这是一篇来自已证抗体库的有关小鼠 紧密连接蛋白-1 (Tjp1) 的综述,是根据164篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合紧密连接蛋白-1 抗体。
紧密连接蛋白-1 同义词: ZO1

赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4a). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 人类; 1:100; 图 4c
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4c). MBio (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s3f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s3f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2s2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 2s2). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 2d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2d). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s7e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在人类样本上 (图 s7e). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1f). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 6b). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3h
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 3h). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1b). J Cell Physiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 5l
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在人类样本上浓度为1:200 (图 5l). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 ev1b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 ev1b). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:300; 图 s4a
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 (图 s4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 6e). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2b
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2b). Mol Vis (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Front Aging Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 2A
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2A). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1e
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 402200)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 图 2c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 2c). Redox Biol (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Mol Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 0.5 mg/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为0.5 mg/ml (图 4). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:25; 图 8b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 8b). Hear Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:200; 图 5X'
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61?C7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 5X'). elife (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1e
  • 免疫细胞化学; 人类; 1:200; 图 2i
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2i). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 s2f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s2f). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s6a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在人类样本上 (图 s6a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4b
  • 免疫印迹; 人类; 1:1000; 表 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3a). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 7a
  • 免疫印迹; 大鼠; 1:1000; 图 7g
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7g). Toxicol Lett (2017) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40- 2300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). J Dent Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4f
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4f). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; domestic rabbit; 1:100; 图 6a
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:100 (图 6a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Transl Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 3b
  • 免疫印迹; 大鼠; 1:250; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 3a). FASEB J (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 6a
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Inflamm Bowel Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 7a
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 61-7300)被用于被用于免疫细胞化学在犬样本上 (图 7a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:200; 图 6c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6c). BMC Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 617300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2c). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2f
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2f). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3d). Acta Physiol (Oxf) (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 5c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5c). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9a
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫印迹在人类样本上 (图 9a). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 2.5 ug/ml; 图 3d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为2.5 ug/ml (图 3d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:200; 图 4c
  • 免疫印迹; 犬; 1:1000; 图 3f
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 3f). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 7 ug/ml; 表 s5
  • 免疫印迹; 小鼠; 2 ug/ml; 表 s5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在小鼠样本上浓度为7 ug/ml (表 s5) 和 被用于免疫印迹在小鼠样本上浓度为2 ug/ml (表 s5). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 7a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 表 1
  • 免疫印迹; 大鼠; 1:500; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Spermatogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
  • 免疫印迹; 小鼠; 1:40; 图 4k
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:40 (图 4k). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3h
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3h). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1d). Biol Open (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 人类; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 40-2300)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 402200)被用于被用于免疫细胞化学在人类样本上 (图 1). Nutr Metab (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). J Neurochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40- 2200)被用于被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3a). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40?C2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(ThermoFisher Scientific, 61-7300)被用于被用于免疫细胞化学在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3A
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫组化在人类样本上 (图 3A). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, Life Technologies, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化; 人类; 图 2e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫组化在人类样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 71-6300)被用于被用于免疫细胞化学在小鼠样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7,300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 5b
  • 免疫印迹; 人类; 图 5a
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 小鼠; 1:100; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 7). Nat Protoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo-Fisher, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 4). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 1
  • 免疫细胞化学; 小鼠; 1:25; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 1) 和 被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 2). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫组化-石蜡切片在人类样本上 (图 3). Eur Cell Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化在小鼠样本上 (图 s2). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 3). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 402200)被用于被用于免疫组化在小鼠样本上 (图 s6). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Virol J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 猪; 图 3
  • 免疫印迹; 猪; 1:1000; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫细胞化学在猪样本上 (图 3), 被用于免疫印迹在猪样本上浓度为1:1000 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Life Tech, 40-2300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Cell Adh Migr (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 40-2200)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed Laboratories, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 犬; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在大鼠样本上 (图 6). Inflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:250; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Thermo Scientific, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 4). Exp Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 4). Exp Biol Med (Maywood) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7
  • 免疫印迹; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 8). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 鸡; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 402200)被用于被用于免疫组化在鸡样本上浓度为1:100 (图 1). BMC Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 s1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 s1). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). ALTEX (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s4c
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 40-2200)被用于被用于免疫组化在小鼠样本上 (图 s4c). JCI Insight (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). BMC Cancer (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫细胞化学; 大鼠; 1:50; 图 s3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s3). Tissue Eng Part C Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1.25 mg/ml; 图 4
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1.25 mg/ml (图 4). Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 40-2200402200)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher Scientific, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 5 ug/ml; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上浓度为5 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 2.5 ug/ml
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2.5 ug/ml. Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Pharmacol Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 3:1000; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫组化在小鼠样本上浓度为3:1000 (图 1). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 表 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (表 1). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 6). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔紧密连接蛋白-1抗体(Thermo Fisher, 61-7300)被用于被用于免疫印迹在大鼠样本上 (图 8). Biomaterials (2016) ncbi
domestic rabbit 多克隆(ZMD.437)
  • 免疫印迹; 大鼠; 图 4
  • 免疫印迹; 小鼠; 图 5
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 40-2300)被用于被用于免疫印迹在大鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫细胞化学在人类样本上 (图 6). Colloids Surf B Biointerfaces (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:50; 表 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (表 2). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 犬; 1:400; 图 1
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:400 (图 1). Vet Dermatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔紧密连接蛋白-1抗体(生活技术, 61-7300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). J Gen Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5e
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 617300)被用于被用于免疫细胞化学在小鼠样本上 (图 5e). Cell Tissue Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 2
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 40-2200)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫组化在人类样本上. Support Care Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔紧密连接蛋白-1抗体(ZO-1, 40-2200)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
赛默飞世尔紧密连接蛋白-1抗体(Zymed, 61-7300)被用于被用于免疫细胞化学在人类样本上. J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Carcinog (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7300)被用于. Mol Biol Cell (2011) ncbi
domestic rabbit 多克隆
赛默飞世尔紧密连接蛋白-1抗体(Invitrogen, 61-7,300)被用于. J Cell Biol (2006) ncbi
圣克鲁斯生物技术
大鼠 单克隆
  • 免疫细胞化学; 犬; 1:300; 图 s5d
圣克鲁斯生物技术紧密连接蛋白-1抗体(SantaCruz, R40.76)被用于被用于免疫细胞化学在犬样本上浓度为1:300 (图 s5d). Infect Immun (2016) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 犬; 1:300; 图 s5d
圣克鲁斯生物技术紧密连接蛋白-1抗体(SantaCruz, R40.76)被用于被用于免疫细胞化学在犬样本上浓度为1:300 (图 s5d). Infect Immun (2016) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 犬; 1:1000; 图 s6c
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz, sc33725)被用于被用于免疫细胞化学在犬样本上浓度为1:1000 (图 s6c). Nat Commun (2016) ncbi
大鼠 单克隆(R40.76)
  • 其他; 小鼠; 1:500; 图 3
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz, sc-3725)被用于被用于其他在小鼠样本上浓度为1:500 (图 3). J Med Genet (2016) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 小鼠; 1:500
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz Biotechnology, sc-33725)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Nat Protoc (2014) ncbi
大鼠 单克隆(R40.76)
  • 免疫印迹; 犬
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz Biotechnology, R40.76)被用于被用于免疫印迹在犬样本上. BMC Res Notes (2014) ncbi
大鼠 单克隆(R40.76)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz Biotechnology, sc-33725)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. BMC Gastroenterol (2013) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 人类; 1:500
圣克鲁斯生物技术紧密连接蛋白-1抗体(Santa Cruz, R40.76)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Hum Mol Genet (2013) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s3
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s3). Cell Death Differ (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; common marmoset; 1:100; 图 4
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化-冰冻切片在common marmoset样本上浓度为1:100 (图 4). Neurosci Res (2016) ncbi
domestic goat 多克隆
  • 免疫组化; African green monkey; 1:100; 图 5d
艾博抗(上海)贸易有限公司紧密连接蛋白-1抗体(Abcam, ab190085)被用于被用于免疫组化在African green monkey样本上浓度为1:100 (图 5d). Sci Rep (2016) ncbi
默克密理博中国
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 犬; 1:2000; 图 2f
默克密理博中国紧密连接蛋白-1抗体(Merck Millipore, MABT11)被用于被用于免疫细胞化学在犬样本上浓度为1:2000 (图 2f). Sci Adv (2020) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 人类; 1:200; 图 5b
默克密理博中国紧密连接蛋白-1抗体(Millipore, T11)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b). Sci Rep (2016) ncbi
大鼠 单克隆(R40.76)
默克密理博中国紧密连接蛋白-1抗体(Millipore, MABT11)被用于. PLoS ONE (2016) ncbi
大鼠 单克隆(R40.76)
  • 免疫组化-冰冻切片; 小鼠; 图 4
默克密理博中国紧密连接蛋白-1抗体(Millipore, R40.76)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Cancer Discov (2015) ncbi
大鼠 单克隆(R40.76)
  • 免疫组化-冰冻切片; 鸡; 图 5
默克密理博中国紧密连接蛋白-1抗体(Chemicon, R40.76)被用于被用于免疫组化-冰冻切片在鸡样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
默克密理博中国紧密连接蛋白-1抗体(Millipore, AB2272)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Reprod Fertil Dev (2016) ncbi
大鼠 单克隆(R40.76)
  • 免疫组化-石蜡切片; 小鼠
默克密理博中国紧密连接蛋白-1抗体(Millipore, R40.76)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS Genet (2014) ncbi
大鼠 单克隆(R40.76)
  • 免疫组化; 小鼠
默克密理博中国紧密连接蛋白-1抗体(Millipore, R40.76)被用于被用于免疫组化在小鼠样本上. Dev Growth Differ (2014) ncbi
大鼠 单克隆(R40.76)
  • 免疫细胞化学; 人类
默克密理博中国紧密连接蛋白-1抗体(Millipore, MABT11)被用于被用于免疫细胞化学在人类样本上. elife (2013) ncbi
Developmental Studies Hybridoma Bank
大鼠 单克隆(R26.4C)
  • 免疫组化-石蜡切片; 小鼠; 图 5e
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5e). PLoS Genet (2017) ncbi
大鼠 单克隆(R26.4C)
  • 免疫印迹; 小鼠; 图 6b
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(DSHB, R26.4C)被用于被用于免疫印迹在小鼠样本上 (图 6b). PLoS ONE (2017) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 1:500; 图 6d
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 6d). J Cell Biol (2016) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 图 1A
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank, R26.4C)被用于被用于免疫细胞化学在犬样本上 (图 1A). Mol Biol Cell (2016) ncbi
大鼠 单克隆(R26.4C)
  • 免疫细胞化学; 犬; 1:100; 图 2d
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(DSHB, R26.4C-z)被用于被用于免疫细胞化学在犬样本上浓度为1:100 (图 2d). Mol Biol Cell (2015) ncbi
大鼠 单克隆(R26.4C)
  • 免疫组化-自由浮动切片; 小鼠; 1:10
Developmental Studies Hybridoma Bank紧密连接蛋白-1抗体(Developmental Studies Hybridoma Bank , R26.4C)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10. Cell Tissue Res (2016) ncbi
文章列表
  1. Hou M, Han J, Li G, Kwon M, Jiang J, Emani S, et al. Multipotency of mouse trophoblast stem cells. Stem Cell Res Ther. 2020;11:55 pubmed 出版商
  2. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  3. Hagbom M, de Faria F, Winberg M, Westerberg S, Nordgren J, Sharma S, et al. Neurotrophic Factors Protect the Intestinal Barrier from Rotavirus Insult in Mice. MBio. 2020;11: pubmed 出版商
  4. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  5. Wang Y, Sabbagh M, Gu X, Rattner A, Williams J, Nathans J. Beta-catenin signaling regulates barrier-specific gene expression in circumventricular organ and ocular vasculatures. elife. 2019;8: pubmed 出版商
  6. Liu J, Liu Y, Shao J, Li Y, Qin L, Shen H, et al. Zeb1 is important for proper cleavage plane orientation of dividing progenitors and neuronal migration in the mouse neocortex. Cell Death Differ. 2019;: pubmed 出版商
  7. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  8. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  9. Pelz L, Purfürst B, Rathjen F. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem. 2017;292:21490-21503 pubmed 出版商
  10. Hazim R, Karumbayaram S, Jiang M, Dimashkie A, Lopes V, Li D, et al. Differentiation of RPE cells from integration-free iPS cells and their cell biological characterization. Stem Cell Res Ther. 2017;8:217 pubmed 出版商
  11. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  12. Wilkinson E, Sidaway J, Cross M. Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells. J Cell Physiol. 2018;233:186-200 pubmed 出版商
  13. Benedicto I, Lehmann G, Ginsberg M, Nolan D, Bareja R, Elemento O, et al. Concerted regulation of retinal pigment epithelium basement membrane and barrier function by angiocrine factors. Nat Commun. 2017;8:15374 pubmed 出版商
  14. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  15. Yanagida K, Liu C, Faraco G, Galvani S, Smith H, Burg N, et al. Size-selective opening of the blood-brain barrier by targeting endothelial sphingosine 1-phosphate receptor 1. Proc Natl Acad Sci U S A. 2017;114:4531-4536 pubmed 出版商
  16. Li Y, Urban A, Midura D, Simon H, Wang Q. Proteomic characterization of epicardial-myocardial signaling reveals novel regulatory networks including a role for NF-κB in epicardial EMT. PLoS ONE. 2017;12:e0174563 pubmed 出版商
  17. Samuel W, Jaworski C, Postnikova O, Kutty R, Duncan T, Tan L, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60-89 pubmed
  18. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  19. Jin Z, Liang F, Yang J, Mei W. hnRNP I regulates neonatal immune adaptation and prevents colitis and colorectal cancer. PLoS Genet. 2017;13:e1006672 pubmed 出版商
  20. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  21. Geng Z, Walsh P, Truong V, Hill C, Ebeling M, Kapphahn R, et al. Generation of retinal pigmented epithelium from iPSCs derived from the conjunctiva of donors with and without age related macular degeneration. PLoS ONE. 2017;12:e0173575 pubmed 出版商
  22. Miyashita H, Niwano H, Yoshida S, Hatou S, Inagaki E, Tsubota K, et al. Long-term homeostasis and wound healing in an in vitro epithelial stem cell niche model. Sci Rep. 2017;7:43557 pubmed 出版商
  23. Tung K, Harakal J, Qiao H, Rival C, Li J, Paul A, et al. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest. 2017;127:1046-1060 pubmed 出版商
  24. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  25. Qi X, Pay S, Yan Y, Thomas J, Lewin A, Chang L, et al. Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration. Mol Ther. 2017;25:917-927 pubmed 出版商
  26. Zhang W, Li H, Ogando D, Li S, Feng M, Price F, et al. Glutaminolysis is Essential for Energy Production and Ion Transport in Human Corneal Endothelium. EBioMedicine. 2017;16:292-301 pubmed 出版商
  27. Varadi J, Harazin A, Fenyvesi F, Réti Nagy K, Gogolak P, Vámosi G, et al. Alpha-Melanocyte Stimulating Hormone Protects against Cytokine-Induced Barrier Damage in Caco-2 Intestinal Epithelial Monolayers. PLoS ONE. 2017;12:e0170537 pubmed 出版商
  28. Zhang J, Chen S, Cai J, Hou Z, Wang X, Kachelmeier A, et al. Culture media-based selection of endothelial cells, pericytes, and perivascular-resident macrophage-like melanocytes from the young mouse vestibular system. Hear Res. 2017;345:10-22 pubmed 出版商
  29. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  30. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  31. Priya R, Liang X, Teo J, Duszyc K, Yap A, Gomez G. ROCK1 but not ROCK2 contributes to RhoA signaling and NMIIA-mediated contractility at the epithelial zonula adherens. Mol Biol Cell. 2017;28:12-20 pubmed 出版商
  32. Bordeleau F, Mason B, Lollis E, Mazzola M, Zanotelli M, Somasegar S, et al. Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A. 2017;114:492-497 pubmed 出版商
  33. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  34. Foerster P, Daclin M, Asm S, Faucourt M, Boletta A, Genovesio A, et al. mTORC1 signaling and primary cilia are required for brain ventricle morphogenesis. Development. 2017;144:201-210 pubmed 出版商
  35. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  36. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  37. He Z, Forest F, Bernard A, Gauthier A, Montard R, Peoc h M, et al. Cutting and Decellularization of Multiple Corneal Stromal Lamellae for the Bioengineering of Endothelial Grafts. Invest Ophthalmol Vis Sci. 2016;57:6639-6651 pubmed 出版商
  38. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  39. Martínez Rendón J, Sánchez Guzmán E, Rueda A, González J, Gulias Cañizo R, Aquino Jarquin G, et al. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium. J Cell Physiol. 2017;232:1794-1807 pubmed 出版商
  40. Chehaibi K, le Maire L, Bradoni S, Escolà J, Blanco Vaca F, Slimane M. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res. 2017;182:27-48 pubmed 出版商
  41. Gao Y, Mruk D, Chen H, Lui W, Lee W, Cheng C. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin ?2 in the basement membrane. FASEB J. 2017;31:584-597 pubmed 出版商
  42. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  43. Cain S, Mularczyk E, Singh M, Massam Wu T, Kielty C. ADAMTS-10 and -6 differentially regulate cell-cell junctions and focal adhesions. Sci Rep. 2016;6:35956 pubmed 出版商
  44. Keppner A, Malsure S, Nobile A, Auberson M, Bonny O, Hummler E. Altered Prostasin (CAP1/Prss8) Expression Favors Inflammation and Tissue Remodeling in DSS-induced Colitis. Inflamm Bowel Dis. 2016;22:2824-2839 pubmed
  45. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  46. Faralla C, Rizzuto G, Lowe D, Kim B, Cooke C, Shiow L, et al. InlP, a New Virulence Factor with Strong Placental Tropism. Infect Immun. 2016;84:3584-3596 pubmed
  47. Fujii N, Matsuo Y, Matsunaga T, Endo S, Sakai H, Yamaguchi M, et al. Hypotonic Stress-induced Down-regulation of Claudin-1 and -2 Mediated by Dephosphorylation and Clathrin-dependent Endocytosis in Renal Tubular Epithelial Cells. J Biol Chem. 2016;291:24787-24799 pubmed
  48. Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci. 2016;17:64 pubmed
  49. Eccles R, Czajkowski M, Barth C, Müller P, McShane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun. 2016;7:12963 pubmed 出版商
  50. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  51. Mulay A, Akram K, Williams D, Armes H, Russell C, Hood D, et al. An in vitro model of murine middle ear epithelium. Dis Model Mech. 2016;9:1405-1417 pubmed
  52. Xiong J, Zhou M, Wang Y, Chen L, Xu W, Wang Y, et al. Protein Kinase D2 Protects against Acute Colitis Induced by Dextran Sulfate Sodium in Mice. Sci Rep. 2016;6:34079 pubmed 出版商
  53. Feng X, Zhang D, Wang Y, Fan R, Hong F, Zhang Y, et al. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent. Acta Physiol (Oxf). 2017;220:113-123 pubmed 出版商
  54. Priya R, Wee K, Budnar S, Gomez G, Yap A, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle. 2016;15:3033-3041 pubmed
  55. Shang V, Kendall D, Roberts R. ?9-Tetrahydrocannabinol reverses TNF?-induced increase in airway epithelial cell permeability through CB2 receptors. Biochem Pharmacol. 2016;120:63-71 pubmed 出版商
  56. Qian Y, Li C, Jiang A, Ge S, Gu P, Fan X, et al. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem. 2016;291:22977-22987 pubmed
  57. Ahn C, Shin D, Lee D, Kang S, Seok J, Kang H, et al. Expression of claudins, occludin, junction adhesion molecule A and zona occludens 1 in canine organs. Mol Med Rep. 2016;14:3697-703 pubmed 出版商
  58. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  59. de Sousa Rodrigues M, Bekhbat M, Houser M, Chang J, Walker D, Jones D, et al. Chronic psychological stress and high-fat high-fructose diet disrupt metabolic and inflammatory gene networks in the brain, liver, and gut and promote behavioral deficits in mice. Brain Behav Immun. 2017;59:158-172 pubmed 出版商
  60. Wegwitz F, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, et al. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget. 2016;7:63730-63746 pubmed 出版商
  61. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  62. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  63. Wardill H, Bowen J, Van Sebille Y, Secombe K, Coller J, Ball I, et al. TLR4-Dependent Claudin-1 Internalization and Secretagogue-Mediated Chloride Secretion Regulate Irinotecan-Induced Diarrhea. Mol Cancer Ther. 2016;15:2767-2779 pubmed
  64. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  65. Wilkinson E, Sidaway J, Cross M. Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability. Biol Open. 2016;5:1362-1370 pubmed 出版商
  66. Chen Z, Wang Q, Asmani M, Li Y, Liu C, Li C, et al. Lung Microtissue Array to Screen the Fibrogenic Potential of Carbon Nanotubes. Sci Rep. 2016;6:31304 pubmed 出版商
  67. Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, Bézirard V, et al. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond). 2016;13:48 pubmed 出版商
  68. Bernabé Rubio M, Andrés G, Casares Arias J, Fernández Barrera J, Rangel L, Reglero Real N, et al. Novel role for the midbody in primary ciliogenesis by polarized epithelial cells. J Cell Biol. 2016;214:259-73 pubmed 出版商
  69. Thomsen M, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem. 2017;140:741-754 pubmed 出版商
  70. Li N, Mruk D, Chen H, Wong C, Lee W, Cheng C. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43. Sci Rep. 2016;6:29667 pubmed 出版商
  71. Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis. 2016;95:82-92 pubmed 出版商
  72. Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, et al. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE. 2016;11:e0158997 pubmed 出版商
  73. Iwasaki Y, Sugita S, Mandai M, Yonemura S, Onishi A, Ito S, et al. Differentiation/Purification Protocol for Retinal Pigment Epithelium from Mouse Induced Pluripotent Stem Cells as a Research Tool. PLoS ONE. 2016;11:e0158282 pubmed 出版商
  74. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  75. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  76. Seo H, Jeong H, Joo H, Choi S, Park C, Kim J, et al. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system. Sci Rep. 2016;6:28832 pubmed 出版商
  77. Velandia Romero M, Calderón Peláez M, Castellanos J. In Vitro Infection with Dengue Virus Induces Changes in the Structure and Function of the Mouse Brain Endothelium. PLoS ONE. 2016;11:e0157786 pubmed 出版商
  78. Campos Y, Qiu X, Gomero E, Wakefield R, Horner L, Brutkowski W, et al. Alix-mediated assembly of the actomyosin-tight junction polarity complex preserves epithelial polarity and epithelial barrier. Nat Commun. 2016;7:11876 pubmed 出版商
  79. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  80. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  81. Fernandez Godino R, Garland D, Pierce E. Isolation, culture and characterization of primary mouse RPE cells. Nat Protoc. 2016;11:1206-18 pubmed 出版商
  82. Wang E, Geng A, Maniar A, Mui B, Gong X. Connexin 50 Regulates Surface Ball-and-Socket Structures and Fiber Cell Organization. Invest Ophthalmol Vis Sci. 2016;57:3039-46 pubmed 出版商
  83. Wang X, Fan F, Cao Q. Modified Pulsatilla decoction attenuates oxazolone-induced colitis in mice through suppression of inflammation and epithelial barrier disruption. Mol Med Rep. 2016;14:1173-9 pubmed 出版商
  84. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  85. Bai H, Zhu Q, Surcel A, Luo T, Ren Y, Guan B, et al. Yes-associated protein impacts adherens junction assembly through regulating actin cytoskeleton organization. Am J Physiol Gastrointest Liver Physiol. 2016;311:G396-411 pubmed 出版商
  86. Lehner C, Gehwolf R, Ek J, Korntner S, Bauer H, Bauer H, et al. The blood-tendon barrier: identification and characterisation of a novel tissue barrier in tendon blood vessels. Eur Cell Mater. 2016;31:296-311 pubmed
  87. Baker L, BeGora M, Au Yeung F, Feigin M, Rosenberg A, Lowe S, et al. Scribble is required for pregnancy-induced alveologenesis in the adult mammary gland. J Cell Sci. 2016;129:2307-15 pubmed 出版商
  88. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17:50 pubmed 出版商
  89. Ramesh S, Singh A, Cibi D, Hausenloy D, Singh M. In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart. J Vis Exp. 2016;: pubmed 出版商
  90. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  91. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  92. Ehlen L, Tödtmann J, Specht S, Kallies R, Papies J, Muller M, et al. Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses. Virol J. 2016;13:74 pubmed 出版商
  93. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  94. Elfers K, Marr I, Wilkens M, Breves G, Langeheine M, Brehm R, et al. Expression of Tight Junction Proteins and Cadherin 17 in the Small Intestine of Young Goats Offered a Reduced N and/or Ca Diet. PLoS ONE. 2016;11:e0154311 pubmed 出版商
  95. Hintermann E, Bayer M, Ehser J, Aurrand Lions M, Pfeilschifter J, Imhof B, et al. Murine junctional adhesion molecules JAM-B and JAM-C mediate endothelial and stellate cell interactions during hepatic fibrosis. Cell Adh Migr. 2016;10:419-33 pubmed 出版商
  96. Iwai Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed 出版商
  97. Hosoya M, Fujioka M, Kobayashi R, Okano H, Ogawa K. Overlapping expression of anion exchangers in the cochlea of a non-human primate suggests functional compensation. Neurosci Res. 2016;110:1-10 pubmed 出版商
  98. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  99. Kim D, Glendining K, Grattan D, Jasoni C. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology. 2016;157:2229-42 pubmed 出版商
  100. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  101. Klinkert K, Rocancourt M, Houdusse A, Echard A. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun. 2016;7:11166 pubmed 出版商
  102. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  103. Liu W, Cai H, Lin M, Zhu L, Gao L, Zhong R, et al. MicroRNA-107 prevents amyloid-beta induced blood-brain barrier disruption and endothelial cell dysfunction by targeting Endophilin-1. Exp Cell Res. 2016;343:248-257 pubmed 出版商
  104. Wardill H, Gibson R, Van Sebille Y, Secombe K, Logan R, Bowen J. A novel in vitro platform for the study of SN38-induced mucosal damage and the development of Toll-like receptor 4-targeted therapeutic options. Exp Biol Med (Maywood). 2016;241:1386-94 pubmed 出版商
  105. Trembley M, Velasquez L, Small E. Epicardial Outgrowth Culture Assay and Ex Vivo Assessment of Epicardial-derived Cell Migration. J Vis Exp. 2016;: pubmed 出版商
  106. Falcão V, Maschio D, de Fontes C, Oliveira R, Santos Silva J, Almeida A, et al. Reduced insulin secretion function is associated with pancreatic islet redistribution of cell adhesion molecules (CAMS) in diabetic mice after prolonged high-fat diet. Histochem Cell Biol. 2016;146:13-31 pubmed 出版商
  107. Yang C, Demars K, Hawkins K, Candelario Jalil E. Adropin reduces paracellular permeability of rat brain endothelial cells exposed to ischemia-like conditions. Peptides. 2016;81:29-37 pubmed 出版商
  108. Nitzan E, Avraham O, Kahane N, Ofek S, Kumar D, Kalcheim C. Dynamics of BMP and Hes1/Hairy1 signaling in the dorsal neural tube underlies the transition from neural crest to definitive roof plate. BMC Biol. 2016;14:23 pubmed 出版商
  109. Wu W, Zeng Y, Li Z, Li Q, Xu H, Yin Z. Features specific to retinal pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures - a new donor for cell therapy. Oncotarget. 2016;7:22819-33 pubmed 出版商
  110. Domínguez Calderón A, Ávila Flores A, Ponce A, López Bayghen E, Calderón Salinas J, Luis Reyes J, et al. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Mol Biol Cell. 2016;27:1581-95 pubmed 出版商
  111. Viringipurampeer I, Metcalfe A, Bashar A, Sivak O, Yanai A, Mohammadi Z, et al. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum Mol Genet. 2016;25:1501-16 pubmed 出版商
  112. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  113. Davey C, Mathewson A, Moens C. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet. 2016;12:e1005934 pubmed 出版商
  114. Kuehn A, Kletting S, de Souza Carvalho Wodarz C, Repnik U, Griffiths G, Fischer U, et al. Human alveolar epithelial cells expressing tight junctions to model the air-blood barrier. ALTEX. 2016;33:251-60 pubmed 出版商
  115. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  116. Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez V, et al. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. Endocrinology. 2016;157:2416-31 pubmed 出版商
  117. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  118. May Simera H. Evaluation of Planar-Cell-Polarity Phenotypes in Ciliopathy Mouse Mutant Cochlea. J Vis Exp. 2016;:53559 pubmed 出版商
  119. Shukla P, Chaudhry K, Mir H, Gangwar R, Yadav N, Manda B, et al. Chronic ethanol feeding promotes azoxymethane and dextran sulfate sodium-induced colonic tumorigenesis potentially by enhancing mucosal inflammation. BMC Cancer. 2016;16:189 pubmed 出版商
  120. Stabler C, Caires L, Mondrinos M, Marcinkiewicz C, Lazarovici P, Wolfson M, et al. Enhanced Re-Endothelialization of Decellularized Rat Lungs. Tissue Eng Part C Methods. 2016;22:439-50 pubmed 出版商
  121. Gebala V, Collins R, Geudens I, Phng L, Gerhardt H. Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo. Nat Cell Biol. 2016;18:443-50 pubmed 出版商
  122. Hosoya M, Fujioka M, Ogawa K, Okano H. Distinct Expression Patterns Of Causative Genes Responsible For Hereditary Progressive Hearing Loss In Non-Human Primate Cochlea. Sci Rep. 2016;6:22250 pubmed 出版商
  123. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  124. McCabe M, Tarulli G, Laven Law G, Matthiesson K, Meachem S, McLachlan R, et al. Gonadotropin suppression in men leads to a reduction in claudin-11 at the Sertoli cell tight junction. Hum Reprod. 2016;31:875-86 pubmed 出版商
  125. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  126. Fang Z, He Q, Li Q, Chen X, Baral S, Jin H, et al. MicroRNA-150 regulates blood-brain barrier permeability via Tie-2 after permanent middle cerebral artery occlusion in rats. FASEB J. 2016;30:2097-107 pubmed 出版商
  127. Ibrahim A, Mander S, Hussein K, Elsherbiny N, Smith S, Al Shabrawey M, et al. Hyperhomocysteinemia disrupts retinal pigment epithelial structure and function with features of age-related macular degeneration. Oncotarget. 2016;7:8532-45 pubmed 出版商
  128. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  129. Cai J, Liu W, Hao J, Chen M, Li G. Increased expression of dermatopontin and its implications for testicular dysfunction in mice. Mol Med Rep. 2016;13:2431-8 pubmed 出版商
  130. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  131. Li H, Ruberu K, Karl T, Garner B. Cerebral Apolipoprotein-D Is Hypoglycosylated Compared to Peripheral Tissues and Is Variably Expressed in Mouse and Human Brain Regions. PLoS ONE. 2016;11:e0148238 pubmed 出版商
  132. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  133. Shang V, O Sullivan S, Kendall D, Roberts R. The endogenous cannabinoid anandamide increases human airway epithelial cell permeability through an arachidonic acid metabolite. Pharmacol Res. 2016;105:152-63 pubmed 出版商
  134. Salomon J, Spahn S, Wang X, Füllekrug J, Bertrand C, Mall M. Generation and functional characterization of epithelial cells with stable expression of SLC26A9 Cl- channels. Am J Physiol Lung Cell Mol Physiol. 2016;310:L593-602 pubmed 出版商
  135. Loebel D, Plageman T, Tang T, Jones V, Muccioli M, Tam P. Thyroid bud morphogenesis requires CDC42- and SHROOM3-dependent apical constriction. Biol Open. 2016;5:130-9 pubmed 出版商
  136. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  137. Liu Y, Su X, Hao J, Chen M, Liu W, Liao X, et al. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice. Int J Mol Sci. 2016;17: pubmed 出版商
  138. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  139. Egan C, Sodhi C, Good M, Lin J, Jia H, Yamaguchi Y, et al. Toll-like receptor 4-mediated lymphocyte influx induces neonatal necrotizing enterocolitis. J Clin Invest. 2016;126:495-508 pubmed
  140. Gonçalves S, Rodrigues I, Padrão J, Silva J, Sencadas V, Lanceros Méndez S, et al. Acetylated bacterial cellulose coated with urinary bladder matrix as a substrate for retinal pigment epithelium. Colloids Surf B Biointerfaces. 2016;139:1-9 pubmed 出版商
  141. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  142. Kim H, Cronin M, Ahrens K, Papastavros V, Santoro D, Marsella R. A comparative study of epidermal tight junction proteins in a dog model of atopic dermatitis. Vet Dermatol. 2016;27:40-e11 pubmed 出版商
  143. Heuser S, Hufbauer M, Marx B, Tok A, Majewski S, Pfister H, et al. The levels of epithelial anchor proteins β-catenin and zona occludens-1 are altered by E7 of human papillomaviruses 5 and 8. J Gen Virol. 2016;97:463-72 pubmed 出版商
  144. Yoshie S, Imaizumi M, Nakamura R, Otsuki K, Ikeda M, Nomoto Y, et al. Generation of airway epithelial cells with native characteristics from mouse induced pluripotent stem cells. Cell Tissue Res. 2016;364:319-30 pubmed 出版商
  145. Stebbins M, Wilson H, Canfield S, Qian T, Palecek S, Shusta E. Differentiation and characterization of human pluripotent stem cell-derived brain microvascular endothelial cells. Methods. 2016;101:93-102 pubmed 出版商
  146. Slaats G, Isabella C, Kroes H, Dempsey J, Gremmels H, Monroe G, et al. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J Med Genet. 2016;53:62-72 pubmed 出版商
  147. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  148. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  149. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  150. Harney A, Arwert E, Entenberg D, Wang Y, Guo P, Qian B, et al. Real-Time Imaging Reveals Local, Transient Vascular Permeability, and Tumor Cell Intravasation Stimulated by TIE2hi Macrophage-Derived VEGFA. Cancer Discov. 2015;5:932-43 pubmed 出版商
  151. Kasper J, Hermanns M, Unger R, Kirkpatrick C. A responsive human triple-culture model of the air-blood barrier: incorporation of different macrophage phenotypes. J Tissue Eng Regen Med. 2017;11:1285-1297 pubmed 出版商
  152. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  153. Islam S, Mokhtari R, Noman A, Uddin M, Rahman M, Azadi M, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial-to-mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55:537-51 pubmed 出版商
  154. Chaves A, Vergara Alert J, Busquets N, Valle R, Rivas R, Ramis A, et al. Neuroinvasion of the highly pathogenic influenza virus H7N1 is caused by disruption of the blood brain barrier in an avian model. PLoS ONE. 2014;9:e115138 pubmed 出版商
  155. Scotti L, Abramovich D, Pascuali N, Durand L, Irusta G, de Zúñiga I, et al. Inhibition of angiopoietin-1 (ANGPT1) affects vascular integrity in ovarian hyperstimulation syndrome (OHSS). Reprod Fertil Dev. 2016;28:690-9 pubmed 出版商
  156. Giles R, Ajzenberg H, Jackson P. 3D spheroid model of mIMCD3 cells for studying ciliopathies and renal epithelial disorders. Nat Protoc. 2014;9:2725-31 pubmed 出版商
  157. Boggs J, Homchaudhuri L, Ranagaraj G, Liu Y, Smith G, Harauz G. Interaction of myelin basic protein with cytoskeletal and signaling proteins in cultured primary oligodendrocytes and N19 oligodendroglial cells. BMC Res Notes. 2014;7:387 pubmed 出版商
  158. Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed 出版商
  159. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres A. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56:255-75 pubmed 出版商
  160. Tucker B, Mullins R, Streb L, Anfinson K, Eyestone M, Kaalberg E, et al. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. elife. 2013;2:e00824 pubmed 出版商
  161. Ito S, Satoh J, Matsubara T, Shah Y, Ahn S, Anderson C, et al. Cholestasis induces reversible accumulation of periplakin in mouse liver. BMC Gastroenterol. 2013;13:116 pubmed 出版商
  162. Luijten M, Basten S, Claessens T, Vernooij M, Scott C, Janssen R, et al. Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 2013;22:4383-97 pubmed 出版商
  163. Rhett J, Jourdan J, Gourdie R. Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Mol Biol Cell. 2011;22:1516-28 pubmed 出版商
  164. Otani T, Ichii T, Aono S, Takeichi M. Cdc42 GEF Tuba regulates the junctional configuration of simple epithelial cells. J Cell Biol. 2006;175:135-46 pubmed