这是一篇来自已证抗体库的有关小鼠 Thy1.2 (Thy1.2) 的综述,是根据292篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Thy1.2 抗体。
Thy1.2 同义词: CD90; T25; Thy-1; Thy-1.2; Thy1.1; Thy1.2

赛默飞世尔
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Thermo Fisher Scientific, 13-0903-85)被用于被用于流式细胞仪在小鼠样本上. Immunity (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 0.2 mg/ml; 图 2e
赛默飞世尔Thy1.2抗体(生活技术, 63-0902-82)被用于被用于流式细胞仪在小鼠样本上浓度为0.2 mg/ml (图 2e). Sci Rep (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔Thy1.2抗体(ThermoFisher, 47-0902)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔Thy1.2抗体(ThermoFisher, 47-0900)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:50; 图 s10
赛默飞世尔Thy1.2抗体(Invitrogen, 17-0902-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s10). Nat Commun (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:4000; 图 2i
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:4000 (图 2i). Nat Commun (2021) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔Thy1.2抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2d). BMC Res Notes (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBiosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上. Aging Cell (2021) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:1000; 图 s6-1
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s6-1). elife (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:1000; 图 s6-1
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s6-1). elife (2020) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 17-0900-82)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔Thy1.2抗体(eBioscience, His51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Immunol (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 2d). elife (2020) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:400; 图 s4g
赛默飞世尔Thy1.2抗体(Thermo Fisher, 30-H12)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s4g). Cell Rep (2019) ncbi
大鼠 单克隆(G7)
  • 流式细胞仪; 小鼠; 图 s3a, s3b
赛默飞世尔Thy1.2抗体(Invitrogen, A14727)被用于被用于流式细胞仪在小鼠样本上 (图 s3a, s3b). J Clin Invest (2019) ncbi
大鼠 单克隆(30-H12)
  • mass cytometry; 小鼠; 1:200; 图 3, s2
赛默飞世尔Thy1.2抗体(eBioscience, 12-0903-82)被用于被用于mass cytometry在小鼠样本上浓度为1:200 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(53-2.1)
  • 免疫组化-冰冻切片; 小鼠; 图 ex10d
  • 流式细胞仪; 小鼠; 图 ex1e
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 ex10d) 和 被用于流式细胞仪在小鼠样本上 (图 ex1e). Nature (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 图 1bb
赛默飞世尔Thy1.2抗体(eBioscience; Thermo Fisher Scientific, 11-0903)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1bb). Exp Ther Med (2019) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 ex1d
赛默飞世尔Thy1.2抗体(eBioscience, 11-0900-85)被用于被用于流式细胞仪在小鼠样本上 (图 ex1d). Nature (2019) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Clin Invest (2019) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔Thy1.2抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4h). Nat Commun (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:200; 图 s2c
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2c). Nat Commun (2018) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔Thy1.2抗体(eBioscience, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Front Immunol (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔Thy1.2抗体(eBioscience, H1S51)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:200; 图 1c
赛默飞世尔Thy1.2抗体(Affymetrix/eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1c). J Clin Invest (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2018) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔Thy1.2抗体(eBiosciences, OX7)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Immunol (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Exp Med (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Oncoimmunology (2018) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔Thy1.2抗体(eBioscience, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Science (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2c
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1h
赛默飞世尔Thy1.2抗体(eBiosciences, 48-0902-82)被用于被用于流式细胞仪在小鼠样本上 (图 1h). Cell (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2018) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). PLoS Pathog (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔Thy1.2抗体(eBioscience, 17-0900-82)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Nature (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔Thy1.2抗体(Thermo Fisher Scientific, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔Thy1.2抗体(eBiosciences, HLS51)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Exp Med (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔Thy1.2抗体(eBioscience, Thy-1.2/53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 250 ng/ml; 图 1a
赛默飞世尔Thy1.2抗体(eBioscience, 30-H12)被用于被用于流式细胞仪在小鼠样本上浓度为250 ng/ml (图 1a). Nat Commun (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Thy1.2抗体(EBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Haematologica (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 1a
赛默飞世尔Thy1.2抗体(eBioscience, 12-0900-81)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Int J Mol Med (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Exp Med (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔Thy1.2抗体(eBiosciences, HI551)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Cancer Res (2017) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2e). J Clin Invest (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1j
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1j). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
小鼠 单克隆(His51)
  • 免疫组化-冰冻切片; 小鼠; 图 8c
赛默飞世尔Thy1.2抗体(eBiosciences, HIS51)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8c). J Exp Med (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nature (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔Thy1.2抗体(eBioscience, 17-0902-83)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBiosciences, 30-H12)被用于被用于流式细胞仪在小鼠样本上. Bio Protoc (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; domestic rabbit; 图 s1
赛默飞世尔Thy1.2抗体(Thermo, MA1-80648)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 st1
赛默飞世尔Thy1.2抗体(eBioscience, 15-0902)被用于被用于流式细胞仪在小鼠样本上 (图 st1). Circ Res (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:400; 图 s1c
  • 免疫细胞化学; 小鼠; 1:400; 图 2a
赛默飞世尔Thy1.2抗体(eBioescience, 14-0903-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s1c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2a). Nat Commun (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔Thy1.2抗体(eBioscience, 48-0902-82)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔Thy1.2抗体(eBioscience, 12-0900-81)被用于被用于流式细胞仪在大鼠样本上 (图 2). Sci Rep (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔Thy1.2抗体(eBiosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Science (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Science (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Nat Commun (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(53-2.1)
  • 免疫组化; 小鼠; 图 s3
赛默飞世尔Thy1.2抗体(eBio, 11-0902-85)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔Thy1.2抗体(eBioscience, 11-0900)被用于被用于流式细胞仪在大鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Eur J Immunol (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔Thy1.2抗体(eBiosciences, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔Thy1.2抗体(eBiosciences, HIs51)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Virol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔Thy1.2抗体(Thermo Fisher Scientific, 53?C2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2) 和 被用于免疫组化在小鼠样本上 (图 4d). Immunity (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Thy1.2抗体(ebioscience, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Immunity (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔Thy1.2抗体(eBiosciences, 12-0902)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
小鼠 单克隆(OX-7)
  • 免疫细胞化学; 小鼠
赛默飞世尔Thy1.2抗体(Thermo Fisher Scientific Inc., MA1-21469)被用于被用于免疫细胞化学在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 图 s1
赛默飞世尔Thy1.2抗体(eBioscience, 11?C0900)被用于被用于流式细胞仪在大鼠样本上 (图 s1). Cell Tissue Res (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Thy1.2抗体(eBioscience, 11-0903-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cell Death Dis (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Nat Commun (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 1:1000; 图 3
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:1000
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s1). PLoS Pathog (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(eBioscience, 25-0902-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Dev Biol (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔Thy1.2抗体(eBioscience, 12-0903-81)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Immunol (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔Thy1.2抗体(eBioscience, 17-0902)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Nat Biotechnol (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔Thy1.2抗体(eBioscience, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2014) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Invitrogen, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Tissue Eng (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:200
赛默飞世尔Thy1.2抗体(eBioscience, 17-0902-81)被用于被用于流式细胞仪在小鼠样本上浓度为1:200. Nat Commun (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 17-0902-81)被用于被用于流式细胞仪在小鼠样本上. Nat Med (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Nature (2013) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Nature (2013) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2013) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔Thy1.2抗体(eBiosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Nat Methods (2013) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Biomed Res Int (2013) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 30H12)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2013) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2012) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, His-51)被用于被用于流式细胞仪在小鼠样本上. J Biol Chem (2012) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔Thy1.2抗体(eBioscience, H1S51)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2010) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2010) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 13-0900)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 13-0902)被用于被用于流式细胞仪在小鼠样本上. Nat Protoc (2009) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2008) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2008) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag Laboratories, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Immunology (2007) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Int Immunol (2007) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(E-Bioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Biomed Mater Res A (2007) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(eBioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2006) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔Thy1.2抗体(Invitrogen Life Technologies, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2006) ncbi
小鼠 单克隆(5a-8)
  • 其他; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于其他在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2005) ncbi
小鼠 单克隆(F7D5)
  • 免疫组化; 小鼠
赛默飞世尔Thy1.2抗体(Biosource, F7D5)被用于被用于免疫组化在小鼠样本上. J Leukoc Biol (2004) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔Thy1.2抗体(CALTAG, clone 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 5). Br J Haematol (2004) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Histochem Cytochem (2003) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2003) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2002) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 1, 2
赛默飞世尔Thy1.2抗体(Caltag Laboratories, 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2). J Immunol (2001) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2001) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Blood (2001) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(Caltag Laboratories, clone 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 4). Cytometry (2001) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2001) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (1999) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1999) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1999) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. Clin Exp Immunol (1997) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 5a-8)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1996) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 30H12)被用于被用于流式细胞仪在小鼠样本上. J Immunol (1994) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
赛默飞世尔Thy1.2抗体(Caltag, 30H12)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (1994) ncbi
小鼠 单克隆(5a-8)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔Thy1.2抗体(CALTAG, 5a-8)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (1994) ncbi
小鼠 单克隆(OX-7)
  • 免疫组化-冰冻切片; 大鼠; 图 5
赛默飞世尔Thy1.2抗体(noco, OX7)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5). J Histochem Cytochem (1991) ncbi
BioLegend
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegendThy1.2抗体(BioLegend, 105306)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). iScience (2021) ncbi
大鼠 单克隆(30-H12)
BioLegendThy1.2抗体(Biolegend, 105307)被用于. PLoS Pathog (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:300
BioLegendThy1.2抗体(Biolegend, 202533)被用于被用于流式细胞仪在小鼠样本上浓度为1:300. Nat Commun (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendThy1.2抗体(Biolegend, 105305)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Transl Oncol (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:100; 图 s21
BioLegendThy1.2抗体(BioLegend, 202526)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s21). elife (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:50; 图 s7b
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s7b). Nat Commun (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendThy1.2抗体(Biolegend, 105322)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cell Rep (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:1000
BioLegendThy1.2抗体(BioLegend, 202520)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000. Nature (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:1000; 图 s1j
BioLegendThy1.2抗体(BioLegend, 105331)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 s1j). Nature (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Science (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendThy1.2抗体(Biolegend, 140303)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Peerj (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:250; 图 4g
BioLegendThy1.2抗体(Biolegend, 140317)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 4g). Mol Neurobiol (2021) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Immunol (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:200; 图 s6a
BioLegendThy1.2抗体(Biolegend, 140317)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6a). Nat Commun (2020) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:200; 图 s6a
BioLegendThy1.2抗体(Biolegend, 202537)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s6a). Nat Commun (2020) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:50; 图 2a
BioLegendThy1.2抗体(BioLegend, 105307)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 2a). Stem Cell Res Ther (2020) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:800; 图 1s4a
BioLegendThy1.2抗体(Biolegend, 105328)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 1s4a). elife (2020) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:100; 图 4c, 4d
BioLegendThy1.2抗体(Biolegend, 202501)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4c, 4d). Nat Commun (2020) ncbi
大鼠 单克隆(G7)
  • mass cytometry; 小鼠; 0.5 ug/ml; 图 5d
BioLegendThy1.2抗体(Biolegend, G7)被用于被用于mass cytometry在小鼠样本上浓度为0.5 ug/ml (图 5d). Science (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 图 s2
BioLegendThy1.2抗体(BioLegend, 105328)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s2). Nature (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s5
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Br J Cancer (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s1c
BioLegendThy1.2抗体(BioLegend, 105333)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). Cell (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendThy1.2抗体(Biolegend, 105331)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 e6a
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 e6a). Nature (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:800; 图 s5
BioLegendThy1.2抗体(Biolegend, 105319)被用于被用于流式细胞仪在小鼠样本上浓度为1:800 (图 s5). Science (2019) ncbi
小鼠 单克隆(OX-7)
  • mass cytometry; 小鼠; 1:200; 图 3, s2
BioLegendThy1.2抗体(Biolegend, 202524)被用于被用于mass cytometry在小鼠样本上浓度为1:200 (图 3, s2). Science (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendThy1.2抗体(Biolegend, 105320)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Cell (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 图 5c
BioLegendThy1.2抗体(BioLegend, 105338)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3d
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 ex4a
BioLegendThy1.2抗体(Biolegend, 202539)被用于被用于流式细胞仪在小鼠样本上 (图 ex4a). Nature (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 6b
BioLegendThy1.2抗体(Biolegend, 202508)被用于被用于流式细胞仪在小鼠样本上 (图 6b). Cell Rep (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendThy1.2抗体(BioLegend, 140309)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Cell (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 ex7c
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 ex7c). Nature (2019) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 5a
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Exp Med (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s4b
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Nature (2018) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 4d
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2018) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s12a
BioLegendThy1.2抗体(Biolegend, 30/H12)被用于被用于流式细胞仪在小鼠样本上 (图 s12a). Science (2018) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 9b
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 9b). J Immunol (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s3a
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s3g
BioLegendThy1.2抗体(BioLegend, 140318)被用于被用于流式细胞仪在小鼠样本上 (图 s3g). Cell (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2018) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 140303)被用于被用于流式细胞仪在小鼠样本上. Open Biol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1f
BioLegendThy1.2抗体(BioLegend, OX7)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:500; 图 s2a
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2a). J Exp Med (2017) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 1e). Oncotarget (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 5j
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 5j). Am J Physiol Lung Cell Mol Physiol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3b
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2017) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Development (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 202508)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunology (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:100; 图 s1
BioLegendThy1.2抗体(BioLegend, 140306)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1). Nat Commun (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1
BioLegendThy1.2抗体(BioLegend, 140319)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cell (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 表 1
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (表 1). Nat Commun (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). J Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:200; 表 s2
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 1
BioLegendThy1.2抗体(BioLegend, 202533)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2b
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2b). J Immunol (2016) ncbi
大鼠 单克隆(30-H12)
  • 抑制或激活实验; 小鼠; 图 s1
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于抑制或激活实验在小鼠样本上 (图 s1). Nat Biotechnol (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 3c
BioLegendThy1.2抗体(BioLegend, 30.H12)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Mucosal Immunol (2017) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(Biolegend, 30- H12)被用于被用于流式细胞仪在小鼠样本上. J Thorac Oncol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 0.4 ng/ml; 图 s2
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上浓度为0.4 ng/ml (图 s2). elife (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s7
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mucosal Immunol (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s7
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Mucosal Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3h
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1e
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Immunol (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 2a
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 表 s1
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 4
BioLegendThy1.2抗体(Biolegend, 30/H12)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(KW322)
  • 流式细胞仪; 大鼠; 图 1
BioLegendThy1.2抗体(BioLegend, 205903)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Med Rep (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 4
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Immunol (2015) ncbi
大鼠 单克隆(30-H12)
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于. Nature (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠
BioLegendThy1.2抗体(Biolegend, 202506)被用于被用于流式细胞仪在大鼠样本上. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendThy1.2抗体(Biolegend, 202520)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 s4
BioLegendThy1.2抗体(Biolegend, 105328)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3a
BioLegendThy1.2抗体(biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 7
BioLegendThy1.2抗体(Biolegend, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Immunol (2014) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(BioLegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
BioLegendThy1.2抗体(Biolegend, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1
BioLegendThy1.2抗体(Biolegend, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 1). Scand J Immunol (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(FITC.MRC OX-7)
  • 流式细胞仪; 人类
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab226)被用于被用于流式细胞仪在人类样本上. Theranostics (2021) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 国内马; 1:100; 图 1c
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, MRC OX-7)被用于被用于流式细胞仪在国内马样本上浓度为1:100 (图 1c). Animals (Basel) (2020) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
大鼠 单克隆(IBL-6/23)
  • 流式细胞仪; 人类; 1:100; 图 1b
  • 流式细胞仪; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab3105)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1b) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1b). Bone Res (2018) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫组化; domestic rabbit; 图 4
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于免疫组化在domestic rabbit样本上 (图 4). Int J Mol Med (2017) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 马; 图 1
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于流式细胞仪在马样本上 (图 1). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 大鼠; 图 1c
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab33694)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Acta Biomater (2016) ncbi
大鼠 单克隆(IBL-6/23)
  • 免疫细胞化学; 小鼠; 1:100; 图 1b
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab3105)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1b). Stem Cell Res (2016) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; 人类; 1:100; 图 1h
  • 免疫细胞化学; African green monkey; 1:100; 图 1c
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1h) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:100 (图 1c). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(FITC.MRC OX-7)
  • 流式细胞仪; domestic rabbit
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab226)被用于被用于流式细胞仪在domestic rabbit样本上. Cell Tissue Res (2015) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫细胞化学; 家羊; 图 4
艾博抗(上海)贸易有限公司Thy1.2抗体(abcam, ab225)被用于被用于免疫细胞化学在家羊样本上 (图 4). Cell Tissue Bank (2016) ncbi
小鼠 单克隆(MRC OX-7)
  • 流式细胞仪; 国内马; 图 4
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于流式细胞仪在国内马样本上 (图 4). J Orthop Res (2015) ncbi
小鼠 单克隆(MRC OX-7)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab225)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(FITC.MRC OX-7)
  • 免疫细胞化学; 小鼠; 1:50
艾博抗(上海)贸易有限公司Thy1.2抗体(Abcam, ab226)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Int J Mol Med (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(aTHy-1A1)
  • 免疫组化; 小鼠; 1:100; 图 2a
圣克鲁斯生物技术Thy1.2抗体(Santa Cruz Bio, sc-53456)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). elife (2021) ncbi
小鼠 单克隆(OX7)
  • 免疫组化; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 图 3a
圣克鲁斯生物技术Thy1.2抗体(Santa Cruz Biotechnology, sc-53116)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 3a). Am J Pathol (2017) ncbi
小鼠 单克隆(aTHy-1A1)
  • 流式细胞仪; 人类; 图 1c
圣克鲁斯生物技术Thy1.2抗体(Santa Cruz, sc-53456)被用于被用于流式细胞仪在人类样本上 (图 1c). Cell Biol Int (2015) ncbi
美天旎
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 1:100; 图 2c
美天旎Thy1.2抗体(Miltenyi Biotech, 130-102-489)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2c). Sci Rep (2021) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(F7D5)
  • 其他; 小鼠; 图 5
伯乐(Bio-Rad)公司Thy1.2抗体(Serotec, MCA02R)被用于被用于其他在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(F7D5)
  • 其他; 小鼠; 图 5
伯乐(Bio-Rad)公司Thy1.2抗体(Serotec, MCA02R)被用于被用于其他在小鼠样本上 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(F7D5)
  • 其他; 小鼠; 图 1
伯乐(Bio-Rad)公司Thy1.2抗体(AbD Serotec, MCA02R)被用于被用于其他在小鼠样本上 (图 1). Mol Brain (2013) ncbi
Novus Biologicals
小鼠 单克隆(OX-7)
  • 免疫细胞化学; black ferret; 1:5; 图 2
Novus BiologicalsThy1.2抗体(Novus Biological, NB100-65543)被用于被用于免疫细胞化学在black ferret样本上浓度为1:5 (图 2). J Endod (2016) ncbi
Bio X Cell
大鼠 单克隆(30H12)
  • 抑制或激活实验; 小鼠; 图 5J
Bio X CellThy1.2抗体(BioXcell, 30H12)被用于被用于抑制或激活实验在小鼠样本上 (图 5J). Nat Commun (2015) ncbi
碧迪BD
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:100
碧迪BDThy1.2抗体(BD Biosciences, 553001)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Cells (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2021) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDThy1.2抗体(BD, 553011)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Int J Mol Sci (2020) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDThy1.2抗体(BD Biosciences, 553007)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nat Commun (2020) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 1:400; 图 3a, 3b
碧迪BDThy1.2抗体(BD optibuild, OX7)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3a, 3b). Science (2019) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Nature (2019) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BDThy1.2抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). EBioMedicine (2018) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BDThy1.2抗体(BD, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 人类; 图 2a
碧迪BDThy1.2抗体(BD Biosciences, 553007)被用于被用于流式细胞仪在人类样本上 (图 2a). Int J Mol Med (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s1b
碧迪BDThy1.2抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s1b). Mucosal Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 6a
碧迪BDThy1.2抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3c
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2017) ncbi
大鼠 单克隆(G7)
  • 免疫组化; 小鼠; 图 5b
碧迪BDThy1.2抗体(Pharmingen, G7)被用于被用于免疫组化在小鼠样本上 (图 5b). Front Immunol (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:200; 图 1b
碧迪BDThy1.2抗体(BD Biosciences, 554898)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 1b). Exp Ther Med (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 3b
碧迪BDThy1.2抗体(BD, 554898)被用于被用于流式细胞仪在大鼠样本上 (图 3b). Sci Rep (2017) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:500; 图 s2a
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2a). J Exp Med (2017) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1c
碧迪BDThy1.2抗体(BD Biosciences, 554898)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 s7a
碧迪BDThy1.2抗体(BD Biosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). J Clin Invest (2016) ncbi
大鼠 单克隆(30-H12)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 2e
碧迪BDThy1.2抗体(BD Biosciences, 553011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 2e). Lab Invest (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BDThy1.2抗体(BD Biosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1
碧迪BDThy1.2抗体(BD Pharmingen, 554897)被用于被用于流式细胞仪在大鼠样本上 (图 1). Front Endocrinol (Lausanne) (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDThy1.2抗体(BD Bioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4b). J Leukoc Biol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:200; 图 1
碧迪BDThy1.2抗体(BD Biosciences, 554897)被用于被用于流式细胞仪在大鼠样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BDThy1.2抗体(BD Pharmingen, 30H12)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s2b
碧迪BDThy1.2抗体(BD Pharmingen, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Stem Cells Dev (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDThy1.2抗体(BD Biosciences, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上. Cell Rep (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; domestic rabbit; 图 s1
碧迪BDThy1.2抗体(BD Biosciences, 554895)被用于被用于流式细胞仪在domestic rabbit样本上 (图 s1). J Biomed Mater Res B Appl Biomater (2017) ncbi
大鼠 单克隆(53-2.1)
  • 免疫细胞化学; 小鼠; 1:200; 图 st1
碧迪BDThy1.2抗体(BD Pharmingen, 550543)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 st1). Circ Res (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s4
碧迪BDThy1.2抗体(BD Bioscience, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Cell (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDThy1.2抗体(BD Biosciences, 561974)被用于被用于流式细胞仪在小鼠样本上 (图 1). Int J Mol Med (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDThy1.2抗体(Becton Dickinson, 561616)被用于被用于流式细胞仪在小鼠样本上 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 鸡; 图 3
碧迪BDThy1.2抗体(BD Pharmingen, 561409)被用于被用于流式细胞仪在鸡样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 2
碧迪BDThy1.2抗体(BD Biosciences, 551401)被用于被用于流式细胞仪在大鼠样本上 (图 2). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 大鼠; 1:50; 图 2
碧迪BDThy1.2抗体(BD Biosciences, 554894)被用于被用于流式细胞仪在大鼠样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 6
碧迪BDThy1.2抗体(Pharmingen, 553013)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nature (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 4b
碧迪BDThy1.2抗体(BD, 553013)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Immunol Cell Biol (2016) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 s10
碧迪BDThy1.2抗体(BD Biosciences, 553005)被用于被用于流式细胞仪在小鼠样本上 (图 s10). Nat Commun (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDThy1.2抗体(BD Biosciences, 554894)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:2500; 图 2
碧迪BDThy1.2抗体(BD, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2). J Cell Biol (2015) ncbi
大鼠 单克隆(G7)
  • 免疫细胞化学; 小鼠
碧迪BDThy1.2抗体(BD Pharmingen, 553016)被用于被用于免疫细胞化学在小鼠样本上. Stem Cells Int (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 表 s1
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (表 s1). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 图 1
碧迪BDThy1.2抗体(BD Pharmingen, 551401)被用于被用于流式细胞仪在大鼠样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠; 图 1
碧迪BDThy1.2抗体(BD Bioscience, HIS51)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 4
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上 (图 4). Nat Commun (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 图 3
碧迪BDThy1.2抗体(BD, 553007)被用于被用于流式细胞仪在小鼠样本上 (图 3). Hum Mol Genet (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 1:100; 图 2a
碧迪BDThy1.2抗体(BD, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2a). Nature (2015) ncbi
大鼠 单克隆(30-H12)
  • 抑制或激活实验; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, 30-H12)被用于被用于抑制或激活实验在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠; 2.5 ug/ml; 图 3
碧迪BDThy1.2抗体(BD Pharmingen, 53-2.1)被用于被用于流式细胞仪在小鼠样本上浓度为2.5 ug/ml (图 3). Immunol Cell Biol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, clone 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠; 图 2
碧迪BDThy1.2抗体(BD Pharmingen, 30-H12)被用于被用于流式细胞仪在小鼠样本上 (图 2). Immunol Lett (2015) ncbi
大鼠 单克隆(G7)
  • 流式细胞仪; 大鼠; 图 4f
碧迪BDThy1.2抗体(BD Biosciences, 553016)被用于被用于流式细胞仪在大鼠样本上 (图 4f). Am J Pathol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BDThy1.2抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2014) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD, 30-H12)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(53-2.1)
  • 免疫组化; 小鼠; 图 1
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于免疫组化在小鼠样本上 (图 1). Mucosal Immunol (2015) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Bioscience, 30-H12)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(53-2.1)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, 53-2.1)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Pharmingen, OX-7)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(His51)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD Biosciences, HIS51)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2013) ncbi
小鼠 单克隆(OX-7)
  • 流式细胞仪; 大鼠; 1:100
碧迪BDThy1.2抗体(BD Biosciences, 554895)被用于被用于流式细胞仪在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
大鼠 单克隆(30-H12)
  • 流式细胞仪; 小鼠
碧迪BDThy1.2抗体(BD, 553014)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
文章列表
  1. Fearon A, Slabber C, Kuklin A, Bachofner M, Tortola L, Pohlmeier L, et al. Fibroblast growth factor receptor 3 in hepatocytes protects from toxin-induced liver injury and fibrosis. iScience. 2021;24:103143 pubmed 出版商
  2. Snyder L, Doherty C, Mercer H, Denkers E. Induction of IL-12p40 and type 1 immunity by Toxoplasma gondii in the absence of the TLR-MyD88 signaling cascade. PLoS Pathog. 2021;17:e1009970 pubmed 出版商
  3. Alpaugh W, Voigt A, Dardari R, Su L, Al Khatib I, Shin W, et al. Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells. Cells. 2021;10: pubmed 出版商
  4. Zhang S, Zhu D, Li Z, Huang K, Hu S, Lutz H, et al. A stem cell-derived ovarian regenerative patch restores ovarian function and rescues fertility in rats with primary ovarian insufficiency. Theranostics. 2021;11:8894-8908 pubmed 出版商
  5. Onodera T, Kita S, Adachi Y, Moriyama S, Sato A, Nomura T, et al. A SARS-CoV-2 antibody broadly neutralizes SARS-related coronaviruses and variants by coordinated recognition of a virus-vulnerable site. Immunity. 2021;54:2385-2398.e10 pubmed 出版商
  6. Patial S, Lewis B, Vo T, Choudhary I, Paudel K, Mao Y, et al. Myeloid-IL4Rα is an indispensable link in IL-33-ILCs-IL-13-IL4Rα axis of eosinophil recruitment in murine lungs. Sci Rep. 2021;11:15465 pubmed 出版商
  7. Mathä L, Romera Hernandez M, Steer C, Yin Y, Orangi M, Shim H, et al. Migration of Lung Resident Group 2 Innate Lymphoid Cells Link Allergic Lung Inflammation and Liver Immunity. Front Immunol. 2021;12:679509 pubmed 出版商
  8. Ambrosi T, Sinha R, Steininger H, Hoover M, Murphy M, Koepke L, et al. Distinct skeletal stem cell types orchestrate long bone skeletogenesis. elife. 2021;10: pubmed 出版商
  9. Shen Y, Shami A, Moritz L, Larose H, Manske G, Ma Q, et al. TCF21+ mesenchymal cells contribute to testis somatic cell development, homeostasis, and regeneration in mice. Nat Commun. 2021;12:3876 pubmed 出版商
  10. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  11. Martini T, Ripperger J, Stalin J, Kores A, Stumpe M, Albrecht U. Deletion of the clock gene Period2 (Per2) in glial cells alters mood-related behavior in mice. Sci Rep. 2021;11:12242 pubmed 出版商
  12. Pereira J, Cavaco P, da Silva R, Pacheco Leyva I, Mereiter S, Pinto R, et al. P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and dissemination. Transl Oncol. 2021;14:101125 pubmed 出版商
  13. Wei Y, Sun H, Gui T, Yao L, Zhong L, Yu W, et al. The critical role of Hedgehog-responsive mesenchymal progenitors in meniscus development and injury repair. elife. 2021;10: pubmed 出版商
  14. Roca C, Burton O, Gergelits V, Prezzemolo T, Whyte C, Halpert R, et al. AutoSpill is a principled framework that simplifies the analysis of multichromatic flow cytometry data. Nat Commun. 2021;12:2890 pubmed 出版商
  15. Ercolano G, Gomez Cadena A, Dumauthioz N, Vanoni G, Kreutzfeldt M, Wyss T, et al. PPARɣ drives IL-33-dependent ILC2 pro-tumoral functions. Nat Commun. 2021;12:2538 pubmed 出版商
  16. Yang C, Kwon D, Kim M, Im S, Lee Y. Commensal Microbiome Expands Tγδ17 Cells in the Lung and Promotes Particulate Matter-Induced Acute Neutrophilia. Front Immunol. 2021;12:645741 pubmed 出版商
  17. Kastenschmidt J, Coulis G, Farahat P, Pham P, Rios R, Cristal T, et al. A stromal progenitor and ILC2 niche promotes muscle eosinophilia and fibrosis-associated gene expression. Cell Rep. 2021;35:108997 pubmed 出版商
  18. Datta M, Staszewski O. Hdac1 and Hdac2 are essential for physiological maturation of a Cx3cr1 expressing subset of T-lymphocytes. BMC Res Notes. 2021;14:135 pubmed 出版商
  19. Bielecki P, Riesenfeld S, Hütter J, Torlai Triglia E, Kowalczyk M, Ricardo Gonzalez R, et al. Skin-resident innate lymphoid cells converge on a pathogenic effector state. Nature. 2021;592:128-132 pubmed 出版商
  20. Nian Y, Iske J, Maenosono R, Minami K, Heinbokel T, Quante M, et al. Targeting age-specific changes in CD4+ T cell metabolism ameliorates alloimmune responses and prolongs graft survival. Aging Cell. 2021;20:e13299 pubmed 出版商
  21. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  22. Yoon S, Song S, Shin J, Kang S, Kim H, You H. Protective Effects of Korean Herbal Remedy against Airway Inflammation in an Allergic Asthma by Suppressing Eosinophil Recruitment and Infiltration in Lung. Antioxidants (Basel). 2020;10: pubmed 出版商
  23. Jin Y, Sun X, Pei F, Zhao Z, Mao J. Wnt16 signaling promotes osteoblast differentiation of periosteal derived cells in vitro and in vivo. Peerj. 2020;8:e10374 pubmed 出版商
  24. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  25. Aggio Bruce R, Chu Tan J, Wooff Y, Cioanca A, Schumann U, Natoli R. Inhibition of microRNA-155 Protects Retinal Function Through Attenuation of Inflammation in Retinal Degeneration. Mol Neurobiol. 2021;58:835-854 pubmed 出版商
  26. Kim K, Park T, Cho B, Kim T. Nanoparticles from Equine Fetal Bone Marrow-Derived Cells Enhance the Survival of Injured Chondrocytes. Animals (Basel). 2020;10: pubmed 出版商
  27. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  28. Harbour S, DiToro D, Witte S, Zindl C, Gao M, Schoeb T, et al. TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 2020;5: pubmed 出版商
  29. Kim J, Yang Y, Park K, Ge X, Xu R, Li N, et al. A RUNX2 stabilization pathway mediates physiologic and pathologic bone formation. Nat Commun. 2020;11:2289 pubmed 出版商
  30. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  31. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  32. Tizian C, Lahmann A, Hölsken O, Cosovanu C, Kofoed Branzk M, Heinrich F, et al. c-Maf restrains T-bet-driven programming of CCR6-negative group 3 innate lymphoid cells. elife. 2020;9: pubmed 出版商
  33. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  34. Parisi G, Saco J, Salazar F, Tsoi J, Krystofinski P, Puig Saus C, et al. Persistence of adoptively transferred T cells with a kinetically engineered IL-2 receptor agonist. Nat Commun. 2020;11:660 pubmed 出版商
  35. Chang W, Xu J, Lin T, Hsu J, Hsieh Li H, Hwu Y, et al. Survival Motor Neuron Protein Participates in Mouse Germ Cell Development and Spermatogonium Maintenance. Int J Mol Sci. 2020;21: pubmed 出版商
  36. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  37. Guo C, Allen B, Hiam K, Dodd D, Van Treuren W, Higginbottom S, et al. Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science. 2019;366: pubmed 出版商
  38. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  39. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  40. Nagai J, Balestrieri B, Fanning L, Kyin T, Cirka H, Lin J, et al. P2Y6 signaling in alveolar macrophages prevents leukotriene-dependent type 2 allergic lung inflammation. J Clin Invest. 2019;129:5169-5186 pubmed 出版商
  41. Schreiber L, Urbiola C, Das K, Spiesschaert B, Kimpel J, Heinemann F, et al. The lytic activity of VSV-GP treatment dominates the therapeutic effects in a syngeneic model of lung cancer. Br J Cancer. 2019;121:647-658 pubmed 出版商
  42. Jordan S, Tung N, Casanova Acebes M, Chang C, Cantoni C, Zhang D, et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell. 2019;178:1102-1114.e17 pubmed 出版商
  43. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  44. Solis A, Bielecki P, Steach H, Sharma L, Harman C, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature. 2019;573:69-74 pubmed 出版商
  45. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  46. Cohen J, Edwards T, Liu A, Hirai T, Jones M, Wu J, et al. Cutaneous TRPV1+ Neurons Trigger Protective Innate Type 17 Anticipatory Immunity. Cell. 2019;178:919-932.e14 pubmed 出版商
  47. Niemann J, Woller N, Brooks J, Fleischmann Mundt B, Martin N, Kloos A, et al. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun. 2019;10:3236 pubmed 出版商
  48. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  49. Croft A, Campos J, Jansen K, Turner J, Marshall J, Attar M, et al. Distinct fibroblast subsets drive inflammation and damage in arthritis. Nature. 2019;570:246-251 pubmed 出版商
  50. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  51. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  52. Ahmed M, El Sayed A, Chen H, Zhao R, Yusuf M, Zuo Q, et al. Comparison between curcumin and all-trans retinoic acid in the osteogenic differentiation of mouse bone marrow mesenchymal stem cells. Exp Ther Med. 2019;17:4154-4166 pubmed 出版商
  53. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  54. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  55. Garg G, Muschaweckh A, Moreno H, Vasanthakumar A, Floess S, Lepennetier G, et al. Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation. Cell Rep. 2019;26:1854-1868.e5 pubmed 出版商
  56. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  57. He S, Kahles F, Rattik S, Nairz M, McAlpine C, Anzai A, et al. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease. Nature. 2019;566:115-119 pubmed 出版商
  58. Yamamoto T, Lee P, Vodnala S, Gurusamy D, Kishton R, Yu Z, et al. T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. J Clin Invest. 2019;129:1551-1565 pubmed 出版商
  59. Faliti C, Gualtierotti R, Rottoli E, Gerosa M, Perruzza L, Romagnani A, et al. P2X7 receptor restrains pathogenic Tfh cell generation in systemic lupus erythematosus. J Exp Med. 2019;216:317-336 pubmed 出版商
  60. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  61. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  62. Chen X, Zhi X, Wang J, Su J. RANKL signaling in bone marrow mesenchymal stem cells negatively regulates osteoblastic bone formation. Bone Res. 2018;6:34 pubmed 出版商
  63. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  64. Nusse Y, Savage A, Marangoni P, Rosendahl Huber A, Landman T, De Sauvage F, et al. Parasitic helminths induce fetal-like reversion in the intestinal stem cell niche. Nature. 2018;559:109-113 pubmed 出版商
  65. Chen Y, Qin X, An Q, Yi J, Feng F, Yin D, et al. Mesenchymal Stromal Cells Directly Promote Inflammation by Canonical NLRP3 and Non-canonical Caspase-11 Inflammasomes. EBioMedicine. 2018;32:31-42 pubmed 出版商
  66. Thomson C, van de Pavert S, Stakenborg M, Labeeuw E, Matteoli G, Mowat A, et al. Expression of the Atypical Chemokine Receptor ACKR4 Identifies a Novel Population of Intestinal Submucosal Fibroblasts That Preferentially Expresses Endothelial Cell Regulators. J Immunol. 2018;201:215-229 pubmed 出版商
  67. Sui P, Wiesner D, Xu J, Zhang Y, Lee J, Van Dyken S, et al. Pulmonary neuroendocrine cells amplify allergic asthma responses. Science. 2018;360: pubmed 出版商
  68. Safya H, Mellouk A, Legrand J, Le Gall S, Benbijja M, Kanellopoulos Langevin C, et al. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol. 2018;9:360 pubmed 出版商
  69. Tinoco R, Carrette F, Henriquez M, Fujita Y, Bradley L. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells. J Immunol. 2018;200:2690-2702 pubmed 出版商
  70. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  71. Hailemichael Y, Woods A, Fu T, He Q, Nielsen M, Hasan F, et al. Cancer vaccine formulation dictates synergy with CTLA-4 and PD-L1 checkpoint blockade therapy. J Clin Invest. 2018;128:1338-1354 pubmed 出版商
  72. Kornete M, Marone R, Jeker L. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018;200:2489-2501 pubmed 出版商
  73. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  74. Fahl S, Coffey F, Kain L, Zarin P, Dunbrack R, Teyton L, et al. Role of a selecting ligand in shaping the murine γδ-TCR repertoire. Proc Natl Acad Sci U S A. 2018;115:1889-1894 pubmed 出版商
  75. Doorduijn E, Sluijter M, Marijt K, Querido B, van der Burg S, van Hall T. T cells specific for a TAP-independent self-peptide remain naïve in tumor-bearing mice and are fully exploitable for therapy. Oncoimmunology. 2018;7:e1382793 pubmed 出版商
  76. Linehan J, Harrison O, Han S, Byrd A, Vujkovic Cvijin I, Villarino A, et al. Non-classical Immunity Controls Microbiota Impact on Skin Immunity and Tissue Repair. Cell. 2018;172:784-796.e18 pubmed 出版商
  77. Turner D, Goldklang M, Cvetkovski F, Paik D, Trischler J, Barahona J, et al. Biased Generation and In Situ Activation of Lung Tissue-Resident Memory CD4 T Cells in the Pathogenesis of Allergic Asthma. J Immunol. 2018;200:1561-1569 pubmed 出版商
  78. Huang Y, Mao K, Chen X, Sun M, Kawabe T, Li W, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense. Science. 2018;359:114-119 pubmed 出版商
  79. Wang J, Saijo K, Skola D, Jin C, Ma Q, Merkurjev D, et al. Histone demethylase LSD1 regulates hematopoietic stem cells homeostasis and protects from death by endotoxic shock. Proc Natl Acad Sci U S A. 2018;115:E244-E252 pubmed 出版商
  80. Brumbaugh J, Di Stefano B, Wang X, Borkent M, Forouzmand E, Clowers K, et al. Nudt21 Controls Cell Fate by Connecting Alternative Polyadenylation to Chromatin Signaling. Cell. 2018;172:106-120.e21 pubmed 出版商
  81. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215:249-262 pubmed 出版商
  82. Danahy D, Anthony S, Jensen I, Hartwig S, Shan Q, Xue H, et al. Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathog. 2017;13:e1006569 pubmed 出版商
  83. Levine A, Mendoza A, Hemmers S, Moltedo B, Niec R, Schizas M, et al. Stability and function of regulatory T cells expressing the transcription factor T-bet. Nature. 2017;546:421-425 pubmed 出版商
  84. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  85. Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo T, Sun M, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells. J Exp Med. 2017;214:1663-1678 pubmed 出版商
  86. Yunusova A, Fishman V, Vasiliev G, Battulin N. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique. Open Biol. 2017;7: pubmed 出版商
  87. Lehmann C, Baranska A, Heidkamp G, Heger L, Neubert K, Lühr J, et al. DC subset-specific induction of T cell responses upon antigen uptake via Fc? receptors in vivo. J Exp Med. 2017;214:1509-1528 pubmed 出版商
  88. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  89. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  90. Liu J, Hu F, Tang J, Tang S, Xia K, Wu S, et al. Homemade-device-induced negative pressure promotes wound healing more efficiently than VSD-induced positive pressure by regulating inflammation, proliferation and remodeling. Int J Mol Med. 2017;39:879-888 pubmed 出版商
  91. Sun L, Liu T, Li L, Tang W, Zou J, Chen X, et al. Transplantation of betatrophin-expressing adipose-derived mesenchymal stem cells induces ?-cell proliferation in diabetic mice. Int J Mol Med. 2017;39:936-948 pubmed 出版商
  92. Stanley R, Piszczatowski R, Bartholdy B, Mitchell K, McKimpson W, Narayanagari S, et al. A myeloid tumor suppressor role for NOL3. J Exp Med. 2017;214:753-771 pubmed 出版商
  93. Szilagyi B, Triebus J, Kressler C, De Almeida M, Tierling S, Durek P, et al. Gut memories do not fade: epigenetic regulation of lasting gut homing receptor expression in CD4+ memory T cells. Mucosal Immunol. 2017;10:1443-1454 pubmed 出版商
  94. Knudson K, Pritzl C, Saxena V, Altman A, Daniels M, Teixeiro E. NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A. 2017;114:E1659-E1667 pubmed 出版商
  95. Cuccarese M, Dubach J, Pfirschke C, Engblom C, Garris C, Miller M, et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat Commun. 2017;8:14293 pubmed 出版商
  96. Munguía Fuentes R, Yam Puc J, Silva Sanchez A, Marcial Juárez E, Gallegos Hernández I, Calderon Amador J, et al. Immunization of Newborn Mice Accelerates the Architectural Maturation of Lymph Nodes, But AID-Dependent IgG Responses Are Still Delayed Compared to the Adult. Front Immunol. 2017;8:13 pubmed 出版商
  97. Oh J, Oh D, Jung H, Lee H. A mechanism for the induction of type 2 immune responses by a protease allergen in the genital tract. Proc Natl Acad Sci U S A. 2017;114:E1188-E1195 pubmed 出版商
  98. Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2017;13:55-62 pubmed 出版商
  99. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  100. Yamamura K, Uruno T, Shiraishi A, Tanaka Y, Ushijima M, Nakahara T, et al. The transcription factor EPAS1 links DOCK8 deficiency to atopic skin inflammation via IL-31 induction. Nat Commun. 2017;8:13946 pubmed 出版商
  101. Cañete A, Carmona R, Ariza L, Sanchez M, Rojas A, Muñoz Chápuli R. A population of hematopoietic stem cells derives from GATA4-expressing progenitors located in the placenta and lateral mesoderm of mice. Haematologica. 2017;102:647-655 pubmed 出版商
  102. Marycz K, Kornicka K, Grzesiak J, Smieszek A, Szłapka J. Macroautophagy and Selective Mitophagy Ameliorate Chondrogenic Differentiation Potential in Adipose Stem Cells of Equine Metabolic Syndrome: New Findings in the Field of Progenitor Cells Differentiation. Oxid Med Cell Longev. 2016;2016:3718468 pubmed 出版商
  103. Marshall N, Vong A, Devarajan P, Brauner M, Kuang Y, Nayar R, et al. NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection. J Immunol. 2017;198:1142-1155 pubmed 出版商
  104. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  105. von Moltke J, O Leary C, Barrett N, Kanaoka Y, Austen K, Locksley R. Leukotrienes provide an NFAT-dependent signal that synergizes with IL-33 to activate ILC2s. J Exp Med. 2017;214:27-37 pubmed 出版商
  106. Wei Y, Lu C, Chen J, Cui G, Wang L, Yu T, et al. High salt diet stimulates gut Th17 response and exacerbates TNBS-induced colitis in mice. Oncotarget. 2017;8:70-82 pubmed 出版商
  107. Yanagisawa H, Hashimoto M, Minagawa S, Takasaka N, Ma R, Moermans C, et al. Role of IL-17A in murine models of COPD airway disease. Am J Physiol Lung Cell Mol Physiol. 2017;312:L122-L130 pubmed 出版商
  108. Wang D, Ding X, Xue W, Zheng J, Tian X, Li Y, et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo. Int J Mol Med. 2017;39:167-173 pubmed 出版商
  109. Ma C, Mishra S, Demel E, Liu Y, Zhang N. TGF-? Controls the Formation of Kidney-Resident T Cells via Promoting Effector T Cell Extravasation. J Immunol. 2017;198:749-756 pubmed 出版商
  110. Kretzer N, Theisen D, Tussiwand R, Briseño C, Grajales Reyes G, Wu X, et al. RAB43 facilitates cross-presentation of cell-associated antigens by CD8?+ dendritic cells. J Exp Med. 2016;213:2871-2883 pubmed
  111. Wilson G, Hewit K, Pallas K, Cairney C, Lee K, Hansell C, et al. Atypical chemokine receptor ACKR2 controls branching morphogenesis in the developing mammary gland. Development. 2017;144:74-82 pubmed 出版商
  112. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  113. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  114. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  115. Paszkiewicz P, Fräßle S, Srivastava S, Sommermeyer D, Hudecek M, Drexler I, et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J Clin Invest. 2016;126:4262-4272 pubmed 出版商
  116. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  117. Hu X, García M, Weng L, Jung X, Murakami J, Kumar B, et al. Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun. 2016;7:13095 pubmed 出版商
  118. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  119. Rothchild A, Sissons J, Shafiani S, Plaisier C, Min D, Mai D, et al. MiR-155-regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 2016;113:E6172-E6181 pubmed
  120. Di Marco Barros R, Roberts N, Dart R, Vantourout P, Jandke A, Nussbaumer O, et al. Epithelia Use Butyrophilin-like Molecules to Shape Organ-Specific γδ T Cell Compartments. Cell. 2016;167:203-218.e17 pubmed 出版商
  121. Bernard Valnet R, Yshii L, Quériault C, Nguyen X, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113:10956-61 pubmed 出版商
  122. Boddupalli C, Nair S, Gray S, Nowyhed H, Verma R, Gibson J, et al. ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells. J Clin Invest. 2016;126:3905-3916 pubmed 出版商
  123. Suzuki Y, Katagiri H, Wang T, Kakisaka K, Kume K, Nishizuka S, et al. Ductular reactions in the liver regeneration process with local inflammation after physical partial hepatectomy. Lab Invest. 2016;96:1211-1222 pubmed 出版商
  124. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  125. Jackson Jones L, Duncan S, Magalhaes M, Campbell S, Maizels R, McSorley H, et al. Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nat Commun. 2016;7:12651 pubmed 出版商
  126. Vogel K, Bell L, Galloway A, Ahlfors H, Turner M. The RNA-Binding Proteins Zfp36l1 and Zfp36l2 Enforce the Thymic ?-Selection Checkpoint by Limiting DNA Damage Response Signaling and Cell Cycle Progression. J Immunol. 2016;197:2673-2685 pubmed 出版商
  127. Yoon J, Leyva Castillo J, Wang G, Galand C, Oyoshi M, Kumar L, et al. IL-23 induced in keratinocytes by endogenous TLR4 ligands polarizes dendritic cells to drive IL-22 responses to skin immunization. J Exp Med. 2016;213:2147-66 pubmed 出版商
  128. Jacobs F, Sadie Van Gijsen H, van de Vyver M, Ferris W. Vanadate Impedes Adipogenesis in Mesenchymal Stem Cells Derived from Different Depots within Bone. Front Endocrinol (Lausanne). 2016;7:108 pubmed 出版商
  129. Melton D, Roberts A, Wang H, Sarwar Z, Wetzel M, Wells J, et al. Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol. 2016;100:1011-1025 pubmed
  130. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  131. Ghazaryan E, Zhang Y, He Y, Liu X, Li Y, Xie J, et al. Mesenchymal stem cells in corneal neovascularization: Comparison of different application routes. Mol Med Rep. 2016;14:3104-12 pubmed 出版商
  132. Waterstrat A, Rector K, Geiger H, Liang Y. Quantitative trait gene Slit2 positively regulates murine hematopoietic stem cell numbers. Sci Rep. 2016;6:31412 pubmed 出版商
  133. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  134. Eichenfield D, Troutman T, Link V, Lam M, Cho H, Gosselin D, et al. Tissue damage drives co-localization of NF-?B, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. elife. 2016;5: pubmed 出版商
  135. Ibiza S, García Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature. 2016;535:440-443 pubmed 出版商
  136. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  137. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  138. Lo T, Silveira P, Fromm P, Verma N, Vu P, Kupresanin F, et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J Immunol. 2016;197:885-98 pubmed 出版商
  139. Palchaudhuri R, Saez B, Hoggatt J, Schajnovitz A, Sykes D, Tate T, et al. Non-genotoxic conditioning for hematopoietic stem cell transplantation using a hematopoietic-cell-specific internalizing immunotoxin. Nat Biotechnol. 2016;34:738-45 pubmed 出版商
  140. Abramowski P, Krasemann S, Ernst T, Lange C, Ittrich H, Schweizer M, et al. Mesenchymal Stromal/Stem Cells Do Not Ameliorate Experimental Autoimmune Encephalomyelitis and Are Not Detectable in the Central Nervous System of Transplanted Mice. Stem Cells Dev. 2016;25:1134-48 pubmed 出版商
  141. Seehus C, Kaye J. In vitro Differentiation of Murine Innate Lymphoid Cells from Common Lymphoid Progenitor Cells. Bio Protoc. 2016;6: pubmed
  142. Patenaude J, Perreault C. Thymic Mesenchymal Cells Have a Distinct Transcriptomic Profile. J Immunol. 2016;196:4760-70 pubmed 出版商
  143. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  144. Harper I, Ali J, Harper S, Wlodek E, Alsughayyir J, Negus M, et al. Augmentation of Recipient Adaptive Alloimmunity by Donor Passenger Lymphocytes within the Transplant. Cell Rep. 2016;15:1214-27 pubmed 出版商
  145. Wu C, Sheu S, Hsu L, Yang K, Tseng C, Kuo T. Intra-articular Injection of platelet-rich fibrin releasates in combination with bone marrow-derived mesenchymal stem cells in the treatment of articular cartilage defects: An in vivo study in rabbits. J Biomed Mater Res B Appl Biomater. 2017;105:1536-1543 pubmed 出版商
  146. Lombardi R, Chen S, Ruggiero A, Gurha P, Czernuszewicz G, Willerson J, et al. Cardiac Fibro-Adipocyte Progenitors Express Desmosome Proteins and Preferentially Differentiate to Adipocytes Upon Deletion of the Desmoplakin Gene. Circ Res. 2016;119:41-54 pubmed 出版商
  147. Goldstein J, Burlion A, Zaragoza B, Sendeyo K, Polansky J, Huehn J, et al. Inhibition of the JAK/STAT Signaling Pathway in Regulatory T Cells Reveals a Very Dynamic Regulation of Foxp3 Expression. PLoS ONE. 2016;11:e0153682 pubmed 出版商
  148. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  149. Xiong H, Keith J, Samilo D, Carter R, Leiner I, Pamer E. Innate Lymphocyte/Ly6C(hi) Monocyte Crosstalk Promotes Klebsiella Pneumoniae Clearance. Cell. 2016;165:679-89 pubmed 出版商
  150. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  151. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  152. Borkent M, Bennett B, Lackford B, Bar Nur O, Brumbaugh J, Wang L, et al. A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports. 2016;6:704-716 pubmed 出版商
  153. Williams A, Maman Y, Alinikula J, Schatz D. Bcl6 Is Required for Somatic Hypermutation and Gene Conversion in Chicken DT40 Cells. PLoS ONE. 2016;11:e0149146 pubmed 出版商
  154. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  155. Tong L, Zhou J, Rong L, Seeley E, Pan J, Zhu X, et al. Fibroblast Growth Factor-10 (FGF-10) Mobilizes Lung-resident Mesenchymal Stem Cells and Protects Against Acute Lung Injury. Sci Rep. 2016;6:21642 pubmed 出版商
  156. Azpilikueta A, Agorreta J, Labiano S, Pérez Gracia J, Sánchez Paulete A, Aznar M, et al. Successful Immunotherapy against a Transplantable Mouse Squamous Lung Carcinoma with Anti-PD-1 and Anti-CD137 Monoclonal Antibodies. J Thorac Oncol. 2016;11:524-36 pubmed 出版商
  157. Levit Zerdoun E, Becker M, Pohlmeyer R, Wilhelm I, Maity P, Rajewsky K, et al. Survival of Igα-Deficient Mature B Cells Requires BAFF-R Function. J Immunol. 2016;196:2348-60 pubmed 出版商
  158. Mitrea D, Cika J, Guy C, Ban D, Banerjee P, Stanley C, et al. Nucleophosmin integrates within the nucleolus via multi-modal interactions with proteins displaying R-rich linear motifs and rRNA. elife. 2016;5: pubmed 出版商
  159. Tubo N, Fife B, Pagán A, Kotov D, Goldberg M, Jenkins M. Most microbe-specific naïve CD4? T cells produce memory cells during infection. Science. 2016;351:511-4 pubmed 出版商
  160. Homayounfar N, Verma P, Nosrat A, El Ayachi I, Yu Z, Romberg E, et al. Isolation, Characterization, and Differentiation of Dental Pulp Stem Cells in Ferrets. J Endod. 2016;42:418-24 pubmed 出版商
  161. Liu T, Mu H, Shen Z, Song Z, Chen X, Wang Y. Autologous adipose tissue‑derived mesenchymal stem cells are involved in rat liver regeneration following repeat partial hepatectomy. Mol Med Rep. 2016;13:2053-9 pubmed 出版商
  162. Leiva M, Quintana J, Ligos J, Hidalgo A. Haematopoietic ESL-1 enables stem cell proliferation in the bone marrow by limiting TGFβ availability. Nat Commun. 2016;7:10222 pubmed 出版商
  163. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  164. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  165. Lindemans C, Calafiore M, Mertelsmann A, O Connor M, Dudakov J, Jenq R, et al. Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration. Nature. 2015;528:560-564 pubmed 出版商
  166. Black L, Saunderson S, Coutinho F, Muhsin Sharafaldine M, Damani T, Dunn A, et al. The CD169 sialoadhesin molecule mediates cytotoxic T-cell responses to tumour apoptotic vesicles. Immunol Cell Biol. 2016;94:430-8 pubmed 出版商
  167. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  168. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  169. Wu V, Smith A, You H, Nguyen T, Ferguson R, Taylor M, et al. Plasmacytoid dendritic cell-derived IFNα modulates Th17 differentiation during early Bordetella pertussis infection in mice. Mucosal Immunol. 2016;9:777-86 pubmed 出版商
  170. Forni M, Ramos Maia Lobba A, Pereira Ferreira A, Sogayar M. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin. PLoS ONE. 2015;10:e0140143 pubmed 出版商
  171. Fiore V, Strane P, Bryksin A, White E, Hagood J, Barker T. Conformational coupling of integrin and Thy-1 regulates Fyn priming and fibroblast mechanotransduction. J Cell Biol. 2015;211:173-90 pubmed 出版商
  172. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  173. Brasseit J, Althaus Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, et al. CD4 T cells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol. 2016;9:689-701 pubmed 出版商
  174. Martin Blondel G, Pignolet B, Tietz S, Yshii L, Gebauer C, Périnat T, et al. Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the α4β1-integrin. Eur J Immunol. 2015;45:3302-12 pubmed 出版商
  175. Guo L, Huang Y, Chen X, Hu Li J, Urban J, Paul W. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16:1051-9 pubmed 出版商
  176. Pogozhykh O, Pogozhykh D, Neehus A, Hoffmann A, Blasczyk R, Müller T. Molecular and cellular characteristics of human and non-human primate multipotent stromal cells from the amnion and bone marrow during long term culture. Stem Cell Res Ther. 2015;6:150 pubmed 出版商
  177. Jiang D, Yang S, Gao P, Zhang Y, Guo T, Lin H, et al. Combined effect of ligament stem cells and umbilical-cord-blood-derived CD34+ cells on ligament healing. Cell Tissue Res. 2015;362:587-95 pubmed 出版商
  178. Landa Solís C, Granados Montiel J, Olivos Meza A, Ortega Sánchez C, Cruz Lemini M, Hernández Flores C, et al. Cryopreserved CD90+ cells obtained from mobilized peripheral blood in sheep: a new source of mesenchymal stem cells for preclinical applications. Cell Tissue Bank. 2016;17:137-45 pubmed 出版商
  179. Kaminsky L, Sei J, Parekh N, Davies M, Reider I, Krouse T, et al. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection. J Virol. 2015;89:9974-85 pubmed 出版商
  180. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  181. Kim M, Taparowsky E, Kim C. Retinoic Acid Differentially Regulates the Migration of Innate Lymphoid Cell Subsets to the Gut. Immunity. 2015;43:107-19 pubmed 出版商
  182. Herz J, Johnson K, McGavern D. Therapeutic antiviral T cells noncytopathically clear persistently infected microglia after conversion into antigen-presenting cells. J Exp Med. 2015;212:1153-69 pubmed 出版商
  183. Singh N, Kotla S, Dyukova E, Traylor J, Orr A, Chernoff J, et al. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun. 2015;6:7450 pubmed 出版商
  184. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  185. Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang J, Bando H, et al. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun. 2015;6:7474 pubmed 出版商
  186. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  187. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  188. Kamachi F, Isshiki T, Harada N, Akiba H, Miyake S. ICOS promotes group 2 innate lymphoid cell activation in lungs. Biochem Biophys Res Commun. 2015;463:739-45 pubmed 出版商
  189. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  190. Song H, Wang H, Wu W, Qi L, Shao L, Wang F, et al. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res. 2015;362:97-113 pubmed 出版商
  191. Navarathna D, Stein E, Lessey Morillon E, Nayak D, Martin Manso G, Roberts D. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS ONE. 2015;10:e0128220 pubmed 出版商
  192. Liang X, Ding Y, Zhang Y, Chai Y, He J, Chiu S, et al. Activation of NRG1-ERBB4 signaling potentiates mesenchymal stem cell-mediated myocardial repairs following myocardial infarction. Cell Death Dis. 2015;6:e1765 pubmed 出版商
  193. Peske J, Thompson E, Gemta L, Baylis R, Fu Y, Engelhard V. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun. 2015;6:7114 pubmed 出版商
  194. Thiault N, Darrigues J, Adoue V, Gros M, Binet B, Pérals C, et al. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat Immunol. 2015;16:628-34 pubmed 出版商
  195. Bouchery T, Kyle R, Camberis M, Shepherd A, Filbey K, Smith A, et al. ILC2s and T cells cooperate to ensure maintenance of M2 macrophages for lung immunity against hookworms. Nat Commun. 2015;6:6970 pubmed 出版商
  196. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  197. Hamilton J, Li J, Wu Q, Yang P, Luo B, Li H, et al. General Approach for Tetramer-Based Identification of Autoantigen-Reactive B Cells: Characterization of La- and snRNP-Reactive B Cells in Autoimmune BXD2 Mice. J Immunol. 2015;194:5022-34 pubmed 出版商
  198. Williamson K, Lee K, Humphreys W, Comerford E, Clegg P, Canty Laird E. Restricted differentiation potential of progenitor cell populations obtained from the equine superficial digital flexor tendon (SDFT). J Orthop Res. 2015;33:849-58 pubmed 出版商
  199. Sohn J, Lu A, Tang Y, Wang B, Huard J. Activation of non-myogenic mesenchymal stem cells during the disease progression in dystrophic dystrophin/utrophin knockout mice. Hum Mol Genet. 2015;24:3814-29 pubmed 出版商
  200. Rouhani S, Eccles J, Riccardi P, Peske J, Tewalt E, Cohen J, et al. Roles of lymphatic endothelial cells expressing peripheral tissue antigens in CD4 T-cell tolerance induction. Nat Commun. 2015;6:6771 pubmed 出版商
  201. Lujan E, Zunder E, Ng Y, Goronzy I, Nolan G, Wernig M. Early reprogramming regulators identified by prospective isolation and mass cytometry. Nature. 2015;521:352-6 pubmed 出版商
  202. Cameron S, Alwakeel A, Goddard L, Hobbs C, Gowing E, Barnett E, et al. Delayed post-treatment with bone marrow-derived mesenchymal stem cells is neurorestorative of striatal medium-spiny projection neurons and improves motor function after neonatal rat hypoxia-ischemia. Mol Cell Neurosci. 2015;68:56-72 pubmed 出版商
  203. Cheah M, Chen J, Sahoo D, Contreras Trujillo H, Volkmer A, Scheeren F, et al. CD14-expressing cancer cells establish the inflammatory and proliferative tumor microenvironment in bladder cancer. Proc Natl Acad Sci U S A. 2015;112:4725-30 pubmed 出版商
  204. Napier R, Norris B, Swimm A, Giver C, Harris W, Laval J, et al. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity. PLoS Pathog. 2015;11:e1004770 pubmed 出版商
  205. Charlton J, Tsoukatou D, Mamalaki C, Chatzidakis I. Programmed death 1 regulates memory phenotype CD4 T cell accumulation, inhibits expansion of the effector memory phenotype subset and modulates production of effector cytokines. PLoS ONE. 2015;10:e0119200 pubmed 出版商
  206. Agarwal S, Loder S, Brownley C, Eboda O, Peterson J, Hayano S, et al. BMP signaling mediated by constitutively active Activin type 1 receptor (ACVR1) results in ectopic bone formation localized to distal extremity joints. Dev Biol. 2015;400:202-9 pubmed 出版商
  207. Brown R, Xiong W, Peters J, Tekmen Clark M, Strycharska Orczyk I, REED B, et al. TRPM3 expression in mouse retina. PLoS ONE. 2015;10:e0117615 pubmed 出版商
  208. Tran K, Jackson S, Olufs Z, Zaidan N, Leng N, Kendziorski C, et al. Collaborative rewiring of the pluripotency network by chromatin and signalling modulating pathways. Nat Commun. 2015;6:6188 pubmed 出版商
  209. Shafiq M, Jung Y, Kim S. Stem cell recruitment, angiogenesis, and tissue regeneration in substance P-conjugated poly(l-lactide-co-É›-caprolactone) nonwoven meshes. J Biomed Mater Res A. 2015;103:2673-88 pubmed 出版商
  210. Giera S, Deng Y, Luo R, Ackerman S, Mogha A, Monk K, et al. The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development. Nat Commun. 2015;6:6121 pubmed 出版商
  211. Bergot A, Monnet N, Le Tran S, Mittal D, Al Kouba J, Steptoe R, et al. HPV16 E7 expression in skin induces TSLP secretion, type 2 ILC infiltration and atopic dermatitis-like lesions. Immunol Cell Biol. 2015;93:540-7 pubmed 出版商
  212. Zhao X, Zhao Q, Luo Z, Yu Y, Xiao N, Sun X, et al. Spontaneous immortalization of mouse liver sinusoidal endothelial cells. Int J Mol Med. 2015;35:617-24 pubmed 出版商
  213. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  214. Krishnamoorthy N, Burkett P, Dalli J, Abdulnour R, Colas R, Ramon S, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194:863-7 pubmed 出版商
  215. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  216. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  217. Ondondo B, Colbeck E, Jones E, Smart K, Lauder S, Hindley J, et al. A distinct chemokine axis does not account for enrichment of Foxp3(+)  CD4(+) T cells in carcinogen-induced fibrosarcomas. Immunology. 2015;145:94-104 pubmed 出版商
  218. Kim J, Li W, Choi Y, Lewin S, Verbeke C, Dranoff G, et al. Injectable, spontaneously assembling, inorganic scaffolds modulate immune cells in vivo and increase vaccine efficacy. Nat Biotechnol. 2015;33:64-72 pubmed 出版商
  219. Stoycheva D, Deiser K, Stärck L, Nishanth G, Schlüter D, Uckert W, et al. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals. J Immunol. 2015;194:553-9 pubmed 出版商
  220. Raker V, Stein J, Montermann E, Maxeiner J, Taube C, Reske Kunz A, et al. Regulation of IgE production and airway reactivity by CD4⁻CD8⁻ regulatory T cells. Immunobiology. 2015;220:490-9 pubmed 出版商
  221. Guo X, Tanaka Y, Kondo M. Thymic precursors of TCRαβ(+)CD8αα(+) intraepithelial lymphocytes are negative for CD103. Immunol Lett. 2015;163:40-8 pubmed 出版商
  222. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  223. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  224. Byrne S, Ortiz L, Mali P, Aach J, Church G. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res. 2015;43:e21 pubmed 出版商
  225. McKinstry K, Strutt T, Bautista B, Zhang W, Kuang Y, Cooper A, et al. Effector CD4 T-cell transition to memory requires late cognate interactions that induce autocrine IL-2. Nat Commun. 2014;5:5377 pubmed 出版商
  226. Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed 出版商
  227. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  228. Smith T, Verdeil G, Marquardt K, Sherman L. Contribution of TCR signaling strength to CD8+ T cell peripheral tolerance mechanisms. J Immunol. 2014;193:3409-16 pubmed 出版商
  229. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  230. Dogan A, Demirci S, Sahin F. In vitro differentiation of human tooth germ stem cells into endothelial- and epithelial-like cells. Cell Biol Int. 2015;39:94-103 pubmed 出版商
  231. Berod L, Stüve P, Varela F, Behrends J, Swallow M, Kruse F, et al. Rapid rebound of the Treg compartment in DEREG mice limits the impact of Treg depletion on mycobacterial burden, but prevents autoimmunity. PLoS ONE. 2014;9:e102804 pubmed 出版商
  232. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  233. Friedman R, Lindsay R, Lilly J, Nguyen V, Sorensen C, Jacobelli J, et al. An evolving autoimmune microenvironment regulates the quality of effector T cell restimulation and function. Proc Natl Acad Sci U S A. 2014;111:9223-8 pubmed 出版商
  234. Mise Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-?B RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26:607-18 pubmed 出版商
  235. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  236. Weber G, Chousterman B, Hilgendorf I, Robbins C, Theurl I, Gerhardt L, et al. Pleural innate response activator B cells protect against pneumonia via a GM-CSF-IgM axis. J Exp Med. 2014;211:1243-56 pubmed 出版商
  237. Mukonoweshuro B, Brown C, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng. 2014;5:2041731414534255 pubmed 出版商
  238. Shenje L, Andersen P, Halushka M, Lui C, Fernandez L, Collin G, et al. Mutations in Alström protein impair terminal differentiation of cardiomyocytes. Nat Commun. 2014;5:3416 pubmed 出版商
  239. Lee J, Walsh M, Hoehn K, James D, Wherry E, Choi Y. Regulator of fatty acid metabolism, acetyl coenzyme a carboxylase 1, controls T cell immunity. J Immunol. 2014;192:3190-9 pubmed 出版商
  240. Osada M, Singh V, Wu K, Sant Angelo D, Pezzano M. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus. PLoS ONE. 2013;8:e83024 pubmed 出版商
  241. Kim H, Lee H, Chang Y, Pichavant M, Shore S, Fitzgerald K, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54-61 pubmed 出版商
  242. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  243. Fu G, Casas J, Rigaud S, Rybakin V, Lambolez F, Brzostek J, et al. Themis sets the signal threshold for positive and negative selection in T-cell development. Nature. 2013;504:441-5 pubmed 出版商
  244. Salinas N, Olguín J, Castellanos C, Saavedra R. T cell suppression in vitro during Toxoplasma gondii infection is the result of IL-2 competition between Tregs and T cells leading to death of proliferating T cells. Scand J Immunol. 2014;79:1-11 pubmed 出版商
  245. Timblin G, Schlissel M. Ebf1 and c-Myb repress rag transcription downstream of Stat5 during early B cell development. J Immunol. 2013;191:4676-87 pubmed 出版商
  246. Nussbaum J, Van Dyken S, von Moltke J, Cheng L, Mohapatra A, Molofsky A, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502:245-8 pubmed 出版商
  247. Satpathy A, Briseño C, Lee J, Ng D, Manieri N, Kc W, et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol. 2013;14:937-48 pubmed 出版商
  248. Redecke V, Wu R, Zhou J, Finkelstein D, Chaturvedi V, High A, et al. Hematopoietic progenitor cell lines with myeloid and lymphoid potential. Nat Methods. 2013;10:795-803 pubmed 出版商
  249. Bai N, Hayashi H, Aida T, Namekata K, Harada T, Mishina M, et al. Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity. Mol Brain. 2013;6:22 pubmed 出版商
  250. Roehrich M, Spicher A, Milano G, Vassalli G. Characterization of cardiac-resident progenitor cells expressing high aldehyde dehydrogenase activity. Biomed Res Int. 2013;2013:503047 pubmed 出版商
  251. Toker A, Engelbert D, Garg G, Polansky J, Floess S, Miyao T, et al. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus. J Immunol. 2013;190:3180-8 pubmed 出版商
  252. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  253. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  254. Bivas Benita M, Gillard G, Bar L, White K, Webby R, Hovav A, et al. Airway CD8(+) T cells induced by pulmonary DNA immunization mediate protective anti-viral immunity. Mucosal Immunol. 2013;6:156-66 pubmed 出版商
  255. Zhang N, Bevan M. TGF-? signaling to T cells inhibits autoimmunity during lymphopenia-driven proliferation. Nat Immunol. 2012;13:667-73 pubmed 出版商
  256. Dráber P, Stepanek O, Hrdinka M, Drobek A, Chmatal L, Mala L, et al. LST1/A is a myeloid leukocyte-specific transmembrane adaptor protein recruiting protein tyrosine phosphatases SHP-1 and SHP-2 to the plasma membrane. J Biol Chem. 2012;287:22812-21 pubmed 出版商
  257. Wang R, Xie H, Huang Z, Ma J, Fang X, Ding Y, et al. T cell factor 1 regulates thymocyte survival via a RORγt-dependent pathway. J Immunol. 2011;187:5964-73 pubmed 出版商
  258. Wollenberg I, Agua Doce A, Hernandez A, Almeida C, Oliveira V, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553-60 pubmed 出版商
  259. Marshall H, Prince A, Berg L, Welsh R. IFN-alpha beta and self-MHC divert CD8 T cells into a distinct differentiation pathway characterized by rapid acquisition of effector functions. J Immunol. 2010;185:1419-28 pubmed 出版商
  260. Mohr C, Arapovic J, Mühlbach H, Panzer M, Weyn A, Dölken L, et al. A spread-deficient cytomegalovirus for assessment of first-target cells in vaccination. J Virol. 2010;84:7730-42 pubmed 出版商
  261. Moon J, Chu H, Hataye J, Pagán A, Pepper M, McLachlan J, et al. Tracking epitope-specific T cells. Nat Protoc. 2009;4:565-81 pubmed 出版商
  262. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  263. Sheng H, Wang Y, Jin Y, Zhang Q, Zhang Y, Wang L, et al. A critical role of IFNgamma in priming MSC-mediated suppression of T cell proliferation through up-regulation of B7-H1. Cell Res. 2008;18:846-57 pubmed 出版商
  264. King S, Knorn A, Ohnmacht C, Voehringer D. Accumulation of effector CD4 T cells during type 2 immune responses is negatively regulated by Stat6. J Immunol. 2008;180:754-63 pubmed
  265. Hayakawa I, Tedder T, Zhuang Y. B-lymphocyte depletion ameliorates Sjögren's syndrome in Id3 knockout mice. Immunology. 2007;122:73-9 pubmed
  266. Burster T, Giffon T, Dahl M, Björck P, Bogyo M, Weber E, et al. Influenza A virus elevates active cathepsin B in primary murine DC. Int Immunol. 2007;19:645-55 pubmed
  267. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J. Enhanced antigen-specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll-like receptor ligand monophosphoryl lipid A in poly(D,L-lactic-co-glycolic acid) nanoparticles. J Biomed Mater Res A. 2007;81:652-62 pubmed
  268. Rubinstein M, Kovar M, Purton J, Cho J, Boyman O, Surh C, et al. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci U S A. 2006;103:9166-71 pubmed
  269. Fucs R, Jesus J, Souza Junior P, Franco L, Verícimo M, Bellio M, et al. Frequency of natural regulatory CD4+CD25+ T lymphocytes determines the outcome of tolerance across fully mismatched MHC barrier through linked recognition of self and allogeneic stimuli. J Immunol. 2006;176:2324-9 pubmed
  270. Garcia Ojeda M, Dejbakhsh Jones S, Chatterjea Matthes D, Mukhopadhyay A, BitMansour A, Weissman I, et al. Stepwise development of committed progenitors in the bone marrow that generate functional T cells in the absence of the thymus. J Immunol. 2005;175:4363-73 pubmed
  271. Chang Rodriguez S, Ecker R, Stingl G, Elbe Bürger A. Autocrine IL-10 partially prevents differentiation of neonatal dendritic epidermal leukocytes into Langerhans cells. J Leukoc Biol. 2004;76:657-66 pubmed
  272. Hamaguchi Tsuru E, Nobumoto A, Hirose N, Kataoka S, Fujikawa Adachi K, Furuya M, et al. Development and functional analysis of eosinophils from murine embryonic stem cells. Br J Haematol. 2004;124:819-27 pubmed
  273. Germeraad W, Kawamoto H, Itoi M, Jiang Y, Amagai T, Katsura Y, et al. Development of thymic microenvironments in vitro is oxygen-dependent and requires permanent presence of T-cell progenitors. J Histochem Cytochem. 2003;51:1225-35 pubmed
  274. Chatterjea Matthes D, Garcia Ojeda M, Dejbakhsh Jones S, Jerabek L, Manz M, Weissman I, et al. Early defect prethymic in bone marrow T cell progenitors in athymic nu/nu mice. J Immunol. 2003;171:1207-15 pubmed
  275. Hoffmann P, Ermann J, Edinger M, Fathman C, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196:389-99 pubmed
  276. Lan F, Zeng D, Higuchi M, Huie P, Higgins J, Strober S. Predominance of NK1.1+TCR alpha beta+ or DX5+TCR alpha beta+ T cells in mice conditioned with fractionated lymphoid irradiation protects against graft-versus-host disease: "natural suppressor" cells. J Immunol. 2001;167:2087-96 pubmed
  277. Dejbakhsh Jones S, Garcia Ojeda M, Chatterjea Matthes D, Zeng D, Strober S. Clonable progenitors committed to the T lymphocyte lineage in the mouse bone marrow; use of an extrathymic pathway. Proc Natl Acad Sci U S A. 2001;98:7455-60 pubmed
  278. Lan F, Zeng D, Huie P, Higgins J, Strober S. Allogeneic bone marrow cells that facilitate complete chimerism and eliminate tumor cells express both CD8 and T-cell antigen receptor-alphabeta. Blood. 2001;97:3458-65 pubmed
  279. Telford W, Moss M, Morseman J, Allnutt F. Cryptomonad algal phycobiliproteins as fluorochromes for extracellular and intracellular antigen detection by flow cytometry. Cytometry. 2001;44:16-23 pubmed
  280. Ohmura K, Kawamoto H, Lu M, Ikawa T, Ozaki S, Nakao K, et al. Immature multipotent hemopoietic progenitors lacking long-term bone marrow-reconstituting activity in the aorta-gonad-mesonephros region of murine day 10 fetuses. J Immunol. 2001;166:3290-6 pubmed
  281. Rodewald H, Brocker T, Haller C. Developmental dissociation of thymic dendritic cell and thymocyte lineages revealed in growth factor receptor mutant mice. Proc Natl Acad Sci U S A. 1999;96:15068-73 pubmed
  282. Dejbakhsh Jones S, Strober S. Identification of an early T cell progenitor for a pathway of T cell maturation in the bone marrow. Proc Natl Acad Sci U S A. 1999;96:14493-8 pubmed
  283. Ikawa T, Kawamoto H, Fujimoto S, Katsura Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med. 1999;190:1617-26 pubmed
  284. Ohmura K, Kawamoto H, Fujimoto S, Ozaki S, Nakao K, Katsura Y. Emergence of T, B, and myeloid lineage-committed as well as multipotent hemopoietic progenitors in the aorta-gonad-mesonephros region of day 10 fetuses of the mouse. J Immunol. 1999;163:4788-95 pubmed
  285. Kawamoto H, Ohmura K, Fujimoto S, Katsura Y. Emergence of T cell progenitors without B cell or myeloid differentiation potential at the earliest stage of hematopoiesis in the murine fetal liver. J Immunol. 1999;162:2725-31 pubmed
  286. Barrat F, Lesourd B, Louise A, Boulouis H, Vincent Naulleau S, Thibault D, et al. Surface antigen expression in spleen cells of C57B1/6 mice during ageing: influence of sex and parity. Clin Exp Immunol. 1997;107:593-600 pubmed
  287. Hattori N, Kawamoto H, Katsura Y. Isolation of the most immature population of murine fetal thymocytes that includes progenitors capable of generating T, B, and myeloid cells. J Exp Med. 1996;184:1901-8 pubmed
  288. Pear W, Aster J, Scott M, Hasserjian R, Soffer B, Sklar J, et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med. 1996;183:2283-91 pubmed
  289. Darby C, Geahlen R, Schreiber A. Stimulation of macrophage Fc gamma RIIIA activates the receptor-associated protein tyrosine kinase Syk and induces phosphorylation of multiple proteins including p95Vav and p62/GAP-associated protein. J Immunol. 1994;152:5429-37 pubmed
  290. Lundberg K, Shortman K. Small cortical thymocytes are subject to positive selection. J Exp Med. 1994;179:1475-83 pubmed
  291. Rathmell J, Goodnow C. Effects of the lpr mutation on elimination and inactivation of self-reactive B cells. J Immunol. 1994;153:2831-42 pubmed
  292. Hermans M, Opstelten D. In situ visualization of hemopoietic cell subsets and stromal elements in rat and mouse bone marrow by immunostaining of frozen sections. J Histochem Cytochem. 1991;39:1627-34 pubmed