这是一篇来自已证抗体库的有关小鼠 肿瘤坏死因子 (Tnf) 的综述,是根据340篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合肿瘤坏死因子 抗体。
肿瘤坏死因子 同义词: DIF; TNF-a; TNF-alpha; TNFSF2; TNFalpha; Tnfa; Tnfsf1a; Tnlg1f

BioLegend
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2022) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Oncoimmunology (2022) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:40; 图 5d
BioLegend肿瘤坏死因子抗体(BioLegend, 506323)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 5d). J Immunother Cancer (2022) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 1d
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1d). J Immunother Cancer (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5b). Commun Biol (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4a, 4b
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4a, 4b). Mediators Inflamm (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:200; 图 s1i
BioLegend肿瘤坏死因子抗体(Biolegend, 506328)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s1i). Nat Commun (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3b
BioLegend肿瘤坏死因子抗体(Biolegend, 506328)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). J Immunother Cancer (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(BioLegend, 506333)被用于被用于流式细胞仪在小鼠样本上. Int J Mol Sci (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 免疫组化; 小鼠; 5 ug/ml
BioLegend肿瘤坏死因子抗体(BioLegend, 506301)被用于被用于免疫组化在小鼠样本上浓度为5 ug/ml. elife (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:200; 图 3j
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3j). Nat Commun (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5f, 5g
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5f, 5g). Transl Oncol (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend肿瘤坏死因子抗体(Biolegend, 506328)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, 506324)被用于被用于流式细胞仪在小鼠样本上. Cell Rep Med (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:400; 图 3d
BioLegend肿瘤坏死因子抗体(BioLegend, 506341)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 3d). Proc Natl Acad Sci U S A (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 3e
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3e). Nat Commun (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:200; 图 s2o
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s2o). Nat Immunol (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 s6a
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6a). Science (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4f, 4i
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4f, 4i). Antioxidants (Basel) (2020) ncbi
大鼠 单克隆(6B8)
  • 酶联免疫吸附测定; 小鼠; 图 2e, 3g
BioLegend肿瘤坏死因子抗体(BioLegend, 6B8)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2e, 3g). Front Neurol (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 酶联免疫吸附测定; 小鼠; 图 2e, 3g
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 2e, 3g). Front Neurol (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Virol (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend肿瘤坏死因子抗体(eBioscience, 506308)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Rep (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend肿瘤坏死因子抗体(BioLegend, 506306)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Rep (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4
  • 免疫组化; 小鼠; 图 5
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4) 和 被用于免疫组化在小鼠样本上 (图 5). Sci Adv (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend肿瘤坏死因子抗体(BioLegend, 506328)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Immunity (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e, 3k, 5h
BioLegend肿瘤坏死因子抗体(Biolegend, 506313)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3k, 5h). Oncoimmunology (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
BioLegend肿瘤坏死因子抗体(Biolegend, 506321)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3d
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Nature (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s3). J Clin Invest (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Nature (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2e
BioLegend肿瘤坏死因子抗体(Biolegend, 506308)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Cell Rep (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Med (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s1d
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Nat Commun (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 ex1e
BioLegend肿瘤坏死因子抗体(Biolegend, 506328)被用于被用于流式细胞仪在小鼠样本上 (图 ex1e). Nature (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
BioLegend肿瘤坏死因子抗体(BioLegend, 506301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). Dev Cell (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6b
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6b). J Immunol (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2c, 2g
BioLegend肿瘤坏死因子抗体(Biolegend, 506308)被用于被用于流式细胞仪在小鼠样本上 (图 2c, 2g). Cell Rep (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s7
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s7). J Clin Invest (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:400; 图 4a
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4a). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 e10a
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 e10a). Nature (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3k
BioLegend肿瘤坏死因子抗体(Biolegend, 506304)被用于被用于流式细胞仪在小鼠样本上 (图 3k). Cancer Res (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 7c
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Clin Invest (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5f
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Cell Immunol (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5b
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Immunol (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e
BioLegend肿瘤坏死因子抗体(bioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3a). JCI Insight (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s7g
BioLegend肿瘤坏死因子抗体(Biolegend, 506322)被用于被用于流式细胞仪在小鼠样本上 (图 s7g). Gastroenterology (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, 506305)被用于被用于流式细胞仪在小鼠样本上. Cell Death Dis (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Science (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4d
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Exp Med (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Med (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 7c
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 7c). Front Immunol (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3f
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT2)被用于被用于流式细胞仪在小鼠样本上 (图 3f). J Exp Med (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5c
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Nat Commun (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3e
BioLegend肿瘤坏死因子抗体(BioLegend, 506322)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Nature (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s6
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Brain (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 S2b
BioLegend肿瘤坏死因子抗体(BioLegend, 506303)被用于被用于流式细胞仪在小鼠样本上 (图 S2b). J Exp Clin Cancer Res (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:80; 图 7a
BioLegend肿瘤坏死因子抗体(BioLegend, MP-6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:80 (图 7a). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 4
BioLegend肿瘤坏死因子抗体(Biolegend, 506333)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4). Nat Commun (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4o
BioLegend肿瘤坏死因子抗体(Biolegend, 506306l)被用于被用于流式细胞仪在小鼠样本上 (图 4o). J Virol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6a
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Sci Rep (2016) ncbi
仓鼠 单克隆(TN3-19.12)
  • 免疫印迹; 小鼠; 图 5
BioLegend肿瘤坏死因子抗体(Biolegend, 506101)被用于被用于免疫印迹在小鼠样本上 (图 5). JCI Insight (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3
BioLegend肿瘤坏死因子抗体(Biolegend, 506308)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Clin Invest (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2f
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Gastroenterology (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5). Aging (Albany NY) (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 酶联免疫吸附测定; 小鼠; 图 5
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(6B8)
  • 酶联免疫吸附测定; 小鼠; 图 5
BioLegend肿瘤坏死因子抗体(Biolegend, 6B8)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Virol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 8c
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 8c). J Leukoc Biol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Microbes Infect (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:50; 图 3
BioLegend肿瘤坏死因子抗体(Biolegend, 506308)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 3). Immun Ageing (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 免疫细胞化学; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于免疫细胞化学在小鼠样本上. Diabetes (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2014) ncbi
大鼠 单克隆(MP6-XT22)
BioLegend肿瘤坏死因子抗体(BioLegend, MP6-XT22)被用于. Infect Immun (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 抑制或激活实验; 小鼠; 1 ug/ml
BioLegend肿瘤坏死因子抗体(Biolegend, MP6-XT22)被用于被用于抑制或激活实验在小鼠样本上浓度为1 ug/ml. Hepatology (2013) ncbi
艾博抗(上海)贸易有限公司
大鼠 单克隆(MP6-XT22)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, MP6-XT22)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Biology (Basel) (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6e
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6e). Front Oncol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上 (图 7c). Signal Transduct Target Ther (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1b
  • 免疫细胞化学; 小鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3c). Nutrients (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 5i
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 5i). Sci Adv (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 图 5b
  • 免疫印迹; 大鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化在大鼠样本上 (图 5b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1b). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 13h
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab9739)被用于被用于免疫组化在小鼠样本上 (图 13h). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 11a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11a). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 8c). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). BMC Musculoskelet Disord (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nanoscale Res Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上. Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在人类样本上 (图 1d). Exp Ther Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, Ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 5a). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:100; 图 1f, 8b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:100 (图 1f, 8b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Front Immunol (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 5d
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 5d). Front Pharmacol (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹基因敲除验证; 小鼠; 图 s7b
  • 免疫印迹; 小鼠; 图 1a, 1c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s7b) 和 被用于免疫印迹在小鼠样本上 (图 1a, 1c). Cell Discov (2020) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 e5e
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab183218)被用于被用于免疫印迹在小鼠样本上 (图 e5e). Nature (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a). elife (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2a). Stem Cells Dev (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8a
  • 免疫印迹; 小鼠; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 8c). Neurochem Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab9739)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Oncotarget (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). BMC Biotechnol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2a-c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a-c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Mol Cell Cardiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Exp Cell Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:250; 图 6c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, AB6671)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 6c). Ann Rheum Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Neuroinflammation (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, AB6671)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Parasitol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e). Infect Immun (2017) ncbi
  • 免疫组化; 小鼠; 1 ug/ml; 图 7
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab34674)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 7). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 5). J Neuroinflammation (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, 52B83)被用于被用于免疫组化在小鼠样本上 (图 3c). Diabetes (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 牛; 1:100; 图 2c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫组化在牛样本上浓度为1:100 (图 2c). Eur Cell Mater (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, AB6671)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Microbes Infect (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:150; 图 3
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(abcam, ab6671)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 3a). Acta Histochem (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 3). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2d
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在小鼠样本上 (图 2d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 1:400; 图 4
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫印迹在pigs 样本上浓度为1:400 (图 4). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 10 ug/ml; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为10 ug/ml (图 5). Lab Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab9739)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(abcam, ab66579)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3b
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab34674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3b). J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab6671)被用于被用于免疫组化在人类样本上. Support Care Cancer (2016) ncbi
小鼠 单克隆(52B83)
  • 流式细胞仪; 人类; 图 5a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于流式细胞仪在人类样本上 (图 5a). Oncogene (2016) ncbi
小鼠 单克隆(52B83)
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于. Gene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab66579)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biol Trace Elem Res (2016) ncbi
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab34674)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2015) ncbi
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab-34674)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Lipids Health Dis (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Exp Ther Med (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-自由浮动切片; 人类; 1:10
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab179)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:10. J Neuropathol Exp Neurol (2015) ncbi
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab34674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Biol Reprod (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 1:150; 图 3a
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化在大鼠样本上浓度为1:150 (图 3a). J Dent Res (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 人类; 1:20
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化在人类样本上浓度为1:20. Brain Pathol (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 人类; 1:100; 图 5c
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5c). Int Forum Allergy Rhinol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 免疫组化-冰冻切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab34719)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Biomaterials (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫细胞化学; 小鼠; 2 ug/ml
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫细胞化学在小鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Food Chem Toxicol (2013) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫细胞化学在大鼠样本上. Stroke (2013) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司肿瘤坏死因子抗体(Abcam, ab1793)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicology (2013) ncbi
赛默飞世尔
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 7d
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 11-7321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 7d). Nat Commun (2022) ncbi
仓鼠 单克隆(TN3-19.12)
  • 流式细胞仪; 小鼠; 图 8l
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7423-41)被用于被用于流式细胞仪在小鼠样本上 (图 8l). J Immunother Cancer (2022) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cell Death Dis (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 17-7321-81)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Theranostics (2021) ncbi
domestic rabbit 多克隆(R4-6A2)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(ThermoFisher, R4-6A2)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). Arthritis Res Ther (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 s7a
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 25-7321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s7a). Science (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e, 3f
赛默飞世尔肿瘤坏死因子抗体(Thermo Fisher, 12-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 3e, 3f). Diabetes (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7
赛默飞世尔肿瘤坏死因子抗体(Fisher, PIPA546945)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Pharm Anal (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cell (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:40; 图 5c
赛默飞世尔肿瘤坏死因子抗体(Thermofisher, PA5-46945)被用于被用于免疫组化在小鼠样本上浓度为1:40 (图 5c). Front Neurosci (2020) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 1.5 ug/ml; 图 1b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 1F3F3D4)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1.5 ug/ml (图 1b). Nature (2019) ncbi
大鼠 单克隆(MP6-XT3, MP6-XT22)
  • 酶联免疫吸附测定; 小鼠; 1 ug/ml; 图 1b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, XT3/XT22)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1 ug/ml (图 1b). Nature (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔肿瘤坏死因子抗体(Ebioscience, 48-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Oncoimmunology (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7321-41)被用于被用于流式细胞仪在小鼠样本上 (图 5f). Cell (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 11-7321-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 11-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Cell (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s2b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-TX22)被用于被用于流式细胞仪在小鼠样本上 (图 s2b). Cancer Res (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 免疫组化; 小鼠; 图 s5a
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7321-81)被用于被用于免疫组化在小鼠样本上 (图 s5a). FASEB J (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔肿瘤坏死因子抗体(eBiosciences, 17-7321-81)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2017) ncbi
大鼠 单克隆(1F3F3D4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3j
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 1F3F3D4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3j). Nat Commun (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3e
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 17-7321-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3e). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(XT22)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MPG-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Immunology (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子抗体(Thermo Scientific, PA5-19810)被用于被用于免疫印迹在小鼠样本上 (图 2). BMC Complement Altern Med (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 17-7321-81)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 1:1000; 图 s5a
赛默飞世尔肿瘤坏死因子抗体(eBiosciences, 14-7325-85)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:1000 (图 s5a). Nat Commun (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MPG-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1f). J Clin Invest (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 人类; 图 6d
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在人类样本上 (图 6d). Oncoimmunology (2016) ncbi
domestic rabbit 多克隆(R4-6A2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7r
赛默飞世尔肿瘤坏死因子抗体(Pierce, R4-6A2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7r). Sci Rep (2016) ncbi
domestic rabbit 多克隆(R4-6A2)
  • 抑制或激活实验; 小鼠; 10,000 ug/ml; 图 4
赛默飞世尔肿瘤坏死因子抗体(eBioscience, TN3-19.12)被用于被用于抑制或激活实验在小鼠样本上浓度为10,000 ug/ml (图 4). J Leukoc Biol (2016) ncbi
大鼠 单克隆(MP6-XT3)
  • 抑制或激活实验; 小鼠; 图 7
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 167322-85)被用于被用于抑制或激活实验在小鼠样本上 (图 7). PLoS Negl Trop Dis (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 12-7321-41)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5). Theranostics (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3a
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 127321)被用于被用于流式细胞仪在小鼠样本上 (图 s3a). PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔肿瘤坏死因子抗体(eBioscience, #12-7321-81)被用于被用于流式细胞仪在小鼠样本上 (图 7). Front Immunol (2015) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 1:500; 图 5e
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 14-7325-85)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:500 (图 5e). J Neuroinflammation (2015) ncbi
大鼠 单克隆(MP6-XT3, MP6-XT22)
  • 酶联免疫吸附测定; 小鼠; 1:500; 图 5e
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 13-7326-85)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:500 (图 5e). J Neuroinflammation (2015) ncbi
大鼠 单克隆(XT22)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MPX-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 1F3F3D4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT3, MP6-XT22)
  • 酶联免疫吸附测定; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, XT3/XT22)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子抗体(eBioscience, Mp6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Clin Invest (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在人类样本上 (图 3). Cell Res (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-X722)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS Pathog (2015) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 图 4
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 4-7325-85)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Infect Immun (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience or BioLegend, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Cell Mol Immunol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
仓鼠 单克隆(TN3-19.12)
  • 抑制或激活实验; 仓鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 11-7423)被用于被用于抑制或激活实验在仓鼠样本上. Biosens Bioelectron (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Nat Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔肿瘤坏死因子抗体(ebioscience, 14-7321-81)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Clin Cancer Res (2015) ncbi
大鼠 单克隆(XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(Invitrogen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔肿瘤坏死因子抗体(ebioscience, clone MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4). Vaccine (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Invest Dermatol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2013) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(ebiosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Immunity (2012) ncbi
domestic rabbit 重组(17H1L4)
  • 免疫印迹; 小鼠
赛默飞世尔肿瘤坏死因子抗体(分子探针, 701135)被用于被用于免疫印迹在小鼠样本上. Mol Vis (2012) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5c). PLoS Pathog (2012) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. PLoS Pathog (2011) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6, 7
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6, 7). J Immunol (2010) ncbi
大鼠 单克隆(1F3F3D4)
  • 酶联免疫吸附测定; 小鼠; 图 7b
赛默飞世尔肿瘤坏死因子抗体(eBioscience, 1F3F3D4)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 7b). J Immunol (2010) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Virol (2009) ncbi
大鼠 单克隆(XT3)
  • 免疫组化; 小鼠; 1:50; 表 1
赛默飞世尔肿瘤坏死因子抗体(Endogen, MM-350)被用于被用于免疫组化在小鼠样本上浓度为1:50 (表 1). J Neuroinflammation (2008) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBiosciences, MP6 XT22)被用于被用于流式细胞仪在小鼠样本上. Gastroenterology (2008) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Virol (2008) ncbi
大鼠 单克隆(XT22)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子抗体(Invitrogen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). Blood (2008) ncbi
仓鼠 单克隆(TN3)
  • 酶联免疫吸附测定; domestic rabbit; 图 1
赛默飞世尔肿瘤坏死因子抗体(Biosource Europe, AMC-3719)被用于被用于酶联免疫吸附测定在domestic rabbit样本上 (图 1). J Ocul Pharmacol Ther (2007) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔肿瘤坏死因子抗体(eBioscience, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2007) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4A
赛默飞世尔肿瘤坏死因子抗体(eBiosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4A). J Leukoc Biol (2007) ncbi
大鼠 单克隆(XT22)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔肿瘤坏死因子抗体(Endogen, XT22)被用于被用于酶联免疫吸附测定在小鼠样本上. Cancer Res (2005) ncbi
大鼠 单克隆(XT3)
  • 酶联免疫吸附测定; 小鼠
赛默飞世尔肿瘤坏死因子抗体(Endogen, XT3)被用于被用于酶联免疫吸附测定在小鼠样本上. Cancer Res (2005) ncbi
大鼠 单克隆(MP6-XT3)
  • 抑制或激活实验; 小鼠
赛默飞世尔肿瘤坏死因子抗体(BioSource, MP6-XT3)被用于被用于抑制或激活实验在小鼠样本上. J Immunol (2004) ncbi
圣克鲁斯生物技术
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 1i
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 1i). Sci Rep (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7). Biomed Res Int (2022) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 人类; 1:150; 图 1b, 4b, 7b
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc- 52746)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:150 (图 1b, 4b, 7b). Cells (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 11a
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 11a). Front Immunol (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:100; 图 5a
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; African green monkey; 1:200; 图 6j
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在African green monkey样本上浓度为1:200 (图 6j). Protein Cell (2021) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 8o
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa, sc52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 8o). PLoS Pathog (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7). Food Sci Nutr (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 3a
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa, sc-52746)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 3a). J Inflamm (Lond) (2020) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:500; 图 6a
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa, sc-52B83)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6a). J Pain Res (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:3000; 图 3c
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, SC-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). Arterioscler Thromb Vasc Biol (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, Inc, sc-52746)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫组化; 大鼠; 1:100; 图 4i
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4i). Pharmacol Res (2018) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术肿瘤坏死因子抗体(Bethyl, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6g
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6g). J Biomed Sci (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
圣克鲁斯生物技术肿瘤坏死因子抗体(santa Cruz, sc-52746)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, sc-52746)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz, Sc52746)被用于被用于免疫印迹在人类样本上 (图 1). J Matern Fetal Neonatal Med (2016) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, SC52746)被用于被用于免疫印迹在大鼠样本上浓度为1:200. J Pineal Res (2015) ncbi
小鼠 单克隆(52B83)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术肿瘤坏死因子抗体(Santa Cruz Biotechnology, sc-52746)被用于被用于免疫印迹在小鼠样本上 (图 6). Respir Res (2014) ncbi
安迪生物R&D
大鼠 单克隆(MP6-XT22)
  • 抑制或激活实验; 小鼠; 图 7c
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, MAB4101)被用于被用于抑制或激活实验在小鼠样本上 (图 7c). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 人类; 3 ug/ml; 图 4a
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在人类样本上浓度为3 ug/ml (图 4a). Oncogene (2019) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 0.5 ug/ml; 图 1f
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在小鼠样本上浓度为0.5 ug/ml (图 1f). Oxid Med Cell Longev (2019) ncbi
domestic goat 多克隆
  • 酶联免疫吸附测定; 小鼠; 图 6
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, BAF410)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Acta Neuropathol Commun (2016) ncbi
domestic goat 多克隆
  • 酶联免疫吸附测定; 小鼠; 图 6
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, AF-410-NA)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 6). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 抑制或激活实验; 小鼠; 图 s2
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, MAB 4101)被用于被用于抑制或激活实验在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 图 5
安迪生物R&D肿瘤坏死因子抗体(R&D Systems, AF-410-NA)被用于被用于抑制或激活实验在小鼠样本上 (图 5). Cell Mol Immunol (2017) ncbi
domestic goat 多克隆
  • 抑制或激活实验; 小鼠; 0.4 ug/ml; 图 7
安迪生物R&D肿瘤坏死因子抗体(R&D systems, AB-410-NA)被用于被用于抑制或激活实验在小鼠样本上浓度为0.4 ug/ml (图 7). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 抑制或激活实验; 小鼠
安迪生物R&D肿瘤坏死因子抗体(R&D systems, MAB4101)被用于被用于抑制或激活实验在小鼠样本上. Glia (2014) ncbi
Bio X Cell
大鼠 单克隆(XT3.11)
  • 流式细胞仪; 小鼠
Bio X Cell肿瘤坏死因子抗体(Bio X Cell, XT3.11)被用于被用于流式细胞仪在小鼠样本上. elife (2020) ncbi
大鼠 单克隆(XT3.11)
  • 流式细胞仪; 小鼠; 1:100
Bio X Cell肿瘤坏死因子抗体(BioXCell, XT3.11)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(XT3.11)
  • 抑制或激活实验; 小鼠; 图 4c
Bio X Cell肿瘤坏死因子抗体(BioXCell, XT3.11)被用于被用于抑制或激活实验在小鼠样本上 (图 4c). elife (2020) ncbi
大鼠 单克隆(XT3.11)
  • 抑制或激活实验; 小鼠; 图 8a
Bio X Cell肿瘤坏死因子抗体(BioXcell, XT3.11)被用于被用于抑制或激活实验在小鼠样本上 (图 8a). elife (2020) ncbi
大鼠 单克隆(XT3.11)
  • 抑制或激活实验; 小鼠; 图 s7
Bio X Cell肿瘤坏死因子抗体(BioXCell, XT3.11)被用于被用于抑制或激活实验在小鼠样本上 (图 s7). J Clin Invest (2016) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 3a
Novus Biologicals肿瘤坏死因子抗体(Novus Biologicals, NBP1-19532)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 3a). Diabetologia (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 图 s1a, s1b
Novus Biologicals肿瘤坏死因子抗体(Novus, NBP1-19532)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 s1a, s1b). Cell Discov (2020) ncbi
domestic rabbit 多克隆(L243)
  • 抑制或激活实验; 小鼠; 图 5b
Novus Biologicals肿瘤坏死因子抗体(Novus Biologicals, NB600-587)被用于被用于抑制或激活实验在小鼠样本上 (图 5b). J Endocrinol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 3
Novus Biologicals肿瘤坏死因子抗体(Novus Biologicals, nbp1-19532)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). Arch Med Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 6
Novus Biologicals肿瘤坏死因子抗体(Novus Biologicals, NBP1-19532)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
伯乐(Bio-Rad)公司
大鼠 单克隆(MP6-XT22)
  • 抑制或激活实验; 小鼠; 图 6f
伯乐(Bio-Rad)公司肿瘤坏死因子抗体(AbD Serotec, MCA1488XZ)被用于被用于抑制或激活实验在小鼠样本上 (图 6f). Mol Cell Biol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell signaling, 3707)被用于被用于免疫印迹在小鼠样本上 (图 s3h). Acta Pharm Sin B (2022) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 11948S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Acta Neuropathol Commun (2022) ncbi
domestic rabbit 单克隆(D2D4)
  • 流式细胞仪; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(CST, D2D4)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 6a). Immunol Cell Biol (2022) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(CST, 11948)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 11948)被用于被用于免疫印迹在小鼠样本上 (图 2a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 11948)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 11948)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 1 1948)被用于被用于免疫印迹在小鼠样本上. Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 3707S)被用于被用于免疫印迹在小鼠样本上 (图 8b). Heliyon (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 3707s)被用于被用于免疫印迹在小鼠样本上. J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 人类; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(CST Biological Reagents Co, 11948)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 3707)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 4g
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 3707)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 3707)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Radiat Res (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 大鼠; 图 1d
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 11948)被用于被用于免疫印迹在大鼠样本上 (图 1d). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 3707)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 小鼠; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 11948S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling Technology, 3707)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 3707)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, 11948S)被用于被用于免疫印迹在大鼠样本上 (图 7). J Diabetes Res (2016) ncbi
domestic rabbit 单克隆(D2D4)
  • 免疫印迹; 大鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司肿瘤坏死因子抗体(Cell Signaling, D2D4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5e). Mol Neurodegener (2014) ncbi
Bioworld
  • 酶联免疫吸附测定; 小鼠; 图 4
Bioworld肿瘤坏死因子抗体(Bioworld, BS1857)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
Fitzgerald Industries
  • 免疫组化-石蜡切片; 小鼠; 图 5
Fitzgerald Industries肿瘤坏死因子抗体(Fitzgerald Industries International, 70R-TR008)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Hepatology (2016) ncbi
BioVision
  • 免疫组化; 小鼠; 图 6
BioVision肿瘤坏死因子抗体(BioVision, 3053R-100)被用于被用于免疫组化在小鼠样本上 (图 6). Int J Mol Med (2016) ncbi
碧迪BD
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 s1c, 3e
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s1c, 3e). J Neuroinflammation (2022) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunother Cancer (2021) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2a
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Alzheimers Dis (2020) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2l
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2l). Science (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1a, 1e, 6c
碧迪BD肿瘤坏死因子抗体(BD Biosciences, 554420)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 1e, 6c). Cell Rep (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Br J Pharmacol (2019) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2c
碧迪BD肿瘤坏死因子抗体(BD, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Front Immunol (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2f
碧迪BD肿瘤坏死因子抗体(BD, 554420)被用于被用于流式细胞仪在小鼠样本上 (图 2f). Cell (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 6e
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Clin Invest (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 7a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Virol (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 7d
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 7d). J Exp Med (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Clin Invest (2018) ncbi
仓鼠 单克隆(TN3-19.12)
  • 酶联免疫吸附测定; 小鼠; 图 3a
碧迪BD肿瘤坏死因子抗体(BD, TN3-19.12)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 3a). Infect Immun (2018) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3b
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Immunology (2017) ncbi
仓鼠 单克隆(TN3-19.12)
  • 酶联免疫吸附测定; 小鼠; 图 5
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, 557516)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5). Sci Rep (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1,3
碧迪BD肿瘤坏死因子抗体(BD Biosciences, 557644)被用于被用于流式细胞仪在小鼠样本上 (图 1,3). Oncoimmunology (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nature (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 人类; 图 7b
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在人类样本上 (图 7b). Front Immunol (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s1c
碧迪BD肿瘤坏死因子抗体(BD PharMingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s1c). PLoS ONE (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 5d
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 5d). EMBO Mol Med (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3e
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Cancer Res (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4C
碧迪BD肿瘤坏死因子抗体(BD, 557644)被用于被用于流式细胞仪在小鼠样本上 (图 4C). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1c
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Clin Exp Immunol (2017) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s1a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, 554419)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s3
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS Pathog (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 s2c
碧迪BD肿瘤坏死因子抗体(BD, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 s2c). Nature (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1a
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, 554419)被用于被用于流式细胞仪在小鼠样本上 (图 1a). PLoS Pathog (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD肿瘤坏死因子抗体(BD, 554418)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunother Cancer (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 4c
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Oncotarget (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD-Biosciences, 557644)被用于被用于流式细胞仪在小鼠样本上. Oncoimmunology (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 3
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS Pathog (2016) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2.c,d
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2.c,d). J Inflamm (Lond) (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD, 554420)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 1
碧迪BD肿瘤坏死因子抗体(PharMingen, 554419)被用于被用于流式细胞仪在小鼠样本上 (图 1). Cancer Res (2015) ncbi
大鼠 单克隆(G281-2626)
  • 酶联免疫吸附测定; 小鼠; 图 5a
碧迪BD肿瘤坏死因子抗体(BD Biosciences, G281-2626)被用于被用于酶联免疫吸附测定在小鼠样本上 (图 5a). J Immunol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 1:100; 图 2
碧迪BD肿瘤坏死因子抗体(BD Biosciences, 554419)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Vaccine (2015) ncbi
大鼠 单克隆(G281-2626)
  • 抑制或激活实验; 小鼠; 图 3
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, Gr81-2626)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Reproduction (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nat Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠; 图 2
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6.XT22)被用于被用于流式细胞仪在小鼠样本上 (图 2). Eur J Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, MP6-XT22)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2014) ncbi
大鼠 单克隆(MP6-XT22)
  • 流式细胞仪; 小鼠
碧迪BD肿瘤坏死因子抗体(BD Biosciences, 554419)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(MP6-XT3)
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, MP6-XT3)被用于. Anal Biochem (2007) ncbi
大鼠 单克隆(G281-2626)
碧迪BD肿瘤坏死因子抗体(BD Pharmingen, 551225)被用于. Anal Biochem (2007) ncbi
文章列表
  1. Papoutsopoulou S, Pollock L, Williams J, Abdul Mahdi M, Dobbash R, Duckworth C, et al. Interleukin-10 Deficiency Impacts on TNF-Induced NFκB Regulated Responses In Vivo. Biology (Basel). 2022;11: pubmed 出版商
  2. Pandey S, Shteinfer Kuzmine A, Chalifa Caspi V, Shoshan Barmatz V. Non-apoptotic activity of the mitochondrial protein SMAC/Diablo in lung cancer: Novel target to disrupt survival, inflammation, and immunosuppression. Front Oncol. 2022;12:992260 pubmed 出版商
  3. Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650-3666 pubmed 出版商
  4. Shi H, Yin Z, Koronyo Y, Fuchs D, Sheyn J, Davis M, et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol Commun. 2022;10:136 pubmed 出版商
  5. Xie F, Zhou X, Su P, Li H, Tu Y, Du J, et al. Breast cancer cell-derived extracellular vesicles promote CD8+ T cell exhaustion via TGF-β type II receptor signaling. Nat Commun. 2022;13:4461 pubmed 出版商
  6. Formigari G, D xe1 tilo M, Vareda B, Bonfante I, Cavaglieri C, Lopes de Faria J, et al. Renal protection induced by physical exercise may be mediated by the irisin/AMPK axis in diabetic nephropathy. Sci Rep. 2022;12:9062 pubmed 出版商
  7. Wang Q, Bergholz J, Ding L, Lin Z, Kabraji S, Hughes M, et al. STING agonism reprograms tumor-associated macrophages and overcomes resistance to PARP inhibition in BRCA1-deficient models of breast cancer. Nat Commun. 2022;13:3022 pubmed 出版商
  8. Pan C, Wu Q, Wang S, Mei Z, Zhang L, Gao X, et al. Combination with Toll-like receptor 4 (TLR4) agonist reverses GITR agonism mediated M2 polarization of macrophage in Hepatocellular carcinoma. Oncoimmunology. 2022;11:2073010 pubmed 出版商
  9. Benkhoucha M, Tran N, Breville G, Senoner I, Bradfield P, Papayannopoulou T, et al. CD4+c-Met+Itgα4+ T cell subset promotes murine neuroinflammation. J Neuroinflammation. 2022;19:103 pubmed 出版商
  10. Yu L, Zhang J, Gao A, Wang Z, Yu F, Guo X, et al. An intersegmental single-cell profile reveals aortic heterogeneity and identifies a novel Malat1+ vascular smooth muscle subtype involved in abdominal aortic aneurysm formation. Signal Transduct Target Ther. 2022;7:125 pubmed 出版商
  11. Gharanei S, Ramanjaneya M, Patel A, Patel V, Shabir K, Auld C, et al. NUCB2/Nesfatin-1 Reduces Obesogenic Diet Induced Inflammation in Mice Subcutaneous White Adipose Tissue. Nutrients. 2022;14: pubmed 出版商
  12. Zhou Q, Li J, Xiang Z, Zou H, Shao X. Amelioration of Renal Injury by Resveratrol in a Rat Renal Transplantation Model via Activation of the SIRT1/NF-κB Signaling Pathway. Biomed Res Int. 2022;2022:7140961 pubmed 出版商
  13. Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang Z, et al. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  14. Xu J, Li Z, Tower R, Negri S, Wang Y, Meyers C, et al. NGF-p75 signaling coordinates skeletal cell migration during bone repair. Sci Adv. 2022;8:eabl5716 pubmed 出版商
  15. Tang T, Huang X, Zhang G, Lu M, Hong Z, Wang M, et al. Oncolytic peptide LTX-315 induces anti-pancreatic cancer immunity by targeting the ATP11B-PD-L1 axis. J Immunother Cancer. 2022;10: pubmed 出版商
  16. Clayer E, Frank D, Anderton H, Zhang S, Kueh A, Heim V, et al. ZC3H12C expression in dendritic cells is necessary to prevent lymphadenopathy of skin-draining lymph nodes. Immunol Cell Biol. 2022;100:160-173 pubmed 出版商
  17. Zhu Y, Elsheikha H, Wang J, Fang S, He J, Zhu X, et al. Synergy between Toxoplasma gondii type I ΔGRA17 immunotherapy and PD-L1 checkpoint inhibition triggers the regression of targeted and distal tumors. J Immunother Cancer. 2021;9: pubmed 出版商
  18. Yadav A, Huang T, Chen S, Ramasamy T, Hsueh Y, Lin S, et al. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation. 2021;18:238 pubmed 出版商
  19. Liu H, Pedros C, Kong K, Canonigo Balancio A, Xue W, Altman A. Leveraging the Treg-intrinsic CTLA4-PKCη signaling pathway for cancer immunotherapy. J Immunother Cancer. 2021;9: pubmed 出版商
  20. Susukida T, Kuwahara S, Song B, Kazaoka A, Aoki S, Ito K. Regulation of the immune tolerance system determines the susceptibility to HLA-mediated abacavir-induced skin toxicity. Commun Biol. 2021;4:1137 pubmed 出版商
  21. Poletti F, González Fernández R, García M, Rotoli D, Avila J, Mobasheri A, et al. Molecular-Morphological Relationships of the Scaffold Protein FKBP51 and Inflammatory Processes in Knee Osteoarthritis. Cells. 2021;10: pubmed 出版商
  22. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  23. Zeng H, Chen H, Li M, Zhuang J, Peng Y, Zhou H, et al. Autophagy protein NRBF2 attenuates endoplasmic reticulum stress-associated neuroinflammation and oxidative stress via promoting autophagosome maturation by interacting with Rab7 after SAH. J Neuroinflammation. 2021;18:210 pubmed 出版商
  24. Stoffel W, Binczek E, Schmidt Soltau I, Brodesser S, Wegner I. High fat / high cholesterol diet does not provoke atherosclerosis in the ω3-and ω6-polyunsaturated fatty acid synthesis-inactivated Δ6-fatty acid desaturase-deficient mouse. Mol Metab. 2021;54:101335 pubmed 出版商
  25. Jiang Y, Yuan Y, Chen M, Li S, Bai J, Zhang Y, et al. PRMT5 disruption drives antitumor immunity in cervical cancer by reprogramming T cell-mediated response and regulating PD-L1 expression. Theranostics. 2021;11:9162-9176 pubmed 出版商
  26. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Otto N, Pereverzeva L, Léopold V, Ramirez Moral I, Roelofs J, van Heijst J, et al. Hypoxia-Inducible Factor-1α in Macrophages, but Not in Neutrophils, Is Important for Host Defense during Klebsiella pneumoniae-Induced Pneumosepsis. Mediators Inflamm. 2021;2021:9958281 pubmed 出版商
  28. Santana K, Righetti R, Breda C, Domínguez Amorocho O, Ramalho T, Dantas F, et al. Cholesterol-Ester Transfer Protein Alters M1 and M2 Macrophage Polarization and Worsens Experimental Elastase-Induced Pulmonary Emphysema. Front Immunol. 2021;12:684076 pubmed 出版商
  29. Petley E, Koay H, Henderson M, Sek K, Todd K, Keam S, et al. MAIT cells regulate NK cell-mediated tumor immunity. Nat Commun. 2021;12:4746 pubmed 出版商
  30. Mohamed A, El Magd M, El Said K, El Sharnouby M, Tousson E, Salama A. Potential therapeutic effect of thymoquinone and/or bee pollen on fluvastatin-induced hepatitis in rats. Sci Rep. 2021;11:15688 pubmed 出版商
  31. Takahashi K, Nakamura S, Otsu W, Shimazawa M, Hara H. Progranulin deficiency in Iba-1+ myeloid cells exacerbates choroidal neovascularization by perturbation of lysosomal function and abnormal inflammation. J Neuroinflammation. 2021;18:164 pubmed 出版商
  32. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  33. Cao Y, Huang W, Wu F, Shang J, Ping F, Wang W, et al. ZFP36 protects lungs from intestinal I/R-induced injury and fibrosis through the CREBBP/p53/p21/Bax pathway. Cell Death Dis. 2021;12:685 pubmed 出版商
  34. Lauret Marie Joseph E, Kirilovsky A, Lecoester B, El Sissy C, Boullerot L, Rangan L, et al. Chemoradiation triggers antitumor Th1 and tissue resident memory-polarized immune responses to improve immune checkpoint inhibitors therapy. J Immunother Cancer. 2021;9: pubmed 出版商
  35. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  36. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  37. Uehara H, Zhang X, Pereira F, Narendran S, Choi S, Bhuvanagiri S, et al. Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. elife. 2021;10: pubmed 出版商
  38. Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, et al. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell. 2021;12:695-716 pubmed 出版商
  39. Chen L, Cheng S, Sun K, Wang J, Liu X, Zhao Y, et al. Changes in macrophage and inflammatory cytokine expressions during fracture healing in an ovariectomized mice model. BMC Musculoskelet Disord. 2021;22:494 pubmed 出版商
  40. Zhang W, Li J, Yao H, Li T. Restoring microRNA-499-5p Protects Sepsis-Induced Lung Injury Mice Via Targeting Sox6. Nanoscale Res Lett. 2021;16:89 pubmed 出版商
  41. Lindfors S, Polianskyte Prause Z, Bouslama R, Lehtonen E, Mannerla M, Nisen H, et al. Adiponectin receptor agonist AdipoRon ameliorates renal inflammation in diet-induced obese mice and endotoxin-treated human glomeruli ex vivo. Diabetologia. 2021;64:1866-1879 pubmed 出版商
  42. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  43. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  44. Amoozgar Z, Kloepper J, Ren J, Tay R, Kazer S, Kiner E, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat Commun. 2021;12:2582 pubmed 出版商
  45. Li J, Xu J, Li Z. Obatoclax, the pan-Bcl-2 inhibitor sensitizes hepatocellular carcinoma cells to promote the anti-tumor efficacy in combination with immune checkpoint blockade. Transl Oncol. 2021;14:101116 pubmed 出版商
  46. Ye S, Su L, Shan P, Ye B, Wu S, Liang G, et al. LCZ696 Attenuated Doxorubicin-Induced Chronic Cardiomyopathy Through the TLR2-MyD88 Complex Formation. Front Cell Dev Biol. 2021;9:654051 pubmed 出版商
  47. Shin M, Vázquez Rosa E, Koh Y, Dhar M, Chaubey K, Cintrón Pérez C, et al. Reducing acetylated tau is neuroprotective in brain injury. Cell. 2021;184:2715-2732.e23 pubmed 出版商
  48. Zheng W, Song H, Luo Z, Wu H, Chen L, Wang Y, et al. Acetylcholine ameliorates colitis by promoting IL-10 secretion of monocytic myeloid-derived suppressor cells through the nAChR/ERK pathway. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  49. Akgul A, Maddaloni M, Jun S, Nelson A, Odreman V, Hoffman C, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren's syndrome. Arthritis Res Ther. 2021;23:99 pubmed 出版商
  50. Li Q, Cheng F, Zhou K, Fang L, Wu J, Xia Q, et al. Increased sensitivity to TNF-α promotes keloid fibroblast hyperproliferation by activating the NF-κB, JNK and p38 MAPK pathways. Exp Ther Med. 2021;21:502 pubmed 出版商
  51. Bonilla W, Kirchhammer N, Marx A, Kallert S, Krzyzaniak M, Lu M, et al. Heterologous arenavirus vector prime-boost overrules self-tolerance for efficient tumor-specific CD8 T cell attack. Cell Rep Med. 2021;2:100209 pubmed 出版商
  52. Lu M, Dravid P, Zhang Y, Trivedi S, Li A, Harder O, et al. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  53. Page N, Lemeille S, Vincenti I, Klimek B, Mariotte A, Wagner I, et al. Persistence of self-reactive CD8+ T cells in the CNS requires TOX-dependent chromatin remodeling. Nat Commun. 2021;12:1009 pubmed 出版商
  54. Yao C, Lou G, Sun H, Zhu Z, Sun Y, Chen Z, et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat Immunol. 2021;22:370-380 pubmed 出版商
  55. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  56. Break T, Oikonomou V, Dutzan N, Desai J, Swidergall M, Freiwald T, et al. Aberrant type 1 immunity drives susceptibility to mucosal fungal infections. Science. 2021;371: pubmed 出版商
  57. Tan X, Kobayashi K, Shen L, Inagaki J, Ide M, Hwang S, et al. Antioxidative attributes of rice bran extracts in ameliorative effects of atherosclerosis-associated risk factors. Heliyon. 2020;6:e05743 pubmed 出版商
  58. Antony A, Lian Z, Perrard X, Perrard J, Liu H, Cox A, et al. Deficiency of Stat1 in CD11c+ Cells Alters Adipose Tissue Inflammation and Improves Metabolic Dysfunctions in Mice Fed a High-Fat Diet. Diabetes. 2021;70:720-732 pubmed 出版商
  59. Meryk A, Grasse M, Balasco L, Kapferer W, Grubeck Loebenstein B, Pangrazzi L. Antioxidants N-Acetylcysteine and Vitamin C Improve T Cell Commitment to Memory and Long-Term Maintenance of Immunological Memory in Old Mice. Antioxidants (Basel). 2020;9: pubmed 出版商
  60. Drake L, Brooks A, Stauff J, Sherman P, Arteaga J, Koeppe R, et al. Strategies for PET imaging of the receptor for advanced glycation endproducts (RAGE). J Pharm Anal. 2020;10:452-465 pubmed 出版商
  61. Kamali S, Rajendran R, Stadelmann C, Karnati S, Rajendran V, Giraldo Velasquez M, et al. Oligodendrocyte-specific deletion of FGFR2 ameliorates MOG35-55 -induced EAE through ERK and Akt signalling. Brain Pathol. 2021;31:297-311 pubmed 出版商
  62. Lissner M, Cumnock K, Davis N, Vilches Moure J, Basak P, Navarrete D, et al. Metabolic profiling during malaria reveals the role of the aryl hydrocarbon receptor in regulating kidney injury. elife. 2020;9: pubmed 出版商
  63. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  64. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  65. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  66. Sun J, Zhuang Z, Zheng J, Li K, Wong R, Liu D, et al. Generation of a Broadly Useful Model for COVID-19 Pathogenesis, Vaccination, and Treatment. Cell. 2020;182:734-743.e5 pubmed 出版商
  67. Robbins Y, Greene S, Friedman J, Clavijo P, Van Waes C, Fabian K, et al. Tumor control via targeting PD-L1 with chimeric antigen receptor modified NK cells. elife. 2020;9: pubmed 出版商
  68. Manils J, Webb L, Howes A, Janzen J, Boeing S, Bowcock A, et al. CARD14E138A signalling in keratinocytes induces TNF-dependent skin and systemic inflammation. elife. 2020;9: pubmed 出版商
  69. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  70. LeBlang C, Medalla M, Nicoletti N, Hays E, Zhao J, Shattuck J, et al. Reduction of the RNA Binding Protein TIA1 Exacerbates Neuroinflammation in Tauopathy. Front Neurosci. 2020;14:285 pubmed 出版商
  71. Choudhuri S, Garg N. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020;16:e1008474 pubmed 出版商
  72. Jiao Q, Luo Y, Scheffel J, Geng P, Wang Y, Frischbutter S, et al. Skin Mast Cells Contribute to Sporothrix schenckii Infection. Front Immunol. 2020;11:469 pubmed 出版商
  73. Tang Z, Xiong D, Song J, Ye M, Liu J, Wang Z, et al. Antitumor Drug Combretastatin-A4 Phosphate Aggravates the Symptoms of Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front Pharmacol. 2020;11:339 pubmed 出版商
  74. Oh W, Jung J, Choi Y, Mun J, Ku S, Song C. Protective effects of fermented rice extract on ulcerative colitis induced by dextran sodium sulfate in mice. Food Sci Nutr. 2020;8:1718-1728 pubmed 出版商
  75. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  76. Fu X, Peng J, Wang A, Luo Z. Tumor necrosis factor alpha mediates neuromuscular synapse elimination. Cell Discov. 2020;6:9 pubmed 出版商
  77. Lu Z, Zou J, Li S, Topper M, Tao Y, Zhang H, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches. Nature. 2020;579:284-290 pubmed 出版商
  78. Tezera L, Bielecka M, Ogongo P, Walker N, Ellis M, Garay Baquero D, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-α. elife. 2020;9: pubmed 出版商
  79. Lee P, Selhorst A, Lampe S, Liu Y, Yang Y, Lovett Racke A. Neuron-Specific Vitamin D Signaling Attenuates Microglia Activation and CNS Autoimmunity. Front Neurol. 2020;11:19 pubmed 出版商
  80. Forbester J, Clement M, Wellington D, Yeung A, Dimonte S, Marsden M, et al. IRF5 Promotes Influenza Virus-Induced Inflammatory Responses in Human Induced Pluripotent Stem Cell-Derived Myeloid Cells and Murine Models. J Virol. 2020;94: pubmed 出版商
  81. Chen K, Gu H, Zhu L, Feng D. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci. 2019;13:1417 pubmed 出版商
  82. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  83. Xie Y, Chen H, Luo D, Yang X, Yao J, Zhang C, et al. Inhibiting Necroptosis of Spermatogonial Stem Cell as a Novel Strategy for Male Fertility Preservation. Stem Cells Dev. 2020;29:475-487 pubmed 出版商
  84. Blagih J, Zani F, Chakravarty P, Hennequart M, Pilley S, Hobor S, et al. Cancer-Specific Loss of p53 Leads to a Modulation of Myeloid and T Cell Responses. Cell Rep. 2020;30:481-496.e6 pubmed 出版商
  85. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  86. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  87. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  88. Ano Y, Ohya R, Takaichi Y, Washinuma T, Uchida K, Takashima A, et al. β-Lactolin, a Whey-Derived Lacto-Tetrapeptide, Prevents Alzheimer's Disease Pathologies and Cognitive Decline. J Alzheimers Dis. 2020;73:1331-1342 pubmed 出版商
  89. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  90. Hurrell B, Galle Treger L, Jahani P, Howard E, Helou D, Banie H, et al. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep. 2019;29:4509-4524.e5 pubmed 出版商
  91. Eastman A, Xu J, Bermik J, Potchen N, den Dekker A, Neal L, et al. Epigenetic stabilization of DC and DC precursor classical activation by TNFα contributes to protective T cell polarization. Sci Adv. 2019;5:eaaw9051 pubmed 出版商
  92. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  93. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  94. Zhou Q, Wu X, Wang X, Yu Z, Pan T, Li Z, et al. The reciprocal interaction between tumor cells and activated fibroblasts mediated by TNF-α/IL-33/ST2L signaling promotes gastric cancer metastasis. Oncogene. 2019;: pubmed 出版商
  95. Chen Z, Ji Z, Ngiow S, Manne S, Cai Z, Huang A, et al. TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision. Immunity. 2019;51:840-855.e5 pubmed 出版商
  96. Majer O, Liu B, Kreuk L, Krogan N, Barton G. UNC93B1 recruits syntenin-1 to dampen TLR7 signalling and prevent autoimmunity. Nature. 2019;575:366-370 pubmed 出版商
  97. Nelson C, Thompson E, Quarnstrom C, Fraser K, Seelig D, Bhela S, et al. Robust Iterative Stimulation with Self-Antigens Overcomes CD8+ T Cell Tolerance to Self- and Tumor Antigens. Cell Rep. 2019;28:3092-3104.e5 pubmed 出版商
  98. Findlay E, Currie A, Zhang A, Ovciarikova J, Young L, Stevens H, et al. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology. 2019;8:1608106 pubmed 出版商
  99. Zhang R, Liu Y, Chen Y, Li Q, Marshall C, Wu T, et al. Aquaporin 4 deletion exacerbates brain impairments in a mouse model of chronic sleep disruption. CNS Neurosci Ther. 2020;26:228-239 pubmed 出版商
  100. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  101. Khan O, Giles J, McDonald S, Manne S, Ngiow S, Patel K, et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019;: pubmed 出版商
  102. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  103. Loh J, Xu S, Huo J, Kim S, Wang Y, Lam K. Dok3-protein phosphatase 1 interaction attenuates Card9 signaling and neutrophil-dependent antifungal immunity. J Clin Invest. 2019;129:2717-2729 pubmed 出版商
  104. Sul O, Rajasekaran M, Park H, Suh J, Choi H. MicroRNA-29b Enhances Osteoclast Survival by Targeting BCL-2-Modifying Factor after Lipopolysaccharide Stimulation. Oxid Med Cell Longev. 2019;2019:6018180 pubmed 出版商
  105. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  106. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  107. Misumi I, Starmer J, Uchimura T, Beck M, Magnuson T, Whitmire J. Obesity Expands a Distinct Population of T Cells in Adipose Tissue and Increases Vulnerability to Infection. Cell Rep. 2019;27:514-524.e5 pubmed 出版商
  108. Hammerich L, Marron T, Upadhyay R, Svensson Arvelund J, Dhainaut M, Hussein S, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination. Nat Med. 2019;25:814-824 pubmed 出版商
  109. Li Y, Tinoco R, Elmén L, Segota I, Xian Y, Fujita Y, et al. Gut microbiota dependent anti-tumor immunity restricts melanoma growth in Rnf5-/- mice. Nat Commun. 2019;10:1492 pubmed 出版商
  110. Cao Y, Trillo Tinoco J, Sierra R, Anadon C, Dai W, Mohamed E, et al. ER stress-induced mediator C/EBP homologous protein thwarts effector T cell activity in tumors through T-bet repression. Nat Commun. 2019;10:1280 pubmed 出版商
  111. Chen J, López Moyado I, Seo H, Lio C, Hempleman L, Sekiya T, et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature. 2019;567:530-534 pubmed 出版商
  112. Lai X, Deng Z, Zhu X, Chen Z. Apc gene suppresses intracranial aneurysm formation and rupture through inhibiting the NF-κB signaling pathway mediated inflammatory response. Biosci Rep. 2019;39: pubmed 出版商
  113. Jin C, Lagoudas G, Zhao C, Bullman S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176:998-1013.e16 pubmed 出版商
  114. Zhang G, Liu Y, Xu L, Sha C, Zhang H, Xu W. Resveratrol alleviates lipopolysaccharide-induced inflammation in PC-12 cells and in rat model. BMC Biotechnol. 2019;19:10 pubmed 出版商
  115. Mikolajczyk T, Nosalski R, Skiba D, Koziol J, Mazur M, Justo Junior A, et al. 1,2,3,4,6-Penta-O-galloyl-β-d-glucose modulates perivascular inflammation and prevents vascular dysfunction in angiotensin II-induced hypertension. Br J Pharmacol. 2019;176:1951-1965 pubmed 出版商
  116. Naito H, Iba T, Wakabayashi T, Tai Nagara I, Suehiro J, Jia W, et al. TAK1 Prevents Endothelial Apoptosis and Maintains Vascular Integrity. Dev Cell. 2019;48:151-166.e7 pubmed 出版商
  117. McLaren J, Clement M, Marsden M, Miners K, Llewellyn Lacey S, Grant E, et al. IL-33 Augments Virus-Specific Memory T Cell Inflation and Potentiates the Efficacy of an Attenuated Cytomegalovirus-Based Vaccine. J Immunol. 2019;202:943-955 pubmed 出版商
  118. Li J, He Y, Hao J, Ni L, Dong C. High Levels of Eomes Promote Exhaustion of Anti-tumor CD8+ T Cells. Front Immunol. 2018;9:2981 pubmed 出版商
  119. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  120. Gorth D, Shapiro I, Risbud M. Transgenic mice overexpressing human TNF-α experience early onset spontaneous intervertebral disc herniation in the absence of overt degeneration. Cell Death Dis. 2018;10:7 pubmed 出版商
  121. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  122. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  123. Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, et al. Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 2018;125:185-194 pubmed 出版商
  124. Vuckovic S, Minnie S, Smith D, Gartlan K, Watkins T, Markey K, et al. Bone marrow transplantation generates T cell-dependent control of myeloma in mice. J Clin Invest. 2019;129:106-121 pubmed 出版商
  125. Qiu T, Pei P, Yao X, Jiang L, Wei S, Wang Z, et al. Taurine attenuates arsenic-induced pyroptosis and nonalcoholic steatohepatitis by inhibiting the autophagic-inflammasomal pathway. Cell Death Dis. 2018;9:946 pubmed 出版商
  126. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  127. Qin C, Li M, Bai T, Yang K, Xu T, Zhang J. Tisp40 deficiency limits renal inflammation and promotes tubular cell proliferation in renal ischemia reperfusion injury. Exp Cell Res. 2018;371:255-261 pubmed 出版商
  128. Oldstone M, Ware B, Horton L, Welch M, Aiolfi R, Zarpellon A, et al. Lymphocytic choriomeningitis virus Clone 13 infection causes either persistence or acute death dependent on IFN-1, cytotoxic T lymphocytes (CTLs), and host genetics. Proc Natl Acad Sci U S A. 2018;115:E7814-E7823 pubmed 出版商
  129. Wan X, Zinselmeyer B, Zakharov P, Vomund A, Taniguchi R, Santambrogio L, et al. Pancreatic islets communicate with lymphoid tissues via exocytosis of insulin peptides. Nature. 2018;560:107-111 pubmed 出版商
  130. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  131. Vendetti F, Karukonda P, Clump D, Teo T, Lalonde R, Nugent K, et al. ATR kinase inhibitor AZD6738 potentiates CD8+ T cell-dependent antitumor activity following radiation. J Clin Invest. 2018;128:3926-3940 pubmed 出版商
  132. Liu Q, Liu C, Jiang L, Li M, Long T, He W, et al. α7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J Pain Res. 2018;11:1129-1140 pubmed 出版商
  133. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  134. Ray M, Gabunia K, Vrakas C, Herman A, Kako F, Kelemen S, et al. Genetic Deletion of IL-19 (Interleukin-19) Exacerbates Atherogenesis in Il19-/-×Ldlr-/- Double Knockout Mice by Dysregulation of mRNA Stability Protein HuR (Human Antigen R). Arterioscler Thromb Vasc Biol. 2018;38:1297-1308 pubmed 出版商
  135. Dipiazza A, Laniewski N, Rattan A, Topham D, Miller J, Sant A. CD4 T Cell Epitope Specificity and Cytokine Potential Are Preserved as Cells Transition from the Lung Vasculature to Lung Tissue following Influenza Virus Infection. J Virol. 2018;92: pubmed 出版商
  136. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  137. Zhang Z, Zhang H, Chen R, Wang Z. Oral supplementation with ursolic acid ameliorates sepsis-induced acute kidney injury in a mouse model by inhibiting oxidative stress and inflammatory responses. Mol Med Rep. 2018;17:7142-7148 pubmed 出版商
  138. Xiao F, Ai G, Yan W, Wan X, Luo X, Ning Q. Intrahepatic recruitment of cytotoxic NK cells contributes to autoimmune hepatitis progression. Cell Immunol. 2018;327:13-20 pubmed 出版商
  139. Huang L, Nazarova E, Tan S, Liu Y, Russell D. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J Exp Med. 2018;215:1135-1152 pubmed 出版商
  140. Tinoco R, Carrette F, Henriquez M, Fujita Y, Bradley L. Fucosyltransferase Induction during Influenza Virus Infection Is Required for the Generation of Functional Memory CD4+ T Cells. J Immunol. 2018;200:2690-2702 pubmed 出版商
  141. Khan A, Carpenter B, Santos e Sousa P, Pospori C, Khorshed R, Griffin J, et al. Redirection to the bone marrow improves T cell persistence and antitumor functions. J Clin Invest. 2018;128:2010-2024 pubmed 出版商
  142. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  143. Giannelou A, Wang H, Zhou Q, Park Y, Abu Asab M, Ylaya K, et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis. 2018;77:612-619 pubmed 出版商
  144. Gugliandolo E, Fusco R, D Amico R, Militi A, Oteri G, Wallace J, et al. Anti-inflammatory effect of ATB-352, a H2S -releasing ketoprofen derivative, on lipopolysaccharide-induced periodontitis in rats. Pharmacol Res. 2018;132:220-231 pubmed 出版商
  145. Pedros C, Canonigo Balancio A, Kong K, Altman A. Requirement of Treg-intrinsic CTLA4/PKCη signaling pathway for suppressing tumor immunity. JCI Insight. 2017;2: pubmed 出版商
  146. Sharma D, Malik A, Guy C, Karki R, Vogel P, Kanneganti T. Pyrin Inflammasome Regulates Tight Junction Integrity to Restrict Colitis and Tumorigenesis. Gastroenterology. 2018;154:948-964.e8 pubmed 出版商
  147. Johnson R, Yu H, Strank N, Karunakaran K, Zhu Y, Brunham R. B Cell Presentation of Chlamydia Antigen Selects Out Protective CD4?13 T Cells: Implications for Genital Tract Tissue-Resident Memory Lymphocyte Clusters. Infect Immun. 2018;86: pubmed 出版商
  148. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  149. Meng Y, Zhou W, Jin L, Liu L, Chang K, Mei J, et al. RANKL-mediated harmonious dialogue between fetus and mother guarantees smooth gestation by inducing decidual M2 macrophage polarization. Cell Death Dis. 2017;8:e3105 pubmed 出版商
  150. Funken D, Ishikawa Ankerhold H, Uhl B, Lerchenberger M, Rentsch M, Mayr D, et al. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4+ T-cell response in the postischemic liver. FASEB J. 2017;31:4796-4808 pubmed 出版商
  151. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  152. Miao T, Symonds A, Singh R, Symonds J, Ogbe A, Omodho B, et al. Egr2 and 3 control adaptive immune responses by temporally uncoupling expansion from T cell differentiation. J Exp Med. 2017;214:1787-1808 pubmed 出版商
  153. Koh J, Hancock C, Terada S, Higashida K, Holloszy J, Han D. PPARβ Is Essential for Maintaining Normal Levels of PGC-1α and Mitochondria and for the Increase in Muscle Mitochondria Induced by Exercise. Cell Metab. 2017;25:1176-1185.e5 pubmed 出版商
  154. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  155. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  156. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  157. González Pérez G, Lamousé Smith E. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8+ T Cell Receptor Signaling. Front Immunol. 2017;8:265 pubmed 出版商
  158. Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, et al. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med. 2017;214:905-917 pubmed 出版商
  159. Tsoutsou P, Annibaldi A, Viertl D, Ollivier J, Buchegger F, Vozenin M, et al. TAT-RasGAP317-326 Enhances Radiosensitivity of Human Carcinoma Cell Lines In Vitro and In Vivo through Promotion of Delayed Mitotic Cell Death. Radiat Res. 2017;187:562-569 pubmed 出版商
  160. Klein J, Moses K, Zelinskyy G, Sody S, Buer J, Lang S, et al. Combined toll-like receptor 3/7/9 deficiency on host cells results in T-cell-dependent control of tumour growth. Nat Commun. 2017;8:14600 pubmed 出版商
  161. Bhattacharyya M, Penaloza MacMaster P. T regulatory cells are critical for the maintenance, anamnestic expansion and protection elicited by vaccine-induced CD8 T cells. Immunology. 2017;151:340-348 pubmed 出版商
  162. Wang S, Wang B, Wang Y, Tong Q, Liu Q, Sun J, et al. Zinc Prevents the Development of Diabetic Cardiomyopathy in db/db Mice. Int J Mol Sci. 2017;18: pubmed 出版商
  163. Pishesha N, Bilate A, Wibowo M, Huang N, Li Z, Deshycka R, et al. Engineered erythrocytes covalently linked to antigenic peptides can protect against autoimmune disease. Proc Natl Acad Sci U S A. 2017;114:3157-3162 pubmed 出版商
  164. Perez Ruiz de Garibay A, Spinato C, Klippstein R, Bourgognon M, Martincic M, Pach E, et al. Evaluation of the immunological profile of antibody-functionalized metal-filled single-walled carbon nanocapsules for targeted radiotherapy. Sci Rep. 2017;7:42605 pubmed 出版商
  165. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  166. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14:36 pubmed 出版商
  167. Himori K, Abe M, Tatebayashi D, Lee J, Westerblad H, Lanner J, et al. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension. PLoS ONE. 2017;12:e0169146 pubmed 出版商
  168. Pardi N, Hogan M, Pelc R, Muramatsu H, Andersen H, Demaso C, et al. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. 2017;543:248-251 pubmed 出版商
  169. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  170. Welsby I, Detienne S, N kuli F, Thomas S, Wouters S, Bechtold V, et al. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21. Front Immunol. 2016;7:663 pubmed 出版商
  171. Jiang X, Park C, Geddes Sweeney J, Yoo M, Gaide O, Kupper T. Dermal ?? T Cells Do Not Freely Re-Circulate Out of Skin and Produce IL-17 to Promote Neutrophil Infiltration during Primary Contact Hypersensitivity. PLoS ONE. 2017;12:e0169397 pubmed 出版商
  172. Chen M, Chen Y, Fu R, Liu S, Yang Q, Shen T. Activation of 5-HT and NR2B contributes to visceral hypersensitivity in irritable bowel syndrome in rats. Am J Transl Res. 2016;8:5580-5590 pubmed
  173. Förster M, Boora R, Petrov J, Fodil N, Albanese I, Kim J, et al. A role for the histone H2A deubiquitinase MYSM1 in maintenance of CD8+ T cells. Immunology. 2017;151:110-121 pubmed 出版商
  174. Lizardo K, Almonte V, Law C, Aiyyappan J, Cui M, Nagajyothi J. Diet regulates liver autophagy differentially in murine acute Trypanosoma cruzi infection. Parasitol Res. 2017;116:711-723 pubmed 出版商
  175. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  176. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  177. Omarniyaz Z, Yu Y, Yang T, Shan L, Miao W, Reyimu R, et al. Anti-tumor effects of Abnormal Savda Munziq on the transplanted cervical cancer (U27) mouse model. BMC Complement Altern Med. 2016;16:477 pubmed
  178. Sektioglu I, Carretero R, Bulbuc N, Bald T, Tüting T, Rudensky A, et al. Basophils Promote Tumor Rejection via Chemotaxis and Infiltration of CD8+ T Cells. Cancer Res. 2017;77:291-302 pubmed 出版商
  179. Jiang D, Gao F, Zhang Y, Wong D, Li Q, Tse H, et al. Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 2016;7:e2467 pubmed 出版商
  180. Laurent C, Dorothee G, Hunot S, Martin E, Monnet Y, Duchamp M, et al. Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain. 2017;140:184-200 pubmed 出版商
  181. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  182. Yu P, Hu Y, Liu Z, Kawai T, Taubman M, Li W, et al. Local Induction of B Cell Interleukin-10 Competency Alleviates Inflammation and Bone Loss in Ligature-Induced Experimental Periodontitis in Mice. Infect Immun. 2017;85: pubmed 出版商
  183. Ulland T, Jain N, Hornick E, Elliott E, Clay G, Sadler J, et al. Nlrp12 mutation causes C57BL/6J strain-specific defect in neutrophil recruitment. Nat Commun. 2016;7:13180 pubmed 出版商
  184. Khalaj K, Luna R, de França M, de Oliveira W, Peixoto C, Tayade C. RNA binding protein, tristetraprolin in a murine model of recurrent pregnancy loss. Oncotarget. 2016;7:72486-72502 pubmed 出版商
  185. Seemann S, Lupp A. Administration of AMD3100 in endotoxemia is associated with pro-inflammatory, pro-oxidative, and pro-apoptotic effects in vivo. J Biomed Sci. 2016;23:68 pubmed
  186. Swaminathan G, Thoryk E, Cox K, Smith J, Wolf J, Gindy M, et al. A Tetravalent Sub-unit Dengue Vaccine Formulated with Ionizable Cationic Lipid Nanoparticle induces Significant Immune Responses in Rodents and Non-Human Primates. Sci Rep. 2016;6:34215 pubmed 出版商
  187. Assas B, Levison S, Little M, England H, Battrick L, Bagnall J, et al. Anti-inflammatory effects of infliximab in mice are independent of tumour necrosis factor ? neutralization. Clin Exp Immunol. 2017;187:225-233 pubmed 出版商
  188. Arunachalam P, Mishra R, Badarinath K, Selvam D, Payeli S, Stout R, et al. Toll-Like Receptor 9 Activation Rescues Impaired Antibody Response in Needle-free Intradermal DNA Vaccination. Sci Rep. 2016;6:33564 pubmed 出版商
  189. Hrdinka M, Sudan K, Just S, Drobek A, Stepanek O, Schluter D, et al. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice. PLoS ONE. 2016;11:e0162863 pubmed 出版商
  190. Dadsetan S, Balzano T, Forteza J, Agusti A, Cabrera Pastor A, Taoro Gonzalez L, et al. Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. J Neuroinflammation. 2016;13:245 pubmed 出版商
  191. Takeda Y, Azuma M, Matsumoto M, Seya T. Tumoricidal efficacy coincides with CD11c up-regulation in antigen-specific CD8(+) T cells during vaccine immunotherapy. J Exp Clin Cancer Res. 2016;35:143 pubmed 出版商
  192. Lewis G, Wehrens E, Labarta Bajo L, Streeck H, Zuniga E. TGF-? receptor maintains CD4 T helper cell identity during chronic viral infections. J Clin Invest. 2016;126:3799-3813 pubmed 出版商
  193. Ladle B, Li K, Phillips M, Pucsek A, Haile A, Powell J, et al. De novo DNA methylation by DNA methyltransferase 3a controls early effector CD8+ T-cell fate decisions following activation. Proc Natl Acad Sci U S A. 2016;113:10631-6 pubmed 出版商
  194. Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U, et al. Liver Necrosis and Lethal Systemic Inflammation in a Murine Model of Rickettsia typhi Infection: Role of Neutrophils, Macrophages and NK Cells. PLoS Negl Trop Dis. 2016;10:e0004935 pubmed 出版商
  195. Chen J, Jian D, Lien C, Lin Y, Ting C, Chen L, et al. Adipocytes play an etiological role in the podocytopathy of high-fat diet-fed rats. J Endocrinol. 2016;231:109-120 pubmed
  196. Meliopoulos V, Van De Velde L, Van De Velde N, Karlsson E, Neale G, Vogel P, et al. An Epithelial Integrin Regulates the Amplitude of Protective Lung Interferon Responses against Multiple Respiratory Pathogens. PLoS Pathog. 2016;12:e1005804 pubmed 出版商
  197. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T cells curtail chronic viral infection. Nature. 2016;537:412-428 pubmed 出版商
  198. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  199. Portillo J, Lopez Corcino Y, Miao Y, Tang J, Sheibani N, Kern T, et al. CD40 in Retinal Müller Cells Induces P2X7-Dependent Cytokine Expression in Macrophages/Microglia in Diabetic Mice and Development of Early Experimental Diabetic Retinopathy. Diabetes. 2017;66:483-493 pubmed 出版商
  200. Nakhlé J, Pierron V, Bauchet A, Plas P, Thiongane A, Meyer Losic F, et al. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology. 2016;5:e1145333 pubmed 出版商
  201. Sayes F, Pawlik A, Frigui W, Gröschel M, Crommelynck S, Fayolle C, et al. CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection. PLoS Pathog. 2016;12:e1005770 pubmed 出版商
  202. Walter B, Purmessur D, Moon A, Occhiogrosso J, Laudier D, Hecht A, et al. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells. Eur Cell Mater. 2016;32:123-36 pubmed
  203. Rackov G, Hernandez Jimenez E, Shokri R, Carmona Rodríguez L, Manes S, Alvarez Mon M, et al. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-?B and IFN-?. J Clin Invest. 2016;126:3089-103 pubmed 出版商
  204. Zhao D, Lizardo K, Cui M, Ambadipudi K, Lora J, Jelicks L, et al. Antagonistic effect of atorvastatin on high fat diet induced survival during acute Chagas disease. Microbes Infect. 2016;18:675-686 pubmed 出版商
  205. Chuang T, Guo Y, Seki S, Rosen A, Johanson D, Mandell J, et al. LRP1 expression in microglia is protective during CNS autoimmunity. Acta Neuropathol Commun. 2016;4:68 pubmed 出版商
  206. Garcia P, Seiva F, Carniato A, de Mello Júnior W, Duran N, Macedo A, et al. Increased toll-like receptors and p53 levels regulate apoptosis and angiogenesis in non-muscle invasive bladder cancer: mechanism of action of P-MAPA biological response modifier. BMC Cancer. 2016;16:422 pubmed 出版商
  207. Gorman M, Poddar S, Farzan M, Diamond M. The Interferon-Stimulated Gene Ifitm3 Restricts West Nile Virus Infection and Pathogenesis. J Virol. 2016;90:8212-25 pubmed 出版商
  208. Clausen B, Degn M, Sivasaravanaparan M, Fogtmann T, Andersen M, Trojanowsky M, et al. Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Sci Rep. 2016;6:29291 pubmed 出版商
  209. Nooh H, Nour Eldien N. The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem. 2016;118:588-595 pubmed 出版商
  210. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  211. Konkalmatt P, Asico L, Zhang Y, Yang Y, Drachenberg C, Zheng X, et al. Renal rescue of dopamine D2 receptor function reverses renal injury and high blood pressure. JCI Insight. 2016;1: pubmed
  212. Dai Y, Miao Y, Wu W, Li Y, D Errico F, Su W, et al. Ablation of Liver X receptors ? and ? leads to spontaneous peripheral squamous cell lung cancer in mice. Proc Natl Acad Sci U S A. 2016;113:7614-9 pubmed 出版商
  213. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  214. Kassem A, Lindholm C, Lerner U. Toll-Like Receptor 2 Stimulation of Osteoblasts Mediates Staphylococcus Aureus Induced Bone Resorption and Osteoclastogenesis through Enhanced RANKL. PLoS ONE. 2016;11:e0156708 pubmed 出版商
  215. Roychowdhury S, McCullough R, Sanz Garcia C, Saikia P, Alkhouri N, Matloob A, et al. Receptor interacting protein 3 protects mice from high-fat diet-induced liver injury. Hepatology. 2016;64:1518-1533 pubmed 出版商
  216. Cao G, Wang Q, Li G, Meng Z, Liu H, Tong J, et al. mTOR inhibition potentiates cytotoxicity of V?4 ?? T cells via up-regulating NKG2D and TNF-?. J Leukoc Biol. 2016;100:1181-1189 pubmed
  217. Lim J, Im K, Lee E, Kim N, Nam Y, Jeon Y, et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep. 2016;6:26851 pubmed 出版商
  218. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  219. Patel M, Kim J, Theodros D, Tam A, Velarde E, Kochel C, et al. Agonist anti-GITR monoclonal antibody and stereotactic radiation induce immune-mediated survival advantage in murine intracranial glioma. J Immunother Cancer. 2016;4:28 pubmed 出版商
  220. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  221. Roth S, Spalinger M, Gottier C, Biedermann L, Zeitz J, Lang S, et al. Bilberry-Derived Anthocyanins Modulate Cytokine Expression in the Intestine of Patients with Ulcerative Colitis. PLoS ONE. 2016;11:e0154817 pubmed 出版商
  222. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  223. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  224. Li J, Chassaing B, Tyagi A, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126:2049-63 pubmed 出版商
  225. Li X, Wu L, Li S, Zhou W, Wang M, Zuo G, et al. Effect of CD16a, the surface receptor of Kupffer cells, on the growth of hepatocellular carcinoma cells. Int J Mol Med. 2016;37:1465-74 pubmed 出版商
  226. Llopiz D, Aranda F, Díaz Valdés N, Ruiz M, Infante S, Belsue V, et al. Vaccine-induced but not tumor-derived Interleukin-10 dictates the efficacy of Interleukin-10 blockade in therapeutic vaccination. Oncoimmunology. 2016;5:e1075113 pubmed
  227. Seo J, Bang M, Kim G, Cho S, Park D. Erythronium japonicum attenuates histopathological lung abnormalities in a mouse model of ovalbumin-induced asthma. Int J Mol Med. 2016;37:1221-8 pubmed 出版商
  228. Li J, Chen K, Li S, Liu T, Wang F, Xia Y, et al. Pretreatment with Fucoidan from Fucus vesiculosus Protected against ConA-Induced Acute Liver Injury by Inhibiting Both Intrinsic and Extrinsic Apoptosis. PLoS ONE. 2016;11:e0152570 pubmed 出版商
  229. Ganesan S, Reynolds C, Hollinger K, Pearce S, Gabler N, Baumgard L, et al. Twelve hours of heat stress induces inflammatory signaling in porcine skeletal muscle. Am J Physiol Regul Integr Comp Physiol. 2016;310:R1288-96 pubmed 出版商
  230. Martínez Gómez J, Ong L, Lam J, Binte Aman S, Libau E, Lee P, et al. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage. PLoS Negl Trop Dis. 2016;10:e0004536 pubmed 出版商
  231. Arsenijević A, Milovanovic M, Milovanovic J, Stojanovic B, Zdravkovic N, Leung P, et al. Deletion of Galectin-3 Enhances Xenobiotic Induced Murine Primary Biliary Cholangitis by Facilitating Apoptosis of BECs and Release of Autoantigens. Sci Rep. 2016;6:23348 pubmed 出版商
  232. Lee Chang C, Bodogai M, Moritoh K, Chen X, Wersto R, Sen R, et al. Aging Converts Innate B1a Cells into Potent CD8+ T Cell Inducers. J Immunol. 2016;196:3385-97 pubmed 出版商
  233. Huang Y, Chen C, Tang K, Sheen J, Tiao M, Tain Y, et al. Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci. 2016;17:369 pubmed 出版商
  234. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  235. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  236. Szylberg Å, Janiczek M, Popiel A, MarszaÅ‚ek A. Expression of COX-2, IL-1β, TNF-α and IL-4 in epithelium of serrated adenoma, adenoma and hyperplastic polyp. Arch Med Sci. 2016;12:172-8 pubmed 出版商
  237. Su R, Yan J, Yang H. Transgenerational Glucose Intolerance of Tumor Necrosis Factor with Epigenetic Alteration in Rat Perirenal Adipose Tissue Induced by Intrauterine Hyperglycemia. J Diabetes Res. 2016;2016:4952801 pubmed 出版商
  238. Haas S, Zhou X, Machado V, Wree A, Krieglstein K, Spittau B. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson's Disease. Front Mol Neurosci. 2016;9:7 pubmed 出版商
  239. Crompton R, Williams H, Ansell D, Campbell L, Holden K, Cruickshank S, et al. Oestrogen promotes healing in a bacterial LPS model of delayed cutaneous wound repair. Lab Invest. 2016;96:439-49 pubmed 出版商
  240. Liu C, Rajapakse A, Riedo E, Fellay B, Bernhard M, Montani J, et al. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation. Sci Rep. 2016;6:20405 pubmed 出版商
  241. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  242. Maelfait J, Roose K, Vereecke L, Mc Guire C, Sze M, Schuijs M, et al. A20 Deficiency in Lung Epithelial Cells Protects against Influenza A Virus Infection. PLoS Pathog. 2016;12:e1005410 pubmed 出版商
  243. Wu H, Shi L, Wang Q, Cheng L, Zhao X, Chen Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep. 2016;6:19507 pubmed 出版商
  244. Lasigliè D, Boero S, Bauer I, Morando S, Damonte P, Cea M, et al. Sirt6 regulates dendritic cell differentiation, maturation, and function. Aging (Albany NY). 2016;8:34-49 pubmed
  245. Roth J, Köhler D, Schneider M, Granja T, Rosenberger P. Semaphorin 7A Aggravates Pulmonary Inflammation during Lung Injury. PLoS ONE. 2016;11:e0146930 pubmed 出版商
  246. Vieira Ramos G, Pinheiro C, Messa S, Delfino G, Marqueti R, Salvini T, et al. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle. Sci Rep. 2016;6:18525 pubmed 出版商
  247. Dahlke C, Saberi D, Ott B, Brand Saberi B, Schmitt John T, Theiss C. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflammation. 2015;12:215 pubmed 出版商
  248. Lee J, Park K, Han D, Bang N, Kim D, Na H, et al. PharmDB-K: Integrated Bio-Pharmacological Network Database for Traditional Korean Medicine. PLoS ONE. 2015;10:e0142624 pubmed 出版商
  249. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  250. EskicioÄŸlu F, Özdemir A, Özdemir R, Turan G, Akan Z, Hasdemir S. The association of HLA-G and immune markers in recurrent miscarriages. J Matern Fetal Neonatal Med. 2016;29:3056-60 pubmed 出版商
  251. Verma S, Weiskopf D, Gupta A, McDonald B, Peters B, Sette A, et al. Cytomegalovirus-Specific CD4 T Cells Are Cytolytic and Mediate Vaccine Protection. J Virol. 2016;90:650-8 pubmed 出版商
  252. Lucena P, Faget D, Pachulec E, Robaina M, Klumb C, Robbs B, et al. NFAT2 Isoforms Differentially Regulate Gene Expression, Cell Death, and Transformation through Alternative N-Terminal Domains. Mol Cell Biol. 2016;36:119-31 pubmed 出版商
  253. Wardill H, Logan R, Bowen J, Van Sebille Y, Gibson R. Tight junction defects are seen in the buccal mucosa of patients receiving standard dose chemotherapy for cancer. Support Care Cancer. 2016;24:1779-88 pubmed 出版商
  254. Gabbita S, Johnson M, Kobritz N, Eslami P, Poteshkina A, Varadarajan S, et al. Oral TNFα Modulation Alters Neutrophil Infiltration, Improves Cognition and Diminishes Tau and Amyloid Pathology in the 3xTgAD Mouse Model. PLoS ONE. 2015;10:e0137305 pubmed 出版商
  255. Kurtulus S, Sakuishi K, Ngiow S, Joller N, Tan D, Teng M, et al. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest. 2015;125:4053-62 pubmed 出版商
  256. Perotti V, Baldassari P, Molla A, Vegetti C, Bersani I, Maurichi A, et al. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862-72 pubmed 出版商
  257. Min S, Yan M, Kim S, Ravikumar S, Kwon S, Vanarsa K, et al. Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway. J Inflamm (Lond). 2015;12:53 pubmed 出版商
  258. Zhang Z, Yang P, Yao P, Dai D, Yu Y, Zhou Y, et al. Identification of transcription factors and gene clusters in rabbit smooth muscle cells during high flow-induced vascular remodeling via microarray. Gene. 2016;575:407-414 pubmed 出版商
  259. Yapislar H, Taşkın E, Ozdas S, Akin D, Sonmez E. Counteraction of Apoptotic and Inflammatory Effects of Adriamycin in the Liver Cell Culture by Clinopitolite. Biol Trace Elem Res. 2016;170:373-81 pubmed 出版商
  260. Silva O, Crocetti J, Humphries L, Burkhardt J, Miceli M. Discs Large Homolog 1 Splice Variants Regulate p38-Dependent and -Independent Effector Functions in CD8+ T Cells. PLoS ONE. 2015;10:e0133353 pubmed 出版商
  261. Kratochvill F, Gratz N, Qualls J, Van De Velde L, Chi H, Kovarik P, et al. Tristetraprolin Limits Inflammatory Cytokine Production in Tumor-Associated Macrophages in an mRNA Decay-Independent Manner. Cancer Res. 2015;75:3054-64 pubmed 出版商
  262. Vogel A, Brown D. Single-Dose CpG Immunization Protects Against a Heterosubtypic Challenge and Generates Antigen-Specific Memory T Cells. Front Immunol. 2015;6:327 pubmed 出版商
  263. Raynor J, Karns R, Almanan M, Li K, Divanovic S, Chougnet C, et al. IL-6 and ICOS Antagonize Bim and Promote Regulatory T Cell Accrual with Age. J Immunol. 2015;195:944-52 pubmed 出版商
  264. Haan N, Zhu B, Wang J, Wei X, Song B. Crosstalk between macrophages and astrocytes affects proliferation, reactive phenotype and inflammatory response, suggesting a role during reactive gliosis following spinal cord injury. J Neuroinflammation. 2015;12:109 pubmed 出版商
  265. Deberge M, Ely K, Wright P, Thorp E, Enelow R. Shedding of TNF receptor 2 by effector CD8⁺ T cells by ADAM17 is important for regulating TNF-α availability during influenza infection. J Leukoc Biol. 2015;98:423-34 pubmed 出版商
  266. Xue J, Sharma V, Hsieh M, Chawla A, Murali R, Pandol S, et al. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nat Commun. 2015;6:7158 pubmed 出版商
  267. Yang L, Carrillo M, Wu Y, DiAngelo S, Silveyra P, Umstead T, et al. SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS ONE. 2015;10:e0126576 pubmed 出版商
  268. Cooley L, Martin R, Zellner H, Irani A, Uram Tuculescu C, El Shikh M, et al. Increased B Cell ADAM10 in Allergic Patients and Th2 Prone Mice. PLoS ONE. 2015;10:e0124331 pubmed 出版商
  269. Olguín J, Fernández J, Salinas N, Juárez I, Rodriguez Sosa M, Campuzano J, et al. Adoptive transfer of CD4(+)Foxp3(+) regulatory T cells to C57BL/6J mice during acute infection with Toxoplasma gondii down modulates the exacerbated Th1 immune response. Microbes Infect. 2015;17:586-95 pubmed 出版商
  270. Uetake Y, Ikeda H, Irie R, Tejima K, Matsui H, Ogura S, et al. High-salt in addition to high-fat diet may enhance inflammation and fibrosis in liver steatosis induced by oxidative stress and dyslipidemia in mice. Lipids Health Dis. 2015;14:6 pubmed 出版商
  271. Badillo Godinez O, Gutierrez Xicotencatl L, Plett Torres T, Pedroza Saavedra A, González Jaimes A, Chihu Amparan L, et al. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine. 2015;33:4228-37 pubmed 出版商
  272. Elahy M, Jackaman C, Mamo J, Lam V, Dhaliwal S, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing. 2015;12:2 pubmed 出版商
  273. Lin Y, Chen L, Li W, Fang J. Role of high-mobility group box-1 in myocardial ischemia/reperfusion injury and the effect of ethyl pyruvate. Exp Ther Med. 2015;9:1537-1541 pubmed
  274. López González I, Schlüter A, Aso E, Garcia Esparcia P, Ansoleaga B, Llorens F, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol. 2015;74:319-44 pubmed 出版商
  275. Pannu J, Belle J, Forster M, Duerr C, Shen S, Kane L, et al. Ubiquitin specific protease 21 is dispensable for normal development, hematopoiesis and lymphocyte differentiation. PLoS ONE. 2015;10:e0117304 pubmed 出版商
  276. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  277. Wang J, Wu F, Xie Q, Liu X, Tian F, Xu W, et al. Anakinra and etanercept prevent embryo loss in pregnant nonobese diabetic mice. Reproduction. 2015;149:377-84 pubmed 出版商
  278. Cabrera Perez J, Condotta S, James B, Kashem S, Brincks E, Rai D, et al. Alterations in antigen-specific naive CD4 T cell precursors after sepsis impairs their responsiveness to pathogen challenge. J Immunol. 2015;194:1609-20 pubmed 出版商
  279. Liu Z, Zhao S, Chen Q, Yan K, Liu P, Li N, et al. Roles of Toll-like receptors 2 and 4 in mediating experimental autoimmune orchitis induction in mice. Biol Reprod. 2015;92:63 pubmed 出版商
  280. Spada R, Rojas J, Pérez Yagüe S, Mulens V, Cannata Ortiz P, Bragado R, et al. NKG2D ligand overexpression in lupus nephritis correlates with increased NK cell activity and differentiation in kidneys but not in the periphery. J Leukoc Biol. 2015;97:583-98 pubmed 出版商
  281. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  282. Sullivan B, Teijaro J, de la Torre J, Oldstone M. Early virus-host interactions dictate the course of a persistent infection. PLoS Pathog. 2015;11:e1004588 pubmed 出版商
  283. Saveljeva S, Mc Laughlin S, Vandenabeele P, Samali A, Bertrand M. Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells. Cell Death Dis. 2015;6:e1587 pubmed 出版商
  284. Zhou L, Park S, Xu L, Xia X, Ye J, Su L, et al. Insulin resistance and white adipose tissue inflammation are uncoupled in energetically challenged Fsp27-deficient mice. Nat Commun. 2015;6:5949 pubmed 出版商
  285. Kim K, Kim N, Kim S, Kim I, Kim K, Lee G. Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun. 2015;83:1150-61 pubmed 出版商
  286. Hu Z, Molloy M, Usherwood E. CD4(+) T-cell dependence of primary CD8(+) T-cell response against vaccinia virus depends upon route of infection and viral dose. Cell Mol Immunol. 2016;13:82-93 pubmed 出版商
  287. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  288. Zemany L, Bhanot S, Peroni O, Murray S, Moraes Vieira P, Castoldi A, et al. Transthyretin Antisense Oligonucleotides Lower Circulating RBP4 Levels and Improve Insulin Sensitivity in Obese Mice. Diabetes. 2015;64:1603-14 pubmed 出版商
  289. White C, Villarino N, Sloan S, Ganusov V, Schmidt N. Plasmodium suppresses expansion of T cell responses to heterologous infections. J Immunol. 2015;194:697-708 pubmed 出版商
  290. Cohen N, Sabhachandani P, Golberg A, Konry T. Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection. Biosens Bioelectron. 2015;66:454-60 pubmed 出版商
  291. Mehta P, Nuotio Antar A, Smith C. γδ T cells promote inflammation and insulin resistance during high fat diet-induced obesity in mice. J Leukoc Biol. 2015;97:121-34 pubmed 出版商
  292. Ortiz F, Acuña Castroviejo D, Doerrier C, Dayoub J, López L, Venegas C, et al. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res. 2015;58:34-49 pubmed 出版商
  293. Simpson L, Patel S, Bhakta N, Choy D, Brightbill H, Ren X, et al. A microRNA upregulated in asthma airway T cells promotes TH2 cytokine production. Nat Immunol. 2014;15:1162-70 pubmed 出版商
  294. Bodine B, Bennion B, Leatham E, Jimenez F, Wright A, Jergensen Z, et al. Conditionally induced RAGE expression by proximal airway epithelial cells in transgenic mice causes lung inflammation. Respir Res. 2014;15:133 pubmed 出版商
  295. Wang X, Sumida H, Cyster J. GPR18 is required for a normal CD8αα intestinal intraepithelial lymphocyte compartment. J Exp Med. 2014;211:2351-9 pubmed 出版商
  296. Backer R, Helbig C, Gentek R, Kent A, Laidlaw B, Dominguez C, et al. A central role for Notch in effector CD8(+) T cell differentiation. Nat Immunol. 2014;15:1143-51 pubmed 出版商
  297. He D, Kou X, Luo Q, Yang R, Liu D, Wang X, et al. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption. J Dent Res. 2015;94:129-39 pubmed 出版商
  298. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  299. Srodulski S, Sharma S, Bachstetter A, Brelsfoard J, Pascual C, Xie X, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener. 2014;9:30 pubmed 出版商
  300. Dai M, Yip Y, Hellstrom I, Hellstrom K. Curing mice with large tumors by locally delivering combinations of immunomodulatory antibodies. Clin Cancer Res. 2015;21:1127-38 pubmed 出版商
  301. Domitrovic R, Cvijanovic O, Susnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107 pubmed 出版商
  302. Boding L, Hansen A, Meroni G, Johansen B, Braunstein T, Bonefeld C, et al. Midline 1 directs lytic granule exocytosis and cytotoxicity of mouse killer T cells. Eur J Immunol. 2014;44:3109-18 pubmed 出版商
  303. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  304. Smith N, Wissink E, Wang J, Pinello J, Davenport M, Grimson A, et al. Rapid proliferation and differentiation impairs the development of memory CD8+ T cells in early life. J Immunol. 2014;193:177-84 pubmed 出版商
  305. Chucair Elliott A, Conrady C, Zheng M, Kroll C, Lane T, Carr D. Microglia-induced IL-6 protects against neuronal loss following HSV-1 infection of neural progenitor cells. Glia. 2014;62:1418-34 pubmed 出版商
  306. Zhang Y, Mena P, Romanov G, Bliska J. Effector CD8+ T cells are generated in response to an immunodominant epitope in type III effector YopE during primary Yersinia pseudotuberculosis infection. Infect Immun. 2014;82:3033-44 pubmed 出版商
  307. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  308. Yan J, Villarreal D, Racine T, Chu J, Walters J, Morrow M, et al. Protective immunity to H7N9 influenza viruses elicited by synthetic DNA vaccine. Vaccine. 2014;32:2833-42 pubmed 出版商
  309. Martins K, Steffens J, Van Tongeren S, Wells J, Bergeron A, Dickson S, et al. Toll-like receptor agonist augments virus-like particle-mediated protection from Ebola virus with transient immune activation. PLoS ONE. 2014;9:e89735 pubmed 出版商
  310. Chen D, Mao M, Bellussi L, Passali D, Chen L. Increase of high mobility group box chromosomal protein 1 in eosinophilic chronic rhinosinusitis with nasal polyps. Int Forum Allergy Rhinol. 2014;4:453-62 pubmed 出版商
  311. Misumi I, Whitmire J. B cell depletion curtails CD4+ T cell memory and reduces protection against disseminating virus infection. J Immunol. 2014;192:1597-608 pubmed 出版商
  312. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  313. Kim E, Gasper D, Lee S, Plisch E, Svaren J, Suresh M. Bach2 regulates homeostasis of Foxp3+ regulatory T cells and protects against fatal lung disease in mice. J Immunol. 2014;192:985-95 pubmed 出版商
  314. Chatterjee S, Eby J, Al Khami A, Soloshchenko M, Kang H, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134:1285-1294 pubmed 出版商
  315. Friedrich L, Jungebluth P, Sjöqvist S, Lundin V, Haag J, Lemon G, et al. Preservation of aortic root architecture and properties using a detergent-enzymatic perfusion protocol. Biomaterials. 2014;35:1907-13 pubmed 出版商
  316. Chan I, Jain R, Tessmer M, Gorman D, Mangadu R, Sathe M, et al. Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 2014;7:842-56 pubmed 出版商
  317. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  318. Domitrovic R, Cvijanovic O, Pernjak Pugel E, Skoda M, Mikelić L, Crncevic Orlic Z. Berberine exerts nephroprotective effect against cisplatin-induced kidney damage through inhibition of oxidative/nitrosative stress, inflammation, autophagy and apoptosis. Food Chem Toxicol. 2013;62:397-406 pubmed 出版商
  319. Ishikawa H, Tajiri N, Vasconcellos J, Kaneko Y, Mimura O, Dezawa M, et al. Ischemic stroke brain sends indirect cell death signals to the heart. Stroke. 2013;44:3175-82 pubmed 出版商
  320. Domitrovic R, Cvijanovic O, Pugel E, Zagorac G, Mahmutefendić H, Skoda M. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney. Toxicology. 2013;310:115-23 pubmed 出版商
  321. Lu M, Varley A, Munford R. Persistently active microbial molecules prolong innate immune tolerance in vivo. PLoS Pathog. 2013;9:e1003339 pubmed 出版商
  322. Chu P, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, et al. C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 2013;58:337-50 pubmed 出版商
  323. Powell N, Walker A, Stolarczyk E, Canavan J, Gökmen M, Marks E, et al. The transcription factor T-bet regulates intestinal inflammation mediated by interleukin-7 receptor+ innate lymphoid cells. Immunity. 2012;37:674-84 pubmed 出版商
  324. Wang H, Cui X, Gu Q, Chen Y, Zhou J, Kuang Y, et al. Retinol dehydrogenase 13 protects the mouse retina from acute light damage. Mol Vis. 2012;18:1021-30 pubmed
  325. Szretter K, Daniels B, Cho H, Gainey M, Yokoyama W, Gale M, et al. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012;8:e1002698 pubmed 出版商
  326. Pinto A, Daffis S, Brien J, Gainey M, Yokoyama W, Sheehan K, et al. A temporal role of type I interferon signaling in CD8+ T cell maturation during acute West Nile virus infection. PLoS Pathog. 2011;7:e1002407 pubmed 出版商
  327. Gibbert K, Dietze K, Zelinskyy G, Lang K, Barchet W, Kirschning C, et al. Polyinosinic-polycytidylic acid treatment of Friend retrovirus-infected mice improves functional properties of virus-specific T cells and prevents virus-induced disease. J Immunol. 2010;185:6179-89 pubmed 出版商
  328. Nijnik A, Madera L, Ma S, Waldbrook M, Elliott M, Easton D, et al. Synthetic cationic peptide IDR-1002 provides protection against bacterial infections through chemokine induction and enhanced leukocyte recruitment. J Immunol. 2010;184:2539-50 pubmed 出版商
  329. Garidou L, Heydari S, Truong P, Brooks D, McGavern D. Therapeutic memory T cells require costimulation for effective clearance of a persistent viral infection. J Virol. 2009;83:8905-15 pubmed 出版商
  330. Leng J, Butcher B, Egan C, Abi Abdallah D, Denkers E. Toxoplasma gondii prevents chromatin remodeling initiated by TLR-triggered macrophage activation. J Immunol. 2009;182:489-97 pubmed
  331. Clausen B, Lambertsen K, Babcock A, Holm T, Dagnaes Hansen F, Finsen B. Interleukin-1beta and tumor necrosis factor-alpha are expressed by different subsets of microglia and macrophages after ischemic stroke in mice. J Neuroinflammation. 2008;5:46 pubmed 出版商
  332. Sprengers D, Sillé F, Derkow K, Besra G, Janssen H, Schott E, et al. Critical role for CD1d-restricted invariant NKT cells in stimulating intrahepatic CD8 T-cell responses to liver antigen. Gastroenterology. 2008;134:2132-43 pubmed 出版商
  333. Sridhar S, Reyes Sandoval A, Draper S, Moore A, Gilbert S, Gao G, et al. Single-dose protection against Plasmodium berghei by a simian adenovirus vector using a human cytomegalovirus promoter containing intron A. J Virol. 2008;82:3822-33 pubmed 出版商
  334. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  335. Diaz Llopis M, Garcia Delpech S, Salom D, Udaondo P, Bosch Morell F, Quijada A, et al. High-dose infliximab prophylaxis in endotoxin-induced uveitis. J Ocul Pharmacol Ther. 2007;23:343-50 pubmed
  336. Badovinac V, Harty J. Manipulating the rate of memory CD8+ T cell generation after acute infection. J Immunol. 2007;179:53-63 pubmed
  337. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  338. Muir B, Barden M, Collett S, Gorse A, Monteiro R, Yang L, et al. High-throughput optimization of surfaces for antibody immobilization using metal complexes. Anal Biochem. 2007;363:97-107 pubmed
  339. Guiducci C, Vicari A, Sangaletti S, Trinchieri G, Colombo M. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 2005;65:3437-46 pubmed
  340. Ribeiro Gomes F, Otero A, Gomes N, Moniz de Souza M, Cysne Finkelstein L, Arnholdt A, et al. Macrophage interactions with neutrophils regulate Leishmania major infection. J Immunol. 2004;172:4454-62 pubmed