这是一篇来自已证抗体库的有关小鼠 Th的综述,是根据222篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Th 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 0.3 ug/ml; 图 4b
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab112)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为0.3 ug/ml (图 4b). elife (2020) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 小鼠; 1:5000; 图 5a
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab137869)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5a). Am J Physiol Endocrinol Metab (2019) ncbi
鸡 多克隆
艾博抗(上海)贸易有限公司 Th抗体(Abcam, AB76442)被用于. J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab76442)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Hum Mol Genet (2017) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Th抗体(Abcam, AB76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab112)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Diabetes (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab76442)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Histochem Cell Biol (2016) ncbi
家羊 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7a
  • 免疫印迹; 大鼠; 1:5000; 图 7d
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab113)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7d). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Th抗体(abcam, ab76442)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:400; 图 1
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400 (图 1). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s5C-1
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab6211)被用于被用于免疫细胞化学在小鼠样本上 (图 s5C-1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(EP1532Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab137869)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 s16
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab76442)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s16). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Th抗体(Abcam, ab76442)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Neuropharmacology (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Th抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 图 2c
圣克鲁斯生物技术 Th抗体(Santa Cruz, F-11)被用于被用于免疫组化在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Br J Pharmacol (2018) ncbi
小鼠 单克隆(F-11)
  • 免疫组化-石蜡切片; 人类; 1:10,000; 图 s9d
圣克鲁斯生物技术 Th抗体(Santa Cruz, sc-25269)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10,000 (图 s9d). Nat Genet (2017) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Th抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Th抗体(Santa Cruz, F11)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). Neuropharmacology (2016) ncbi
小鼠 单克隆(A-6)
  • 免疫组化-冰冻切片; 人类; 图 2
圣克鲁斯生物技术 Th抗体(Santa Cruz, sc-374048)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(F-11)
  • 免疫细胞化学; 人类; 1:500; 图 7
圣克鲁斯生物技术 Th抗体(Santa Cruz Biotechnology, sc-25269)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(F-11)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Th抗体(Santa Cruz, SC25269)被用于被用于免疫印迹在小鼠样本上 (图 1). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(TOH A1.1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
  • 免疫印迹; 大鼠; 1:2000; 图 5c
圣克鲁斯生物技术 Th抗体(Santa Cruz Biotechnology, sc-47708)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Neural Regen Res (2012) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s3
Novus Biologicals Th抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2018) ncbi
家羊 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6b
Novus Biologicals Th抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6b). Science (2017) ncbi
家羊 多克隆
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Novus Biologicals Th抗体(Novus, NB300-110)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Cell (2016) ncbi
家羊 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 1a
Novus Biologicals Th抗体(Novus Biologicals, NB 300-110)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
Novus Biologicals Th抗体(Novus Biologicals, NB300-110)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500-1:1000; 图 1a
Novus Biologicals Th抗体(Novus Biologicals, NB300-109)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500-1:1000 (图 1a). Histochem Cell Biol (2016) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 图 5a
Synaptic Systems Th抗体(Synaptic Systems, 213104)被用于被用于免疫组化在小鼠样本上 (图 5a). Cell (2018) ncbi
豚鼠 多克隆(/)
  • 免疫组化; 小鼠; 1:1000; 表 1
Synaptic Systems Th抗体(SySy, 213104)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
豚鼠 多克隆(/)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3b
Synaptic Systems Th抗体(Synaptic Systems, 213004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3b). Int J Neuropsychopharmacol (2017) ncbi
赛默飞世尔
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Th抗体(ThermoFisher, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Neurobiol Dis (2017) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
赛默飞世尔 Th抗体(Thermo Scientific, PA1-4679)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2). elife (2016) ncbi
BioLegend
小鼠 单克隆(2/40/15)
  • 免疫组化; 小鼠; 图 st1
BioLegend Th抗体(BioLegend, 818001)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
安迪生物R&D
小鼠 单克隆(779427)
  • 免疫印迹; 大鼠; 0.5 ug/ml
安迪生物R&D Th抗体(R&D Systems, MAB7566)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ug/ml. Mediators Inflamm (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1a
西格玛奥德里奇 Th抗体(Sigma, T8700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Ann Neurol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Th抗体(Cell Signaling, 2792)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cell Death Differ (2016) ncbi
MédiMabs
小鼠 单克隆(TOH A1.1)
  • 免疫组化; 小鼠; 1:100
MédiMabs Th抗体(Medimabs, MM-0063)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Chem Neuroanat (2014) ncbi
默克密理博中国
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a, s10a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上 (图 1a, s10a). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4b
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4b). Mol Brain (2020) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 Th抗体(Millipore, MAB318)被用于. J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 1a3
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 1a3). J Comp Neurol (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; slender lungfish; 1:1000; 图 6a
默克密理博中国 Th抗体(Merk-Millipore, MAB318)被用于被用于免疫组化在slender lungfish样本上浓度为1:1000 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; marine lamprey; 1:400; 图 6b
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:400 (图 6b). J Comp Neurol (2020) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). J Comp Neurol (2019) ncbi
家羊 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
默克密理博中国 Th抗体(EMD Millipore, AB1542)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b). Nature (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1b
默克密理博中国 Th抗体(EMD Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1b). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 ex5c
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上 (图 ex5c). Nature (2019) ncbi
家羊 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 7a
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 7a). elife (2019) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 住房乌鸦; 1:200; 图 17a
  • 免疫组化; 住房乌鸦; 1:200; 图 18a
  • 免疫印迹; 住房乌鸦; 1:5000; 图 4
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在住房乌鸦样本上浓度为1:200 (图 17a), 被用于免疫组化在住房乌鸦样本上浓度为1:200 (图 18a) 和 被用于免疫印迹在住房乌鸦样本上浓度为1:5000 (图 4). J Comp Neurol (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国 Th抗体(Millipore, AB9702)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). Neuroscience (2019) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 Th抗体(Millipore, MAB318)被用于. J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 1d
默克密理博中国 Th抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 1b
默克密理博中国 Th抗体(Abcam, ab152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 图 1a
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上 (图 1a). Brain Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 2d
默克密理博中国 Th抗体(Calbiochem, 657012)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2d). Sci Rep (2018) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Brain Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2d
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2d). J Comp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 图 2d
默克密理博中国 Th抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上 (图 2d). Addict Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 6a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 6a). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; marine lamprey; 1:1000; 图 7b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在marine lamprey样本上浓度为1:1000 (图 7b). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 表 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 表 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 Th抗体(Millipore, AB318)被用于. J Comp Neurol (2017) ncbi
家羊 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s8h
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s8h). Science (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:4000; 图 1b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:4000 (图 1b). J Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 人类; 1:1000; 图 4
  • 免疫细胞化学; 黑腹果蝇; 1:200; 图 2a
默克密理博中国 Th抗体(Millipore, LNC1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4) 和 被用于免疫细胞化学在黑腹果蝇样本上浓度为1:200 (图 2a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 图 4c
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上 (图 4c). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 2
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 2). Dev Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国 Th抗体(Cell Signaling, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000; 图 e1b
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 e1b). Nature (2017) ncbi
家羊 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1f
默克密理博中国 Th抗体(EMD Millipore, AB1542)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1f). Nat Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8a). J Pineal Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
默克密理博中国 Th抗体(Millipore, AB5935)被用于被用于免疫印迹在小鼠样本上 (图 5b). Evid Based Complement Alternat Med (2017) ncbi
家羊 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1a
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1a). Dis Model Mech (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 非洲爪蛙; 1:500; 图 1c
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在非洲爪蛙样本上浓度为1:500 (图 1c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2c
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). Acta Neuropathol Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2a
  • 免疫印迹; 小鼠; 1:2000; 图 9a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6c
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6c). Mol Ther (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 st15
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 st15). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 s6c
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 s6c). PLoS ONE (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000; 表 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:1000; 表 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:1000 (表 1). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
默克密理博中国 Th抗体(Millipore, AB 152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; Chondrichthyes; 1:1000; 图 2a
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在Chondrichthyes样本上浓度为1:1000 (图 2a). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:2000
默克密理博中国 Th抗体(Millipore, AB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000. Sci Rep (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 斑马鱼; 图 2-s2a
默克密理博中国 Th抗体(Milipore, MAB318)被用于被用于免疫细胞化学在斑马鱼样本上 (图 2-s2a). elife (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 1a
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 1a). J Comp Neurol (2017) ncbi
家羊 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 2b
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 2b). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000; 图 5
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 (图 5). Brain Struct Funct (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4a). J Neuroendocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st1
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st1). Mov Disord (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:5000; 图 2A
默克密理博中国 Th抗体(Chemicon, AB152)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:5000 (图 2A). PLoS ONE (2016) ncbi
家羊 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s23b
默克密理博中国 Th抗体(Chemicon, A1542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s23b). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:10,000; 图 1c
  • 免疫组化; 小鼠; 1:10,000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10,000 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:10,000. J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4b
默克密理博中国 Th抗体(Abcam, ab152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:400; 图 5
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在African green monkey样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500-1:1000; 图 1b
默克密理博中国 Th抗体(Millipore, 657012)被用于被用于免疫组化在小鼠样本上浓度为1:500-1:1000 (图 1b). J Assoc Res Otolaryngol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s1a
  • 免疫印迹; 小鼠; 1:1000; 图 7b
默克密理博中国 Th抗体(Milipore, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
默克密理博中国 Th抗体(Milipore, AB5935)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Nat Commun (2016) ncbi
家羊 多克隆
  • 免疫组化; 小鼠; 1:800; 图 8
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 8). Nat Commun (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7t
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7t). J Comp Neurol (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500; 图 4b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). Exp Neurol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:100; 图 1b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 s4
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 2d
默克密理博中国 Th抗体(Millipore, MAB 318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 2d
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 2d). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000; 图 1a
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1a). J Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000; 图 5c
默克密理博中国 Th抗体(Millipore, AB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5c). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3e
默克密理博中国 Th抗体(Merck Millipore, 657012)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 5d
  • 免疫印迹; 小鼠; 1:2000; 图 6a
默克密理博中国 Th抗体(EMD Millipore, AB 152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Mol Vis (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:100; 图 5f
默克密理博中国 Th抗体(Chemicon, AB152)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 5f). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3e
默克密理博中国 Th抗体(Abcam, AB152)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3e). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 7
默克密理博中国 Th抗体(millipore, AB152)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 7). Neuron (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上 (图 2). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2b
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2b). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 6c
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 6c). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 2
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; domestic rabbit; 1:400; 图 3
默克密理博中国 Th抗体(chemicon, MAB318)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:400 (图 3). Ann Anat (2016) ncbi
家羊 多克隆
  • 免疫细胞化学; domestic rabbit; 1:800; 图 3
默克密理博中国 Th抗体(chemicon, AB1542)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:800 (图 3). Ann Anat (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 大鼠; 图 1
默克密理博中国 Th抗体(Millipore, AB 152)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 1). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4
默克密理博中国 Th抗体(Calbiochem, 657012)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 图 1
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s3
默克密理博中国 Th抗体(EMD, AB152)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
默克密理博中国 Th抗体(Milipore, AB152)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. BMC Cell Biol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 猕猴; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在猕猴样本上浓度为1:1000. Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1k
默克密理博中国 Th抗体(EMD Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1k). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1c
默克密理博中国 Th抗体(Chemicon, AB152)被用于被用于免疫组化在人类样本上 (图 1c). J Orthop Surg Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 图 1
默克密理博中国 Th抗体(Millipore, LNC1)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:100; 图 3
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 表 1
默克密理博中国 Th抗体(Chemicon, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (表 1). Exp Eye Res (2016) ncbi
家羊 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
  • 免疫组化; 小鼠; 1:1000; 图 1
默克密理博中国 Th抗体(Millipore, ab1542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上 (图 3a). Synapse (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:500; 图 1f
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1f). Pharmacol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Dev Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 2
默克密理博中国 Th抗体(Calbiochem, AB152)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Dev Neurobiol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000; 图 4
默克密理博中国 Th抗体(Millipore Corporation, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Prog Neuropsychopharmacol Biol Psychiatry (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Nat Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000; 图 4
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). Histochem Cell Biol (2016) ncbi
家羊 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 11
默克密理博中国 Th抗体(Millipore, AB1542)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 11). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Th抗体(Merck, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:10,000; 图 3a
默克密理博中国 Th抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:10,000 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 表 1
  • 免疫组化; 小鼠; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:2000; 表 1
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (表 1), 被用于免疫组化在小鼠样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (表 1). J Neurosci Res (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 8b
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 8b). Sci Rep (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 6
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 6). Schizophr Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类; 图 3
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上 (图 3). J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 3
默克密理博中国 Th抗体(Millipore, AB152)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:5000; 图 1
  • 免疫组化; 小鼠; 1:5000; 图 3
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:40000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:40000. Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Biol Chem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:600
  • 免疫细胞化学; 小鼠; 1:600
默克密理博中国 Th抗体(MerckMillipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600 和 被用于免疫细胞化学在小鼠样本上浓度为1:600. Hum Gene Ther Methods (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 2
默克密理博中国 Th抗体(Merck Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 2). Mol Neurodegener (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 乙型肝炎病毒; 1:500
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在乙型肝炎病毒样本上浓度为1:500. Endocrinology (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:400; 图 5
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
  • 免疫组化-冰冻切片; domestic rabbit; 1:1000
  • 免疫组化-冰冻切片; 大鼠; 1:1000
默克密理博中国 Th抗体(Merck Millipore Ltd, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000, 被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:500; 图 S7
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 S7). Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 日本大米鱼; 1:1000; 图 2
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在日本大米鱼样本上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:500
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:500. Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 Th抗体(EMD Millipore, MAB318)被用于. Nat Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
  • 免疫细胞化学; 小鼠; 1:500; 图 2
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000. Neurobiol Aging (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 小鼠; 图 7
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫印迹在小鼠样本上 (图 7). FASEB J (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 5a
默克密理博中国 Th抗体(EMD Millipore, AB152)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5a). Brain Struct Funct (2016) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 家羊; 1:500
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫细胞化学在家羊样本上浓度为1:500. Ann Anat (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5,000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5,000. J Comp Neurol (2015) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 大鼠; 1:5000
默克密理博中国 Th抗体(Merck Millipore, MAB318)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000. Acta Histochem Cytochem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 8
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 8). J Neurosci (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:400
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:400. J Biol Chem (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 大鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 七鳃鳗目; 1:600
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在七鳃鳗目样本上浓度为1:600. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1h
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1h). Brain Struct Funct (2015) ncbi
小鼠 单克隆(LNC1)
默克密理博中国 Th抗体(Millipore / Chemicon, MAB318)被用于. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; African green monkey; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在African green monkey样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:5000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:5000. Endocrinology (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. J Virol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:200
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Genesis (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; smaller spotted dogfish; 1:500
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在smaller spotted dogfish样本上浓度为1:500. J Comp Neurol (2014) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
默克密理博中国 Th抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猪; 1:80
默克密理博中国 Th抗体(Chemicon, MAB 318)被用于被用于免疫组化-冰冻切片在猪样本上浓度为1:80. J Mol Neurosci (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000. Brain Behav (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国 Th抗体(Chemicon, Mab318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Genesis (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在人类样本上浓度为1:2000. Gene Ther (2013) ncbi
小鼠 单克隆(LNC1)
  • 免疫细胞化学; 人类
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫细胞化学在人类样本上. Stem Cell Rev (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 斑马鱼; 1:1000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; European river lamprey; 1:600
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在European river lamprey样本上浓度为1:600. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:400
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:400. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:40000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:40000. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国 Th抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 小鼠; 1:500
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Comp Neurol (2012) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 人类; 1:100
默克密理博中国 Th抗体(Millipore, LNC1)被用于被用于免疫组化在人类样本上浓度为1:100. PLoS ONE (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫组化-石蜡切片; 猕猴; 1:100
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫组化-石蜡切片在猕猴样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫印迹; 斑马鱼; 1:1000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. J Comp Neurol (2011) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200 - 1:500
默克密理博中国 Th抗体(Chemicon International Inc., MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 - 1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 Th抗体(Chemicon International, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:4000
  • 免疫细胞化学; 大鼠; 1:4000
默克密理博中国 Th抗体(Millipore-Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:4000 和 被用于免疫细胞化学在大鼠样本上浓度为1:4000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:100
  • 免疫印迹; 非洲爪蛙; 1:200
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:100 和 被用于免疫印迹在非洲爪蛙样本上浓度为1:200. J Comp Neurol (2009) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; smaller spotted dogfish; 1:2,500
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在smaller spotted dogfish样本上浓度为1:2,500. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化; 大鼠; 1:2000
默克密理博中国 Th抗体(Chemicon / Millipore, MAB318)被用于被用于免疫组化在大鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000
默克密理博中国 Th抗体(Millipore, MAB318)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 斑马鱼; 1:1,000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
小鼠 单克隆(LNC1)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
默克密理博中国 Th抗体(Chemicon, MAB318)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
文章列表
  1. You H, Shang W, Min X, Weinreb J, Li Q, Leapman M, et al. Sight and switch off: Nerve density visualization for interventions targeting nerves in prostate cancer. Sci Adv. 2020;6:eaax6040 pubmed 出版商
  2. Xie K, Wang N, Lin X, Wang Z, Zhao X, Fang P, et al. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo. elife. 2020;9: pubmed 出版商
  3. Moriya S, Yamashita A, Masukawa D, Kambe Y, Sakaguchi J, Setoyama H, et al. Involvement of supralemniscal nucleus (B9) 5-HT neuronal system in nociceptive processing: a fiber photometry study. Mol Brain. 2020;13:14 pubmed 出版商
  4. Emam A, Yoffe M, Cardona H, Soares D. Retinal morphology in Astyanax mexicanus during eye degeneration. J Comp Neurol. 2020;528:1523-1534 pubmed 出版商
  5. Wullimann M, Umeasalugo K. Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol. 2019;: pubmed 出版商
  6. Aoki S, Smith J, Li H, Yan X, Igarashi M, Coulon P, et al. An open cortico-basal ganglia loop allows limbic control over motor output via the nigrothalamic pathway. elife. 2019;8: pubmed 出版商
  7. L pez J, Morona R, Moreno N, Lozano D, Jim nez S, Gonz lez A. Pax6 expression highlights regional organization in the adult brain of lungfishes, the closest living relatives of land vertebrates. J Comp Neurol. 2020;528:135-159 pubmed 出版商
  8. Beaus jour P, Auclair F, Daghfous G, Ngovandan C, Veilleux D, Zielinski B, et al. Dopaminergic modulation of olfactory-evoked motor output in sea lampreys (Petromyzon marinus L.). J Comp Neurol. 2020;528:114-134 pubmed 出版商
  9. Wen Y, Zhang Z, Li Z, Liu G, Tao G, Song X, et al. The PROK2/PROKR2 signaling pathway is required for the migration of most olfactory bulb interneurons. J Comp Neurol. 2019;527:2931-2947 pubmed 出版商
  10. Zeng X, Ye M, Resch J, Jedrychowski M, Hu B, Lowell B, et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature. 2019;569:229-235 pubmed 出版商
  11. Gumbs M, Vuuregge A, Eggels L, Unmehopa U, Lamuadni K, Mul J, et al. Afferent neuropeptide Y projections to the ventral tegmental area in normal-weight male Wistar rats. J Comp Neurol. 2019;527:2659-2674 pubmed 出版商
  12. McAlpine C, Kiss M, Rattik S, He S, Vassalli A, Valet C, et al. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature. 2019;566:383-387 pubmed 出版商
  13. Poltavski D, Colombier P, Hu J, Duron A, Black B, Makita T. Venous endothelin modulates responsiveness of cardiac sympathetic axons to arterial semaphorin. elife. 2019;8: pubmed 出版商
  14. Sen S, Parishar P, Pundir A, Reiner A, Iyengar S. The expression of tyrosine hydroxylase and DARPP-32 in the house crow (Corvus splendens) brain. J Comp Neurol. 2019;527:1801-1836 pubmed 出版商
  15. Hu K, Huang Q, Liu C, Li Y, Liu Y, Wang H, et al. c-Jun/Bim Upregulation in Dopaminergic Neurons Promotes Neurodegeneration in the MPTP Mouse Model of Parkinson's Disease. Neuroscience. 2019;399:117-124 pubmed 出版商
  16. Fischer A, Schlein C, Cannon B, Heeren J, Nedergaard J. Intact innervation is essential for diet-induced recruitment of brown adipose tissue. Am J Physiol Endocrinol Metab. 2019;316:E487-E503 pubmed 出版商
  17. Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, et al. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol. 2019;527:874-900 pubmed 出版商
  18. Munteanu T, Noronha K, Leung A, Pan S, Lucas J, Schmidt T. Light-dependent pathways for dopaminergic amacrine cell development and function. elife. 2018;7: pubmed 出版商
  19. Breton J, Charbit A, Snyder B, Fong P, Dias E, Himmels P, et al. Relative contributions and mapping of ventral tegmental area dopamine and GABA neurons by projection target in the rat. J Comp Neurol. 2019;527:916-941 pubmed 出版商
  20. Luo S, Huang J, Li Q, Mohammad H, Lee C, Krishna K, et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science. 2018;361:76-81 pubmed 出版商
  21. Balan I, Warnock K, Puche A, GONDRE LEWIS M, JUNE H, Aurelian L. The GABAA Receptor α2 Subunit Activates a Neuronal TLR4 Signal in the Ventral Tegmental Area that Regulates Alcohol and Nicotine Abuse. Brain Sci. 2018;8: pubmed 出版商
  22. Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S, et al. Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep. 2018;8:2813 pubmed 出版商
  23. Lin Y, Kuo K, Chen S, Huang H. RBFOX3/NeuN is dispensable for visual function. PLoS ONE. 2018;13:e0192355 pubmed 出版商
  24. Liu C, Kershberg L, Wang J, Schneeberger S, Kaeser P. Dopamine Secretion Is Mediated by Sparse Active Zone-like Release Sites. Cell. 2018;172:706-718.e15 pubmed 出版商
  25. Xiong Y, Neifert S, Karuppagounder S, Liu Q, Stankowski J, Lee B, et al. Robust kinase- and age-dependent dopaminergic and norepinephrine neurodegeneration in LRRK2 G2019S transgenic mice. Proc Natl Acad Sci U S A. 2018;115:1635-1640 pubmed 出版商
  26. Dunn A, Hoffman C, Stout K, Ozawa M, Dhamsania R, Miller G. Immunochemical analysis of the expression of SV2C in mouse, macaque and human brain. Brain Res. 2019;1702:85-95 pubmed 出版商
  27. Johnson E, Westbrook T, Shayesteh R, Chen E, Schumacher J, Fitzpatrick D, et al. Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. J Comp Neurol. 2019;527:328-344 pubmed 出版商
  28. Parmhans N, Sajgo S, Niu J, Luo W, Badea T. Characterization of retinal ganglion cell, horizontal cell, and amacrine cell types expressing the neurotrophic receptor tyrosine kinase Ret. J Comp Neurol. 2018;526:742-766 pubmed 出版商
  29. Zhang Z, Chu S, Wang S, Jiang Y, Gao Y, Yang P, et al. RTP801 is a critical factor in the neurodegeneration process of A53T α-synuclein in a mouse model of Parkinson's disease under chronic restraint stress. Br J Pharmacol. 2018;175:590-605 pubmed 出版商
  30. Bernstein D, Badve P, Barson J, Bass C, Espana R. Hypocretin receptor 1 knockdown in the ventral tegmental area attenuates mesolimbic dopamine signaling and reduces motivation for cocaine. Addict Biol. 2018;23:1032-1045 pubmed 出版商
  31. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  32. Barreiro Iglesias A, Fernández López B, Sobrido Cameán D, Anadón R. Organization of alpha-transducin immunoreactive system in the brain and retina of larval and young adult Sea Lamprey (Petromyzon marinus), and their relationship with other neural systems. J Comp Neurol. 2017;525:3683-3704 pubmed 出版商
  33. González Cabrera C, Meza R, Ulloa L, Merino Sepúlveda P, Luco V, Sanhueza A, et al. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons. J Comp Neurol. 2017;525:3529-3542 pubmed 出版商
  34. Seigneur E, Südhof T. Cerebellins are differentially expressed in selective subsets of neurons throughout the brain. J Comp Neurol. 2017;525:3286-3311 pubmed 出版商
  35. Furlan A, Dyachuk V, Kastriti M, Calvo Enrique L, Abdo H, Hadjab S, et al. Multipotent peripheral glial cells generate neuroendocrine cells of the adrenal medulla. Science. 2017;357: pubmed 出版商
  36. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  37. López J, González A. Organization of the catecholaminergic systems in the brain of lungfishes, the closest living relatives of terrestrial vertebrates. J Comp Neurol. 2017;525:3083-3109 pubmed 出版商
  38. Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science. 2017;356:1383-1386 pubmed 出版商
  39. Fischer D, Kemp C, Cole Strauss A, Polinski N, Paumier K, Lipton J, et al. Subthalamic Nucleus Deep Brain Stimulation Employs trkB Signaling for Neuroprotection and Functional Restoration. J Neurosci. 2017;37:6786-6796 pubmed 出版商
  40. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  41. Escobar A, González M, Meza R, Noches V, Henny P, Gysling K, et al. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol. 2017;20:660-669 pubmed 出版商
  42. Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol. 2017;525:2782-2799 pubmed 出版商
  43. Solek C, Feng S, Perin S, Weinschutz Mendes H, Ekker M. Lineage tracing of dlx1a/2a and dlx5a/6a expressing cells in the developing zebrafish brain. Dev Biol. 2017;427:131-147 pubmed 出版商
  44. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  45. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  46. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  47. Mendivil Perez M, Soto Mercado V, Guerra Librero A, Fernandez Gil B, Florido J, Shen Y, et al. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J Pineal Res. 2017;63: pubmed 出版商
  48. Ho T, Lee C, Lu Z, Lane H, Tsai M, Ho I, et al. Effects of Electroacupuncture on Methamphetamine-Induced Behavioral Changes in Mice. Evid Based Complement Alternat Med. 2017;2017:5642708 pubmed 出版商
  49. Evsyukov V, Domanskyi A, Bierhoff H, Gispert S, Mustafa R, Schlaudraff F, et al. Genetic mutations linked to Parkinson's disease differentially control nucleolar activity in pre-symptomatic mouse models. Dis Model Mech. 2017;10:633-643 pubmed 出版商
  50. Xavier A, Fontaine R, Bloch S, Affaticati P, Jenett A, Demarque M, et al. Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates). J Comp Neurol. 2017;525:2265-2283 pubmed 出版商
  51. Longo F, Mercatelli D, Novello S, Arcuri L, Brugnoli A, Vincenzi F, et al. Age-dependent dopamine transporter dysfunction and Serine129 phospho-α-synuclein overload in G2019S LRRK2 mice. Acta Neuropathol Commun. 2017;5:22 pubmed 出版商
  52. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  53. Williams C, Uytingco C, Green W, McIntyre J, Ukhanov K, Zimmerman A, et al. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther. 2017;25:904-916 pubmed 出版商
  54. Zhao F, Wang W, Wang C, Siedlak S, Fujioka H, Tang B, et al. Mfn2 protects dopaminergic neurons exposed to paraquat both in vitro and in vivo: Implications for idiopathic Parkinson's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1359-1370 pubmed 出版商
  55. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  56. Roberts H, Schneider B, Brown D. α-Synuclein increases β-amyloid secretion by promoting β-/γ-secretase processing of APP. PLoS ONE. 2017;12:e0171925 pubmed 出版商
  57. Goodings L, He J, Wood A, Harris W, Currie P, Jusuf P. In vivo expression of Nurr1/Nr4a2a in developing retinal amacrine subtypes in zebrafish Tg(nr4a2a:eGFP) transgenics. J Comp Neurol. 2017;525:1962-1979 pubmed 出版商
  58. Hannibal J, Christiansen A, Heegaard S, Fahrenkrug J, Kiilgaard J. Melanopsin expressing human retinal ganglion cells: Subtypes, distribution, and intraretinal connectivity. J Comp Neurol. 2017;525:1934-1961 pubmed 出版商
  59. Green H, Zhang X, Tiklová K, Volakakis N, Brodin L, Berg L, et al. Alterations of p11 in brain tissue and peripheral blood leukocytes in Parkinson's disease. Proc Natl Acad Sci U S A. 2017;114:2735-2740 pubmed 出版商
  60. Perelmuter J, Forlano P. Connectivity and ultrastructure of dopaminergic innervation of the inner ear and auditory efferent system of a vocal fish. J Comp Neurol. 2017;525:2090-2108 pubmed 出版商
  61. Liu H, Ho P, Leung G, Lam C, Pang S, Li L, et al. Combined LRRK2 mutation, aging and chronic low dose oral rotenone as a model of Parkinson's disease. Sci Rep. 2017;7:40887 pubmed 出版商
  62. Wircer E, Blechman J, Borodovsky N, Tsoory M, Nunes A, Oliveira R, et al. Homeodomain protein Otp affects developmental neuropeptide switching in oxytocin neurons associated with a long-term effect on social behavior. elife. 2017;6: pubmed 出版商
  63. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30-38 pubmed 出版商
  64. Fasoli A, Dang J, Johnson J, Gouw A, Fogli Iseppe A, Ishida A. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol. 2017;525:1707-1730 pubmed 出版商
  65. Wang J, O Sullivan M, Mukherjee D, Punal V, Farsiu S, Kay J. Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol. 2017;525:1759-1777 pubmed 出版商
  66. Oh Y, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct. 2017;222:2359-2378 pubmed 出版商
  67. Higo S, Iijima N, Ozawa H. Characterisation of Kiss1r (Gpr54)-Expressing Neurones in the Arcuate Nucleus of the Female Rat Hypothalamus. J Neuroendocrinol. 2017;29: pubmed 出版商
  68. Dzamko N, Gysbers A, Bandopadhyay R, Bolliger M, Uchino A, Zhao Y, et al. LRRK2 levels and phosphorylation in Parkinson's disease brain and cases with restricted Lewy bodies. Mov Disord. 2017;32:423-432 pubmed 出版商
  69. Koprich J, Johnston T, Reyes G, Omana V, Brotchie J. Towards a Non-Human Primate Model of Alpha-Synucleinopathy for Development of Therapeutics for Parkinson's Disease: Optimization of AAV1/2 Delivery Parameters to Drive Sustained Expression of Alpha Synuclein and Dopaminergic Degeneration in Macaque. PLoS ONE. 2016;11:e0167235 pubmed 出版商
  70. Ho Y, Zhou L, Tam K, Too H. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of β-tubulin deactylase. Nucleic Acids Res. 2017;45:e38 pubmed 出版商
  71. Kiyokage E, Kobayashi K, Toida K. Spatial distribution of synapses on tyrosine hydroxylase-expressing juxtaglomerular cells in the mouse olfactory glomerulus. J Comp Neurol. 2017;525:1059-1074 pubmed 出版商
  72. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  73. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  74. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular Diversity of Midbrain Development in Mouse, Human, and Stem Cells. Cell. 2016;167:566-580.e19 pubmed 出版商
  75. Vyas P, Wu J, Zimmerman A, Fuchs P, Glowatzki E. Tyrosine Hydroxylase Expression in Type II Cochlear Afferents in Mice. J Assoc Res Otolaryngol. 2017;18:139-151 pubmed 出版商
  76. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  77. Carnevale D, Perrotta M, Pallante F, Fardella V, Iacobucci R, Fardella S, et al. A cholinergic-sympathetic pathway primes immunity in hypertension and mediates brain-to-spleen communication. Nat Commun. 2016;7:13035 pubmed 出版商
  78. Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn M, et al. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol. 2017;525:1155-1175 pubmed 出版商
  79. Wu Q, Yang X, Zhang Y, Zhang L, Feng L. Chronic mild stress accelerates the progression of Parkinson's disease in A53T ?-synuclein transgenic mice. Exp Neurol. 2016;285:61-71 pubmed 出版商
  80. Peris J, Macfadyen K, Smith J, de Kloet A, Wang L, Krause E. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets. J Comp Neurol. 2017;525:1094-1108 pubmed 出版商
  81. Stauffer W, Lak A, Yang A, Borel M, Paulsen O, Boyden E, et al. Dopamine Neuron-Specific Optogenetic Stimulation in Rhesus Macaques. Cell. 2016;166:1564-1571.e6 pubmed 出版商
  82. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  83. Brown R, Kokay I, Phillipps H, Yip S, Gustafson P, Wyatt A, et al. Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci. 2016;36:9173-85 pubmed 出版商
  84. Ztaou S, Maurice N, Camon J, Guiraudie Capraz G, Kerkerian Le Goff L, Beurrier C, et al. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease. J Neurosci. 2016;36:9161-72 pubmed 出版商
  85. Fukada M, Nakayama A, Mamiya T, Yao T, Kawaguchi Y. Dopaminergic abnormalities in Hdac6-deficient mice. Neuropharmacology. 2016;110:470-479 pubmed 出版商
  86. Hamamoto M, Kiyokage E, Sohn J, Hioki H, Harada T, Toida K. Structural basis for cholinergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2017;525:574-591 pubmed 出版商
  87. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  88. Mazzulli J, Zunke F, Tsunemi T, Toker N, Jeon S, Burbulla L, et al. Activation of β-Glucocerebrosidase Reduces Pathological α-Synuclein and Restores Lysosomal Function in Parkinson's Patient Midbrain Neurons. J Neurosci. 2016;36:7693-706 pubmed 出版商
  89. Cholanians A, Phan A, Ditzel E, Camenisch T, Lau S, Monks T. From the Cover: Arsenic Induces Accumulation of α-Synuclein: Implications for Synucleinopathies and Neurodegeneration. Toxicol Sci. 2016;153:271-81 pubmed 出版商
  90. Nandi S, Zheng H, Sharma N, Shahshahan H, Patel K, Mishra P. Lack of miR-133a Decreases Contractility of Diabetic Hearts: A Role for Novel Cross Talk Between Tyrosine Aminotransferase and Tyrosine Hydroxylase. Diabetes. 2016;65:3075-90 pubmed 出版商
  91. Simmons A, Bloomsburg S, Billingslea S, Merrill M, Li S, Thomas M, et al. Pou4f2 knock-in Cre mouse: A multifaceted genetic tool for vision researchers. Mol Vis. 2016;22:705-17 pubmed
  92. Sommer A, Fadler T, Dorfmeister E, Hoffmann A, Xiang W, Winner B, et al. Infiltrating T lymphocytes reduce myeloid phagocytosis activity in synucleinopathy model. J Neuroinflammation. 2016;13:174 pubmed 出版商
  93. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  94. Alba Delgado C, Cebada Aleu A, Mico J, Berrocoso E. Comorbid anxiety-like behavior and locus coeruleus impairment in diabetic peripheral neuropathy: A comparative study with the chronic constriction injury model. Prog Neuropsychopharmacol Biol Psychiatry. 2016;71:45-56 pubmed 出版商
  95. Hughes S, Rodgers J, Hickey D, Foster R, Peirson S, Hankins M. Characterisation of light responses in the retina of mice lacking principle components of rod, cone and melanopsin phototransduction signalling pathways. Sci Rep. 2016;6:28086 pubmed 出版商
  96. Prabhudesai S, Bensabeur F, Abdullah R, Basak I, Baez S, Alves G, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and synuclein aggregation. J Neurosci Res. 2016;94:717-35 pubmed 出版商
  97. Figueres Oñate M, López Mascaraque L. Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Front Neurosci. 2016;10:194 pubmed 出版商
  98. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  99. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  100. Aldrin Kirk P, Heuer A, Wang G, Mattsson B, Lundblad M, Parmar M, et al. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor. Neuron. 2016;90:955-68 pubmed 出版商
  101. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  102. Ueno M, Ueno Nakamura Y, Niehaus J, Popovich P, Yoshida Y. Silencing spinal interneurons inhibits immune suppressive autonomic reflexes caused by spinal cord injury. Nat Neurosci. 2016;19:784-7 pubmed 出版商
  103. Wang Y, Gratzke C, Tamalunas A, Wiemer N, Ciotkowska A, Rutz B, et al. P21-Activated Kinase Inhibitors FRAX486 and IPA3: Inhibition of Prostate Stromal Cell Growth and Effects on Smooth Muscle Contraction in the Human Prostate. PLoS ONE. 2016;11:e0153312 pubmed 出版商
  104. Chtarto A, Humbert Claude M, Bockstael O, Das A, Boutry S, Breger L, et al. A regulatable AAV vector mediating GDNF biological effects at clinically-approved sub-antimicrobial doxycycline doses. Mol Ther Methods Clin Dev. 2016;5:16027 pubmed 出版商
  105. Gómez López S, Martínez Silva A, Montiel T, Osorio Gómez D, Bermudez Rattoni F, Massieu L, et al. Neural ablation of the PARK10 candidate Plpp3 leads to dopaminergic transmission deficits without neurodegeneration. Sci Rep. 2016;6:24028 pubmed 出版商
  106. Fourgeaud L, Traves P, Tufail Y, Leal Bailey H, Lew E, Burrola P, et al. TAM receptors regulate multiple features of microglial physiology. Nature. 2016;532:240-244 pubmed 出版商
  107. Inokaitis H, Pauziene N, Rysevaite Kyguoliene K, Pauza D. Innervation of sinoatrial nodal cells in the rabbit. Ann Anat. 2016;205:113-21 pubmed 出版商
  108. Kumar A, Jagadeeshan S, Subramanian A, Chidambaram S, Surabhi R, Singhal M, et al. Molecular Mechanism of Regulation of MTA1 Expression by Granulocyte Colony-stimulating Factor. J Biol Chem. 2016;291:12310-21 pubmed 出版商
  109. Rossi M, Li H, Lu D, Kim I, Bartholomew R, Gaidis E, et al. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat Neurosci. 2016;19:742-748 pubmed 出版商
  110. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  111. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  112. Wang Y, Jones Tabah J, Chakravarty P, Stewart A, Muotri A, Laposa R, et al. Pharmacological Bypass of Cockayne Syndrome B Function in Neuronal Differentiation. Cell Rep. 2016;14:2554-61 pubmed 出版商
  113. Boggild S, Molgaard S, Glerup S, Nyengaard J. Spatiotemporal patterns of sortilin and SorCS2 localization during organ development. BMC Cell Biol. 2016;17:8 pubmed 出版商
  114. Green F, Samaranch L, Zhang H, Manning Bog A, Meyer K, Forsayeth J, et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 2016;23:520-6 pubmed 出版商
  115. Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J. Fascin Rigidity and L-plastin Flexibility Cooperate in Cancer Cell Invadopodia and Filopodia. J Biol Chem. 2016;291:9148-60 pubmed 出版商
  116. Roy A, Rangasamy S, Kundu M, Pahan K. BPOZ-2 Gene Delivery Ameliorates Alpha-Synucleinopathy in A53T Transgenic Mouse Model of Parkinson's Disease. Sci Rep. 2016;6:22067 pubmed 出版商
  117. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  118. Koeck F, Schmitt M, Baier C, Stangl H, Beckmann J, Grifka J, et al. Predominance of synovial sensory nerve fibers in arthrofibrosis following total knee arthroplasty compared to osteoarthritis of the knee. J Orthop Surg Res. 2016;11:25 pubmed 出版商
  119. Liu Z, Brown A, Fisher D, Wu Y, Warren J, Cui X. Tissue Specific Expression of Cre in Rat Tyrosine Hydroxylase and Dopamine Active Transporter-Positive Neurons. PLoS ONE. 2016;11:e0149379 pubmed 出版商
  120. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  121. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  122. Pandit R, Omrani A, Luijendijk M, de Vrind V, van Rozen A, Ophuis R, et al. Melanocortin 3 Receptor Signaling in Midbrain Dopamine Neurons Increases the Motivation for Food Reward. Neuropsychopharmacology. 2016;41:2241-51 pubmed 出版商
  123. van der Keylen P, Garreis F, Steigleder R, Sommer D, Neuhuber W, Wörl J. Involvement of catecholaminergic neurons in motor innervation of striated muscle in the mouse esophagus. Histochem Cell Biol. 2016;145:573-85 pubmed 出版商
  124. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  125. Zhou Q, Yen A, Rymarczyk G, Asai H, Trengrove C, Aziz N, et al. Impairment of PARK14-dependent Ca(2+) signalling is a novel determinant of Parkinson's disease. Nat Commun. 2016;7:10332 pubmed 出版商
  126. Srinivasan R, Henley B, Henderson B, Indersmitten T, Cohen B, Kim C, et al. Smoking-Relevant Nicotine Concentration Attenuates the Unfolded Protein Response in Dopaminergic Neurons. J Neurosci. 2016;36:65-79 pubmed 出版商
  127. Schmitt M, Dehay B, Bezard E, Garcia Ladona F. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse. 2016;70:71-86 pubmed 出版商
  128. Pinho B, Reis S, Guedes Dias P, Leitão Rocha A, Quintas C, Valentão P, et al. Pharmacological modulation of HDAC1 and HDAC6 in vivo in a zebrafish model: Therapeutic implications for Parkinson's disease. Pharmacol Res. 2016;103:328-39 pubmed 出版商
  129. Grünewald A, Rygiel K, Hepplewhite P, Morris C, Picard M, Turnbull D. Mitochondrial DNA Depletion in Respiratory Chain-Deficient Parkinson Disease Neurons. Ann Neurol. 2016;79:366-78 pubmed 出版商
  130. Gazea M, Tasouri E, Tolve M, Bosch V, Kabanova A, Gojak C, et al. Primary cilia are critical for Sonic hedgehog-mediated dopaminergic neurogenesis in the embryonic midbrain. Dev Biol. 2016;409:55-71 pubmed 出版商
  131. Romano López A, Méndez Díaz M, García F, Regalado Santiago C, Ruiz Contreras A, Prospero Garcia O. Maternal separation and early stress cause long-lasting effects on dopaminergic and endocannabinergic systems and alters dendritic morphology in the nucleus accumbens and frontal cortex in rats. Dev Neurobiol. 2016;76:819-31 pubmed 出版商
  132. Winiecka Klimek M, Smolarz M, Walczak M, Zieba J, Hulas Bigoszewska K, Kmieciak B, et al. SOX2 and SOX2-MYC Reprogramming Process of Fibroblasts to the Neural Stem Cells Compromised by Senescence. PLoS ONE. 2015;10:e0141688 pubmed 出版商
  133. Knowles M, de la Tremblaye P, Azogu I, Plamondon H. Endocannabinoid CB1 receptor activation upon global ischemia adversely impact recovery of reward and stress signaling molecules, neuronal survival and behavioral impulsivity. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:8-21 pubmed 出版商
  134. Wu R, Chen H, Ma J, He Q, Huang Q, Liu Q, et al. c-Abl-p38α signaling plays an important role in MPTP-induced neuronal death. Cell Death Differ. 2016;23:542-52 pubmed 出版商
  135. Stouffer M, Woods C, Patel J, Lee C, Witkovsky P, Bao L, et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat Commun. 2015;6:8543 pubmed 出版商
  136. Podlasz P, Jakimiuk A, Chmielewska Krzesinska M, Kasica N, Nowik N, Kaleczyc J. Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol. 2016;145:105-17 pubmed 出版商
  137. Geerling J, Kim M, Mahoney C, Abbott S, Agostinelli L, Garfield A, et al. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol. 2016;310:R41-54 pubmed 出版商
  138. Tuon T, Souza P, Santos M, Pereira F, Pedroso G, Luciano T, et al. Physical Training Regulates Mitochondrial Parameters and Neuroinflammatory Mechanisms in an Experimental Model of Parkinson's Disease. Oxid Med Cell Longev. 2015;2015:261809 pubmed 出版商
  139. Pathak T, Agrawal T, Richhariya S, Sadaf S, Hasan G. Store-Operated Calcium Entry through Orai Is Required for Transcriptional Maturation of the Flight Circuit in Drosophila. J Neurosci. 2015;35:13784-99 pubmed 出版商
  140. Van Kampen J, Baranowski D, Robertson H, Shaw C, Kay D. The Progressive BSSG Rat Model of Parkinson's: Recapitulating Multiple Key Features of the Human Disease. PLoS ONE. 2015;10:e0139694 pubmed 出版商
  141. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  142. De Luca R, Suvorava T, Yang D, Baumgärtel W, Kojda G, Haas H, et al. Identification of histaminergic neurons through histamine 3 receptor-mediated autoinhibition. Neuropharmacology. 2016;106:102-15 pubmed 出版商
  143. Dearborn J, Harmon S, Fowler S, O Malley K, Taylor G, Sands M, et al. Comprehensive functional characterization of murine infantile Batten disease including Parkinson-like behavior and dopaminergic markers. Sci Rep. 2015;5:12752 pubmed 出版商
  144. Morris R, Purves Tyson T, Weickert C, Rothmond D, Lenroot R, Weickert T. Testosterone and reward prediction-errors in healthy men and men with schizophrenia. Schizophr Res. 2015;168:649-60 pubmed 出版商
  145. Jiang Y, Jiang P, Yang J, Ma D, Lin H, Su W, et al. Cardiac Dysregulation and Myocardial Injury in a 6-Hydroxydopamine-Induced Rat Model of Sympathetic Denervation. PLoS ONE. 2015;10:e0133971 pubmed 出版商
  146. Aimé P, Sun X, Zareen N, Rao A, Berman Z, Volpicelli Daley L, et al. Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci. 2015;35:10731-49 pubmed 出版商
  147. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  148. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide M, Dutheil N, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol Commun. 2015;3:46 pubmed 出版商
  149. Hryhorczuk C, Florea M, Rodaros D, Poirier I, Daneault C, Des Rosiers C, et al. Dampened Mesolimbic Dopamine Function and Signaling by Saturated but not Monounsaturated Dietary Lipids. Neuropsychopharmacology. 2016;41:811-21 pubmed 出版商
  150. Beckman D, Santos L, Americo T, Ledo J, de Mello F, Linden R. Prion Protein Modulates Monoaminergic Systems and Depressive-like Behavior in Mice. J Biol Chem. 2015;290:20488-98 pubmed 出版商
  151. Theodorou M, Rauser B, Zhang J, Prakash N, Wurst W, Schick J. Limitations of In Vivo Reprogramming to Dopaminergic Neurons via a Tricistronic Strategy. Hum Gene Ther Methods. 2015;26:107-22 pubmed 出版商
  152. Van Rompuy A, Oliveras Salvá M, Van der Perren A, Corti O, Van den Haute C, Baekelandt V. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration. Mol Neurodegener. 2015;10:23 pubmed 出版商
  153. Fontaine R, Affaticati P, Bureau C, Colin I, Demarque M, Dufour S, et al. Dopaminergic Neurons Controlling Anterior Pituitary Functions: Anatomy and Ontogenesis in Zebrafish. Endocrinology. 2015;156:2934-48 pubmed 出版商
  154. Schreglmann S, Regensburger M, Rockenstein E, Masliah E, Xiang W, Winkler J, et al. The temporal expression pattern of alpha-synuclein modulates olfactory neurogenesis in transgenic mice. PLoS ONE. 2015;10:e0126261 pubmed 出版商
  155. Debertin G, Kántor O, Kovács Öller T, Balogh L, Szabó Meleg E, Orbán J, et al. Tyrosine hydroxylase positive perisomatic rings are formed around various amacrine cell types in the mammalian retina. J Neurochem. 2015;134:416-28 pubmed 出版商
  156. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen J, et al. Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease. Nat Neurosci. 2015;18:826-35 pubmed 出版商
  157. Salganik M, Sergeyev V, Shinde V, Meyers C, Gorbatyuk M, Lin J, et al. The loss of glucose-regulated protein 78 (GRP78) during normal aging or from siRNA knockdown augments human alpha-synuclein (α-syn) toxicity to rat nigral neurons. Neurobiol Aging. 2015;36:2213-23 pubmed 出版商
  158. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  159. Zheng H, Rinaman L. Simplified CLARITY for visualizing immunofluorescence labeling in the developing rat brain. Brain Struct Funct. 2016;221:2375-83 pubmed 出版商
  160. Briffaud V, Williams P, Courty J, Broberger C. Excitation of tuberoinfundibular dopamine neurons by oxytocin: crosstalk in the control of lactation. J Neurosci. 2015;35:4229-37 pubmed 出版商
  161. Zhang S, Qi J, Li X, Wang H, Britt J, Hoffman A, et al. Dopaminergic and glutamatergic microdomains in a subset of rodent mesoaccumbens axons. Nat Neurosci. 2015;18:386-92 pubmed 出版商
  162. Chand A, Galliano E, Chesters R, Grubb M. A distinct subtype of dopaminergic interneuron displays inverted structural plasticity at the axon initial segment. J Neurosci. 2015;35:1573-90 pubmed 出版商
  163. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  164. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  165. Sharaf A, Rahhal B, Spittau B, Roussa E. Localization of reelin signaling pathway components in murine midbrain and striatum. Cell Tissue Res. 2015;359:393-407 pubmed 出版商
  166. Lee Y, Petkova A, Konkar A, Granneman J. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J. 2015;29:286-99 pubmed 出版商
  167. Huang Y, Chang C, Zhang J, Gao X. Bone marrow-derived mesenchymal stem cells increase dopamine synthesis in the injured striatum. Neural Regen Res. 2012;7:2653-62 pubmed 出版商
  168. Sobieraj J, Kim A, Fannon M, Mandyam C. Chronic wheel running-induced reduction of extinction and reinstatement of methamphetamine seeking in methamphetamine dependent rats is associated with reduced number of periaqueductal gray dopamine neurons. Brain Struct Funct. 2016;221:261-76 pubmed 出版商
  169. Pauza D, Rysevaite Kyguoliene K, Vismantaite J, Brack K, Inokaitis H, Pauza A, et al. A combined acetylcholinesterase and immunohistochemical method for precise anatomical analysis of intrinsic cardiac neural structures. Ann Anat. 2014;196:430-40 pubmed 出版商
  170. Suzuki Y, Kiyokage E, Sohn J, Hioki H, Toida K. Structural basis for serotonergic regulation of neural circuits in the mouse olfactory bulb. J Comp Neurol. 2015;523:262-80 pubmed 出版商
  171. Masuda C, Takeuchi S, J Bisem N, R Vincent S, Tooyama I. Immunohistochemical Localization of an Isoform of TRK-Fused Gene-Like Protein in the Rat Retina. Acta Histochem Cytochem. 2014;47:75-83 pubmed 出版商
  172. Sousa J, Vieira Rocha M, Sá C, Ferreirinha F, Correia de Sá P, Fresco P, et al. Lack of endogenous adenosine tonus on sympathetic neurotransmission in spontaneously hypertensive rat mesenteric artery. PLoS ONE. 2014;9:e105540 pubmed 出版商
  173. Pinheiro P, Jansen A, de Wit H, Tawfik B, Madsen K, Verhage M, et al. The BAR domain protein PICK1 controls vesicle number and size in adrenal chromaffin cells. J Neurosci. 2014;34:10688-700 pubmed 出版商
  174. Bai Q, Parris R, Burton E. Different mechanisms regulate expression of zebrafish myelin protein zero (P0) in myelinating oligodendrocytes and its induction following axonal injury. J Biol Chem. 2014;289:24114-28 pubmed 出版商
  175. Dela Cruz J, Schmidt Kastner R, Stevens J, Steinbusch H, Rutten B. Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area. J Chem Neuroanat. 2014;61-62:64-71 pubmed 出版商
  176. Lotan D, Cunningham M, Joel D. Antibiotic treatment attenuates behavioral and neurochemical changes induced by exposure of rats to group a streptococcal antigen. PLoS ONE. 2014;9:e101257 pubmed 出版商
  177. Shivers K, Nikolopoulou A, Machlovi S, Vallabhajosula S, Figueiredo Pereira M. PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta. 2014;1842:1707-19 pubmed 出版商
  178. Pérez Fernández J, Stephenson Jones M, Suryanarayana S, Robertson B, Grillner S. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression. J Comp Neurol. 2014;522:3775-94 pubmed 出版商
  179. Nordenankar K, Smith Anttila C, Schweizer N, Viereckel T, Birgner C, Mejía Toiber J, et al. Increased hippocampal excitability and impaired spatial memory function in mice lacking VGLUT2 selectively in neurons defined by tyrosine hydroxylase promoter activity. Brain Struct Funct. 2015;220:2171-90 pubmed 出版商
  180. Abu El Asrar A, Siddiquei M, Nawaz M, Geboes K, Mohammad G. The proinflammatory cytokine high-mobility group box-1 mediates retinal neuropathy induced by diabetes. Mediators Inflamm. 2014;2014:746415 pubmed 出版商
  181. Forlano P, Kim S, Krzyminska Z, Sisneros J. Catecholaminergic connectivity to the inner ear, central auditory, and vocal motor circuitry in the plainfin midshipman fish porichthys notatus. J Comp Neurol. 2014;522:2887-927 pubmed 出版商
  182. Bloch J, Brunet J, McEntire C, Redmond D. Primate adult brain cell autotransplantation produces behavioral and biological recovery in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonian St. Kitts monkeys. J Comp Neurol. 2014;522:2729-40 pubmed 出版商
  183. Lippert R, Ellacott K, Cone R. Gender-specific roles for the melanocortin-3 receptor in the regulation of the mesolimbic dopamine system in mice. Endocrinology. 2014;155:1718-27 pubmed 出版商
  184. O Brien E, Greferath U, Fletcher E. The effect of photoreceptor degeneration on ganglion cell morphology. J Comp Neurol. 2014;522:1155-70 pubmed 出版商
  185. Trabalza A, Eleftheriadou I, Sgourou A, Liao T, Patsali P, Lee H, et al. Enhanced central nervous system transduction with lentiviral vectors pseudotyped with RVG/HIV-1gp41 chimeric envelope glycoproteins. J Virol. 2014;88:2877-90 pubmed 出版商
  186. Tapias V, Cannon J, Greenamyre J. Pomegranate juice exacerbates oxidative stress and nigrostriatal degeneration in Parkinson's disease. Neurobiol Aging. 2014;35:1162-76 pubmed 出版商
  187. Moloney T, Hyland R, O Toole D, Paucard A, Kirik D, O Doherty A, et al. Heat shock protein 70 reduces ?-synuclein-induced predegenerative neuronal dystrophy in the ?-synuclein viral gene transfer rat model of Parkinson's disease. CNS Neurosci Ther. 2014;20:50-8 pubmed 出版商
  188. Nishizaki Y, Takagi T, Matsui F, Higashi Y. SIP1 expression patterns in brain investigated by generating a SIP1-EGFP reporter knock-in mouse. Genesis. 2014;52:56-67 pubmed 出版商
  189. Bergami M, Vignoli B, Motori E, Pifferi S, Zuccaro E, Menini A, et al. TrkB signaling directs the incorporation of newly generated periglomerular cells in the adult olfactory bulb. J Neurosci. 2013;33:11464-78 pubmed 出版商
  190. Pose Méndez S, Candal E, Adrio F, Rodriguez Moldes I. Development of the cerebellar afferent system in the shark Scyliorhinus canicula: insights into the basal organization of precerebellar nuclei in gnathostomes. J Comp Neurol. 2014;522:131-68 pubmed 出版商
  191. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  192. Wojtkiewicz J, Równiak M, Crayton R, Gonkowski S, Robak A, Zalecki M, et al. Axotomy-induced changes in the chemical coding pattern of colon projecting calbindin-positive neurons in the inferior mesenteric ganglia of the pig. J Mol Neurosci. 2013;51:99-108 pubmed 出版商
  193. Bäck S, Peranen J, Galli E, Pulkkila P, Lonka Nevalaita L, Tamminen T, et al. Gene therapy with AAV2-CDNF provides functional benefits in a rat model of Parkinson's disease. Brain Behav. 2013;3:75-88 pubmed 出版商
  194. Ohtsuka N, Badurek S, Busslinger M, Benes F, Minichiello L, Rudolph U. GABAergic neurons regulate lateral ventricular development via transcription factor Pax5. Genesis. 2013;51:234-45 pubmed 出版商
  195. Trabalza A, Georgiadis C, Eleftheriadou I, Hislop J, Ellison S, Karavassilis M, et al. Venezuelan equine encephalitis virus glycoprotein pseudotyping confers neurotropism to lentiviral vectors. Gene Ther. 2013;20:723-32 pubmed 出版商
  196. Liu J, Githinji J, McLaughlin B, Wilczek K, Nolta J. Role of miRNAs in neuronal differentiation from human embryonic stem cell-derived neural stem cells. Stem Cell Rev. 2012;8:1129-37 pubmed 出版商
  197. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  198. Stephenson Jones M, Ericsson J, Robertson B, Grillner S. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J Comp Neurol. 2012;520:2957-73 pubmed 出版商
  199. Lindsey B, Darabie A, Tropepe V. The cellular composition of neurogenic periventricular zones in the adult zebrafish forebrain. J Comp Neurol. 2012;520:2275-316 pubmed 出版商
  200. Puthussery T, Gayet Primo J, Taylor W, Haverkamp S. Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. J Comp Neurol. 2011;519:3640-56 pubmed 出版商
  201. Sapsford T, Kokay I, Ostberg L, Bridges R, Grattan D. Differential sensitivity of specific neuronal populations of the rat hypothalamus to prolactin action. J Comp Neurol. 2012;520:1062-77 pubmed 出版商
  202. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S. Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol. 2011;519:3001-18 pubmed 出版商
  203. Goemaere J, Knoops B. Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. J Comp Neurol. 2012;520:258-80 pubmed 出版商
  204. Rohn T, Catlin L. Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain. PLoS ONE. 2011;6:e20495 pubmed 出版商
  205. Noorian A, Taylor G, Annerino D, Greene J. Neurochemical phenotypes of myenteric neurons in the rhesus monkey. J Comp Neurol. 2011;519:3387-401 pubmed 出版商
  206. Bøttger P, Tracz Z, Heuck A, Nissen P, Romero Ramos M, Lykke Hartmann K. Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol. 2011;519:376-404 pubmed 出版商
  207. Gayoso J, Castro A, Anadón R, Manso M. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J Comp Neurol. 2011;519:247-76 pubmed 出版商
  208. Uyttebroek L, Shepherd I, Harrisson F, Hubens G, Blust R, Timmermans J, et al. Neurochemical coding of enteric neurons in adult and embryonic zebrafish (Danio rerio). J Comp Neurol. 2010;518:4419-38 pubmed 出版商
  209. Phillips M, Otteson D, Sherry D. Progression of neuronal and synaptic remodeling in the rd10 mouse model of retinitis pigmentosa. J Comp Neurol. 2010;518:2071-89 pubmed 出版商
  210. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  211. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  212. Madhavan L, Daley B, Paumier K, Collier T. Transplantation of subventricular zone neural precursors induces an endogenous precursor cell response in a rat model of Parkinson's disease. J Comp Neurol. 2009;515:102-15 pubmed 出版商
  213. Jhou T, Geisler S, Marinelli M, Degarmo B, Zahm D. The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J Comp Neurol. 2009;513:566-96 pubmed 出版商
  214. Nakano M, Goris R, Atobe Y, Kadota T, Funakoshi K. Mediolateral and rostrocaudal topographic organization of the sympathetic preganglionic cell pool in the spinal cord of Xenopus laevis. J Comp Neurol. 2009;513:292-314 pubmed 出版商
  215. Carrera I, Molist P, Anadón R, Rodriguez Moldes I. Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. J Comp Neurol. 2008;511:804-31 pubmed 出版商
  216. Chung E, Chen L, Chan Y, Yung K. Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J Comp Neurol. 2008;511:421-37 pubmed 出版商
  217. Yang Z, You Y, Levison S. Neonatal hypoxic/ischemic brain injury induces production of calretinin-expressing interneurons in the striatum. J Comp Neurol. 2008;511:19-33 pubmed 出版商
  218. Luuk H, Koks S, Plaas M, Hannibal J, Rehfeld J, Vasar E. Distribution of Wfs1 protein in the central nervous system of the mouse and its relation to clinical symptoms of the Wolfram syndrome. J Comp Neurol. 2008;509:642-60 pubmed 出版商
  219. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  220. Tagliaferro P, Morales M. Synapses between corticotropin-releasing factor-containing axon terminals and dopaminergic neurons in the ventral tegmental area are predominantly glutamatergic. J Comp Neurol. 2008;506:616-26 pubmed
  221. Nickerson Poulin A, Guerci A, El Mestikawy S, Semba K. Vesicular glutamate transporter 3 immunoreactivity is present in cholinergic basal forebrain neurons projecting to the basolateral amygdala in rat. J Comp Neurol. 2006;498:690-711 pubmed
  222. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed