这是一篇来自已证抗体库的有关小鼠 Ⅲ型β微管蛋白 (Tubb3) 的综述,是根据490篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ⅲ型β微管蛋白 抗体。
Ⅲ型β微管蛋白 同义词: 3200002H15Rik; M(beta)3; M(beta)6

BioLegend
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 5c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 5c). Nat Commun (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:3000; 图 6h
  • 免疫组化-冰冻切片; 小鼠; 1:3000; 图 4a
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:3000 (图 6h) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 (图 4a). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2s3
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801213)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2s3). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 1d). J Comp Neurol (2020) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 s1j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 s1j). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 1a, 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a, 1d). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 7s2b
  • 免疫印迹; 小鼠; 1:5000; 图 7s2c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 7s2b) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7s2c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 2g
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2g). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 s3e
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在小鼠样本上 (图 s3e). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:100; 图 3s1b
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3s1b). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1k
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1k). Nat Neurosci (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 小鼠; 1:2000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P-100)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; African green monkey; 1:500; 图 s1b
  • 免疫组化; 人类; 图 s1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435)被用于被用于免疫组化在African green monkey样本上浓度为1:500 (图 s1b) 和 被用于免疫组化在人类样本上 (图 s1b). Cell (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 6a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1e). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1d
BioLegendⅢ型β微管蛋白抗体(BioLegends, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1d). Cell Rep (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5c). elife (2019) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Nature (2019) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Science (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1a). Front Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 2
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在人类样本上 (图 2). J Stem Cells Regen Med (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 4j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 4j). J Clin Invest (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:750; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:750 (图 1c). J Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 s1c
BioLegendⅢ型β微管蛋白抗体(biolegend, 801201)被用于被用于免疫组化在小鼠样本上 (图 s1c). Nat Commun (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
BioLegendⅢ型β微管蛋白抗体(Covance, 801201)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a). Free Radic Biol Med (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 图 3a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3a). J Lipid Res (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 1a). Development (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 人类; 图 4g
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在人类样本上 (图 4g). Oncogenesis (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4d). Gene Expr Patterns (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4e). J Neurosci (2018) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫组化在小鼠样本上 (图 4d). Eneuro (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 1b). Dev Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 e8i
BioLegendⅢ型β微管蛋白抗体(BioLegend, mms-435p)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 e8i). Nature (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 2b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:4000; 图 3e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:4000 (图 3e). Nat Commun (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1j
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1j). Stem Cell Res (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1500; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1e). Neuron (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435p)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 7a). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 图 5b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5b). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:500; 表 s1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 s1). Stem Cell Reports (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 大鼠; 图 s4c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 s4c). J Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1f). Nat Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 2a2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a2). Sci Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 猕猴; 1:1000; 图 5b
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS 435 P)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:1000 (图 5b) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4c). Sci Rep (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:800; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 1e). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4d). Sci Rep (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:6000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:6000 (图 1b). Cell Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7a). Nat Commun (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1a). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • proximity ligation assay; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于proximity ligation assay在小鼠样本上 (图 3a) 和 被用于免疫细胞化学在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 4a
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2000; 图 s7e
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 6b
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 6b). Cell (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:400; 图 42
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P-100)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 42). Neural Regen Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2500; 图 st4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 3c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 3c). Cell Stem Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s2d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 s2d). Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d
  • 免疫印迹; 小鼠; 1:5000; 图 3a
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). elife (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1c
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于被用于免疫细胞化学在人类样本上 (图 1c). Cell Stem Cell (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 1b
  • 免疫细胞化学; 人类; 1:1000; 图 s4a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s4a). Transl Res (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 图 8a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 8a). elife (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 图 10a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 802001)被用于被用于免疫细胞化学在小鼠样本上 (图 10a). J Cell Biol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e2k
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e2k). Nature (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1d). Mol Biol Cell (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s1a
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell Chem Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). Neural Dev (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, prb-435p-100)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 大鼠; 1:500; 图 7c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 7c). PLoS ONE (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500. Science (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1b
BioLegendⅢ型β微管蛋白抗体(BioLegend, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1b). FASEB J (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 s3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Nat Med (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 人类; 图 s5
BioLegendⅢ型β微管蛋白抗体(BioLegend, PRB-435P)被用于被用于免疫组化在人类样本上 (图 s5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫印迹; 人类; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫印迹在人类样本上浓度为1:5000. EMBO Mol Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200; 图 s4a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4a). Development (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 人类; 1:2000; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 1a). Stem Cell Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5a). BMC Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 2000 ng/ml; 图 4s3
BioLegendⅢ型β微管蛋白抗体(Covance, mms-435p)被用于被用于免疫细胞化学在小鼠样本上浓度为2000 ng/ml (图 4s3). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:5000; 表 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (表 2). Lab Chip (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s2
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s2) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1a
  • 免疫印迹; 人类; 1:500; 图 1c
  • 免疫细胞化学; 大鼠; 1:500; 图 4a
  • 免疫印迹; 大鼠; 1:500; 图 4e
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1a), 被用于免疫印迹在人类样本上浓度为1:500 (图 1c), 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫印迹; 小鼠; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫印迹在小鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1500; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1500 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 图 1g
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 1d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 1d). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:2000; 图 1A
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1A). Stem Cell Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a). EBioMedicine (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 st1
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6j
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6j). Cell Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1,500; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1,500 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 2f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上 (图 2f). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1 ug/ml; 表 1
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801202)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1s1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1s1). elife (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:250; 图 1c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1c). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s7
BioLegendⅢ型β微管蛋白抗体(covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s7). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 鸡; 图 2f
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在鸡样本上 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Development (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500; 图 s2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3d). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Sci Rep (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (表 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7
BioLegendⅢ型β微管蛋白抗体(Biolegend, 802001)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7). Exp Ther Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:400; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5). Mol Brain (2016) ncbi
小鼠 单克隆(TUJ1)
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于. Stem Cell Reports (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Nat Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2j
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2j). Stem Cells Int (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS435P)被用于被用于免疫细胞化学在人类样本上 (图 1a). Arch Toxicol (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). J Neuropathol Exp Neurol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2e
BioLegendⅢ型β微管蛋白抗体(Covance/BioLegend, MMS-435P)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2e). J Pineal Res (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 4). J Exp Med (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1). J Cell Sci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3a'
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3a'). Exp Neurol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801201)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). J Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-石蜡切片; 人类; 表 2
BioLegendⅢ型β微管蛋白抗体(Biolegend, PRB-435P)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Oncotarget (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:5000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; Meganyctiphanes norvegica; 图 5c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 801201)被用于被用于免疫组化在Meganyctiphanes norvegica样本上 (图 5c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:100; 图 4b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4b). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:200. Sci Rep (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s1a). Cell (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:6000; 图 s1b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:6000 (图 s1b). Nat Commun (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 大鼠; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在大鼠样本上 (图 7a). J Neurosci (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 小鼠; 1:2500; 图 4c
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2500 (图 4c). Stem Cells Int (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1). Hum Mol Genet (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 图 1a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上 (图 1a). Synapse (2016) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 图 8b
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上 (图 8b). Synapse (2016) ncbi
小鼠 单克隆(TUJ1)
BioLegendⅢ型β微管蛋白抗体(Biolegend, 801202)被用于. Stem Cell Reports (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3a
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). J Neurosci (2015) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化; 小鼠; 1:10,000; 图 2c
BioLegendⅢ型β微管蛋白抗体(BioLegend, 802001)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 2c). Dev Biol (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 2b
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上 (图 2b). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, mms435p)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155p)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Dev Dyn (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 6
BioLegendⅢ型β微管蛋白抗体(BioLegend, TUJ1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:10,000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫组化-冰冻切片; 人类; 1:1000; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (表 1). J Neurosci Methods (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435p)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-100)被用于被用于免疫组化在小鼠样本上 (图 1). Lab Invest (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆(Poly18020)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:300; 图 1e
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1e). Brain Struct Funct (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, clone TUJ1)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:5000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 3). Nat Protoc (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 2c
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2c). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, TuJ1)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. Brain (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:2000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1). Cereb Cortex (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000; 图 6d
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6d). PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance Research Projects, MMS-435P)被用于被用于免疫组化在小鼠样本上. Exp Neurol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫组化-冰冻切片; 人类
BioLegendⅢ型β微管蛋白抗体(Covance Inc, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Acta Biomater (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 2Ah
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2Ah). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance Biolegend, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400, 被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Mol Ther (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:350
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:350. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:200; 图 4
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Biol Chem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, PRB 155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Cytometry A (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3). Development (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:100; 表 1
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Dev Biol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 6
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Neurosci (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Proteomics (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:2000; 图 1
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Stem Cell Reports (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. Stem Cells (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:800
  • 免疫印迹; 小鼠; 1:800
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:800 和 被用于免疫印迹在小鼠样本上浓度为1:800. Mol Cell Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:400
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 猪; 1:100
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化在猪样本上浓度为1:100. Hum Mol Genet (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠
  • 免疫细胞化学; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500; 图 1b
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). J Cell Biochem (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; alpaca; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫细胞化学在alpaca样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上. J Assoc Res Otolaryngol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:200. J Neurotrauma (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2015) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(TUJ1)
  • 流式细胞仪; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435p)被用于被用于流式细胞仪在人类样本上浓度为1:1000. Cancer Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; African green monkey; 1:1200
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:1200. Nat Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Assist Reprod Genet (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. World J Stem Cells (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:250
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Front Cell Neurosci (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Cell Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1,000. J Comp Neurol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠; 1:2500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. PLoS ONE (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj1)被用于被用于免疫细胞化学在小鼠样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. Stem Cells Dev (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(BABCO, Tuj1)被用于被用于免疫组化在小鼠样本上浓度为1:500. Stem Cells (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Dev Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. Stem Cell Res (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Antioxid Redox Signal (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:5000; 图 7a
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 7a). J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, Tuj-1)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P-250)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 人类; 1:100
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100. Stem Cells Dev (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠; 1:3000
BioLegendⅢ型β微管蛋白抗体(Babco/Covance Res, PRB-155P)被用于被用于免疫组化在小鼠样本上浓度为1:3000. Cell Death Differ (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2
BioLegendⅢ型β微管蛋白抗体(Covance, TuJ1)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Stem Cell Res (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上. J Biomed Mater Res B Appl Biomater (2014) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 大鼠
  • 免疫印迹; 人类; 图 5
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在人类样本上 (图 5). J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1,000. Methods Mol Biol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covence, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 猪; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在猪样本上浓度为1:500. Cell Reprogram (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化在小鼠样本上. Neural Dev (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:1000; 图 3
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 大鼠; 1:10,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000. J Biol Chem (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫印迹; 大鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000. Mol Cell Biol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:400
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. PLoS ONE (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 大鼠; 1:10000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10000. J Neurosci (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上. Br J Cancer (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Neuropharmacology (2012) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:1250
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1250. J Comp Neurol (2012) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:200
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2011) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, PRB-155P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Am J Pathol (2011) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-石蜡切片; 鸡; 1:1,000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:1,000. J Comp Neurol (2010) ncbi
小鼠 单克隆(TUJ1)
  • 免疫细胞化学; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; African green monkey; 1:2000
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:2000. J Comp Neurol (2009) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 大鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化; 鸡; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, TUJ-1)被用于被用于免疫组化在鸡样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(TUJ1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
BioLegendⅢ型β微管蛋白抗体(Covance, MMS-435P)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2006) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Cell (2019) ncbi
domestic rabbit 单克隆(EP1569Y)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52623)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5b). Nature (2019) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 图 s5b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s4a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在人类样本上 (图 s4a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上. Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(EP1569Y)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Neural Dev (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 表 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (表 1). Oncol Lett (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 小鼠; 1:400; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 7a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 小鼠; 图 3A
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在小鼠样本上 (图 3A). Peerj (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st15
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st15). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6j
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6j). Ann Neurol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在大鼠样本上浓度为1:100. J Gen Physiol (2017) ncbi
小鼠 单克隆(2G10)
  • 免疫印迹; 人类; 图 9c
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫印迹在人类样本上 (图 9c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2a). F1000Res (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫印迹在小鼠样本上 (图 6a). F1000Res (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 1a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 18207)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:100; 图 2a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 8). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Brain (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 图 4f
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4f). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1h
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1h). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2). J Neurochem (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000; 图 2
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, TU-20)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(abcam, ab18207)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Cell Reprogram (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2
  • 免疫印迹; 小鼠; 1:2000; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Biochim Biophys Acta (2016) ncbi
鸡 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab41489)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Stem Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 1
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, 18207)被用于被用于免疫印迹在小鼠样本上 (图 3b). BMC Genomics (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 鸡; 1:500; 图 s6
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫组化在鸡样本上浓度为1:500 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(2G10)
  • 免疫组化; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab78078)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7a). Biol Open (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Cytotechnology (2016) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. Hum Pathol (2015) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 大鼠
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫细胞化学在大鼠样本上. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:6000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫印迹在小鼠样本上浓度为1:6000. Biol Reprod (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:2000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab18207)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 小鼠; 图 9
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab52901)被用于被用于免疫细胞化学在小鼠样本上 (图 9). Int J Mol Sci (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, AB7751)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EPR1568Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Epitomics, 2276-1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5). J Neurochem (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Neurobiol (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Neurochem Int (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 人类; 1:1000
艾博抗(上海)贸易有限公司Ⅲ型β微管蛋白抗体(Abcam, ab7751)被用于被用于免疫组化在人类样本上浓度为1:1000. Stem Cells Dev (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AA10)
  • 免疫细胞化学; 小鼠; 图 s2c
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(SantaCruz, sc-80016)被用于被用于免疫细胞化学在小鼠样本上 (图 s2c). Cell (2017) ncbi
小鼠 单克隆(AA10)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-80016)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 图 5c
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, TU-20)被用于被用于免疫细胞化学在小鼠样本上 (图 5c). Neuroscience (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:2000
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-51670)被用于被用于免疫细胞化学在人类样本上浓度为1:2000. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-51670)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mar Drugs (2015) ncbi
小鼠 单克隆(3H3091)
  • 免疫印迹; 犬; 1:1000; 图 6
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-69966)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:1000
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Oxid Med Cell Longev (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz Biotechnology, sc-51670)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Neuroreport (2014) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 大鼠; 1:550
圣克鲁斯生物技术Ⅲ型β微管蛋白抗体(Santa Cruz, sc-80005)被用于被用于免疫细胞化学在大鼠样本上浓度为1:550. Cell Mol Neurobiol (2014) ncbi
赛默飞世尔
小鼠 单克隆(2G10)
  • 免疫组化-冰冻切片; domestic rabbit; 1:100; 图 4e
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Scientific, MA1118)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:100 (图 4e). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(2G10-TB3)
  • 免疫组化; 小鼠; 1:250; 图 2d
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 50-4510)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2d). J Cell Sci (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 1:2000; 图 9
赛默飞世尔Ⅲ型β微管蛋白抗体(Thermo Fisher, MA1-19187)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 9). Oncotarget (2016) ncbi
小鼠 单克隆(2G10)
  • 免疫细胞化学; 人类; 1:100; 图 5e
赛默飞世尔Ⅲ型β微管蛋白抗体(eBioscience, 2G10)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5e). Stem Cells Transl Med (2016) ncbi
Novus Biologicals
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 人类; 1:5000; 图 3b
Novus BiologicalsⅢ型β微管蛋白抗体(Novus, NB120-11314)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3b). Acta Neuropathol (2017) ncbi
Synaptic Systems
豚鼠 多克隆(/)
  • 免疫印迹; 小鼠; 图 1a
Synaptic SystemsⅢ型β微管蛋白抗体(Synaptic Systems, 302304)被用于被用于免疫印迹在小鼠样本上 (图 1a). Science (2019) ncbi
豚鼠 多克隆(/)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4s1b
Synaptic SystemsⅢ型β微管蛋白抗体(Synaptic Systems, 302304)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4s1b). elife (2018) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 图 7
伯乐(Bio-Rad)公司Ⅲ型β微管蛋白抗体(AbD Serotec, MCA2047)被用于被用于免疫细胞化学在人类样本上 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:500; 图 2a
伯乐(Bio-Rad)公司Ⅲ型β微管蛋白抗体(AbD Serotec, MCA2047)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2a). J Neurosci Res (2015) ncbi
西格玛奥德里奇
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:150
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150. elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s4c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s4c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 1a, 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 1a, 6a). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1b
  • 免疫细胞化学; 小鼠; 图 4g
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T2200)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b) 和 被用于免疫细胞化学在小鼠样本上 (图 4g). Wound Repair Regen (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 s2c
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上 (图 3a). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 st1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 st1). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 人类; 图 3b
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫细胞化学在人类样本上 (图 3b). Oncol Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 1a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1a). Mol Cell Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 3d
  • 免疫印迹; 小鼠; 1:5000; 图 3a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). elife (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). J Vis Exp (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 S1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T2200)被用于被用于免疫细胞化学在人类样本上 (图 S1). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:2000
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000. J Neurochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:4000; 图 2a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上浓度为1:4000 (图 2a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 2
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:3000; 图 4a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SAB4300623)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4a). Mol Med Rep (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫细胞化学; 小鼠; 1:3000; 图 4a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫细胞化学在小鼠样本上浓度为1:3000 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T3952)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 5
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 6a
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上 (图 6a). ACS Nano (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 s9d
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化在人类样本上浓度为1:500 (图 s9d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫印迹在小鼠样本上 (图 1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 图 s3
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T2200)被用于被用于免疫细胞化学在大鼠样本上 (图 s3). PLoS ONE (2016) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠; 1:800; 图 1
  • 免疫印迹; 小鼠; 1:800; 图 6
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma-Aldrich, T5076)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:800 (图 6). Cereb Cortex (2017) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; 小鼠
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫组化在小鼠样本上. Cell Rep (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-冰冻切片; 小鼠; 1:800; 图 s8
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800 (图 s8). Nat Med (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化; Styela plicata; 1:100
  • 免疫印迹; Styela plicata; 1:2500
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, T5076)被用于被用于免疫组化在Styela plicata样本上浓度为1:100 和 被用于免疫印迹在Styela plicata样本上浓度为1:2500. Dev Neurobiol (2015) ncbi
小鼠 单克隆(SDL.3D10)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇Ⅲ型β微管蛋白抗体(Sigma, SDL.3D10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. J Comp Neurol (2013) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 4466)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Nat Commun (2020) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 图 s3d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technologies, 4466)被用于被用于免疫细胞化学在人类样本上 (图 s3d). Acta Neuropathol Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s2c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 s4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s4d). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3b). Nature (2019) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于. Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cst, 9284)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在大鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6a). Cancer Lett (2018) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 大鼠; 1:200; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 小鼠; 1:400; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 人类; 1:100; 图 1g
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568S)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1g). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4b
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(CST, 9284)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signalling Technolog, 9284)被用于被用于免疫印迹在人类样本上 (图 3d). Nucleic Acids Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 2d). Cell Cycle (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Arch Biochem Biophys (2017) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, D71G9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Brain (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Tech, 9287)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 5568)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6a). Dev Growth Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technologies, 9284)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 秀丽隐杆线虫; 图 s3b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在秀丽隐杆线虫样本上 (图 s3b). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 5568)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2a). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284S)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9287)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Tech, 9284)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 5). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Tech, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(ell Signaling Technology, 9287)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(ell Signaling Technology, 9284)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:300; 图 s14
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, D71G9)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 s14). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signal, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, D71G9)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284L)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D65A4)
  • 免疫印迹; 人类; 图 8c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5666)被用于被用于免疫印迹在人类样本上 (图 8c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res Treat (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 2e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technolog, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, 9287)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, 9284)被用于被用于免疫印迹在人类样本上 (图 1b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 4466)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5j
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 5j). Genes Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1c
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上 (图 s1c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 4d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 9284S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). DNA Repair (Amst) (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上 (图 s5). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 9284)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2015) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(cell signalling, D71G9)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, #5568)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. J Neuroinflammation (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 9284)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signalling, 9284)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(D71G9)
  • 免疫组化; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 5568)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling Technology, 4466S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell Signaling, 4466)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(D65A4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司Ⅲ型β微管蛋白抗体(Cell signaling, 5666)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
默克密理博中国
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:400; 图 3f
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, AB3201)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Sci Adv (2019) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 6d
默克密理博中国Ⅲ型β微管蛋白抗体(Merck Millipore, MAB1637)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 6d). Histochem Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1b
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, Billerica, AB3201)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b). Biochem Biophys Res Commun (2018) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 图 1e
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Rep (2018) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 图 s1k
默克密理博中国Ⅲ型β微管蛋白抗体(EMD Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上 (图 s1k). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, AB3201)被用于被用于免疫印迹在人类样本上 (图 s6a). FEBS Lett (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
  • 免疫细胞化学; 人类; 1:500; 图 3
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, AB3201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). Cilia (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore Bioscience, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 小鼠; 图 2d
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫印迹在小鼠样本上 (图 2d). Stem Cells Int (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 大鼠; 图 s1d
默克密理博中国Ⅲ型β微管蛋白抗体(EMD Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1d). Sci Rep (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 图 5
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, 1637)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Mol Cell Neurosci (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:400; 图 s2
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 s2). PLoS ONE (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:400; 表 s4
  • 免疫印迹; 人类; 1:400; 表 s4
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 s4) 和 被用于免疫印迹在人类样本上浓度为1:400 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:700; 图 5a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:700 (图 5a). J Cell Sci (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 图 1
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:50; 图 4
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 小鼠; 图 s1a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s1a). J Clin Invest (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 鸡; 1:250; 图 8a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:250 (图 8a). J Comp Neurol (2017) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:400; 图 1
默克密理博中国Ⅲ型β微管蛋白抗体(millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Stem Cell Rev (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3d
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1 ug/ml; 图 5
默克密理博中国Ⅲ型β微管蛋白抗体(Milipore, AB3201)被用于被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 4
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 4). J Clin Invest (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:2000; 图 2
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 2). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s5
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, AB3201)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s5). PLoS Biol (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 小鼠; 图 5
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, 1637)被用于被用于免疫组化在小鼠样本上 (图 5). elife (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 图 1
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, CBL412)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 4
默克密理博中国Ⅲ型β微管蛋白抗体(Merck Millipore, AB3201)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 4). EMBO Rep (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 5d
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5d). Biomicrofluidics (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 人类
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化在人类样本上. Hum Pathol (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2e
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2e). Sci Rep (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:50; 图 3
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3). Cell Death Differ (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s3
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 1e
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1e). Dis Model Mech (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:100-1:500; 图 5c
  • 免疫细胞化学; 小鼠
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore,, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:100-1:500 (图 5c) 和 被用于免疫细胞化学在小鼠样本上. Cell Death Differ (2016) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:100; 图 2
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon Mab, 1637)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Dis Model Mech (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200; 图 2
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-石蜡切片; 人类; 图 S6
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, CBL412X)被用于被用于免疫组化-石蜡切片在人类样本上 (图 S6). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:100; 图 1
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; Chinese softshell turtle; 1:200
  • 免疫组化; Paroedura; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化在Chinese softshell turtle样本上浓度为1:200 和 被用于免疫组化在Paroedura样本上浓度为1:200. Front Neurosci (2015) ncbi
小鼠 单克隆(TU-20)
  • 流式细胞仪; 小鼠; 1:100; 图 4b
  • 免疫细胞化学; 小鼠; 1:100; 图 6a
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6a). Glia (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 小鼠
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化在小鼠样本上. Hear Res (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, CBL412A5)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Toxicol In Vitro (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 家羊; 10 ug/ml; 图 2
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在家羊样本上浓度为10 ug/ml (图 2). Cell Reprogram (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Toxicol Appl Pharmacol (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, TU-20)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 人类; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. Neuroscience (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:100
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:100
默克密理博中国Ⅲ型β微管蛋白抗体(Merck Millipore, MAB1637)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Dev Growth Differ (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 人类; 1:250
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫印迹在人类样本上浓度为1:250. Stem Cell Rev (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上. Neurosci Lett (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500
默克密理博中国Ⅲ型β微管蛋白抗体(Merck Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Int J Dev Neurosci (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:100
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Acta Naturae (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:600
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600. Cytotechnology (2015) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:300
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, mab1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300. Nature (2014) ncbi
小鼠 单克隆(TU-20)
  • In-Cell Western; 小鼠; 1:1000
  • 免疫组化-冰冻切片; 小鼠; 1:1000
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon-Millipore, MAB1637)被用于被用于In-Cell Western在小鼠样本上浓度为1:1000 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Mol Neurosci (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 小鼠; 1:500
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 大鼠; 1:250
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, CBL412X)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:250. Hear Res (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:200. J Neurol Sci (2014) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Chemcon, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:100
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Neurosci Res (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化; 人类; 1:200
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, Tu-20)被用于被用于免疫组化在人类样本上浓度为1:200. Clin Neuropathol (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:200; 图 6
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). Nucleic Acids Res (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:2000
默克密理博中国Ⅲ型β微管蛋白抗体(EMD Millipore, MAB1637)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:2000. J Neurochem (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; African green monkey; 1:100
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:100. Hum Gene Ther (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, Mab 1637)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 犬; 1:300
  • 免疫细胞化学; 犬; 1:300
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, MAB1637)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:300 和 被用于免疫细胞化学在犬样本上浓度为1:300. Histochem Cell Biol (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 猕猴; 1:500
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, MAB1637)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500. Stem Cells Dev (2013) ncbi
小鼠 单克隆(TU-20)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上. Mol Biol Cell (2012) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 1:2000
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000. J Comp Neurol (2012) ncbi
小鼠 单克隆(TU-20)
  • 免疫印迹; 猪
默克密理博中国Ⅲ型β微管蛋白抗体(Millipore, MAB1637)被用于被用于免疫印迹在猪样本上. Mol Cell Proteomics (2011) ncbi
小鼠 单克隆(TU-20)
  • 免疫组化-冰冻切片; 小鼠; 1:50
默克密理博中国Ⅲ型β微管蛋白抗体(Chemicon, MAB1637)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Comp Neurol (2008) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(6G7)
  • 免疫细胞化学; 斑马鱼; 1:250; 图 3
Developmental Studies Hybridoma BankⅢ型β微管蛋白抗体(DSHB, 6G7)被用于被用于免疫细胞化学在斑马鱼样本上浓度为1:250 (图 3). J Neurosci Methods (2014) ncbi
文章列表
  1. Chan K, Nestor J, Huerta T, Certain N, Moody G, Kowal C, et al. Lupus autoantibodies act as positive allosteric modulators at GluN2A-containing NMDA receptors and impair spatial memory. Nat Commun. 2020;11:1403 pubmed 出版商
  2. Barry D, Liu X, Liu B, Liu X, Gao F, Zeng X, et al. Exploration of sensory and spinal neurons expressing gastrin-releasing peptide in itch and pain related behaviors. Nat Commun. 2020;11:1397 pubmed 出版商
  3. Wei Y, Lu M, Mei M, Wang H, Han Z, Chen M, et al. Pyridoxine induces glutathione synthesis via PKM2-mediated Nrf2 transactivation and confers neuroprotection. Nat Commun. 2020;11:941 pubmed 出版商
  4. Even A, Morelli G, Broix L, Scaramuzzino C, Turchetto S, Gladwyn Ng I, et al. ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Sci Adv. 2019;5:eaax2705 pubmed 出版商
  5. Luck R, Urban S, Karakatsani A, Harde E, Sambandan S, Nicholson L, et al. VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. elife. 2019;8: pubmed 出版商
  6. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  7. Bendriem R, Singh S, Aleem A, Antonetti D, Ross M. Tight junction protein occludin regulates progenitor Self-Renewal and survival in developing cortex. elife. 2019;8: pubmed 出版商
  8. Sifuentes Dominguez L, Li H, Llano E, Liu Z, Singla A, Patel A, et al. SCGN deficiency results in colitis susceptibility. elife. 2019;8: pubmed 出版商
  9. Margarido A, Le Guen L, Falco A, Faure S, Chauvet N, de Santa Barbara P. PROX1 is a specific and dynamic marker of sacral neural crest cells in the chicken intestine. J Comp Neurol. 2020;528:879-889 pubmed 出版商
  10. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  11. Patzke C, Brockmann M, Dai J, Gan K, Grauel M, Fenske P, et al. Neuromodulator Signaling Bidirectionally Controls Vesicle Numbers in Human Synapses. Cell. 2019;179:498-513.e22 pubmed 出版商
  12. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  13. Fan D, Chettouh Z, Consalez G, Brunet J. Taste bud formation depends on taste nerves. elife. 2019;8: pubmed 出版商
  14. Huycke T, Miller B, Gill H, Nerurkar N, Sprinzak D, Mahadevan L, et al. Genetic and Mechanical Regulation of Intestinal Smooth Muscle Development. Cell. 2019;179:90-105.e21 pubmed 出版商
  15. Tomassoni Ardori F, Fulgenzi G, Becker J, Barrick C, Palko M, Kuhn S, et al. Rbfox1 up-regulation impairs BDNF-dependent hippocampal LTP by dysregulating TrkB isoform expression levels. elife. 2019;8: pubmed 出版商
  16. Nam H, Jeon S, An H, Yoo J, Lee H, Lee S, et al. Critical roles of ARHGAP36 as a signal transduction mediator of Shh pathway in lateral motor columnar specification. elife. 2019;8: pubmed 出版商
  17. Wiel C, Le Gal K, Ibrahim M, Jahangir C, Kashif M, Yao H, et al. BACH1 Stabilization by Antioxidants Stimulates Lung Cancer Metastasis. Cell. 2019;: pubmed 出版商
  18. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  19. An D, Fujiki R, Iannitelli D, Smerdon J, Maity S, Rose M, et al. Stem cell-derived cranial and spinal motor neurons reveal proteostatic differences between ALS resistant and sensitive motor neurons. elife. 2019;8: pubmed 出版商
  20. Ioannou M, Jackson J, Sheu S, Chang C, Weigel A, Liu H, et al. Neuron-Astrocyte Metabolic Coupling Protects against Activity-Induced Fatty Acid Toxicity. Cell. 2019;: pubmed 出版商
  21. Alexander J, Guan J, Li B, Maliskova L, Song M, Shen Y, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. elife. 2019;8: pubmed 出版商
  22. Sonego M, Pellarin I, Costa A, Vinciguerra G, Coan M, Kraut A, et al. USP1 links platinum resistance to cancer cell dissemination by regulating Snail stability. Sci Adv. 2019;5:eaav3235 pubmed 出版商
  23. Zeng X, Ye M, Resch J, Jedrychowski M, Hu B, Lowell B, et al. Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature. 2019;569:229-235 pubmed 出版商
  24. Wang G, Simon D, Wu Z, Belsky D, Heller E, O Rourke M, et al. Structural plasticity of actin-spectrin membrane skeleton and functional role of actin and spectrin in axon degeneration. elife. 2019;8: pubmed 出版商
  25. Chan E, Shibue T, McFarland J, Gaeta B, Ghandi M, Dumont N, et al. WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 2019;568:551-556 pubmed 出版商
  26. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  27. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  28. Wang H, Wang X, Zhang K, Wang Q, Cao X, Wang Z, et al. Rapid depletion of ESCRT protein Vps4 underlies injury-induced autophagic impediment and Wallerian degeneration. Sci Adv. 2019;5:eaav4971 pubmed 出版商
  29. Li Z, Hao M, Van den Haute C, Baekelandt V, Boesmans W, Vanden Berghe P. Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine. elife. 2019;8: pubmed 出版商
  30. Pollen A, Bhaduri A, Andrews M, Nowakowski T, Meyerson O, Mostajo Radji M, et al. Establishing Cerebral Organoids as Models of Human-Specific Brain Evolution. Cell. 2019;176:743-756.e17 pubmed 出版商
  31. Davies A, Kim H, González Cano R, Choi J, Back S, Roh S, et al. Natural Killer Cells Degenerate Intact Sensory Afferents following Nerve Injury. Cell. 2019;176:716-728.e18 pubmed 出版商
  32. Friocourt F, Kozulin P, Belle M, Su rez R, Di Po N, Richards L, et al. Shared and differential features of Robo3 expression pattern in amniotes. J Comp Neurol. 2019;527:2009-2029 pubmed 出版商
  33. Erwig M, Patzig J, Steyer A, Dibaj P, Heilmann M, Heilmann I, et al. Anillin facilitates septin assembly to prevent pathological outfoldings of central nervous system myelin. elife. 2019;8: pubmed 出版商
  34. Paonessa F, Evans L, Solanki R, Larrieu D, Wray S, Hardy J, et al. Microtubules Deform the Nuclear Membrane and Disrupt Nucleocytoplasmic Transport in Tau-Mediated Frontotemporal Dementia. Cell Rep. 2019;26:582-593.e5 pubmed 出版商
  35. Luo C, Lee Q, Wapinski O, Castanon R, Nery J, Mall M, et al. Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons. elife. 2019;8: pubmed 出版商
  36. Poulopoulos A, Murphy A, Ozkan A, Davis P, Hatch J, Kirchner R, et al. Subcellular transcriptomes and proteomes of developing axon projections in the cerebral cortex. Nature. 2019;565:356-360 pubmed 出版商
  37. Han S, Miyoshi K, Shikada S, Amano G, Wang Y, Yoshimura T, et al. TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem Biophys Res Commun. 2018;: pubmed 出版商
  38. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  39. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  40. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  41. Hsu J, Dayaram T, Tovy A, De Braekeleer E, Jeong M, Wang F, et al. PPM1D Mutations Drive Clonal Hematopoiesis in Response to Cytotoxic Chemotherapy. Cell Stem Cell. 2018;23:700-713.e6 pubmed 出版商
  42. Cheruiyot A, Li S, Nickless A, Roth R, Fitzpatrick J, You Z. Compound C inhibits nonsense-mediated RNA decay independently of AMPK. PLoS ONE. 2018;13:e0204978 pubmed 出版商
  43. Robbins J, Perfect L, Ribe E, Maresca M, Dangla Valls A, Foster E, et al. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci. 2018;12:504 pubmed 出版商
  44. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  45. Playne R, Jones K, Connor B. Generation of dopamine neuronal-like cells from induced neural precursors derived from adult human cells by non-viral expression of lineage factors. J Stem Cells Regen Med. 2018;14:34-44 pubmed
  46. Wang B, Joo J, Mount R, Teubner B, Krenzer A, Ward A, et al. The COPII cargo adapter SEC24C is essential for neuronal homeostasis. J Clin Invest. 2018;128:3319-3332 pubmed 出版商
  47. Appel J, Ye S, Tang F, Sun D, Zhang H, Mei L, et al. Increased Microglial Activity, Impaired Adult Hippocampal Neurogenesis, and Depressive-like Behavior in Microglial VPS35-Depleted Mice. J Neurosci. 2018;38:5949-5968 pubmed 出版商
  48. Luisier R, Tyzack G, Hall C, Mitchell J, Devine H, Taha D, et al. Intron retention and nuclear loss of SFPQ are molecular hallmarks of ALS. Nat Commun. 2018;9:2010 pubmed 出版商
  49. Wang Z, Ding Y, Wang X, Lu S, Wang C, He C, et al. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett. 2018;428:21-33 pubmed 出版商
  50. Wang C, Najm R, Xu Q, Jeong D, Walker D, Balestra M, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647-657 pubmed 出版商
  51. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  52. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  53. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  54. Wilson R, Drake J, Cui D, Lewellen B, Fisher C, Zhang M, et al. Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle. Free Radic Biol Med. 2018;117:180-190 pubmed 出版商
  55. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  56. Allende M, Cook E, Larman B, Nugent A, Brady J, Golebiowski D, et al. Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation. J Lipid Res. 2018;59:550-563 pubmed 出版商
  57. Panaliappan T, Wittmann W, Jidigam V, Mercurio S, Bertolini J, Sghari S, et al. Sox2 is required for olfactory pit formation and olfactory neurogenesis through BMP restriction and Hes5 upregulation. Development. 2018;145: pubmed 出版商
  58. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  59. Miesfeld J, Glaser T, Brown N. The dynamics of native Atoh7 protein expression during mouse retinal histogenesis, revealed with a new antibody. Gene Expr Patterns. 2018;27:114-121 pubmed 出版商
  60. Hata K, Maeno Hikichi Y, Yumoto N, Burden S, Landmesser L. Distinct Roles of Different Presynaptic and Postsynaptic NCAM Isoforms in Early Motoneuron-Myotube Interactions Required for Functional Synapse Formation. J Neurosci. 2018;38:498-510 pubmed 出版商
  61. Browne L, Smith K, Jagger D. Identification of Persistent and Resurgent Sodium Currents in Spiral Ganglion Neurons Cultured from the Mouse Cochlea. Eneuro. 2017;4: pubmed 出版商
  62. Yamazaki R, Yamazoe K, Yoshida S, Hatou S, Inagaki E, Okano H, et al. The Semaphorin 3A inhibitor SM-345431 preserves corneal nerve and epithelial integrity in a murine dry eye model. Sci Rep. 2017;7:15584 pubmed 出版商
  63. Sorokina I, Denisenko T, Imreh G, Tyurin Kuzmin P, Kaminskyy V, Gogvadze V, et al. Involvement of autophagy in the outcome of mitotic catastrophe. Sci Rep. 2017;7:14571 pubmed 出版商
  64. Vassilev V, Platek A, Hiver S, Enomoto H, Takeichi M. Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell. 2017;43:463-479.e5 pubmed 出版商
  65. Escamilla C, Filonova I, Walker A, Xuan Z, Holehonnur R, Espinosa F, et al. Kctd13 deletion reduces synaptic transmission via increased RhoA. Nature. 2017;551:227-231 pubmed 出版商
  66. Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, et al. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest. 2017;127:4338-4351 pubmed 出版商
  67. Ong D, Hu B, Ho Y, Sauvé C, Bristow C, Wang Q, et al. PAF promotes stemness and radioresistance of glioma stem cells. Proc Natl Acad Sci U S A. 2017;114:E9086-E9095 pubmed 出版商
  68. Chen X, Janssen J, Liu J, Maggio I, t Jong A, Mikkers H, et al. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun. 2017;8:657 pubmed 出版商
  69. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  70. Hernández I, Torres Peraza J, Santos Galindo M, Ramos Morón E, Fernandez Fernandez M, Pérez Álvarez M, et al. The neuroprotective transcription factor ATF5 is decreased and sequestered into polyglutamine inclusions in Huntington's disease. Acta Neuropathol. 2017;134:839-850 pubmed 出版商
  71. Sloan S, Darmanis S, Huber N, Khan T, Birey F, Caneda C, et al. Human Astrocyte Maturation Captured in 3D Cerebral Cortical Spheroids Derived from Pluripotent Stem Cells. Neuron. 2017;95:779-790.e6 pubmed 出版商
  72. Wei J, Xu H, Meng W. Noncentrosomal microtubules regulate autophagosome transport through CAMSAP2-EB1 cross-talk. FEBS Lett. 2017;591:2379-2393 pubmed 出版商
  73. Young F, Keruzore M, Nan X, Gennet N, Bellefroid E, Li M. The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A. 2017;114:E5599-E5607 pubmed 出版商
  74. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  75. Coleman J, Lin B, Schwob J. Dissecting LSD1-Dependent Neuronal Maturation in the Olfactory Epithelium. J Comp Neurol. 2017;525:3391-3413 pubmed 出版商
  76. Yasui T, Uezono N, Nakashima H, Noguchi H, Matsuda T, Noda Andoh T, et al. Hypoxia Epigenetically Confers Astrocytic Differentiation Potential on Human Pluripotent Cell-Derived Neural Precursor Cells. Stem Cell Reports. 2017;8:1743-1756 pubmed 出版商
  77. Chavali P, Stojic L, Meredith L, Joseph N, Nahorski M, Sanford T, et al. Neurodevelopmental protein Musashi-1 interacts with the Zika genome and promotes viral replication. Science. 2017;357:83-88 pubmed 出版商
  78. Ganguly A, Han X, Das U, Wang L, Loi J, Sun J, et al. Hsc70 chaperone activity is required for the cytosolic slow axonal transport of synapsin. J Cell Biol. 2017;216:2059-2074 pubmed 出版商
  79. Wang L, Yu C, Wang J, Leung P, Ma D, Zhao H, et al. Nogo-B is the major form of Nogo at the floor plate and likely mediates crossing of commissural axons in the mouse spinal cord. J Comp Neurol. 2017;525:2915-2928 pubmed 出版商
  80. Takahashi Y, Wu J, Suzuki K, Martínez Redondo P, Li M, Liao H, et al. Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science. 2017;356:503-508 pubmed 出版商
  81. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  82. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  83. Cha Y, Han M, Cha H, Zoldan J, Burkart A, Jung J, et al. Metabolic control of primed human pluripotent stem cell fate and function by the miR-200c-SIRT2 axis. Nat Cell Biol. 2017;19:445-456 pubmed 出版商
  84. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  85. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  86. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  87. Suzuki J, Hashimoto K, Xiao R, Vandenberghe L, Liberman M. Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep. 2017;7:45524 pubmed 出版商
  88. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  89. McNeely K, Cupp T, Little J, Janisch K, Shrestha A, Dwyer N. Mutation of Kinesin-6 Kif20b causes defects in cortical neuron polarization and morphogenesis. Neural Dev. 2017;12:5 pubmed 出版商
  90. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  91. Hua K, Ferland R. Fixation methods can differentially affect ciliary protein immunolabeling. Cilia. 2017;6:5 pubmed 出版商
  92. Barlow Anacker A, Fu M, Erickson C, Bertocchini F, Gosain A. Neural Crest Cells Contribute an Astrocyte-like Glial Population to the Spleen. Sci Rep. 2017;7:45645 pubmed 出版商
  93. Kang H, Park J, Choi K, Kim Y, Choi H, Jung C, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616-623 pubmed 出版商
  94. Jin X, Yu Z, Chen F, Lu G, Ding X, Xie L, et al. Neuronal Nitric Oxide Synthase in Neural Stem Cells Induces Neuronal Fate Commitment via the Inhibition of Histone Deacetylase 2. Front Cell Neurosci. 2017;11:66 pubmed 出版商
  95. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  96. Laporte M, Chatellard C, Vauchez V, Hemming F, Deloulme J, Vossier F, et al. Alix is required during development for normal growth of the mouse brain. Sci Rep. 2017;7:44767 pubmed 出版商
  97. Po A, Begalli F, Abballe L, Alfano V, Besharat Z, Catanzaro G, et al. ?-Arrestin1/miR-326 Transcription Unit Is Epigenetically Regulated in Neural Stem Cells Where It Controls Stemness and Growth Arrest. Stem Cells Int. 2017;2017:5274171 pubmed 出版商
  98. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017;18:2622-2634 pubmed 出版商
  99. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  100. Shan M, Lin S, Li S, Du Y, Zhao H, Hong H, et al. TIR-Domain-Containing Adapter-Inducing Interferon-? (TRIF) Is Essential for MPTP-Induced Dopaminergic Neuroprotection via Microglial Cell M1/M2 Modulation. Front Cell Neurosci. 2017;11:35 pubmed 出版商
  101. Bartlett R, Sluyter V, Watson D, Sluyter R, Yerbury J. P2X7 antagonism using Brilliant Blue G reduces body weight loss and prolongs survival in female SOD1G93A amyotrophic lateral sclerosis mice. Peerj. 2017;5:e3064 pubmed 出版商
  102. Chang Y, Lin T, Campbell M, Pan C, Lee S, Lee H, et al. REST is a crucial regulator for acquiring EMT-like and stemness phenotypes in hormone-refractory prostate cancer. Sci Rep. 2017;7:42795 pubmed 出版商
  103. Hegarty D, Hermes S, Yang K, Aicher S. Select noxious stimuli induce changes on corneal nerve morphology. J Comp Neurol. 2017;525:2019-2031 pubmed 出版商
  104. Chen W, Chen Y, Huang Y, Hsieh B, Chiu H, Kao P, et al. Ran-dependent TPX2 activation promotes acentrosomal microtubule nucleation in neurons. Sci Rep. 2017;7:42297 pubmed 出版商
  105. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  106. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  107. Meisenberg C, Ashour M, El Shafie L, Liao C, Hodgson A, Pilborough A, et al. Epigenetic changes in histone acetylation underpin resistance to the topoisomerase I inhibitor irinotecan. Nucleic Acids Res. 2017;45:1159-1176 pubmed 出版商
  108. Cooper H, Yang Y, Ylikallio E, Khairullin R, Woldegebriel R, Lin K, et al. ATPase-deficient mitochondrial inner membrane protein ATAD3A disturbs mitochondrial dynamics in dominant hereditary spastic paraplegia. Hum Mol Genet. 2017;26:1432-1443 pubmed 出版商
  109. Sterky F, Trotter J, Lee S, Recktenwald C, Du X, Zhou B, et al. Carbonic anhydrase-related protein CA10 is an evolutionarily conserved pan-neurexin ligand. Proc Natl Acad Sci U S A. 2017;114:E1253-E1262 pubmed 出版商
  110. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  111. Weng C, Ding M, Chang L, Ren M, Zhang H, Lu Z, et al. Ankfy1 is dispensable for neural stem/precursor cell development. Neural Regen Res. 2016;11:1804-1809 pubmed 出版商
  112. Zhou C, Robert M, Kapoulea V, Lei F, Stagner A, Jakobiec F, et al. Sustained Subconjunctival Delivery of Infliximab Protects the Cornea and Retina Following Alkali Burn to the Eye. Invest Ophthalmol Vis Sci. 2017;58:96-105 pubmed 出版商
  113. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  114. Pinca R, Manara M, Chiadini V, Picci P, Zucchini C, Scotlandi K. Targeting ROCK2 rather than ROCK1 inhibits Ewing sarcoma malignancy. Oncol Rep. 2017;37:1387-1393 pubmed 出版商
  115. Bershteyn M, Nowakowski T, Pollen A, Di Lullo E, Nene A, Wynshaw Boris A, et al. Human iPSC-Derived Cerebral Organoids Model Cellular Features of Lissencephaly and Reveal Prolonged Mitosis of Outer Radial Glia. Cell Stem Cell. 2017;20:435-449.e4 pubmed 出版商
  116. Huang Y, Zhou B, Wernig M, Sudhof T. ApoE2, ApoE3, and ApoE4 Differentially Stimulate APP Transcription and A? Secretion. Cell. 2017;168:427-441.e21 pubmed 出版商
  117. Callif B, Maunze B, Krueger N, Simpson M, Blackmore M. The application of CRISPR technology to high content screening in primary neurons. Mol Cell Neurosci. 2017;80:170-179 pubmed 出版商
  118. Yoshitomi Y, Ikeda T, Saito H, Yoshitake Y, Ishigaki Y, Hatta T, et al. JunB regulates angiogenesis and neurovascular parallel alignment in mouse embryonic skin. J Cell Sci. 2017;130:916-926 pubmed 出版商
  119. Walker L, Summers D, Sasaki Y, Brace E, Milbrandt J, DiAntonio A. MAPK signaling promotes axonal degeneration by speeding the turnover of the axonal maintenance factor NMNAT2. elife. 2017;6: pubmed 出版商
  120. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  121. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  122. Lee I, Koo K, Jung K, Kim M, Kim I, Hwang K, et al. Neurogenin-2-transduced human neural progenitor cells attenuate neonatal hypoxic-ischemic brain injury. Transl Res. 2017;183:121-136.e9 pubmed 出版商
  123. Ilouz R, Lev Ram V, Bushong E, Stiles T, Friedmann Morvinski D, Douglas C, et al. Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. elife. 2017;6: pubmed 出版商
  124. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  125. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  126. Wakatsuki S, Tokunaga S, Shibata M, Araki T. GSK3B-mediated phosphorylation of MCL1 regulates axonal autophagy to promote Wallerian degeneration. J Cell Biol. 2017;216:477-493 pubmed 出版商
  127. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  128. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  129. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  130. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  131. Fimiani C, Goina E, Su Q, Gao G, Mallamaci A. RNA activation of haploinsufficient Foxg1 gene in murine neocortex. Sci Rep. 2016;6:39311 pubmed 出版商
  132. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  133. Burnett L, LeDuc C, Sulsona C, Paull D, Rausch R, Eddiry S, et al. Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome. J Clin Invest. 2017;127:293-305 pubmed 出版商
  134. Yao P, Manor U, Petralia R, Brose R, Wu R, Ott C, et al. Sonic hedgehog pathway activation increases mitochondrial abundance and activity in hippocampal neurons. Mol Biol Cell. 2017;28:387-395 pubmed 出版商
  135. Wolfes A, Ahmed S, Awasthi A, Stahlberg M, Rajput A, Magruder D, et al. A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes. J Gen Physiol. 2017;149:149-170 pubmed 出版商
  136. McKenzie C, D Avino P. Investigating cytokinesis failure as a strategy in cancer therapy. Oncotarget. 2016;7:87323-87341 pubmed 出版商
  137. FINAN G, Realubit R, Chung S, Lutjohann D, Wang N, Cirrito J, et al. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol. 2016;23:1526-1538 pubmed 出版商
  138. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  139. López de Maturana R, Lang V, Zubiarrain A, Sousa A, Vázquez N, Gorostidi A, et al. Mutations in LRRK2 impair NF-κB pathway in iPSC-derived neurons. J Neuroinflammation. 2016;13:295 pubmed
  140. Moulis M, Millet A, Daloyau M, Miquel M, Ronsin B, Wissinger B, et al. OPA1 haploinsufficiency induces a BNIP3-dependent decrease in mitophagy in neurons: relevance to Dominant Optic Atrophy. J Neurochem. 2017;140:485-494 pubmed 出版商
  141. Ibañez Rodriguez M, Noctor S, Muñoz E. Cellular Basis of Pineal Gland Development: Emerging Role of Microglia as Phenotype Regulator. PLoS ONE. 2016;11:e0167063 pubmed 出版商
  142. Espinosa Medina I, Saha O, Boismoreau F, Chettouh Z, Rossi F, Richardson W, et al. The sacral autonomic outflow is sympathetic. Science. 2016;354:893-897 pubmed
  143. Deflorio C, Blanchard S, Carisì M, Bohl D, Maskos U. Human polymorphisms in nicotinic receptors: a functional analysis in iPS-derived dopaminergic neurons. FASEB J. 2017;31:828-839 pubmed 出版商
  144. Zeltner N, Fattahi F, Dubois N, Saurat N, Lafaille F, Shang L, et al. Capturing the biology of disease severity in a PSC-based model of familial dysautonomia. Nat Med. 2016;22:1421-1427 pubmed 出版商
  145. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  146. Watanabe S, Ilieva H, Tamada H, Nomura H, Komine O, Endo F, et al. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol Med. 2016;8:1421-1437 pubmed 出版商
  147. Puschmann A, Fiesel F, Caulfield T, Hudec R, Ando M, Truban D, et al. Heterozygous PINK1 p.G411S increases risk of Parkinson's disease via a dominant-negative mechanism. Brain. 2017;140:98-117 pubmed 出版商
  148. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  149. Varga E, Nemes C, Táncos Z, Bock I, Berzsenyi S, Lévay G, et al. Establishment of EHMT1 mutant induced pluripotent stem cell (iPSC) line from a 11-year-old Kleefstra syndrome (KS) patient with autism and normal intellectual performance. Stem Cell Res. 2016;17:531-533 pubmed 出版商
  150. Rangasamy S, Olfers S, Gerald B, Hilbert A, Svejda S, Narayanan V. Reduced neuronal size and mTOR pathway activity in the Mecp2 A140V Rett syndrome mouse model. F1000Res. 2016;5:2269 pubmed
  151. Konstantinidou C, Taraviras S, Pachnis V. Geminin prevents DNA damage in vagal neural crest cells to ensure normal enteric neurogenesis. BMC Biol. 2016;14:94 pubmed
  152. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  153. Gasperini L, Meneghetti E, Legname G, Benetti F. In Absence of the Cellular Prion Protein, Alterations in Copper Metabolism and Copper-Dependent Oxidase Activity Affect Iron Distribution. Front Neurosci. 2016;10:437 pubmed
  154. Illingworth R, Hölzenspies J, Roske F, Bickmore W, Brickman J. Polycomb enables primitive endoderm lineage priming in embryonic stem cells. elife. 2016;5: pubmed 出版商
  155. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  156. Yang J, Platt L, Maity B, Ahlers K, Luo Z, Lin Z, et al. RGS6 is an essential tumor suppressor that prevents bladder carcinogenesis by promoting p53 activation and DNMT1 downregulation. Oncotarget. 2016;7:69159-69172 pubmed 出版商
  157. Vasconcelos F, Sessa A, Laranjeira C, Raposo A, Teixeira V, Hagey D, et al. MyT1 Counteracts the Neural Progenitor Program to Promote Vertebrate Neurogenesis. Cell Rep. 2016;17:469-483 pubmed 出版商
  158. Oksdath M, Guil A, Grassi D, Sosa L, Quiroga S. The Motor KIF5C Links the Requirements of Stable Microtubules and IGF-1 Receptor Membrane Insertion for Neuronal Polarization. Mol Neurobiol. 2017;54:6085-6096 pubmed 出版商
  159. Powis R, Karyka E, Boyd P, Côme J, Jones R, Zheng Y, et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight. 2016;1:e87908 pubmed 出版商
  160. Zhang Y, Zhang Y, Zhong C, Xiao F. Cr(VI) induces premature senescence through ROS-mediated p53 pathway in L-02 hepatocytes. Sci Rep. 2016;6:34578 pubmed 出版商
  161. Neckel P, Mattheus U, Hirt B, Just L, Mack A. Large-scale tissue clearing (PACT): Technical evaluation and new perspectives in immunofluorescence, histology, and ultrastructure. Sci Rep. 2016;6:34331 pubmed 出版商
  162. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  163. Sadick J, Boutin M, Hoffman Kim D, Darling E. Protein characterization of intracellular target-sorted, formalin-fixed cell subpopulations. Sci Rep. 2016;6:33999 pubmed 出版商
  164. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  165. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  166. Borgs L, Peyre E, Alix P, Hanon K, Grobarczyk B, Godin J, et al. Dopaminergic neurons differentiating from LRRK2 G2019S induced pluripotent stem cells show early neuritic branching defects. Sci Rep. 2016;6:33377 pubmed 出版商
  167. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  168. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  169. Xing H, Lim Y, Chong J, Lee J, Aarsland D, Ballard C, et al. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with ?-amyloid burden and synaptic deficits in Lewy body dementias. Mol Brain. 2016;9:84 pubmed 出版商
  170. Ahmadian Baghbaderani B, Tian X, Scotty Cadet J, Shah K, Walde A, Tran H, et al. A Newly Defined and Xeno-Free Culture Medium Supports Every-Other-Day Medium Replacement in the Generation and Long-Term Cultivation of Human Pluripotent Stem Cells. PLoS ONE. 2016;11:e0161229 pubmed 出版商
  171. Weber A, Drobnitzky N, Devery A, Bokobza S, Adams R, Maughan T, et al. Phenotypic consequences of somatic mutations in the ataxia-telangiectasia mutated gene in non-small cell lung cancer. Oncotarget. 2016;7:60807-60822 pubmed 出版商
  172. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  173. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  174. Magalhães A, Rivera C. NKCC1-Deficiency Results in Abnormal Proliferation of Neural Progenitor Cells of the Lateral Ganglionic Eminence. Front Cell Neurosci. 2016;10:200 pubmed 出版商
  175. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  176. Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm Helm A, Noortoots A, et al. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci. 2016;129:3792-3802 pubmed
  177. Zak M, van Oort T, Hendriksen F, Garcia M, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci. 2016;10:186 pubmed 出版商
  178. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from a 75-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:81-83 pubmed 出版商
  179. Chandrasekaran A, Varga E, Nemes C, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 63-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:78-80 pubmed 出版商
  180. Tancos Z, Varga E, Kovacs E, Dinnyes A, Kobolak J. Establishment of induced pluripotent stem cell (iPSC) line from an 84-year old patient with late onset Alzheimer's disease (LOAD). Stem Cell Res. 2016;17:75-77 pubmed 出版商
  181. Ochalek A, Nemes C, Varga E, Tancos Z, Kobolak J, Dinnyes A. Establishment of induced pluripotent stem cell (iPSC) line from a 57-year old patient with sporadic Alzheimer's disease. Stem Cell Res. 2016;17:72-74 pubmed 出版商
  182. Shikuma N, Antoshechkin I, Medeiros J, Pilhofer M, Newman D. Stepwise metamorphosis of the tubeworm Hydroides elegans is mediated by a bacterial inducer and MAPK signaling. Proc Natl Acad Sci U S A. 2016;113:10097-102 pubmed 出版商
  183. Wang Y, Zhao Z, Rege S, Wang M, Si G, Zhou Y, et al. 3K3A-activated protein C stimulates postischemic neuronal repair by human neural stem cells in mice. Nat Med. 2016;22:1050-5 pubmed 出版商
  184. Park J, Yang S, Park J, Ka S, Kim J, Kong Y, et al. Positive feedback regulation of p53 transactivity by DNA damage-induced ISG15 modification. Nat Commun. 2016;7:12513 pubmed 出版商
  185. Nagano T, Nakano M, Nakashima A, Onishi K, Yamao S, Enari M, et al. Identification of cellular senescence-specific genes by comparative transcriptomics. Sci Rep. 2016;6:31758 pubmed 出版商
  186. Mikami Y, Kanemaru K, Okubo Y, Nakaune T, Suzuki J, Shibata K, et al. Nitric Oxide-induced Activation of the Type 1 Ryanodine Receptor Is Critical for Epileptic Seizure-induced Neuronal Cell Death. EBioMedicine. 2016;11:253-261 pubmed 出版商
  187. Gill K, Hung S, Sharov A, Lo C, Needham K, Lidgerwood G, et al. Enriched retinal ganglion cells derived from human embryonic stem cells. Sci Rep. 2016;6:30552 pubmed 出版商
  188. Kazantseva J, Sadam H, Neuman T, Palm K. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming. Sci Rep. 2016;6:30852 pubmed 出版商
  189. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  190. Wiley L, Burnight E, DeLuca A, Anfinson K, Cranston C, Kaalberg E, et al. cGMP production of patient-specific iPSCs and photoreceptor precursor cells to treat retinal degenerative blindness. Sci Rep. 2016;6:30742 pubmed 出版商
  191. Ah Koon L, Lesage D, Lemadre E, Souissi I, Fagard R, Varin Blank N, et al. Cellular response to alkylating agent MNNG is impaired in STAT1-deficients cells. J Cell Mol Med. 2016;20:1956-65 pubmed 出版商
  192. Luo H, Cowen L, Yu G, Jiang W, Tang Y. SMG7 is a critical regulator of p53 stability and function in DNA damage stress response. Cell Discov. 2016;2:15042 pubmed 出版商
  193. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  194. Borromeo M, Savage T, Kollipara R, He M, Augustyn A, Osborne J, et al. ASCL1 and NEUROD1 Reveal Heterogeneity in Pulmonary Neuroendocrine Tumors and Regulate Distinct Genetic Programs. Cell Rep. 2016;16:1259-1272 pubmed 出版商
  195. Stergiopoulos A, Politis P. Nuclear receptor NR5A2 controls neural stem cell fate decisions during development. Nat Commun. 2016;7:12230 pubmed 出版商
  196. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  197. Shivkumar M, Lawler C, Milho R, Stevenson P. Herpes Simplex Virus 1 Interaction with Myeloid Cells In Vivo. J Virol. 2016;90:8661-72 pubmed 出版商
  198. Ding Y, Zhang Z, Ma J, Xia H, Wang Y, Liu Y, et al. Directed differentiation of postnatal hippocampal neural stem cells generates nuclear receptor related?1 protein? and tyrosine hydroxylase?expressing cells. Mol Med Rep. 2016;14:1993-9 pubmed 出版商
  199. Li H, Li H, Hao Y, Jiao Y, Li Z, Yue H, et al. Differential long non?coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol Med Rep. 2016;14:2067-76 pubmed 出版商
  200. Sanges D, Simonte G, Di Vicino U, Romo N, Pinilla I, Nicolas M, et al. Reprogramming Müller glia via in vivo cell fusion regenerates murine photoreceptors. J Clin Invest. 2016;126:3104-16 pubmed 出版商
  201. Kukreja S, Gautam P, Saxena R, Saxena M, Udaykumar N, Kumar A, et al. Identification of novel candidate regulators of retinotectal map formation through transcriptional profiling of the chick optic tectum. J Comp Neurol. 2017;525:459-477 pubmed 出版商
  202. Li S, Qu Z, Haas M, Ngo L, Heo Y, Kang H, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci Rep. 2016;6:29514 pubmed 出版商
  203. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  204. Uribe M, Haro C, Ventero M, Campello L, Cruces J, Martín Nieto J. Expression pattern in retinal photoreceptors of POMGnT1, a protein involved in muscle-eye-brain disease. Mol Vis. 2016;22:658-73 pubmed
  205. Li T, Braunstein K, Zhang J, Lau A, Sibener L, Deeble C, et al. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model. Nat Commun. 2016;7:12082 pubmed 出版商
  206. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  207. Edmondson R, Adcock A, Yang L. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins. PLoS ONE. 2016;11:e0158116 pubmed 出版商
  208. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  209. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  210. Stefanelli G, Gandaglia A, Costa M, Cheema M, Di Marino D, Barbiero I, et al. Brain phosphorylation of MeCP2 at serine 164 is developmentally regulated and globally alters its chromatin association. Sci Rep. 2016;6:28295 pubmed 出版商
  211. Lee W, Jo S, Lee M, Won C, Lee M, Choi J, et al. The Effect of MCP-1/CCR2 on the Proliferation and Senescence of Epidermal Constituent Cells in Solar Lentigo. Int J Mol Sci. 2016;17: pubmed 出版商
  212. Joly S, Pernet V. Sphingosine 1-phosphate receptor 1 is required for retinal ganglion cell survival after optic nerve trauma. J Neurochem. 2016;138:571-86 pubmed 出版商
  213. Quintes S, Brinkmann B, Ebert M, Fröb F, Kungl T, Arlt F, et al. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci. 2016;19:1050-1059 pubmed 出版商
  214. Baghbaderani B, Syama A, Sivapatham R, Pei Y, Mukherjee O, Fellner T, et al. Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications. Stem Cell Rev. 2016;12:394-420 pubmed 出版商
  215. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  216. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  217. Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, et al. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep. 2016;6:27354 pubmed 出版商
  218. Akizu N, García M, Estarás C, Fueyo R, Badosa C, de la Cruz X, et al. EZH2 regulates neuroepithelium structure and neuroblast proliferation by repressing p21. Open Biol. 2016;6:150227 pubmed 出版商
  219. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  220. Hudish L, Galati D, Ravanelli A, Pearson C, Huang P, Appel B. miR-219 regulates neural progenitors by dampening apical Par protein-dependent Hedgehog signaling. Development. 2016;143:2292-304 pubmed 出版商
  221. Liu X, Koehler K, Mikosz A, Hashino E, Holt J. Functional development of mechanosensitive hair cells in stem cell-derived organoids parallels native vestibular hair cells. Nat Commun. 2016;7:11508 pubmed 出版商
  222. Wang L, Hou S, Han Y. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci. 2016;19:888-96 pubmed 出版商
  223. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  224. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  225. Baleriola J, Álvarez Lindo N, de la Villa P, Bernad A, Blanco L, Suárez T, et al. Increased neuronal death and disturbed axonal growth in the Polμ-deficient mouse embryonic retina. Sci Rep. 2016;6:25928 pubmed 出版商
  226. PACKARD A, Lin B, Schwob J. Sox2 and Pax6 Play Counteracting Roles in Regulating Neurogenesis within the Murine Olfactory Epithelium. PLoS ONE. 2016;11:e0155167 pubmed 出版商
  227. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  228. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  229. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  230. De Filippis L, Halikere A, McGowan H, Moore J, Tischfield J, Hart R, et al. Ethanol-mediated activation of the NLRP3 inflammasome in iPS cells and iPS cells-derived neural progenitor cells. Mol Brain. 2016;9:51 pubmed 出版商
  231. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  232. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  233. Heinen T, dos Santos R, da Rocha A, Dos Santos M, Lopez P, Silva Filho M, et al. Trk inhibition reduces cell proliferation and potentiates the effects of chemotherapeutic agents in Ewing sarcoma. Oncotarget. 2016;7:34860-80 pubmed 出版商
  234. Kushwaha R, Jagadish N, Kustagi M, Mendiratta G, Seandel M, Soni R, et al. Mechanism and Role of SOX2 Repression in Seminoma: Relevance to Human Germline Specification. Stem Cell Reports. 2016;6:772-783 pubmed 出版商
  235. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  236. Xue Y, Qian H, Hu J, Zhou B, Zhou Y, Hu X, et al. Sequential regulatory loops as key gatekeepers for neuronal reprogramming in human cells. Nat Neurosci. 2016;19:807-15 pubmed 出版商
  237. Chiang T, le Sage C, Larrieu D, Demir M, Jackson S. CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep. 2016;6:24356 pubmed 出版商
  238. He D, Xiang J, Li B, Liu H. The dynamic behavior of Ect2 in response to DNA damage. Sci Rep. 2016;6:24504 pubmed 出版商
  239. Ding Y, Adachi H, Katsuno M, Sahashi K, Kondo N, Iida M, et al. BIIB021, a synthetic Hsp90 inhibitor, induces mutant ataxin-1 degradation through the activation of heat shock factor 1. Neuroscience. 2016;327:20-31 pubmed 出版商
  240. Saito H, Okita K, Fusaki N, Sabel M, Chang A, Ito F. Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells. Stem Cells Int. 2016;2016:8394960 pubmed 出版商
  241. Liu Q, Zhang R, Li D, Cheng S, Yang Y, Tian T, et al. Muse Cells, a New Type of Pluripotent Stem Cell Derived from Human Fibroblasts. Cell Reprogram. 2016;18:67-77 pubmed 出版商
  242. Hall A, Lu W, Godfrey J, Antonov A, Paicu C, Moxon S, et al. The cytoskeleton adaptor protein ankyrin-1 is upregulated by p53 following DNA damage and alters cell migration. Cell Death Dis. 2016;7:e2184 pubmed 出版商
  243. Efremova L, Chovancova P, Adam M, Gutbier S, Schildknecht S, Leist M. Switching from astrocytic neuroprotection to neurodegeneration by cytokine stimulation. Arch Toxicol. 2017;91:231-246 pubmed 出版商
  244. Juárez Vicente F, Luna Pelaez N, Garcia Dominguez M. The Sumo protease Senp7 is required for proper neuronal differentiation. Biochim Biophys Acta. 2016;1863:1490-8 pubmed 出版商
  245. Lin T, Chang Y, Lee S, Campbell M, Wang T, Shen S, et al. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling. Oncotarget. 2016;7:26137-51 pubmed 出版商
  246. Krishnan V, White Z, McMahon C, Hodgetts S, Fitzgerald M, Shavlakadze T, et al. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol. 2016;75:464-78 pubmed 出版商
  247. Stritt S, Nurden P, Favier R, Favier M, Ferioli S, Gotru S, et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg(2+) homeostasis and cytoskeletal architecture. Nat Commun. 2016;7:11097 pubmed 出版商
  248. Yu H, Benitez S, Jung S, Farias Altamirano L, Kruse M, Seo J, et al. GABAergic signaling in the rat pineal gland. J Pineal Res. 2016;61:69-81 pubmed 出版商
  249. Eisch V, Lu X, Gabriel D, Djabali K. Progerin impairs chromosome maintenance by depleting CENP-F from metaphase kinetochores in Hutchinson-Gilford progeria fibroblasts. Oncotarget. 2016;7:24700-18 pubmed 出版商
  250. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  251. Deborde S, Omelchenko T, Lyubchik A, Zhou Y, He S, McNamara W, et al. Schwann cells induce cancer cell dispersion and invasion. J Clin Invest. 2016;126:1538-54 pubmed 出版商
  252. Francis K, Ton A, Xin Y, O Halloran P, Wassif C, Malik N, et al. Modeling Smith-Lemli-Opitz syndrome with induced pluripotent stem cells reveals a causal role for Wnt/β-catenin defects in neuronal cholesterol synthesis phenotypes. Nat Med. 2016;22:388-96 pubmed 出版商
  253. Panousopoulou E, Hobbs C, Mason I, Green J, Formstone C. Epiboly generates the epidermal basal monolayer and spreads the nascent mammalian skin to enclose the embryonic body. J Cell Sci. 2016;129:1915-27 pubmed 出版商
  254. González Burguera I, Ricobaraza A, Aretxabala X, Barrondo S, Garcia del Caño G, López de Jesús M, et al. Highly efficient generation of glutamatergic/cholinergic NT2-derived postmitotic human neurons by short-term treatment with the nucleoside analogue cytosine ?-D-arabinofuranoside. Stem Cell Res. 2016;16:541-51 pubmed 出版商
  255. Sagi I, Chia G, Golan Lev T, Peretz M, Weissbein U, Sui L, et al. Derivation and differentiation of haploid human embryonic stem cells. Nature. 2016;532:107-11 pubmed 出版商
  256. Li C, Jensen V, Park K, Kennedy J, Garcia Gonzalo F, Romani M, et al. MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biol. 2016;14:e1002416 pubmed 出版商
  257. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  258. Uda Y, Xu S, Matsumura T, Takei Y. P2Y4 Nucleotide Receptor in Neuronal Precursors Induces Glutamatergic Subtype Markers in Their Descendant Neurons. Stem Cell Reports. 2016;6:474-482 pubmed 出版商
  259. He H, Deng K, Siddiq M, Pyie A, Mellado W, Hannila S, et al. Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci. 2016;36:3079-91 pubmed 出版商
  260. Pandiri I, Chen Y, Joe Y, Kim H, Park J, Chung H, et al. Tristetraprolin mediates the anti-proliferative effects of metformin in breast cancer cells. Breast Cancer Res Treat. 2016;156:57-64 pubmed 出版商
  261. Li T, Liu X, Jiang L, MANFREDI J, Zha S, Gu W. Loss of p53-mediated cell-cycle arrest, senescence and apoptosis promotes genomic instability and premature aging. Oncotarget. 2016;7:11838-49 pubmed 出版商
  262. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  263. Herzog T, Spetzler D, Xiao N, Burnett K, Maney T, Voss A, et al. Impact of molecular profiling on overall survival of patients with advanced ovarian cancer. Oncotarget. 2016;7:19840-9 pubmed 出版商
  264. Nair S, Zhang X, Chiang H, Jahid M, Wang Y, Garza P, et al. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun. 2016;7:10913 pubmed 出版商
  265. Kemp M, Sancar A. ATR Kinase Inhibition Protects Non-cycling Cells from the Lethal Effects of DNA Damage and Transcription Stress. J Biol Chem. 2016;291:9330-42 pubmed 出版商
  266. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  267. Katzenell S, Leib D. Herpes Simplex Virus and Interferon Signaling Induce Novel Autophagic Clusters in Sensory Neurons. J Virol. 2016;90:4706-4719 pubmed 出版商
  268. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci. 2016;59:270-9 pubmed 出版商
  269. Hussain S, Ringsevjen H, Egbenya D, Skjervold T, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci. 2016;9:10 pubmed 出版商
  270. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  271. Dietl S, Schwinn S, Dietl S, Riedel S, Deinlein F, Rutkowski S, et al. MB3W1 is an orthotopic xenograft model for anaplastic medulloblastoma displaying cancer stem cell- and Group 3-properties. BMC Cancer. 2016;16:115 pubmed 出版商
  272. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  273. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  274. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  275. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  276. Gonzales Cope M, Sidoli S, Bhanu N, Won K, Garcia B. Histone H4 acetylation and the epigenetic reader Brd4 are critical regulators of pluripotency in embryonic stem cells. BMC Genomics. 2016;17:95 pubmed 出版商
  277. Delmas E, Jah N, Pirou C, Bouleau S, Le Floch N, Vayssière J, et al. FGF1 C-terminal domain and phosphorylation regulate intracrine FGF1 signaling for its neurotrophic and anti-apoptotic activities. Cell Death Dis. 2016;7:e2079 pubmed 出版商
  278. Cui Q, Yang S, Ye P, Tian E, Sun G, Zhou J, et al. Downregulation of TLX induces TET3 expression and inhibits glioblastoma stem cell self-renewal and tumorigenesis. Nat Commun. 2016;7:10637 pubmed 出版商
  279. Long K, Moss L, Laursen L, Boulter L, ffrench Constant C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and Decorin. Nat Commun. 2016;7:10354 pubmed 出版商
  280. Wu X, Fleming A, Ricketts T, Pavel M, Virgin H, Menzies F, et al. Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun. 2016;7:10533 pubmed 出版商
  281. Heeren A, He N, de Souza A, Goercharn Ramlal A, van Iperen L, Roost M, et al. On the development of extragonadal and gonadal human germ cells. Biol Open. 2016;5:185-94 pubmed 出版商
  282. Capell B, Drake A, Zhu J, Shah P, Dou Z, Dorsey J, et al. MLL1 is essential for the senescence-associated secretory phenotype. Genes Dev. 2016;30:321-36 pubmed 出版商
  283. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  284. Esfandiari A, Hawthorne T, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther. 2016;15:379-91 pubmed 出版商
  285. Kishi N, MacDonald J, Ye J, Molyneaux B, Azim E, Macklis J. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nat Commun. 2016;7:10520 pubmed 出版商
  286. Walter D, Hoffmann S, Komseli E, Rappsilber J, Gorgoulis V, Sørensen C. SCF(Cyclin F)-dependent degradation of CDC6 suppresses DNA re-replication. Nat Commun. 2016;7:10530 pubmed 出版商
  287. Yau K, Schätzle P, Tortosa E, Pagès S, Holtmaat A, Kapitein L, et al. Dendrites In Vitro and In Vivo Contain Microtubules of Opposite Polarity and Axon Formation Correlates with Uniform Plus-End-Out Microtubule Orientation. J Neurosci. 2016;36:1071-85 pubmed 出版商
  288. Zhang Q, Dan J, Wang H, Guo R, Mao J, Fu H, et al. Tcstv1 and Tcstv3 elongate telomeres of mouse ES cells. Sci Rep. 2016;6:19852 pubmed 出版商
  289. Kovacs G, Szabo V, Pirity M. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int. 2016;2016:4034620 pubmed 出版商
  290. Chavoshi S, Egorova O, Lacdao I, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem. 2016;291:6281-91 pubmed 出版商
  291. Lalli M, Jang J, Park J, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294-306 pubmed 出版商
  292. Hori A, Barnouin K, Snijders A, Toda T. A non-canonical function of Plk4 in centriolar satellite integrity and ciliogenesis through PCM1 phosphorylation. EMBO Rep. 2016;17:326-37 pubmed 出版商
  293. Koppaka V, Chen Y, Mehta G, Orlicky D, Thompson D, Jester J, et al. ALDH3A1 Plays a Functional Role in Maintenance of Corneal Epithelial Homeostasis. PLoS ONE. 2016;11:e0146433 pubmed 出版商
  294. Gupta Y, Pasupuleti V, Du W, Welford S. Macrophage Migration Inhibitory Factor Secretion Is Induced by Ionizing Radiation and Oxidative Stress in Cancer Cells. PLoS ONE. 2016;11:e0146482 pubmed 出版商
  295. Rooney G, Goodwin A, Depeille P, Sharir A, Schofield C, Yeh E, et al. Human iPS Cell-Derived Neurons Uncover the Impact of Increased Ras Signaling in Costello Syndrome. J Neurosci. 2016;36:142-52 pubmed 出版商
  296. Wu Z, Li D, Huang Y, Chen X, Huang W, Liu C, et al. Caspr Controls the Temporal Specification of Neural Progenitor Cells through Notch Signaling in the Developing Mouse Cerebral Cortex. Cereb Cortex. 2017;27:1369-1385 pubmed 出版商
  297. Kucab J, Zwart E, van Steeg H, Luijten M, Schmeiser H, Phillips D, et al. TP53 and lacZ mutagenesis induced by 3-nitrobenzanthrone in Xpa-deficient human TP53 knock-in mouse embryo fibroblasts. DNA Repair (Amst). 2016;39:21-33 pubmed 出版商
  298. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  299. Gho C, Schomann T, de Groot S, Frijns J, Rivolta M, Neumann M, et al. Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology. 2016;68:1849-58 pubmed 出版商
  300. Schmitt M, Dehay B, Bezard E, Garcia Ladona F. Harnessing the trophic and modulatory potential of statins in a dopaminergic cell line. Synapse. 2016;70:71-86 pubmed 出版商
  301. Hjørnevik L, Frøyset A, Grønset T, Rungruangsak Torrissen K, Fladmark K. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry. Mar Drugs. 2015;13:7390-402 pubmed 出版商
  302. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  303. Liu Z, Skamagki M, Kim K, Zhao R. Canonical MicroRNA Activity Facilitates but May Be Dispensable for Transcription Factor-Mediated Reprogramming. Stem Cell Reports. 2015;5:1119-1127 pubmed 出版商
  304. Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem. 2016;291:2237-45 pubmed 出版商
  305. Min J, Guo K, Suryadevara P, Zhu F, Holbrook G, Chen Y, et al. Optimization of a Novel Series of Ataxia-Telangiectasia Mutated Kinase Inhibitors as Potential Radiosensitizing Agents. J Med Chem. 2016;59:559-77 pubmed 出版商
  306. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  307. Amadei G, Zander M, Yang G, Dumelie J, Vessey J, Lipshitz H, et al. A Smaug2-Based Translational Repression Complex Determines the Balance between Precursor Maintenance versus Differentiation during Mammalian Neurogenesis. J Neurosci. 2015;35:15666-81 pubmed 出版商
  308. Schill E, Lake J, Tusheva O, Nagy N, Bery S, Foster L, et al. Ibuprofen slows migration and inhibits bowel colonization by enteric nervous system precursors in zebrafish, chick and mouse. Dev Biol. 2016;409:473-88 pubmed 出版商
  309. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-Derived Multipotent Progenitor Cells Obtained From Human Oral Mucosa Are Enriched in Neural Crest Cells. Stem Cells Transl Med. 2016;5:117-28 pubmed 出版商
  310. Cristini A, Park J, Capranico G, Legube G, Favre G, Sordet O. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions. Nucleic Acids Res. 2016;44:1161-78 pubmed 出版商
  311. Beaudet M, Yang Q, Cadau S, Blais M, Bellenfant S, Gros Louis F, et al. High yield extraction of pure spinal motor neurons, astrocytes and microglia from single embryo and adult mouse spinal cord. Sci Rep. 2015;5:16763 pubmed 出版商
  312. Sluch V, Davis C, Ranganathan V, Kerr J, Krick K, Martin R, et al. Differentiation of human ESCs to retinal ganglion cells using a CRISPR engineered reporter cell line. Sci Rep. 2015;5:16595 pubmed 出版商
  313. Holmberg Olausson K, Elsir T, Moazemi Goudarzi K, Nistér M, Lindström M. NPM1 histone chaperone is upregulated in glioblastoma to promote cell survival and maintain nucleolar shape. Sci Rep. 2015;5:16495 pubmed 出版商
  314. Fernández Santiago R, Carballo Carbajal I, Castellano G, Torrent R, Richaud Y, Sánchez Danés A, et al. Aberrant epigenome in iPSC-derived dopaminergic neurons from Parkinson's disease patients. EMBO Mol Med. 2015;7:1529-46 pubmed 出版商
  315. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Stepp M. K14 + compound niches are present on the mouse cornea early after birth and expand after debridement wounds. Dev Dyn. 2016;245:132-43 pubmed 出版商
  316. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  317. Stachtea X, Tykesson E, van Kuppevelt T, Feinstein R, Malmström A, Reijmers R, et al. Dermatan Sulfate-Free Mice Display Embryological Defects and Are Neonatal Lethal Despite Normal Lymphoid and Non-Lymphoid Organogenesis. PLoS ONE. 2015;10:e0140279 pubmed 出版商
  318. Hussain S, Davanger S. Postsynaptic VAMP/Synaptobrevin Facilitates Differential Vesicle Trafficking of GluA1 and GluA2 AMPA Receptor Subunits. PLoS ONE. 2015;10:e0140868 pubmed 出版商
  319. Chen Y, Peng C, Tung Y. Flip channel: A microfluidic device for uniform-sized embryoid body formation and differentiation. Biomicrofluidics. 2015;9:054111 pubmed 出版商
  320. Adesina A, Veo B, Courteau G, Mehta V, Wu X, Pang K, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastoma. Hum Pathol. 2015;46:1859-71 pubmed 出版商
  321. Endaya B, Cavanagh B, Alowaidi F, Walker T, de Pennington N, Ng J, et al. Isolating dividing neural and brain tumour cells for gene expression profiling. J Neurosci Methods. 2016;257:121-33 pubmed 出版商
  322. Ortega Atienza S, Wong V, Deloughery Z, Luczak M, Zhitkovich A. ATM and KAT5 safeguard replicating chromatin against formaldehyde damage. Nucleic Acids Res. 2016;44:198-209 pubmed 出版商
  323. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  324. Cheng C, Lin C, Lee M, Tsai M, Huang W, Huang M, et al. Local Delivery of High-Dose Chondroitinase ABC in the Sub-Acute Stage Promotes Axonal Outgrowth and Functional Recovery after Complete Spinal Cord Transection. PLoS ONE. 2015;10:e0138705 pubmed 出版商
  325. Clayton E, Mizielinska S, Edgar J, Nielsen T, Marshall S, Norona F, et al. Frontotemporal dementia caused by CHMP2B mutation is characterised by neuronal lysosomal storage pathology. Acta Neuropathol. 2015;130:511-23 pubmed 出版商
  326. Choi H, Kim J, Hong Y, Song H, Seo H, Do J. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Sci Rep. 2015;5:13559 pubmed 出版商
  327. Barão S, Gärtner A, Leyva Díaz E, Demyanenko G, Munck S, Vanhoutvin T, et al. Antagonistic Effects of BACE1 and APH1B-γ-Secretase Control Axonal Guidance by Regulating Growth Cone Collapse. Cell Rep. 2015;12:1367-76 pubmed 出版商
  328. Wang J, Zhang Y, Hou J, Qian X, Zhang H, Zhang Z, et al. Ube2s regulates Sox2 stability and mouse ES cell maintenance. Cell Death Differ. 2016;23:393-404 pubmed 出版商
  329. Pajoohesh Ganji A, Pal Ghosh S, Tadvalkar G, Kyne B, Saban D, Stepp M. Partial denervation of sub-basal axons persists following debridement wounds to the mouse cornea. Lab Invest. 2015;95:1305-18 pubmed 出版商
  330. Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation. 2015;12:137 pubmed 出版商
  331. Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, et al. Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae. J Tissue Eng Regen Med. 2017;11:1766-1778 pubmed 出版商
  332. Garcia Calero E, Botella Lopez A, Bahamonde O, Perez Balaguer A, Martinez S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct. 2016;221:2905-17 pubmed 出版商
  333. Cadalbert L, Ghaffar F, Stevenson D, Bryson S, Vaz F, Gottlieb E, et al. Mouse Tafazzin Is Required for Male Germ Cell Meiosis and Spermatogenesis. PLoS ONE. 2015;10:e0131066 pubmed 出版商
  334. Cases O, Joseph A, Obry A, Santin M, Ben Yacoub S, Pâques M, et al. Foxg1-Cre Mediated Lrp2 Inactivation in the Developing Mouse Neural Retina, Ciliary and Retinal Pigment Epithelia Models Congenital High Myopia. PLoS ONE. 2015;10:e0129518 pubmed 出版商
  335. Wang J, Chen S, Sun C, Chien T, Chern Y. A central role of TRAX in the ATM-mediated DNA repair. Oncogene. 2016;35:1657-70 pubmed 出版商
  336. Joshi P, Waterhouse P, Kannan N, Narala S, Fang H, Di Grappa M, et al. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1. Stem Cell Reports. 2015;5:31-44 pubmed 出版商
  337. Szlachcic W, Switonski P, Krzyzosiak W, Figlerowicz M, Figiel M. Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. Dis Model Mech. 2015;8:1047-57 pubmed 出版商
  338. Zhu Y, Matsumoto T, Nagasawa T, Mackay F, Murakami F. Chemokine Signaling Controls Integrity of Radial Glial Scaffold in Developing Spinal Cord and Consequential Proper Position of Boundary Cap Cells. J Neurosci. 2015;35:9211-24 pubmed 出版商
  339. Petroni M, Sardina F, Heil C, Sahún Roncero M, Colicchia V, Veschi V, et al. The MRN complex is transcriptionally regulated by MYCN during neural cell proliferation to control replication stress. Cell Death Differ. 2016;23:197-206 pubmed 出版商
  340. von Einem B, Wahler A, Schips T, Serrano Pozo A, Proepper C, Boeckers T, et al. The Golgi-Localized γ-Ear-Containing ARF-Binding (GGA) Proteins Alter Amyloid-β Precursor Protein (APP) Processing through Interaction of Their GAE Domain with the Beta-Site APP Cleaving Enzyme 1 (BACE1). PLoS ONE. 2015;10:e0129047 pubmed 出版商
  341. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  342. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Dis Model Mech. 2015;8:755-66 pubmed 出版商
  343. Wilkinson D, Bethell G, Shukla R, Kenny S, Edgar D. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease. PLoS ONE. 2015;10:e0125724 pubmed 出版商
  344. Wang D, Kinoshita Y, Kinoshita C, Uo T, Sopher B, Cudaback E, et al. Loss of endophilin-B1 exacerbates Alzheimer's disease pathology. Brain. 2015;138:2005-19 pubmed 出版商
  345. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  346. Chen Q, Arai D, Kawakami K, Sawada T, Jing X, Miyajima M, et al. EphA4 Regulates the Balance between Self-Renewal and Differentiation of Radial Glial Cells and Intermediate Neuronal Precursors in Cooperation with FGF Signaling. PLoS ONE. 2015;10:e0126942 pubmed 出版商
  347. Chen H, Aksoy I, Gonnot F, Osteil P, Aubry M, Hamela C, et al. Reinforcement of STAT3 activity reprogrammes human embryonic stem cells to naive-like pluripotency. Nat Commun. 2015;6:7095 pubmed 出版商
  348. Mortusewicz O, Evers B, Helleday T. PC4 promotes genome stability and DNA repair through binding of ssDNA at DNA damage sites. Oncogene. 2016;35:761-70 pubmed 出版商
  349. Del Mar N, von Buttlar X, Yu A, Guley N, Reiner A, Honig M. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments. Exp Neurol. 2015;271:53-71 pubmed 出版商
  350. Morissette Martin P, Maux A, Laterreur V, Mayrand D, L Gagné V, Moulin V, et al. Enhancing repair of full-thickness excisional wounds in a murine model: Impact of tissue-engineered biological dressings featuring human differentiated adipocytes. Acta Biomater. 2015;22:39-49 pubmed 出版商
  351. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  352. Vicuña L, Strochlic D, Latremoliere A, Bali K, Simonetti M, Husainie D, et al. The serine protease inhibitor SerpinA3N attenuates neuropathic pain by inhibiting T cell-derived leukocyte elastase. Nat Med. 2015;21:518-23 pubmed 出版商
  353. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  354. Ghatak S, Chan Y, Khanna S, Banerjee J, Weist J, Roy S, et al. Barrier Function of the Repaired Skin Is Disrupted Following Arrest of Dicer in Keratinocytes. Mol Ther. 2015;23:1201-1210 pubmed 出版商
  355. Trakhtenberg E, Morkin M, Patel K, Fernandez S, Sang A, Shaw P, et al. The N-terminal Set-β Protein Isoform Induces Neuronal Death. J Biol Chem. 2015;290:13417-26 pubmed 出版商
  356. Sun Y, Florer J, Mayhew C, Jia Z, Zhao Z, Xu K, et al. Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology. PLoS ONE. 2015;10:e0118771 pubmed 出版商
  357. Muramatsu R, Kuroda M, Matoba K, Lin H, Takahashi C, Koyama Y, et al. Prostacyclin prevents pericyte loss and demyelination induced by lysophosphatidylcholine in the central nervous system. J Biol Chem. 2015;290:11515-25 pubmed 出版商
  358. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  359. You L, Yan K, Zou J, Zhao H, Bertos N, Park M, et al. The chromatin regulator Brpf1 regulates embryo development and cell proliferation. J Biol Chem. 2015;290:11349-64 pubmed 出版商
  360. Nomura T, Yamashita W, Gotoh H, Ono K. Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution. Front Neurosci. 2015;9:45 pubmed 出版商
  361. Knezevic J, Pfefferle A, Petrovic I, Greene S, Perou C, Rosen J. Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene. 2015;34:5997-6006 pubmed 出版商
  362. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  363. Serrano Pérez M, Fernández M, Neria F, Berjón Otero M, Doncel Pérez E, Cano E, et al. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells. Glia. 2015;63:987-1004 pubmed 出版商
  364. Oliva C, Markert T, Gillespie G, Griguer C. Nuclear-encoded cytochrome c oxidase subunit 4 regulates BMI1 expression and determines proliferative capacity of high-grade gliomas. Oncotarget. 2015;6:4330-44 pubmed
  365. Kitamura J, Uemura M, Kurozumi M, Sonobe M, Manabe T, Hiai H, et al. Chronic lung injury by constitutive expression of activation-induced cytidine deaminase leads to focal mucous cell metaplasia and cancer. PLoS ONE. 2015;10:e0117986 pubmed 出版商
  366. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  367. Sleiman N, McFarland T, Jones L, Cala S. Transitions of protein traffic from cardiac ER to junctional SR. J Mol Cell Cardiol. 2015;81:34-45 pubmed 出版商
  368. Braude J, Vijayakumar S, Baumgarner K, Laurine R, Jones T, Jones S, et al. Deletion of Shank1 has minimal effects on the molecular composition and function of glutamatergic afferent postsynapses in the mouse inner ear. Hear Res. 2015;321:52-64 pubmed 出版商
  369. Wright M, Reed Geaghan E, Bolock A, Fujiyama T, Hoshino M, Maricich S. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice. J Cell Biol. 2015;208:367-79 pubmed 出版商
  370. Richardson G, Lannigan J, Macara I. Does FACS perturb gene expression?. Cytometry A. 2015;87:166-75 pubmed 出版商
  371. Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE. 2015;10:e0116032 pubmed 出版商
  372. Arel Dubeau A, Longpré F, Bournival J, Tremblay C, Demers Lamarche J, Haskova P, et al. Cucurbitacin E has neuroprotective properties and autophagic modulating activities on dopaminergic neurons. Oxid Med Cell Longev. 2014;2014:425496 pubmed 出版商
  373. Bhattacharjee R, Goswami S, Dudiki T, Popkie A, Phiel C, Kline D, et al. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod. 2015;92:65 pubmed 出版商
  374. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  375. Dixon A, Philbert M. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro. 2015;29:564-74 pubmed 出版商
  376. Denton K, Xu C, Li X. Modeling Axonal Phenotypes with Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1353:309-21 pubmed 出版商
  377. German S, Campbell K, Thornton E, McLachlan G, Sweetman D, Alberio R. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. Cell Reprogram. 2015;17:19-27 pubmed 出版商
  378. Knerlich Lukoschus F, Krossa S, Krause J, Mehdorn H, Scheidig A, Held Feindt J. Impact of chemokines on the properties of spinal cord-derived neural progenitor cells in a rat spinal cord lesion model. J Neurosci Res. 2015;93:562-71 pubmed 出版商
  379. Medina B, Santos de Abreu I, Cavalcante L, Silva W, da Fonseca R, Allodi S, et al. 3-acetylpyridine-induced degeneration in the adult ascidian neural complex: Reactive and regenerative changes in glia and blood cells. Dev Neurobiol. 2015;75:877-93 pubmed 出版商
  380. Sundberg J, Stearns T, Joh J, Proctor M, Ingle A, Silva K, et al. Immune status, strain background, and anatomic site of inoculation affect mouse papillomavirus (MmuPV1) induction of exophytic papillomas or endophytic trichoblastomas. PLoS ONE. 2014;9:e113582 pubmed 出版商
  381. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  382. Polinski N, Gombash S, Manfredsson F, Lipton J, Kemp C, Cole Strauss A, et al. Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiol Aging. 2015;36:1110-20 pubmed 出版商
  383. Liu J, Bain L. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol. 2014;281:243-53 pubmed 出版商
  384. El Sayed A, Zhang Z, Zhang L, Liu Z, Abbott L, Zhang Y, et al. Pluripotent state induction in mouse embryonic fibroblast using mRNAs of reprogramming factors. Int J Mol Sci. 2014;15:21840-64 pubmed 出版商
  385. Serinagaoglu Y, Paré J, Giovannini M, Cao X. Nf2-Yap signaling controls the expansion of DRG progenitors and glia during DRG development. Dev Biol. 2015;398:97-109 pubmed 出版商
  386. Blanchard J, Eade K, Szucs A, Lo Sardo V, Tsunemoto R, Williams D, et al. Selective conversion of fibroblasts into peripheral sensory neurons. Nat Neurosci. 2015;18:25-35 pubmed 出版商
  387. Colucci D Amato L, Cicatiello A, Reccia M, Volpicelli F, Severino V, Russo R, et al. A targeted secretome profiling by multiplexed immunoassay revealed that secreted chemokine ligand 2 (MCP-1/CCL2) affects neural differentiation in mesencephalic neural progenitor cells. Proteomics. 2015;15:714-24 pubmed 出版商
  388. Easter S, Mitchell E, Baxley S, Desmond R, Frost A, Serra R. Wnt5a suppresses tumor formation and redirects tumor phenotype in MMTV-Wnt1 tumors. PLoS ONE. 2014;9:e113247 pubmed 出版商
  389. Niederst E, Reyna S, Goldstein L. Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing. Mol Biol Cell. 2015;26:205-17 pubmed 出版商
  390. Shimamoto A, Kagawa H, Zensho K, Sera Y, Kazuki Y, Osaki M, et al. Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture. PLoS ONE. 2014;9:e112900 pubmed 出版商
  391. Kretzschmar K, Cottle D, Donati G, Chiang M, Quist S, Gollnick H, et al. BLIMP1 is required for postnatal epidermal homeostasis but does not define a sebaceous gland progenitor under steady-state conditions. Stem Cell Reports. 2014;3:620-33 pubmed 出版商
  392. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  393. Liu W, Edin F, Atturo F, Rieger G, Löwenheim H, Senn P, et al. The pre- and post-somatic segments of the human type I spiral ganglion neurons--structural and functional considerations related to cochlear implantation. Neuroscience. 2015;284:470-82 pubmed 出版商
  394. Jung H, Tatar A, Tu Y, Nobumori C, Yang S, Goulbourne C, et al. An absence of nuclear lamins in keratinocytes leads to ichthyosis, defective epidermal barrier function, and intrusion of nuclear membranes and endoplasmic reticulum into the nuclear chromatin. Mol Cell Biol. 2014;34:4534-44 pubmed 出版商
  395. McLean N, Popescu B, Gordon T, Zochodne D, Verge V. Delayed nerve stimulation promotes axon-protective neurofilament phosphorylation, accelerates immune cell clearance and enhances remyelination in vivo in focally demyelinated nerves. PLoS ONE. 2014;9:e110174 pubmed 出版商
  396. Teh D, Ishizuka T, Yawo H. Regulation of later neurogenic stages of adult-derived neural stem/progenitor cells by L-type Ca2+ channels. Dev Growth Differ. 2014;56:583-94 pubmed 出版商
  397. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  398. Cottle D, Ursino G, Ip S, Jones L, DiTommaso T, Hacking D, et al. Fetal inhibition of inflammation improves disease phenotypes in harlequin ichthyosis. Hum Mol Genet. 2015;24:436-49 pubmed 出版商
  399. Toyo oka K, Wachi T, Hunt R, Baraban S, Taya S, Ramshaw H, et al. 14-3-3ε and ζ regulate neurogenesis and differentiation of neuronal progenitor cells in the developing brain. J Neurosci. 2014;34:12168-81 pubmed 出版商
  400. Lee H, Kim K, Lim H, Choi M, Kim H, Ahn H, et al. Priming Wharton's jelly-derived mesenchymal stromal/stem cells with ROCK inhibitor improves recovery in an intracerebral hemorrhage model. J Cell Biochem. 2015;116:310-9 pubmed 出版商
  401. Franceschi V, Jacca S, Sassu E, Stellari F, van Santen V, Donofrio G. Generation and characterization of the first immortalized alpaca cell line suitable for diagnostic and immunization studies. PLoS ONE. 2014;9:e105643 pubmed 出版商
  402. Schuth O, McLean W, Eatock R, Pyott S. Distribution of Na,K-ATPase α subunits in rat vestibular sensory epithelia. J Assoc Res Otolaryngol. 2014;15:739-54 pubmed 出版商
  403. Jha B, Rao M, Malik N. Motor neuron differentiation from pluripotent stem cells and other intermediate proliferative precursors that can be discriminated by lineage specific reporters. Stem Cell Rev. 2015;11:194-204 pubmed 出版商
  404. Lööv C, Nadadhur A, Hillered L, Clausen F, Erlandsson A. Extracellular ezrin: a novel biomarker for traumatic brain injury. J Neurotrauma. 2015;32:244-51 pubmed 出版商
  405. Goldstein B, Goss G, Hatzistergos K, Rangel E, Seidler B, Saur D, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol. 2015;523:15-31 pubmed 出版商
  406. Kamishibahara Y, Kawaguchi H, Shimizu N. Promotion of mouse embryonic stem cell differentiation by Rho kinase inhibitor Y-27632. Neurosci Lett. 2014;579:58-63 pubmed 出版商
  407. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  408. Torrado E, Gomes C, Santos G, Fernandes A, Brites D, Falcão A. Directing mouse embryonic neurosphere differentiation toward an enriched neuronal population. Int J Dev Neurosci. 2014;37:94-9 pubmed 出版商
  409. Jeon H, Kim S, Jin X, Park J, Kim S, Joshi K, et al. Crosstalk between glioma-initiating cells and endothelial cells drives tumor progression. Cancer Res. 2014;74:4482-92 pubmed 出版商
  410. Ganz J, Arie I, Buch S, Zur T, Barhum Y, Pour S, et al. Dopaminergic-like neurons derived from oral mucosa stem cells by developmental cues improve symptoms in the hemi-parkinsonian rat model. PLoS ONE. 2014;9:e100445 pubmed 出版商
  411. Kraemer B, Snow J, Vollbrecht P, Pathak A, Valentine W, Deutch A, et al. A role for the p75 neurotrophin receptor in axonal degeneration and apoptosis induced by oxidative stress. J Biol Chem. 2014;289:21205-16 pubmed 出版商
  412. Eroglu B, Kimbler D, Pang J, Choi J, Moskophidis D, Yanasak N, et al. Therapeutic inducers of the HSP70/HSP110 protect mice against traumatic brain injury. J Neurochem. 2014;130:626-41 pubmed 出版商
  413. Fernandes K, Harder J, JOHN S, Shrager P, Libby R. DLK-dependent signaling is important for somal but not axonal degeneration of retinal ganglion cells following axonal injury. Neurobiol Dis. 2014;69:108-16 pubmed 出版商
  414. Kielar M, Tuy F, Bizzotto S, Lebrand C, de Juan Romero C, Poirier K, et al. Mutations in Eml1 lead to ectopic progenitors and neuronal heterotopia in mouse and human. Nat Neurosci. 2014;17:923-33 pubmed 出版商
  415. Stimpfel M, Cerkovnik P, Novakovic S, Maver A, Virant Klun I. Putative mesenchymal stem cells isolated from adult human ovaries. J Assist Reprod Genet. 2014;31:959-74 pubmed 出版商
  416. Muchkaeva I, Dashinimaev E, Artyuhov A, Myagkova E, Vorotelyak E, Yegorov Y, et al. Generation of iPS Cells from Human Hair Follice Dermal Papilla Cells. Acta Naturae. 2014;6:45-53 pubmed
  417. Liao M, Diaconu M, Monecke S, Collombat P, Timaeus C, Kuhlmann T, et al. Embryonic stem cell-derived neural progenitors as non-tumorigenic source for dopaminergic neurons. World J Stem Cells. 2014;6:248-55 pubmed 出版商
  418. Farioli Vecchioli S, Ceccarelli M, Saraulli D, Micheli L, Cannas S, D Alessandro F, et al. Tis21 is required for adult neurogenesis in the subventricular zone and for olfactory behavior regulating cyclins, BMP4, Hes1/5 and Ids. Front Cell Neurosci. 2014;8:98 pubmed 出版商
  419. Nguyen H, Nekanti U, Haus D, Funes G, Moreno D, Kamei N, et al. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol. 2014;522:2767-83 pubmed 出版商
  420. Donai K, Inagaki A, So K, Kuroda K, Sone H, Kobayashi M, et al. Low-molecular-weight inhibitors of cell differentiation enable efficient growth of mouse iPS cells under feeder-free conditions. Cytotechnology. 2015;67:191-7 pubmed 出版商
  421. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  422. Zhao L, Jiao Q, Huang C, Hou N, Chen X, Zhang J, et al. mGluR5 promotes the differentiation of rat neural progenitor cells into cholinergic neurons and activation of extracellular signal-related protein kinases. Neuroreport. 2014;25:427-34 pubmed 出版商
  423. Zhang P, Wu C, Liu N, Niu L, Yan Z, Feng Y, et al. Protocadherin 11 x regulates differentiation and proliferation of neural stem cell in vitro and in vivo. J Mol Neurosci. 2014;54:199-210 pubmed 出版商
  424. Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, et al. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res. 2014;24:665-79 pubmed 出版商
  425. Wyatt L, Filbin M, Keirstead H. PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol. 2014;522:2741-55 pubmed 出版商
  426. García Corzo L, Luna Sánchez M, Doerrier C, Ortiz F, Escames G, Acuna Castroviejo D, et al. Ubiquinol-10 ameliorates mitochondrial encephalopathy associated with CoQ deficiency. Biochim Biophys Acta. 2014;1842:893-901 pubmed 出版商
  427. Chang P, Wang T, Chang Y, Chu C, Lee C, Hsu H, et al. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE. 2014;9:e88556 pubmed 出版商
  428. Rupprecht A, Sittner D, Smorodchenko A, Hilse K, Goyn J, Moldzio R, et al. Uncoupling protein 2 and 4 expression pattern during stem cell differentiation provides new insight into their putative function. PLoS ONE. 2014;9:e88474 pubmed 出版商
  429. Ono T, Suzuki Y, Kato Y, Fujita R, Araki T, Yamashita T, et al. A single-cell and feeder-free culture system for monkey embryonic stem cells. PLoS ONE. 2014;9:e88346 pubmed 出版商
  430. Suzuki Y, Jin C, Yazawa I. Cystatin C triggers neuronal degeneration in a model of multiple system atrophy. Am J Pathol. 2014;184:790-9 pubmed 出版商
  431. Ahn J, Jang J, Choi J, Lee J, Oh S, Lee J, et al. GSK3?, but not GSK3?, inhibits the neuronal differentiation of neural progenitor cells as a downstream target of mammalian target of rapamycin complex1. Stem Cells Dev. 2014;23:1121-33 pubmed 出版商
  432. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  433. Fei D, Krimm R. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation. PLoS ONE. 2013;8:e83460 pubmed 出版商
  434. Huang T, Krimm R. BDNF and NT4 play interchangeable roles in gustatory development. Dev Biol. 2014;386:308-20 pubmed 出版商
  435. Mallon B, Hamilton R, Kozhich O, Johnson K, Fann Y, Rao M, et al. Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res. 2014;12:376-86 pubmed 出版商
  436. Sun F, Zhou K, Wang S, Liang P, Zhu M, Qiu J. Expression patterns of atrial natriuretic peptide and its receptors within the cochlear spiral ganglion of the postnatal rat. Hear Res. 2014;309:103-12 pubmed 出版商
  437. Xavier J, Morgado A, Sola S, Rodrigues C. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal. 2014;21:1009-24 pubmed 出版商
  438. Tapanes Castillo A, Shabazz F, Mboge M, Vajn K, Oudega M, Plunkett J. Characterization of a novel primary culture system of adult zebrafish brainstem cells. J Neurosci Methods. 2014;223:11-9 pubmed 出版商
  439. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  440. Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci. 2014;337:25-37 pubmed 出版商
  441. Hu Y, Ru N, Xiao H, Chaturbedi A, Hoa N, Tian X, et al. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS ONE. 2013;8:e80898 pubmed 出版商
  442. Tamai S, Imaizumi K, Kurabayashi N, Nguyen M, Abe T, Inoue M, et al. Neuroprotective role of the basic leucine zipper transcription factor NFIL3 in models of amyotrophic lateral sclerosis. J Biol Chem. 2014;289:1629-38 pubmed 出版商
  443. Salinas S, Zussy C, Loustalot F, Henaff D, Menendez G, Morton P, et al. Disruption of the coxsackievirus and adenovirus receptor-homodimeric interaction triggers lipid microdomain- and dynamin-dependent endocytosis and lysosomal targeting. J Biol Chem. 2014;289:680-95 pubmed 出版商
  444. Otero J, Kalaszczynska I, Michowski W, Wong M, Gygli P, Gokozan H, et al. Cerebellar cortical lamination and foliation require cyclin A2. Dev Biol. 2014;385:328-39 pubmed 出版商
  445. Bas E, Van De Water T, Lumbreras V, Rajguru S, Goss G, Hare J, et al. Adult human nasal mesenchymal-like stem cells restore cochlear spiral ganglion neurons after experimental lesion. Stem Cells Dev. 2014;23:502-14 pubmed 出版商
  446. de Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A, et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ. 2014;21:310-20 pubmed 出版商
  447. Kurowska Z, Brundin P, Schwab M, Li J. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro. Neuroscience. 2014;256:456-66 pubmed 出版商
  448. Jiang K, Ren C, Nair V. MicroRNA-137 represses Klf4 and Tbx3 during differentiation of mouse embryonic stem cells. Stem Cell Res. 2013;11:1299-313 pubmed 出版商
  449. Kao T, Lee H, Higuchi A, Ling Q, Yu W, Chou Y, et al. Suppression of cancer-initiating cells and selection of adipose-derived stem cells cultured on biomaterials having specific nanosegments. J Biomed Mater Res B Appl Biomater. 2014;102:463-76 pubmed 出版商
  450. Absalon S, Kochanek D, Raghavan V, Krichevsky A. MiR-26b, upregulated in Alzheimer's disease, activates cell cycle entry, tau-phosphorylation, and apoptosis in postmitotic neurons. J Neurosci. 2013;33:14645-59 pubmed 出版商
  451. Sha L, Wu X, Yao Y, Wen B, Feng J, Sha Z, et al. Notch signaling activation promotes seizure activity in temporal lobe epilepsy. Mol Neurobiol. 2014;49:633-44 pubmed 出版商
  452. Li W, Ding S. Converting mouse epiblast stem cells into mouse embryonic stem cells by using small molecules. Methods Mol Biol. 2013;1074:31-7 pubmed 出版商
  453. Huang Y, Kao J, Tseng D, Chen W, Chiang M, Hwang E. Microtubule-associated type II protein kinase A is important for neurite elongation. PLoS ONE. 2013;8:e73890 pubmed 出版商
  454. Lim J, McCullen S, Piedrahita J, Loboa E, Olby N. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 2013;15:405-12 pubmed 出版商
  455. Saurat N, Andersson T, Vasistha N, Molnár Z, Livesey F. Dicer is required for neural stem cell multipotency and lineage progression during cerebral cortex development. Neural Dev. 2013;8:14 pubmed 出版商
  456. Stover A, Brick D, Nethercott H, Banuelos M, Sun L, O Dowd D, et al. Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res. 2013;91:1247-62 pubmed 出版商
  457. Shintaku M, Yoneda H, Hirato J, Nagaishi M, Okabe H. Gliosarcoma with ependymal and PNET-like differentiation. Clin Neuropathol. 2013;32:508-14 pubmed 出版商
  458. Hou P, Chuang C, Kao C, Chou S, Stone L, Ho H, et al. LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 2013;41:7753-70 pubmed 出版商
  459. Yang W, Wang X, Duan C, Lu L, Yang H. Alpha-synuclein overexpression increases phospho-protein phosphatase 2A levels via formation of calmodulin/Src complex. Neurochem Int. 2013;63:180-94 pubmed 出版商
  460. Milman P, Woulfe J. Novel variant of neuronal intranuclear rodlet immunoreactive for 40 kDa huntingtin associated protein and ubiquitin in the mouse brain. J Comp Neurol. 2013;521:3832-46 pubmed 出版商
  461. Sakaki Yumoto M, Liu J, Ramalho Santos M, Yoshida N, Derynck R. Smad2 is essential for maintenance of the human and mouse primed pluripotent stem cell state. J Biol Chem. 2013;288:18546-60 pubmed 出版商
  462. Kao C, Hsu Y, Liu J, Lee D, Chung Y, Chiu I. The mood stabilizer valproate activates human FGF1 gene promoter through inhibiting HDAC and GSK-3 activities. J Neurochem. 2013;126:4-18 pubmed 出版商
  463. Barrero M, Sesé B, Marti M, Izpisua Belmonte J. Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem. 2013;288:16110-6 pubmed 出版商
  464. Samaranch L, Salegio E, San Sebastián W, Kells A, Bringas J, Forsayeth J, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther. 2013;24:526-32 pubmed 出版商
  465. Huang Q, Wang H, Perry S, Figueiredo Pereira M. Negative regulation of 26S proteasome stability via calpain-mediated cleavage of Rpn10 subunit upon mitochondrial dysfunction in neurons. J Biol Chem. 2013;288:12161-74 pubmed 出版商
  466. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  467. Tong K, Kwan K. Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol. 2013;33:1925-37 pubmed 出版商
  468. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  469. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  470. Shim J, Lee T, Shin D. Enrichment and characterization of human dermal stem/progenitor cells by intracellular granularity. Stem Cells Dev. 2013;22:1264-74 pubmed 出版商
  471. Narvi E, Jaakkola K, Winsel S, Oetken Lindholm C, Halonen P, Kallio L, et al. Altered TUBB3 expression contributes to the epothilone response of mitotic cells. Br J Cancer. 2013;108:82-90 pubmed 出版商
  472. Xu J, Nonogaki M, Madhira R, Ma H, Hermanson O, Kioussi C, et al. Population-specific regulation of Chmp2b by Lbx1 during onset of synaptogenesis in lateral association interneurons. PLoS ONE. 2012;7:e48573 pubmed 出版商
  473. Walton R, Parmentier T, Wolfe J. Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris). Histochem Cell Biol. 2013;139:415-29 pubmed 出版商
  474. Putkhao K, Kocerha J, Cho I, Yang J, Parnpai R, Chan A. Pathogenic cellular phenotypes are germline transmissible in a transgenic primate model of Huntington's disease. Stem Cells Dev. 2013;22:1198-205 pubmed 出版商
  475. Liu Y, Chen Y, Lu X, Wang Y, Duan Y, Cheng C, et al. SCYL1BP1 modulates neurite outgrowth and regeneration by regulating the Mdm2/p53 pathway. Mol Biol Cell. 2012;23:4506-14 pubmed 出版商
  476. Krolewski R, Packard A, Schwob J. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium. J Comp Neurol. 2013;521:833-59 pubmed 出版商
  477. Baptista S, Bento A, Gonçalves J, Bernardino L, Summavielle T, Lobo A, et al. Neuropeptide Y promotes neurogenesis and protection against methamphetamine-induced toxicity in mouse dentate gyrus-derived neurosphere cultures. Neuropharmacology. 2012;62:2413-23 pubmed 出版商
  478. Espana A, Clotman F. Onecut transcription factors are required for the second phase of development of the A13 dopaminergic nucleus in the mouse. J Comp Neurol. 2012;520:1424-41 pubmed 出版商
  479. Arellano J, Guadiana S, Breunig J, Rakic P, Sarkisian M. Development and distribution of neuronal cilia in mouse neocortex. J Comp Neurol. 2012;520:848-73 pubmed 出版商
  480. Yun Hong Y, Chih Fan C, Chia Wei C, Yen Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics. 2011;10:M110.007138 pubmed 出版商
  481. Flores Otero J, Davis R. Synaptic proteins are tonotopically graded in postnatal and adult type I and type II spiral ganglion neurons. J Comp Neurol. 2011;519:1455-75 pubmed 出版商
  482. Xin Y, Lu Q, Li Q. IKK1 control of epidermal differentiation is modulated by notch signaling. Am J Pathol. 2011;178:1568-77 pubmed 出版商
  483. Yang M, Cagle M, Honig M. Identification of cerebellin2 in chick and its preferential expression by subsets of developing sensory neurons and their targets in the dorsal horn. J Comp Neurol. 2010;518:2818-40 pubmed 出版商
  484. Gritti A, Dal Molin M, Foroni C, Bonfanti L. Effects of developmental age, brain region, and time in culture on long-term proliferation and multipotency of neural stem cell populations. J Comp Neurol. 2009;517:333-49 pubmed 出版商
  485. Gil Perotin S, Duran Moreno M, Belzunegui S, Luquin M, Garcia Verdugo J. Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream. J Comp Neurol. 2009;514:533-54 pubmed 出版商
  486. Sakakibara S, Nakadate K, Tanaka Nakadate S, Yoshida K, Nogami S, Shirataki H, et al. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J Comp Neurol. 2008;511:65-80 pubmed 出版商
  487. Kawano J, Tanizawa Y, Shinoda K. Wolfram syndrome 1 (Wfs1) gene expression in the normal mouse visual system. J Comp Neurol. 2008;510:1-23 pubmed 出版商
  488. Vue T, Aaker J, Taniguchi A, Kazemzadeh C, Skidmore J, Martin D, et al. Characterization of progenitor domains in the developing mouse thalamus. J Comp Neurol. 2007;505:73-91 pubmed
  489. Warchol M, Speck J. Expression of GATA3 and tenascin in the avian vestibular maculae: normative patterns and changes during sensory regeneration. J Comp Neurol. 2007;500:646-57 pubmed
  490. Navarro Quiroga I, Hernandez Valdes M, Lin S, Naegele J. Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol. 2006;497:833-45 pubmed