 2021;14:420-430 pubmed 出版商
  30. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  31. Somerville T, Biffi G, Da ler Plenker J, Hur S, He X, Vance K, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. elife. 2020;9: pubmed 出版商
  32. Martens R, Permanyer M, Werth K, Yu K, Braun A, Halle O, et al. Efficient homing of T cells via afferent lymphatics requires mechanical arrest and integrin-supported chemokine guidance. Nat Commun. 2020;11:1114 pubmed 出版商
  33. Bergmann B, Fei Y, Jirholt P, Hu Z, Bergquist M, Ali A, et al. Pre-treatment with IL2 gene therapy alleviates Staphylococcus aureus arthritis in mice. BMC Infect Dis. 2020;20:185 pubmed 出版商
  34. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  35. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  36. Hayes M, Ward S, Crawford G, Seoane R, Jackson W, Kipling D, et al. Inflammation-induced IgE promotes epithelial hyperplasia and tumour growth. elife. 2020;9: pubmed 出版商
  37. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  38. Mesin L, Schiepers A, Ersching J, Barbulescu A, Cavazzoni C, Angelini A, et al. Restricted Clonality and Limited Germinal Center Reentry Characterize Memory B Cell Reactivation by Boosting. Cell. 2020;180:92-106.e11 pubmed 出版商
  39. Jimeno R, Lebrusant Fernandez M, Margreitter C, LUCAS B, Veerapen N, Kelly G, et al. Tissue-specific shaping of the TCR repertoire and antigen specificity of iNKT cells. elife. 2019;8: pubmed 出版商
  40. Zhao Y, Lee C, Lin C, Gassen R, Xu X, Huang Z, et al. PD-L1:CD80 Cis-Heterodimer Triggers the Co-stimulatory Receptor CD28 While Repressing the Inhibitory PD-1 and CTLA-4 Pathways. Immunity. 2019;51:1059-1073.e9 pubmed 出版商
  41. Constantinides M, Link V, Tamoutounour S, Wong A, Pérez Chaparro P, Han S, et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science. 2019;366: pubmed 出版商
  42. Carpentier K, Davenport B, HAIST K, McCarthy M, May N, Robison A, et al. Discrete viral E2 lysine residues and scavenger receptor MARCO are required for clearance of circulating alphaviruses. elife. 2019;8: pubmed 出版商
  43. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  44. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  45. Zhang F, Parayath N, Ene C, Stephan S, Koehne A, Coon M, et al. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat Commun. 2019;10:3974 pubmed 出版商
  46. Rasoulouniriana D, Santana Magal N, Gutwillig A, Farhat Younis L, Wine Y, Saperia C, et al. A distinct subset of FcγRI-expressing Th1 cells exert antibody-mediated cytotoxic activity. J Clin Invest. 2019;129:4151-4164 pubmed 出版商
  47. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  48. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  49. Cohen J, Edwards T, Liu A, Hirai T, Jones M, Wu J, et al. Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell. 2019;178:919-932.e14 pubmed 出版商
  50. Liu D, Yin X, Olyha S, Nascimento M, Chen P, White T, et al. IL-10-Dependent Crosstalk between Murine Marginal Zone B Cells, Macrophages, and CD8α+ Dendritic Cells Promotes Listeria monocytogenes Infection. Immunity. 2019;: pubmed 出版商
  51. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  52. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  53. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  54. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  55. Michaels Y, Barnkob M, Barbosa H, Baeumler T, Thompson M, Andre V, et al. Precise tuning of gene expression levels in mammalian cells. Nat Commun. 2019;10:818 pubmed 出版商
  56. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  57. He S, Kahles F, Rattik S, Nairz M, McAlpine C, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-119 pubmed 出版商
  58. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  59. Karmaus P, Chen X, Lim S, Herrada A, Nguyen T, Xu B, et al. Metabolic heterogeneity underlies reciprocal fates of TH17 cell stemness and plasticity. Nature. 2019;565:101-105 pubmed 出版商
  60. Ishizuka J, Manguso R, Cheruiyot C, Bi K, Panda A, Iracheta Vellve A, et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature. 2019;565:43-48 pubmed 出版商
  61. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  62. Poncette L, Chen X, Lorenz F, Blankenstein T. Effective NY-ESO-1-specific MHC II-restricted T cell receptors from antigen-negative hosts enhance tumor regression. J Clin Invest. 2019;129:324-335 pubmed 出版商
  63. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  64. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  65. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  66. James K, Cosway E, LUCAS B, White A, Parnell S, Carvalho Gaspar M, et al. Endothelial cells act as gatekeepers for LTβR-dependent thymocyte emigration. J Exp Med. 2018;215:2984-2993 pubmed 出版商
  67. Kelly A, Günaltay S, McEntee C, Shuttleworth E, Smedley C, Houston S, et al. Human monocytes and macrophages regulate immune tolerance via integrin αvβ8-mediated TGFβ activation. J Exp Med. 2018;215:2725-2736 pubmed 出版商
  68. Er J, Koean R, Ding J. Loss of T-bet confers survival advantage to influenza-bacterial superinfection. EMBO J. 2019;38: pubmed 出版商
  69. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  70. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  71. Lin Y, Pecetta S, Steichen J, Kratochvil S, Melzi E, Arnold J, et al. One-step CRISPR/Cas9 method for the rapid generation of human antibody heavy chain knock-in mice. EMBO J. 2018;37: pubmed 出版商
  72. Xing S, Shao P, Li F, Zhao X, Seo W, Wheat J, et al. Tle corepressors are differentially partitioned to instruct CD8+ T cell lineage choice and identity. J Exp Med. 2018;215:2211-2226 pubmed 出版商
  73. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  74. Zhao Y, Harrison D, Song Y, Ji J, Huang J, Hui E. Antigen-Presenting Cell-Intrinsic PD-1 Neutralizes PD-L1 in cis to Attenuate PD-1 Signaling in T Cells. Cell Rep. 2018;24:379-390.e6 pubmed 出版商
  75. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  76. Jones R, Cosway E, Willis C, White A, Jenkinson W, Fehling H, et al. Dynamic changes in intrathymic ILC populations during murine neonatal development. Eur J Immunol. 2018;48:1481-1491 pubmed 出版商
  77. Ma C, Han M, Heinrich B, Fu Q, Zhang Q, Sandhu M, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science. 2018;360: pubmed 出版商
  78. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  79. Huynh J, Lin C, Kimmey J, Jarjour N, Schwarzkopf E, Bradstreet T, et al. Bhlhe40 is an essential repressor of IL-10 during Mycobacterium tuberculosis infection. J Exp Med. 2018;215:1823-1838 pubmed 出版商
  80. Chorazeczewski J, Aleshnick M, Majam V, Okoth W, Kurapova R, Akue A, et al. TCRβ Combinatorial Immunoreceptor Expression by Neutrophils Correlates with Parasite Burden and Enhanced Phagocytosis during a Plasmodium berghei ANKA Malaria Infection. Infect Immun. 2018;86: pubmed 出版商
  81. Sui P, Wiesner D, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360: pubmed 出版商
  82. Zhou Y, Wang W, Zhao C, Wang Y, Wu H, Sun X, et al. Prostaglandin E2 Inhibits Group 2 Innate Lymphoid Cell Activation and Allergic Airway Inflammation Through E-Prostanoid 4-Cyclic Adenosine Monophosphate Signaling. Front Immunol. 2018;9:501 pubmed 出版商
  83. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  84. Trapecar M, Khan S, Cohn B, Wu F, Sanjabi S. B cells are the predominant mediators of early systemic viral dissemination during rectal LCMV infection. Mucosal Immunol. 2018;11:1158-1167 pubmed 出版商
  85. Liang W, Mao S, Sun S, Li M, Li Z, Yu R, et al. Core Fucosylation of the T Cell Receptor Is Required for T Cell Activation. Front Immunol. 2018;9:78 pubmed 出版商
  86. Solanki A, Yanez D, Ross S, Lau C, Papaioannou E, Li J, et al. Gli3 in fetal thymic epithelial cells promotes thymocyte positive selection and differentiation by repression of Shh. Development. 2018;145: pubmed 出版商
  87. Tavazoie M, Pollack I, Tanqueco R, Ostendorf B, Reis B, Gonsalves F, et al. LXR/ApoE Activation Restricts Innate Immune Suppression in Cancer. Cell. 2018;172:825-840.e18 pubmed 出版商
  88. Koh A, Miller E, Buenrostro J, Moskowitz D, Wang J, Greenleaf W, et al. Rapid chromatin repression by Aire provides precise control of immune tolerance. Nat Immunol. 2018;19:162-172 pubmed 出版商
  89. Cowan J, Baik S, McCarthy N, Parnell S, White A, Jenkinson W, et al. Aire controls the recirculation of murine Foxp3+ regulatory T-cells back to the thymus. Eur J Immunol. 2018;48:844-854 pubmed 出版商
  90. Gaya M, Barral P, Burbage M, Aggarwal S, Montaner B, Warren Navia A, et al. Initiation of Antiviral B Cell Immunity Relies on Innate Signals from Spatially Positioned NKT Cells. Cell. 2018;172:517-533.e20 pubmed 出版商
  91. Mao A, Ishizuka I, Kasal D, Mandal M, Bendelac A. A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun. 2017;8:863 pubmed 出版商
  92. Yu H, Gagliani N, Ishigame H, Huber S, Zhu S, Esplugues E, et al. Intestinal type 1 regulatory T cells migrate to periphery to suppress diabetogenic T cells and prevent diabetes development. Proc Natl Acad Sci U S A. 2017;114:10443-10448 pubmed 出版商
  93. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  94. Chae W, Park J, Henegariu O, Yilmaz S, Hao L, Bothwell A. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis. Immunology. 2017;152:265-275 pubmed 出版商
  95. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  96. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  97. Bagchi S, He Y, Zhang H, Cao L, Van Rhijn I, Moody D, et al. CD1b-autoreactive T cells contribute to hyperlipidemia-induced skin inflammation in mice. J Clin Invest. 2017;127:2339-2352 pubmed 出版商
  98. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  99. Ramos G, van den Berg A, Nunes Silva V, Weirather J, Peters L, Burkard M, et al. Myocardial aging as a T-cell-mediated phenomenon. Proc Natl Acad Sci U S A. 2017;114:E2420-E2429 pubmed 出版商
  100. Serrano D, Ghobadi F, Boulay G, Ilangumaran S, Lavoie C, Ramanathan S. GTPase of the Immune-Associated Nucleotide Protein 5 Regulates the Lysosomal Calcium Compartment in T Lymphocytes. Front Immunol. 2017;8:94 pubmed 出版商
  101. Szabo P, Goswami A, Mazzuca D, Kim K, O Gorman D, Hess D, et al. Rapid and Rigorous IL-17A Production by a Distinct Subpopulation of Effector Memory T Lymphocytes Constitutes a Novel Mechanism of Toxic Shock Syndrome Immunopathology. J Immunol. 2017;198:2805-2818 pubmed 出版商
  102. Laidlaw B, Schmidt T, Green J, Allen C, Okada T, Cyster J. The Eph-related tyrosine kinase ligand Ephrin-B1 marks germinal center and memory precursor B cells. J Exp Med. 2017;214:639-649 pubmed 出版商
  103. Nowyhed H, Chandra S, Kiosses W, Marcovecchio P, Andary F, Zhao M, et al. ATP Binding Cassette Transporter ABCA7 Regulates NKT Cell Development and Function by Controlling CD1d Expression and Lipid Raft Content. Sci Rep. 2017;7:40273 pubmed 出版商
  104. Rowe A, Yun H, Treat B, Kinchington P, Hendricks R. Subclinical Herpes Simplex Virus Type 1 Infections Provide Site-Specific Resistance to an Unrelated Pathogen. J Immunol. 2017;198:1706-1717 pubmed 出版商
  105. van der Weyden L, Arends M, Campbell A, Bald T, Wardle Jones H, Griggs N, et al. Genome-wide in vivo screen identifies novel host regulators of metastatic colonization. Nature. 2017;541:233-236 pubmed 出版商
  106. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  107. Sun T, Yang L, Kaur H, Pestel J, Looso M, Nolte H, et al. A reverse signaling pathway downstream of Sema4A controls cell migration via Scrib. J Cell Biol. 2017;216:199-215 pubmed 出版商
  108. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  109. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  110. Angela M, Endo Y, Asou H, Yamamoto T, Tumes D, Tokuyama H, et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPAR? directs early activation of T cells. Nat Commun. 2016;7:13683 pubmed 出版商
  111. Escalante N, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker C, et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841-2850 pubmed
  112. Eby J, Barse L, Henning S, Rabelink M, Klarquist J, Gilbert E, et al. Alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1 can support immune responses toward tumors overexpressing ganglioside D3 in mice. Cancer Immunol Immunother. 2017;66:63-75 pubmed 出版商
  113. Coursey T, Bian F, Zaheer M, Pflugfelder S, Volpe E, de Paiva C. Age-related spontaneous lacrimal keratoconjunctivitis is accompanied by dysfunctional T regulatory cells. Mucosal Immunol. 2017;10:743-756 pubmed 出版商
  114. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  115. Ishikawa E, Kosako H, Yasuda T, Ohmuraya M, Araki K, Kurosaki T, et al. Protein kinase D regulates positive selection of CD4+ thymocytes through phosphorylation of SHP-1. Nat Commun. 2016;7:12756 pubmed 出版商
  116. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  117. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  118. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  119. Kuwahara M, Ise W, Ochi M, Suzuki J, Kometani K, Maruyama S, et al. Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop. Nat Commun. 2016;7:12596 pubmed 出版商
  120. Pageon S, Tabarin T, Yamamoto Y, Ma Y, Nicovich P, Bridgeman J, et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc Natl Acad Sci U S A. 2016;113:E5454-63 pubmed 出版商
  121. Proekt I, Miller C, Jeanne M, Fasano K, Moon J, Lowell C, et al. LYN- and AIRE-mediated tolerance checkpoint defects synergize to trigger organ-specific autoimmunity. J Clin Invest. 2016;126:3758-3771 pubmed 出版商
  122. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  123. Drennan M, Govindarajan S, Verheugen E, Coquet J, Staal J, McGuire C, et al. NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNFAIP3/A20. J Exp Med. 2016;213:1973-81 pubmed 出版商
  124. Lebrero Fernández C, Bas Forsberg A. The ontogeny of Butyrophilin-like (Btnl) 1 and Btnl6 in murine small intestine. Sci Rep. 2016;6:31524 pubmed 出版商
  125. Moodley D, Yoshida H, Mostafavi S, Asinovski N, Ortiz Lopez A, Symanowicz P, et al. Network pharmacology of JAK inhibitors. Proc Natl Acad Sci U S A. 2016;113:9852-7 pubmed 出版商
  126. Carow B, Gao Y, Coquet J, Reilly M, Rottenberg M. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. J Immunol. 2016;197:2261-8 pubmed 出版商
  127. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  128. Imhof B, Jemelin S, Ballet R, Vesin C, Schapira M, Karaca M, et al. CCN1/CYR61-mediated meticulous patrolling by Ly6Clow monocytes fuels vascular inflammation. Proc Natl Acad Sci U S A. 2016;113:E4847-56 pubmed 出版商
  129. Lai M, Gonzalez Martin A, Cooper A, Oda H, Jin H, Shepherd J, et al. Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun. 2016;7:12207 pubmed 出版商
  130. Veinotte L, Gebremeskel S, Johnston B. CXCL16-positive dendritic cells enhance invariant natural killer T cell-dependent IFN? production and tumor control. Oncoimmunology. 2016;5:e1160979 pubmed 出版商
  131. Barin J, Talor M, Schaub J, Diny N, Hou X, Hoyer M, et al. Collaborative Interferon-? and Interleukin-17 Signaling Protects the Oral Mucosa from Staphylococcus aureus. Am J Pathol. 2016;186:2337-52 pubmed 出版商
  132. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  133. Webb L, Ley S, Seddon B. TNF activation of NF-κB is essential for development of single-positive thymocytes. J Exp Med. 2016;213:1399-407 pubmed 出版商
  134. Baptista M, Keszei M, Oliveira M, Sunahara K, Andersson J, Dahlberg C, et al. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells. Nat Commun. 2016;7:12175 pubmed 出版商
  135. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  136. Bombeiro A, Santini J, Thomé R, Ferreira E, Nunes S, Moreira B, et al. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy. Front Cell Neurosci. 2016;10:151 pubmed 出版商
  137. De Grove K, Provoost S, Hendriks R, McKenzie A, Seys L, Kumar S, et al. Dysregulation of type 2 innate lymphoid cells and TH2 cells impairs pollutant-induced allergic airway responses. J Allergy Clin Immunol. 2017;139:246-257.e4 pubmed 出版商
  138. Sujino T, London M, Hoytema van Konijnenburg D, Rendon T, Buch T, Silva H, et al. Tissue adaptation of regulatory and intraepithelial CD4? T cells controls gut inflammation. Science. 2016;352:1581-6 pubmed 出版商
  139. Li J, Chassaing B, Tyagi A, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049-63 pubmed 出版商
  140. Gabunia K, Ellison S, Kelemen S, Kako F, Cornwell W, Rogers T, et al. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am J Pathol. 2016;186:1361-74 pubmed 出版商
  141. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  142. Pelly V, Kannan Y, Coomes S, Entwistle L, Rückerl D, Seddon B, et al. IL-4-producing ILC2s are required for the differentiation of TH2 cells following Heligmosomoides polygyrus infection. Mucosal Immunol. 2016;9:1407-1417 pubmed 出版商
  143. Lancaster G, Kammoun H, Kraakman M, Kowalski G, Bruce C, Febbraio M. PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun. 2016;7:10626 pubmed 出版商
  144. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  145. Atkinson S, Hoffmann U, Hamann A, Bach E, Danneskiold Samsøe N, Kristiansen K, et al. Depletion of regulatory T cells leads to an exacerbation of delayed-type hypersensitivity arthritis in C57BL/6 mice that can be counteracted by IL-17 blockade. Dis Model Mech. 2016;9:427-40 pubmed 出版商
  146. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  147. Malinova D, Fritzsche M, Nowosad C, Armer H, Munro P, Blundell M, et al. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts. J Leukoc Biol. 2016;99:699-710 pubmed 出版商
  148. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  149. Alam M, Gaida M, Bergmann F, Lasitschka F, Giese T, Giese N, et al. Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med. 2015;21:1337-43 pubmed 出版商
  150. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  151. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  152. Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, et al. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol. 2015;16:1077-84 pubmed 出版商
  153. Wan C, Li P, Spolski R, Oh J, Andraski A, Du N, et al. IL-21-mediated non-canonical pathway for IL-1β production in conventional dendritic cells. Nat Commun. 2015;6:7988 pubmed 出版商
  154. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  155. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  156. Jacque E, Schweighoffer E, Tybulewicz V, Ley S. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. J Exp Med. 2015;212:883-92 pubmed 出版商
  157. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  158. Berent Maoz B, Montecino Rodriguez E, Fice M, Casero D, Seet C, Crooks G, et al. The expansion of thymopoiesis in neonatal mice is dependent on expression of high mobility group a 2 protein (Hmga2). PLoS ONE. 2015;10:e0125414 pubmed 出版商
  159. Pei B, Zhao M, Miller B, Véla J, Bruinsma M, Virgin H, et al. Invariant NKT cells require autophagy to coordinate proliferation and survival signals during differentiation. J Immunol. 2015;194:5872-84 pubmed 出版商
  160. Dahlgren M, Gustafsson Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187-99 pubmed 出版商
  161. Koh F, Lizama C, Wong P, Hawkins J, Zovein A, Ramalho Santos M. Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proc Natl Acad Sci U S A. 2015;112:E1734-43 pubmed 出版商
  162. Michelet X, Garg S, Wolf B, Tuli A, Ricciardi Castagnoli P, Brenner M. MHC class II presentation is controlled by the lysosomal small GTPase, Arl8b. J Immunol. 2015;194:2079-88 pubmed 出版商
  163. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  164. Sakaguchi S, Hombauer M, Hassan H, Tanaka H, Yasmin N, Naoe Y, et al. A novel Cd8-cis-regulatory element preferentially directs expression in CD44hiCD62L+ CD8+ T cells and in CD8αα+ dendritic cells. J Leukoc Biol. 2015;97:635-44 pubmed 出版商
  165. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  166. Raker V, Stein J, Montermann E, Maxeiner J, Taube C, Reske Kunz A, et al. Regulation of IgE production and airway reactivity by CD4⁻CD8⁻ regulatory T cells. Immunobiology. 2015;220:490-9 pubmed 出版商
  167. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  168. Lin W, Fan Z, Suo Y, Deng Y, Zhang M, Wang J, et al. The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol. 2015;93:99-110 pubmed 出版商
  169. Jacque E, Schweighoffer E, Visekruna A, Papoutsopoulou S, Janzen J, Zillwood R, et al. IKK-induced NF-κB1 p105 proteolysis is critical for B cell antibody responses to T cell-dependent antigen. J Exp Med. 2014;211:2085-101 pubmed 出版商
  170. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  171. Carty S, Koretzky G, Jordan M. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS ONE. 2014;9:e106659 pubmed 出版商
  172. Lo Sasso G, Menzies K, Mottis A, Piersigilli A, Perino A, Yamamoto H, et al. SIRT2 deficiency modulates macrophage polarization and susceptibility to experimental colitis. PLoS ONE. 2014;9:e103573 pubmed 出版商
  173. Cowan J, McCarthy N, Parnell S, White A, Bacon A, Serge A, et al. Differential requirement for CCR4 and CCR7 during the development of innate and adaptive ??T cells in the adult thymus. J Immunol. 2014;193:1204-12 pubmed 出版商
  174. Kaczmarek J, Homsi Y, van Üüm J, Metzger C, Knolle P, Kolanus W, et al. Liver sinusoidal endothelial cell-mediated CD8 T cell priming depends on co-inhibitory signal integration over time. PLoS ONE. 2014;9:e99574 pubmed 出版商
  175. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  176. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  177. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  178. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  179. Koga T, Hedrich C, Mizui M, Yoshida N, Otomo K, Lieberman L, et al. CaMK4-dependent activation of AKT/mTOR and CREM-? underlies autoimmunity-associated Th17 imbalance. J Clin Invest. 2014;124:2234-45 pubmed 出版商
  180. Jung H, Song K, Chang J, Doh J. Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays. PLoS ONE. 2014;9:e91926 pubmed 出版商
  181. Hirayama T, Asano Y, Iida H, Watanabe T, Nakamura T, Goitsuka R. Meis1 is required for the maintenance of postnatal thymic epithelial cells. PLoS ONE. 2014;9:e89885 pubmed 出版商
  182. Walker C, Hautefort I, Dalton J, Overweg K, Egan C, Bongaerts R, et al. Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge. PLoS ONE. 2013;8:e84553 pubmed 出版商
  183. Borger J, Zamoyska R, Gakamsky D. Proximity of TCR and its CD8 coreceptor controls sensitivity of T cells. Immunol Lett. 2014;157:16-22 pubmed 出版商
  184. Turcotte S, Gros A, Tran E, Lee C, Wunderlich J, Robbins P, et al. Tumor-reactive CD8+ T cells in metastatic gastrointestinal cancer refractory to chemotherapy. Clin Cancer Res. 2014;20:331-43 pubmed 出版商
  185. Harimoto H, Shimizu M, Nakagawa Y, Nakatsuka K, Wakabayashi A, Sakamoto C, et al. Inactivation of tumor-specific CD8? CTLs by tumor-infiltrating tolerogenic dendritic cells. Immunol Cell Biol. 2013;91:545-55 pubmed 出版商
  186. Mandal M, Donnelly R, Elkabes S, Zhang P, Davini D, David B, et al. Maternal immune stimulation during pregnancy shapes the immunological phenotype of offspring. Brain Behav Immun. 2013;33:33-45 pubmed 出版商
  187. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  188. Atkinson S, Usher P, Kvist P, Markholst H, Haase C, Nansen A. Establishment and characterization of a sustained delayed-type hypersensitivity model with arthritic manifestations in C57BL/6J mice. Arthritis Res Ther. 2012;14:R134 pubmed 出版商
  189. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  190. Bunnell T, Burbach B, Shimizu Y, Ervasti J. ?-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell. 2011;22:4047-58 pubmed 出版商
  191. Ota N, Wong K, Valdez P, Zheng Y, Crellin N, Diehl L, et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat Immunol. 2011;12:941-8 pubmed 出版商
  192. Yan S, Wang L, Liu N, Wang Y, Chu Y. Critical role of interleukin-17/interleukin-17 receptor axis in mediating Con A-induced hepatitis. Immunol Cell Biol. 2012;90:421-8 pubmed 出版商
  193. Guo Z, Li H, Han M, Xu T, Wu X, Zhuang Y. Modeling Sjögren's syndrome with Id3 conditional knockout mice. Immunol Lett. 2011;135:34-42 pubmed 出版商
  194. Mandal M, Marzouk A, Donnelly R, Ponzio N. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863-71 pubmed 出版商
  195. Hodson D, Janas M, Galloway A, Bell S, Andrews S, Li C, et al. Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia. Nat Immunol. 2010;11:717-24 pubmed 出版商
  196. Banh C, Fugere C, Brossay L. Immunoregulatory functions of KLRG1 cadherin interactions are dependent on forward and reverse signaling. Blood. 2009;114:5299-306 pubmed 出版商
  197. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  198. Wu S, Rhee K, Albesiano E, RABIZADEH S, Wu X, Yen H, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15:1016-22 pubmed 出版商
  199. Merck E, Voyle R, MacDonald H. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J Immunol. 2009;182:183-92 pubmed
  200. Kanwar N, Fayyazi A, Backofen B, Nitsche M, Dressel R, von Mollard G. Thymic alterations in mice deficient for the SNARE protein VAMP8/endobrevin. Cell Tissue Res. 2008;334:227-42 pubmed 出版商
  201. Sprengers D, Sillé F, Derkow K, Besra G, Janssen H, Schott E, et al. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology. 2008;134:2132-43 pubmed 出版商
  202. Woolard M, Hensley L, Kawula T, Frelinger J. Respiratory Francisella tularensis live vaccine strain infection induces Th17 cells and prostaglandin E2, which inhibits generation of gamma interferon-positive T cells. Infect Immun. 2008;76:2651-9 pubmed 出版商
  203. Jeannet G, Scheller M, Scarpellino L, Duboux S, Gardiol N, Back J, et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood. 2008;111:142-9 pubmed
  204. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  205. Fucs R, Jesus J, Souza Junior P, Franco L, Verícimo M, Bellio M, et al. Frequency of natural regulatory CD4+CD25+ T lymphocytes determines the outcome of tolerance across fully mismatched MHC barrier through linked recognition of self and allogeneic stimuli. J Immunol. 2006;176:2324-9 pubmed
  206. Matsuda J, Zhang Q, Ndonye R, Richardson S, Howell A, Gapin L. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood. 2006;107:2797-805 pubmed
  207. Koneru M, Schaer D, Monu N, Ayala A, Frey A. Defective proximal TCR signaling inhibits CD8+ tumor-infiltrating lymphocyte lytic function. J Immunol. 2005;174:1830-40 pubmed
  208. Zhang T, He X, Tsang T, Harris D. Transgenic TCR expression: comparison of single chain with full-length receptor constructs for T-cell function. Cancer Gene Ther. 2004;11:487-96 pubmed
  209. Germeraad W, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, et al. Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem. 2003;51:1225-35 pubmed
  210. Reading P, Smith G. A kinetic analysis of immune mediators in the lungs of mice infected with vaccinia virus and comparison with intradermal infection. J Gen Virol. 2003;84:1973-83 pubmed
  211. Flano E, Kim I, Moore J, Woodland D, Blackman M. Differential gamma-herpesvirus distribution in distinct anatomical locations and cell subsets during persistent infection in mice. J Immunol. 2003;170:3828-34 pubmed
  212. Angulo I, Jiménez Díaz M, García Bustos J, Gargallo D, de las Heras F, Muñoz Fernández M, et al. Candida albicans infection enhances immunosuppression induced by cyclophosphamide by selective priming of suppressive myeloid progenitors for NO production. Cell Immunol. 2002;218:46-58 pubmed
  213. Hsu S, Wu C, Han J, Lai M. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood. 2003;101:970-6 pubmed
  214. Cawthon A, Alexander Miller M. Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol. 2002;169:3492-8 pubmed
  215. Yu C, Feng M, Shih H, Lai M. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol. 2002;22:4556-66 pubmed
  216. Walzer T, Arpin C, Beloeil L, Marvel J. Differential in vivo persistence of two subsets of memory phenotype CD8 T cells defined by CD44 and CD122 expression levels. J Immunol. 2002;168:2704-11 pubmed
  217. Leite De Moraes M, Hameg A, Pacilio M, Koezuka Y, Taniguchi M, van Kaer L, et al. IL-18 enhances IL-4 production by ligand-activated NKT lymphocytes: a pro-Th2 effect of IL-18 exerted through NKT cells. J Immunol. 2001;166:945-51 pubmed
  218. Hayashi K, Natsume W, Watanabe T, Abe N, Iwai N, Okada H, et al. Diminution of the AML1 transcription factor function causes differential effects on the fates of CD4 and CD8 single-positive T cells. J Immunol. 2000;165:6816-24 pubmed
  219. Egan P, Carding S. Downmodulation of the inflammatory response to bacterial infection by gammadelta T cells cytotoxic for activated macrophages. J Exp Med. 2000;191:2145-58 pubmed
  220. Angulo I, de las Heras F, Garcia Bustos J, Gargallo D, Munoz Fernandez M, Fresno M. Nitric oxide-producing CD11b(+)Ly-6G(Gr-1)(+)CD31(ER-MP12)(+) cells in the spleen of cyclophosphamide-treated mice: implications for T-cell responses in immunosuppressed mice. Blood. 2000;95:212-20 pubmed
  221. Dejbakhsh Jones S, Strober S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A. 1999;96:14493-8 pubmed
  222. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  223. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y. Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol. 1999;163:4788-95 pubmed
  224. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol. 1999;162:2725-31 pubmed
  225. Kretz Rommel A, Rubin R. Persistence of autoreactive T cell drive is required to elicit anti-chromatin antibodies in a murine model of drug-induced lupus. J Immunol. 1999;162:813-20 pubmed
  226. Pear W, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283-91 pubmed
  227. Ohteki T, MacDonald H. Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8- subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med. 1994;180:699-704 pubmed
  228. Petrie H, Livak F, Burtrum D, Mazel S. T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production. J Exp Med. 1995;182:121-7 pubmed
  229. Ohteki T, Iwamoto M, Izui S, MacDonald H. Reduced development of CD4-8-B220+ T cells but normal autoantibody production in lpr/lpr mice lacking major histocompatibility complex class I molecules. Eur J Immunol. 1995;25:37-41 pubmed