这是一篇来自已证抗体库的有关小鼠 Tubb2a的综述,是根据84篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Tubb2a 抗体。
Tubb2a 同义词: M(beta)2; Tubb2

赛默飞世尔
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 1i
赛默飞世尔 Tubb2a抗体(Thermo Fisher, 480011)被用于被用于免疫细胞化学在小鼠样本上 (图 1i). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 9
赛默飞世尔 Tubb2a抗体(Thermo Fisher Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 9). Cells (2019) ncbi
小鼠 单克隆(BT7R)
赛默飞世尔 Tubb2a抗体(Invitrogen, MA5-C16308-BTIN)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(BT7R)
  • 免疫细胞化学; 小鼠; 1:100; 图 3h
赛默飞世尔 Tubb2a抗体(Thermo Fisher, MA5-16308-A647)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3h). Mol Cancer Res (2018) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 Tubb2a抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 Tubb2a抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:4000; 图 8a
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 8a). J Physiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5d
赛默飞世尔 Tubb2a抗体(生活技术, 1559509A)被用于被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Neurotherapeutics (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 5). Reprod Biol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 3b). J Hematol Oncol (2016) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛默飞世尔 Tubb2a抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4d). Mol Neurobiol (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:500; 图 4
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 表 1
赛默飞世尔 Tubb2a抗体(Thermo Fisher, MA5-16308)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (表 1). J Nutr Biochem (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 人类; 1:10,000; 图 1
赛默飞世尔 Tubb2a抗体(Thermo Scientific, MA5-16308)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Cancer Res (2016) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛默飞世尔 Tubb2a抗体(ThermoFisher, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). PLoS Genet (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上 (图 4). J Neurotrauma (2017) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1s1
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1s1). elife (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Tubb2a抗体(ThermoFisher Scientific, PA5-16863)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(TBN06 (Tub 2.5))
赛默飞世尔 Tubb2a抗体(Thermo Fisher Scientific, MA5-11732)被用于. J Cell Biol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Tubb2a抗体(生活技术, 32?C2600)被用于被用于免疫细胞化学在小鼠样本上. Eur J Immunol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Tubb2a抗体(Thermo Scientific, PA1-16947)被用于. Chem Pharm Bull (Tokyo) (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类
赛默飞世尔 Tubb2a抗体(Invitrogen, 32?C2600)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类; 1:500; 图 1,4
赛默飞世尔 Tubb2a抗体(生活技术, 32-C2600)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1,4). Sci Rep (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 s5
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 0.5 ng/ml
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上浓度为0.5 ng/ml. J Cell Physiol (2015) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 大鼠; 1:5000; 图 4a
赛默飞世尔 Tubb2a抗体(Thermo, BT7R)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4a). Exp Eye Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Tubb2a抗体(Thermo Fisher Scientific, PA1-41331)被用于. Mol Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上. J Cereb Blood Flow Metab (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Tubb2a抗体(Thermo Scientific, PA1-16947)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(AA10)
  • 免疫印迹; 小鼠; 1:5000
赛默飞世尔 Tubb2a抗体(生活技术, 480011)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Tubb2a抗体(Invitrogen, 322600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Tubb2a抗体(ZYMED, 22833)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Front Cell Neurosci (2014) ncbi
domestic rabbit 多克隆
赛默飞世尔 Tubb2a抗体(Thermo, RB-9249-PO)被用于. Hum Mol Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛默飞世尔 Tubb2a抗体(Thermo Scientific Pierce Antibodies, PA1-16947)被用于被用于免疫印迹在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 犬
赛默飞世尔 Tubb2a抗体(Zymed, 32-2600)被用于被用于免疫印迹在犬样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化-冰冻切片; 小鼠; 1:500
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. BMC Neurosci (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在人类样本上 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
小鼠 单克隆(2 28 33)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 Tubb2a抗体(Invitrogen, 2-28-33)被用于被用于免疫组化在小鼠样本上浓度为1:300. Brain Struct Funct (2015) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; 人类
赛默飞世尔 Tubb2a抗体(Novex, 32-2600)被用于被用于免疫细胞化学在人类样本上. Histochem Cell Biol (2014) ncbi
小鼠 单克隆(BT7R)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔 Tubb2a抗体(Pierce, MA5-16308)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. Front Neurosci (2013) ncbi
小鼠 单克隆(AA10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 Tubb2a抗体(Novex, 480011)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Oxid Med Cell Longev (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛默飞世尔 Tubb2a抗体(Invitrogen, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Tubb2a抗体(生活技术, clone 2-28-33)被用于被用于免疫印迹在人类样本上 (图 1). Int J Cancer (2013) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 4, 5
赛默飞世尔 Tubb2a抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 4, 5). Exp Cell Res (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 Tubb2a抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuro Oncol (2011) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Tubb2a抗体(Zymed Laboratories, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 3). Free Radic Biol Med (2009) ncbi
小鼠 单克隆(2 28 33)
  • 免疫细胞化学; African green monkey; 图 2
赛默飞世尔 Tubb2a抗体(Invitrogen, 2-28-33)被用于被用于免疫细胞化学在African green monkey样本上 (图 2). Angew Chem Int Ed Engl (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 8
赛默飞世尔 Tubb2a抗体(Zymed, 32-2600)被用于被用于免疫印迹在人类样本上 (图 8). J Invest Dermatol (2008) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Tubb2a抗体(Zymed Laboratories, 2-28-33)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2007) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Tubb2a抗体(生活技术, 32-2600)被用于被用于免疫印迹在小鼠样本上 (图 6). J Immunol (2006) ncbi
小鼠 单克隆(2 28 33)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Tubb2a抗体(Zymed, 2-28-33)被用于被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2004) ncbi
西格玛奥德里奇
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 图 1a
西格玛奥德里奇 Tubb2a抗体(Sigma, T4026)被用于被用于免疫细胞化学在人类样本上 (图 1a). Cells (2020) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类; 1:5000; 图 s1-1c
西格玛奥德里奇 Tubb2a抗体(Sigma, T4026)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1-1c). elife (2020) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 1:600; 图 2f
西格玛奥德里奇 Tubb2a抗体(Sigma, T4026)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 2f). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Sci Rep (2017) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; great pond snail; 1:2000; 图 2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在great pond snail样本上浓度为1:2000 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:5000; 图 2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Biochem Pharmacol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 图 s2
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上 (图 s2). Autophagy (2015) ncbi
小鼠 单克隆(D66)
  • 免疫沉淀; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, T0198)被用于被用于免疫沉淀在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠; 1:10000
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上浓度为1:10000. J Cell Physiol (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图 7
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫组化; 小鼠; 1:200; 图 3b
西格玛奥德里奇 Tubb2a抗体(Sigma, C4585)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). PLoS Genet (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠; 1:10000; 图 1
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫印迹在小鼠样本上浓度为1:10000 (图 1). Neurotherapeutics (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 人类; 图  3
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在人类样本上 (图  3). Clin Exp Metastasis (2015) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; pigs ; 图 2
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, C4585)被用于被用于免疫细胞化学在pigs 样本上 (图 2). J Clin Invest (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma, TUB2.1)被用于被用于免疫印迹在小鼠样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, TUB2.1)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 小鼠; 1:4000
西格玛奥德里奇 Tubb2a抗体(Sigma, T-0198)被用于被用于免疫印迹在小鼠样本上浓度为1:4000. Free Radic Biol Med (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, Tub2.1)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2014) ncbi
小鼠 单克隆(D66)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, D66)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Biol Open (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, TUB2.1)被用于被用于免疫印迹在人类样本上. Hum Mol Genet (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Tubb2a抗体(Sigma, TUB2.1)被用于被用于免疫印迹在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, TUB 2.1)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫印迹; 人类
西格玛奥德里奇 Tubb2a抗体(Sigma-Aldrich, C4585)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(D66)
  • 免疫印迹; 大鼠
西格玛奥德里奇 Tubb2a抗体(Sigma, T0198)被用于被用于免疫印迹在大鼠样本上. Physiol Behav (2014) ncbi
小鼠 单克隆(TUB 2.1)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇 Tubb2a抗体(Sigma, C4585)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Biol Chem (2013) ncbi
文章列表
  1. Peta C, Tsirimonaki E, Samouil D, Georgiadou K, Mangoura D. Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells. 2020;9: pubmed 出版商
  2. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  3. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  4. Nielsen C, Zhang T, Barisic M, Kalitsis P, Hudson D. Topoisomerase IIα is essential for maintenance of mitotic chromosome structure. Proc Natl Acad Sci U S A. 2020;117:12131-12142 pubmed 出版商
  5. Wenta T, Rychlowski M, Jarzab M, Lipinska B. HtrA4 Protease Promotes Chemotherapeutic-Dependent Cancer Cell Death. Cells. 2019;8: pubmed 出版商
  6. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  7. Chu T, Connell M, Zhou L, He Z, Won J, Chen H, et al. Cell Cycle-Dependent Tumor Engraftment and Migration Are Enabled by Aurora-A. Mol Cancer Res. 2018;16:16-31 pubmed 出版商
  8. Nandi S, Mishra P. H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep. 2017;7:3639 pubmed 出版商
  9. Getz A, Xu F, Visser F, Persson R, Syed N. Tumor suppressor menin is required for subunit-specific nAChR α5 transcription and nAChR-dependent presynaptic facilitation in cultured mouse hippocampal neurons. Sci Rep. 2017;7:1768 pubmed 出版商
  10. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  11. García Castañeda M, Vega A, Rodríguez R, Montiel Jaen M, Cisneros B, Zarain Herzberg A, et al. Functional impact of an oculopharyngeal muscular dystrophy mutation in PABPN1. J Physiol. 2017;595:4167-4187 pubmed 出版商
  12. Gao S, Geng C, Song T, Lin X, Liu J, Cai Z, et al. Activation of c-Abl Kinase Potentiates the Anti-myeloma Drug Lenalidomide by Promoting DDA1 Protein Recruitment to the CRL4 Ubiquitin Ligase. J Biol Chem. 2017;292:3683-3691 pubmed 出版商
  13. Aggarwal T, Hoeber J, Ivert P, Vasylovska S, Kozlova E. Boundary Cap Neural Crest Stem Cells Promote Survival of Mutant SOD1 Motor Neurons. Neurotherapeutics. 2017;14:773-783 pubmed 出版商
  14. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed 出版商
  15. Wang W, Ye H, Wei P, Han B, He B, Chen Z, et al. LncRNAs H19 and HULC, activated by oxidative stress, promote cell migration and invasion in cholangiocarcinoma through a ceRNA manner. J Hematol Oncol. 2016;9:117 pubmed
  16. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  17. Tang Y, Hendriks J, Gensch T, Dai L, Li J. Automatic Bayesian single molecule identification for localization microscopy. Sci Rep. 2016;6:33521 pubmed 出版商
  18. Dias T, Alves M, Rato L, Casal S, Silva B, Oliveira P. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J Nutr Biochem. 2016;37:83-93 pubmed 出版商
  19. Getz A, Visser F, Bell E, Xu F, Flynn N, Zaidi W, et al. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep. 2016;6:31779 pubmed 出版商
  20. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  21. Cormerais Y, Giuliano S, Lefloch R, Front B, Durivault J, Tambutte E, et al. Genetic Disruption of the Multifunctional CD98/LAT1 Complex Demonstrates the Key Role of Essential Amino Acid Transport in the Control of mTORC1 and Tumor Growth. Cancer Res. 2016;76:4481-92 pubmed 出版商
  22. Topalidou I, Cattin Ortolá J, Pappas A, Cooper K, Merrihew G, MacCoss M, et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLoS Genet. 2016;12:e1006074 pubmed 出版商
  23. Lamprecht M, Elkin B, Kesavabhotla K, Crary J, Hammers J, Huh J, et al. Strong Correlation of Genome-Wide Expression after Traumatic Brain Injury In Vitro and In Vivo Implicates a Role for SORLA. J Neurotrauma. 2017;34:97-108 pubmed 出版商
  24. Wahl S, Magupalli V, Dembla M, Katiyar R, Schwarz K, Köblitz L, et al. The Disease Protein Tulp1 Is Essential for Periactive Zone Endocytosis in Photoreceptor Ribbon Synapses. J Neurosci. 2016;36:2473-93 pubmed 出版商
  25. Le Pen J, Maillet L, Sarosiek K, Vuillier C, Gautier F, Montessuit S, et al. Constitutive p53 heightens mitochondrial apoptotic priming and favors cell death induction by BH3 mimetic inhibitors of BCL-xL. Cell Death Dis. 2016;7:e2083 pubmed 出版商
  26. Ancelin K, Syx L, Borensztein M, Ranisavljevic N, Vassilev I, Briseño Roa L, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. elife. 2016;5: pubmed 出版商
  27. Torres G, Morales P, García Miguel M, Norambuena Soto I, Cartes Saavedra B, Vidal Peña G, et al. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation. Biochem Pharmacol. 2016;104:52-61 pubmed 出版商
  28. Fokina A, Chechenova M, Karginov A, Ter Avanesyan M, Agaphonov M. Genetic Evidence for the Role of the Vacuole in Supplying Secretory Organelles with Ca2+ in Hansenula polymorpha. PLoS ONE. 2015;10:e0145915 pubmed 出版商
  29. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  30. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  31. Riquelme S, Pogu J, Anegon I, Bueno S, Kalergis A. Carbon monoxide impairs mitochondria-dependent endosomal maturation and antigen presentation in dendritic cells. Eur J Immunol. 2015;45:3269-88 pubmed 出版商
  32. Jamieson C, Lui C, Brocardo M, Martino Echarri E, Henderson B. Rac1 augments Wnt signaling by stimulating β-catenin-lymphoid enhancer factor-1 complex assembly independent of β-catenin nuclear import. J Cell Sci. 2015;128:3933-46 pubmed 出版商
  33. Han Y, Wang Z, Bae E. Synthesis of the Proposed Structure of Damaurone D and Evaluation of Its Anti-inflammatory Activity. Chem Pharm Bull (Tokyo). 2015;63:907-12 pubmed 出版商
  34. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  35. Zajkowski T, Nieznanska H, Nieznanski K. Stabilization of microtubular cytoskeleton protects neurons from toxicity of N-terminal fragment of cytosolic prion protein. Biochim Biophys Acta. 2015;1853:2228-39 pubmed 出版商
  36. Tang Y, Dai L, Zhang X, Li J, Hendriks J, Fan X, et al. SNSMIL, a real-time single molecule identification and localization algorithm for super-resolution fluorescence microscopy. Sci Rep. 2015;5:11073 pubmed 出版商
  37. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  38. Tang N, Lyu D, Liu T, Chen F, Jing S, Hao T, et al. Different Effects of p52SHC1 and p52SHC3 on the Cell Cycle of Neurons and Neural Stem Cells. J Cell Physiol. 2016;231:172-80 pubmed 出版商
  39. Torres Fuentes J, Rios M, Moreno R. Involvement of a P2X7 Receptor in the Acrosome Reaction Induced by ATP in Rat Spermatozoa. J Cell Physiol. 2015;230:3068-75 pubmed 出版商
  40. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  41. Thierry M, Pasquis B, Buteau B, Fourgeux C, Dembele D, Leclère L, et al. Early adaptive response of the retina to a pro-diabetogenic diet: Impairment of cone response and gene expression changes in high-fructose fed rats. Exp Eye Res. 2015;135:37-46 pubmed 出版商
  42. Ding Y, Xu Y, Shuai X, Shi X, Chen X, Huang W, et al. Reg3? Overexpression Protects Pancreatic ? Cells from Cytokine-Induced Damage and Improves Islet Transplant Outcome. Mol Med. 2015;20:548-558 pubmed 出版商
  43. Giehl K, Keller C, Muehlich S, Goppelt Struebe M. Actin-mediated gene expression depends on RhoA and Rac1 signaling in proximal tubular epithelial cells. PLoS ONE. 2015;10:e0121589 pubmed 出版商
  44. Raju D, Schonauer S, Hamzeh H, FLYNN K, Bradke F, Vom Dorp K, et al. Accumulation of glucosylceramide in the absence of the beta-glucosidase GBA2 alters cytoskeletal dynamics. PLoS Genet. 2015;11:e1005063 pubmed 出版商
  45. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  46. Bi Q, Ranjan A, Fan R, Agarwal N, Welch D, Weinman S, et al. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis. 2015;32:301-11 pubmed 出版商
  47. Hue C, Cho F, Cao S, Dale Bass C, Meaney D, Morrison B. Dexamethasone potentiates in vitro blood-brain barrier recovery after primary blast injury by glucocorticoid receptor-mediated upregulation of ZO-1 tight junction protein. J Cereb Blood Flow Metab. 2015;35:1191-8 pubmed 出版商
  48. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  49. Feeney S, McGrath M, Sriratana A, Gehrig S, Lynch G, D Arcy C, et al. FHL1 reduces dystrophy in transgenic mice overexpressing FSHD muscular dystrophy region gene 1 (FRG1). PLoS ONE. 2015;10:e0117665 pubmed 出版商
  50. Crane J, Palanivel R, Mottillo E, Bujak A, Wang H, Ford R, et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat Med. 2015;21:166-72 pubmed 出版商
  51. Arredondo Zamarripa D, Díaz Lezama N, Meléndez García R, Chávez Balderas J, Adán N, Ledesma Colunga M, et al. Vasoinhibins regulate the inner and outer blood-retinal barrier and limit retinal oxidative stress. Front Cell Neurosci. 2014;8:333 pubmed 出版商
  52. Cai Y, Fedeles S, Dong K, Anyatonwu G, Onoe T, Mitobe M, et al. Altered trafficking and stability of polycystins underlie polycystic kidney disease. J Clin Invest. 2014;124:5129-44 pubmed 出版商
  53. Srinivasan S, Romagnoli M, Bohm A, Sonenshein G. N-glycosylation regulates ADAM8 processing and activation. J Biol Chem. 2014;289:33676-88 pubmed 出版商
  54. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  55. De Rossi G, Evans A, Kay E, Woodfin A, McKay T, Nourshargh S, et al. Shed syndecan-2 inhibits angiogenesis. J Cell Sci. 2014;127:4788-99 pubmed 出版商
  56. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  57. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  58. Tanti G, Goswami S. SG2NA recruits DJ-1 and Akt into the mitochondria and membrane to protect cells from oxidative damage. Free Radic Biol Med. 2014;75:1-13 pubmed 出版商
  59. Spadaro D, Tapia R, Jond L, Sudol M, Fanning A, Citi S. ZO proteins redundantly regulate the transcription factor DbpA/ZONAB. J Biol Chem. 2014;289:22500-11 pubmed 出版商
  60. McEwen A, Maher M, Mo R, Gottardi C. E-cadherin phosphorylation occurs during its biosynthesis to promote its cell surface stability and adhesion. Mol Biol Cell. 2014;25:2365-74 pubmed 出版商
  61. Trolle C, König N, Abrahamsson N, Vasylovska S, Kozlova E. Boundary cap neural crest stem cells homotopically implanted to the injured dorsal root transitional zone give rise to different types of neurons and glia in adult rodents. BMC Neurosci. 2014;15:60 pubmed 出版商
  62. Liu J, Ye J, Zou X, Xu Z, Feng Y, Zou X, et al. CRL4A(CRBN) E3 ubiquitin ligase restricts BK channel activity and prevents epileptogenesis. Nat Commun. 2014;5:3924 pubmed 出版商
  63. Asano S, Nemoto T, Kitayama T, Harada K, Zhang J, Harada K, et al. Phospholipase C-related catalytically inactive protein (PRIP) controls KIF5B-mediated insulin secretion. Biol Open. 2014;3:463-74 pubmed 出版商
  64. Tsika E, Glauser L, Moser R, Fiser A, Daniel G, Sheerin U, et al. Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Hum Mol Genet. 2014;23:4621-38 pubmed 出版商
  65. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  66. Han X, Cheng D, Song F, Zeng T, An L, Xie K. Decelerated transport and its mechanism of 2,5-hexanedione on middle-molecular-weight neurofilament in rat dorsal root ganglia cells. Neuroscience. 2014;269:192-8 pubmed 出版商
  67. Verslegers M, Van Hove I, Dekeyster E, Gantois I, Hu T, D Hooge R, et al. MMP-2 mediates Purkinje cell morphogenesis and spine development in the mouse cerebellum. Brain Struct Funct. 2015;220:1601-17 pubmed 出版商
  68. Jung H, Song K, Chang J, Doh J. Geometrically controlled asymmetric division of CD4+ T cells studied by immunological synapse arrays. PLoS ONE. 2014;9:e91926 pubmed 出版商
  69. Endesfelder U, Malkusch S, Fricke F, Heilemann M. A simple method to estimate the average localization precision of a single-molecule localization microscopy experiment. Histochem Cell Biol. 2014;141:629-38 pubmed 出版商
  70. Yim D, Ghosh S, Guy G, Virshup D. Casein kinase 1 regulates Sprouty2 in FGF-ERK signaling. Oncogene. 2015;34:474-84 pubmed 出版商
  71. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  72. Heydendael W, Sengupta A, Beck S, Bhatnagar S. Optogenetic examination identifies a context-specific role for orexins/hypocretins in anxiety-related behavior. Physiol Behav. 2014;130:182-90 pubmed 出版商
  73. Zeidán Chuliá F, Gelain D, Kolling E, Rybarczyk Filho J, Ambrosi P, Terra S, et al. Major components of energy drinks (caffeine, taurine, and guarana) exert cytotoxic effects on human neuronal SH-SY5Y cells by decreasing reactive oxygen species production. Oxid Med Cell Longev. 2013;2013:791795 pubmed 出版商
  74. Siebert A, Ma Z, Grevet J, Demuro A, Parker I, Foskett J. Structural and functional similarities of calcium homeostasis modulator 1 (CALHM1) ion channel with connexins, pannexins, and innexins. J Biol Chem. 2013;288:6140-53 pubmed 出版商
  75. Körschen H, Yildiz Y, Raju D, Schonauer S, Bönigk W, Jansen V, et al. The non-lysosomal ?-glucosidase GBA2 is a non-integral membrane-associated protein at the endoplasmic reticulum (ER) and Golgi. J Biol Chem. 2013;288:3381-93 pubmed 出版商
  76. Schrama D, Hesbacher S, Becker J, Houben R. Survivin downregulation is not required for T antigen knockdown mediated cell growth inhibition in MCV infected merkel cell carcinoma cells. Int J Cancer. 2013;132:2980-2 pubmed 出版商
  77. Coso S, Zeng Y, Sooraj D, Williams E. Conserved signaling through vascular endothelial growth (VEGF) receptor family members in murine lymphatic endothelial cells. Exp Cell Res. 2011;317:2397-407 pubmed 出版商
  78. Gursel D, Connell Albert Y, Tuskan R, Anastassiadis T, Walrath J, Hawes J, et al. Control of proliferation in astrocytoma cells by the receptor tyrosine kinase/PI3K/AKT signaling axis and the use of PI-103 and TCN as potential anti-astrocytoma therapies. Neuro Oncol. 2011;13:610-21 pubmed 出版商
  79. Liang H, Ran Q, Jang Y, Holstein D, Lechleiter J, McDonald Marsh T, et al. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med. 2009;47:312-20 pubmed 出版商
  80. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl. 2008;47:6172-6 pubmed 出版商
  81. Howell M, Fairchild H, Kim B, Bin L, Boguniewicz M, Redzic J, et al. Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Invest Dermatol. 2008;128:2248-58 pubmed 出版商
  82. Talmadge R, Paalani M. Sarco(endo)plasmic reticulum calcium pump isoforms in paralyzed rat slow muscle. Biochim Biophys Acta. 2007;1770:1187-93 pubmed
  83. Li C, Capan E, Zhao Y, Zhao J, Stolz D, Watkins S, et al. Autophagy is induced in CD4+ T cells and important for the growth factor-withdrawal cell death. J Immunol. 2006;177:5163-8 pubmed
  84. Li Q, Ching A, Chan B, Chow S, Lim P, Ho T, et al. A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem. 2004;279:52106-16 pubmed