这是一篇来自已证抗体库的有关小鼠 环氧合酶-2 (cyclooxygenase 2) 的综述,是根据95篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合环氧合酶-2 抗体。
环氧合酶-2 同义词: COX2; Cox-2; PES-2; PGHS-2; PHS II; PHS-2; Pghs2; TIS10; gripghs

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司环氧合酶-2抗体(abcam, ab15191)被用于被用于免疫组化在小鼠样本上 (图 3). JOR Spine (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1a, 1b
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化在人类样本上 (图 1a, 1b). PLoS ONE (2021) ncbi
domestic rabbit 单克隆(EPR12012)
  • 免疫印迹; 小鼠; 1:1000; 图 3
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab179800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Orthop Surg Res (2021) ncbi
domestic rabbit 单克隆(EPR12012)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab179800)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(EPR12012)
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab179800)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Endocrinol (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1 ug/ml
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, 15191)被用于被用于免疫组化在人类样本上浓度为1 ug/ml. Arterioscler Thromb Vasc Biol (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 5d
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, 23672)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 5d). Front Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, Ab15191)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Dev Cell (2019) ncbi
domestic rabbit 单克隆(EPR12012)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab179800)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 5b
  • 免疫印迹; 小鼠; 图 4c
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 4c). Bone Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1f
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1f). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(EPR12012)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab179800)被用于被用于免疫印迹在人类样本上 (图 4b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EP1978Y)
  • 免疫印迹; 人类; 图 4i
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab62331)被用于被用于免疫印迹在人类样本上 (图 4i). Cancers (Basel) (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 7g
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab52237)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 7g). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫印迹在小鼠样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 7a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 5c
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5c). Arthritis Res Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab52237)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫印迹在人类样本上 (图 5). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab15191)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EP1978Y)
  • 免疫细胞化学; 人类; 图 2f
  • 免疫印迹; 人类; 图 2f
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, ab62331)被用于被用于免疫细胞化学在人类样本上 (图 2f) 和 被用于免疫印迹在人类样本上 (图 2f). Arthritis Res Ther (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司环氧合酶-2抗体(Abcam, AB15191)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b, 7c, 7d
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-166475)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b, 7c, 7d). Aging Dis (2021) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc?\166475)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Mol Med (2021) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 大鼠; 图 4b
圣克鲁斯生物技术环氧合酶-2抗体(Santa, sc-376861)被用于被用于免疫印迹在大鼠样本上 (图 4b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 人类; 图 2f
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-166475)被用于被用于免疫印迹在人类样本上 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
圣克鲁斯生物技术环氧合酶-2抗体(SantaCruz, sc-376861)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
小鼠 单克隆(H-3)
  • 免疫组化; 大鼠; 1:100; 图 5b
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-376861)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 5b). Pharmacol Res (2018) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biochem Pharmacol (2017) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 大鼠; 图 1b
圣克鲁斯生物技术环氧合酶-2抗体(SantaCruz, sc-376861)被用于被用于免疫印迹在大鼠样本上 (图 1b). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术环氧合酶-2抗体(SantaCruz, sc-376861)被用于被用于免疫印迹在小鼠样本上 (图 7). J Ethnopharmacol (2017) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Mediators Inflamm (2016) ncbi
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, Sc-166475)被用于被用于免疫印迹在小鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 人类; 图 1D
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在人类样本上 (图 1D). Oncotarget (2015) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnologies, sc-376861)被用于被用于免疫印迹在小鼠样本上. J Inorg Biochem (2015) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 大鼠; 图 6
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在大鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫组化-石蜡切片; 大鼠; 1:100
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-166475)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100. J Cell Mol Med (2015) ncbi
小鼠 单克隆(D-12)
  • 免疫组化; 大鼠; 1:100
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-166475)被用于被用于免疫组化在大鼠样本上浓度为1:100. J Cell Mol Med (2015) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 人类
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-19999)被用于被用于免疫印迹在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; domestic rabbit; 1:2000
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-376861)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2000. Exp Ther Med (2014) ncbi
小鼠 单克隆(H-3)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz, sc-376861)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Pharmacol (2014) ncbi
小鼠 单克隆(29)
  • 免疫印迹; 人类
圣克鲁斯生物技术环氧合酶-2抗体(Santa Cruz Biotechnology, sc-19999)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
赛默飞世尔
小鼠 单克隆(COX 229)
  • 免疫组化; 小鼠
赛默飞世尔环氧合酶-2抗体(Invitrogen, 35-8200)被用于被用于免疫组化在小鼠样本上. Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(COX 229)
  • 免疫印迹; 人类; 1:1000; 图 4
赛默飞世尔环氧合酶-2抗体(BD Biosciences, 35-8200)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Int J Mol Med (2014) ncbi
小鼠 单克隆(COX 229)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔环氧合酶-2抗体(Invitrogen, 35-8200)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2014) ncbi
小鼠 单克隆(COX 229)
  • 免疫印迹; 人类; 图 3
赛默飞世尔环氧合酶-2抗体(Invitrogen, 35-8200)被用于被用于免疫印迹在人类样本上 (图 3). Cell Metab (2013) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔环氧合酶-2抗体(Zymed, Cox229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Asian Pac J Cancer Prev (2012) ncbi
小鼠 单克隆(COX 229)
  • 免疫细胞化学; 人类; 图 4
赛默飞世尔环氧合酶-2抗体(Invitrogen, 35-8200)被用于被用于免疫细胞化学在人类样本上 (图 4). PLoS ONE (2011) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 表 2
  • 免疫细胞化学; 人类; 表 1
赛默飞世尔环氧合酶-2抗体(Invitrogen, clone COX 229)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2) 和 被用于免疫细胞化学在人类样本上 (表 1). J Exp Clin Cancer Res (2011) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 3
赛默飞世尔环氧合酶-2抗体(Invitrogen, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 3). Br J Cancer (2011) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 图 3
赛默飞世尔环氧合酶-2抗体(Invitrogen, 35-8200)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Mol Syst Biol (2010) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:400
赛默飞世尔环氧合酶-2抗体(Zymed Laboratories, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. Retina (2009) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔环氧合酶-2抗体(Zymed Laboratories, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Clin Cancer Res (2008) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:50; 表 1
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (表 1). Oral Dis (2007) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). Appl Immunohistochem Mol Morphol (2007) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔环氧合酶-2抗体(Zymed, COX-229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Prostaglandins Other Lipid Mediat (2007) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500. Carcinogenesis (2007) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Korean Med Sci (2006) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1). Am J Ophthalmol (2006) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
赛默飞世尔环氧合酶-2抗体(Zymed, COX 229)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). APMIS (2006) ncbi
小鼠 单克隆(COX 229)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔环氧合酶-2抗体(Zymed, 35-8200)被用于被用于免疫组化-石蜡切片在人类样本上. In Vivo (2006) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 4842)被用于被用于免疫印迹在人类样本上 (图 6a). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化; 人类; 1:600; 图 4a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling Technology, D5H5)被用于被用于免疫组化在人类样本上浓度为1:600 (图 4a). Neuropathol Appl Neurobiol (2021) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在人类样本上 (图 1a). NPJ Breast Cancer (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 1:2000; 图 s10b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling Technologies, 12282)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s10b). Antioxidants (Basel) (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(CST Biological Reagents Co, 12282)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9b). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化-石蜡切片; 大鼠; 图 3e
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 3e). Proc Natl Acad Sci U S A (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1b
  • 免疫组化-石蜡切片; 大鼠; 图 11b
  • 免疫印迹; 大鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1b), 被用于免疫组化-石蜡切片在大鼠样本上 (图 11b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 大鼠; 图 2d
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在大鼠样本上 (图 2d). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Neuropharmacology (2020) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 1:2000; 图 7e
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell signaling, 12282)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7e). Biomolecules (2019) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在小鼠样本上 (图 6b). Biomed Pharmacother (2019) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 大鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling Technology, 12282s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5d). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 4842)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 4842)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Organogenesis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
  • 免疫印迹; 人类; 1:500; 图 6d
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 4842)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6d). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 4842)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). Oxid Med Cell Longev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell signaling, 4842)被用于被用于免疫印迹在人类样本上 (图 4b). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(cell signalling, 4842S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化; 人类; 图 4a
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫组化在人类样本上 (图 4a). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在人类样本上 (图 4c). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling Technology, 12282)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 大鼠; 1:500; 图 1
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling Technology, 12,282)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Life Sci (2015) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在小鼠样本上 (图 7c). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化-石蜡切片; 人类; 图 6a
  • 免疫印迹; 人类; 1:1000; 图 s4i
  • 免疫组化-石蜡切片; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signalling Technology, 12282)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 s4i) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(CST, D5H5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫组化-石蜡切片; 人类; 1:150
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(细胞, D5H5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:150 和 被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282)被用于被用于免疫印迹在人类样本上浓度为1:500. PPAR Res (2014) ncbi
domestic rabbit 单克隆(D5H5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司环氧合酶-2抗体(Cell Signaling, 12282S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
文章列表
  1. Cambria E, Heusser S, Scheuren A, Tam W, Karol A, Hitzl W, et al. TRPV4 mediates cell damage induced by hyperphysiological compression and regulates COX2/PGE2 in intervertebral discs. JOR Spine. 2021;4:e1149 pubmed 出版商
  2. Ezenkwa U, Okolo C, Ogun G, Akere A, Ogunbiyi O. Cyclooxygenase-2 expression in colorectal carcinoma, adenomatous polyps and non-tumour bearing margins of resection tissues in a cohort of black Africans. PLoS ONE. 2021;16:e0255235 pubmed 出版商
  3. Anandhan A, Nguyen N, Syal A, Dreher L, Dodson M, Zhang D, et al. NRF2 Loss Accentuates Parkinsonian Pathology and Behavioral Dysfunction in Human α-Synuclein Overexpressing Mice. Aging Dis. 2021;12:964-982 pubmed 出版商
  4. Qian J, Xu Q, Xu W, Cai R, Huang G. Expression of VEGF-A Signaling Pathway in Cartilage of ACLT-induced Osteoarthritis Mouse Model. J Orthop Surg Res. 2021;16:379 pubmed 出版商
  5. Parodi B, Sanna A, Cedola A, Uccelli A, Kerlero de Rosbo N. Hydroxycarboxylic Acid Receptor 2, a Pleiotropically Linked Receptor for the Multiple Sclerosis Drug, Monomethyl Fumarate. Possible Implications for the Inflammatory Response. Front Immunol. 2021;12:655212 pubmed 出版商
  6. Lee S, Kim J, Choi Y, Gong J, Park S, Douangdeuane B, et al. Therapeutic Effects of Dipterocarpus tuberculatus with High Antioxidative Activity Against UV-Induced Photoaging of NHDF Cells and Nude Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  7. Zimmer T, Broekaart D, Luinenburg M, Mijnsbergen C, Anink J, Sim N, et al. Balloon cells promote immune system activation in focal cortical dysplasia type 2b. Neuropathol Appl Neurobiol. 2021;47:826-839 pubmed 出版商
  8. Li X, Zhou L, Zhang Y, He X, Lu H, Zhang L, et al. mGPDH Deficiency leads to melanoma metastasis via induced NRF2. J Cell Mol Med. 2021;25:5305-5315 pubmed 出版商
  9. Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, et al. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol. 2021;12:659597 pubmed 出版商
  10. Li M, Haixia Y, Kang M, An P, Wu X, Dang H, et al. The Arachidonic Acid Metabolism Mechanism Based on UPLC-MS/MS Metabolomics in Recurrent Spontaneous Abortion Rats. Front Endocrinol (Lausanne). 2021;12:652807 pubmed 出版商
  11. Jindal S, Pennock N, Klug A, Narasimhan J, Calhoun A, Roberts M, et al. S-nitrosylated and non-nitrosylated COX2 have differential expression and distinct subcellular localization in normal and breast cancer tissue. NPJ Breast Cancer. 2020;6:62 pubmed 出版商
  12. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  13. Kim H, Hwang S, Sung B, Kim Y, Chang Y. Gd-Complex of a Rosmarinic Acid Conjugate as an Anti-Inflammatory Theranostic Agent via Reactive Oxygen Species Scavenging. Antioxidants (Basel). 2020;9: pubmed 出版商
  14. Varela Eirin M, Carpintero Fernández P, Sánchez Temprano A, Varela Vazquez A, Paíno C, Casado Diaz A, et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY). 2020;12:15882-15905 pubmed 出版商
  15. Zhu J, Zhen G, An S, Wang X, Wan M, Li Y, et al. Aberrant subchondral osteoblastic metabolism modifies NaV1.8 for osteoarthritis. elife. 2020;9: pubmed 出版商
  16. Kong Y, Xu S. Juglanin administration protects skin against UVB‑induced injury by reducing Nrf2‑dependent ROS generation. Int J Mol Med. 2020;46:67-82 pubmed 出版商
  17. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  18. Yang H, Wang L, Zang C, Wang Y, Shang J, Zhang Z, et al. Src Inhibition Attenuates Neuroinflammation and Protects Dopaminergic Neurons in Parkinson's Disease Models. Front Neurosci. 2020;14:45 pubmed 出版商
  19. Fong L, Taccioli C, Palamarchuk A, Tagliazucchi G, Jing R, Smalley K, et al. Abrogation of esophageal carcinoma development in miR-31 knockout rats. Proc Natl Acad Sci U S A. 2020;117:6075-6085 pubmed 出版商
  20. Wei J, Mattapallil M, Horai R, Jittayasothorn Y, Modi A, Sen H, et al. A novel role for lipoxin A4 in driving a lymph node-eye axis that controls autoimmunity to the neuroretina. elife. 2020;9: pubmed 出版商
  21. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  22. Sozen B, Cox A, De Jonghe J, Bao M, Hollfelder F, Glover D, et al. Self-Organization of Mouse Stem Cells into an Extended Potential Blastoid. Dev Cell. 2019;51:698-712.e8 pubmed 出版商
  23. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  24. Jiang X, Xu C, Shi H, Cheng Q. PTH1-34 improves bone healing by promoting angiogenesis and facilitating MSCs migration and differentiation in a stabilized fracture mouse model. PLoS ONE. 2019;14:e0226163 pubmed 出版商
  25. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  26. Tu M, Yang M, Yu N, Zhen G, Wan M, Liu W, et al. Inhibition of cyclooxygenase-2 activity in subchondral bone modifies a subtype of osteoarthritis. Bone Res. 2019;7:29 pubmed 出版商
  27. Roy N, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar N, Singh A, et al. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules. 2019;9: pubmed 出版商
  28. Cao H, Wang Q, Gao Z, Xu X, Lu Q, Wu Y. Clinical value of detecting IQGAP3, B7-H4 and cyclooxygenase-2 in the diagnosis and prognostic evaluation of colorectal cancer. Cancer Cell Int. 2019;19:163 pubmed 出版商
  29. Fang D, Wang H, Li M, Wei W. α-bisabolol enhances radiotherapy-induced apoptosis in endometrial cancer cells by reducing the effect of XIAP on inhibiting caspase-3. Biosci Rep. 2019;39: pubmed 出版商
  30. Feng F, Wang Z, Li R, Wu Q, Gu C, Xu Y, et al. Citrus alkaline extracts prevent fibroblast senescence to ameliorate pulmonary fibrosis via activation of COX-2. Biomed Pharmacother. 2019;112:108669 pubmed 出版商
  31. Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10:181 pubmed 出版商
  32. Qiu L, Wang M, Hu S, Ru X, Ren Y, Zhang Z, et al. Oncogenic Activation of Nrf2, Though as a Master Antioxidant Transcription Factor, Liberated by Specific Knockout of the Full-Length Nrf1α that Acts as a Dominant Tumor Repressor. Cancers (Basel). 2018;10: pubmed 出版商
  33. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  34. Zhang P, Bi R, Gan Y. Glial interleukin-1β upregulates neuronal sodium channel 1.7 in trigeminal ganglion contributing to temporomandibular joint inflammatory hypernociception in rats. J Neuroinflammation. 2018;15:117 pubmed 出版商
  35. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  36. Sun J, Wang Z, Wang X. Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice. Organogenesis. 2018;14:13-24 pubmed 出版商
  37. Bogdan D, Falcone J, Kanjiya M, Park S, Carbonetti G, Studholme K, et al. Fatty acid-binding protein 5 controls microsomal prostaglandin E synthase 1 (mPGES-1) induction during inflammation. J Biol Chem. 2018;293:5295-5306 pubmed 出版商
  38. Gugliandolo E, Fusco R, D Amico R, Militi A, Oteri G, Wallace J, et al. Anti-inflammatory effect of ATB-352, a H2S -releasing ketoprofen derivative, on lipopolysaccharide-induced periodontitis in rats. Pharmacol Res. 2018;132:220-231 pubmed 出版商
  39. Paterniti I, Campolo M, Siracusa R, Cordaro M, Di Paola R, Calabrese V, et al. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE. 2017;12:e0174470 pubmed 出版商
  40. Yang C, Chen Y, Chi P, Lin C, Hsiao L. Resveratrol inhibits BK-induced COX-2 transcription by suppressing acetylation of AP-1 and NF-?B in human rheumatoid arthritis synovial fibroblasts. Biochem Pharmacol. 2017;132:77-91 pubmed 出版商
  41. Hong Y, Hong Y, Choi Y, Yeo S, Jin S, Lee S, et al. The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss. Oxid Med Cell Longev. 2017;2017:7982389 pubmed 出版商
  42. Maayah Z, Althurwi H, El Sherbeni A, Abdelhamid G, Siraki A, El Kadi A. The role of cytochrome P450 1B1 and its associated mid-chain hydroxyeicosatetraenoic acid metabolites in the development of cardiac hypertrophy induced by isoproterenol. Mol Cell Biochem. 2017;429:151-165 pubmed 出版商
  43. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  44. Indrakusuma I, Romacho T, Eckel J. Protease-Activated Receptor 2 Promotes Pro-Atherogenic Effects through Transactivation of the VEGF Receptor 2 in Human Vascular Smooth Muscle Cells. Front Pharmacol. 2016;7:497 pubmed 出版商
  45. Yun C, Jung Y, Chun W, Yang B, Ryu J, Lim C, et al. Anti-Inflammatory Effects of Artemisia Leaf Extract in Mice with Contact Dermatitis In Vitro and In Vivo. Mediators Inflamm. 2016;2016:8027537 pubmed 出版商
  46. Wang X, Shaw D, Hammond H, Sutterwala F, Rayamajhi M, Shirey K, et al. The Prostaglandin E2-EP3 Receptor Axis Regulates Anaplasma phagocytophilum-Mediated NLRC4 Inflammasome Activation. PLoS Pathog. 2016;12:e1005803 pubmed 出版商
  47. Lee J, Yu K, Kim H, Kang I, Kim J, Lee B, et al. BMI1 inhibits senescence and enhances the immunomodulatory properties of human mesenchymal stem cells via the direct suppression of MKP-1/DUSP1. Aging (Albany NY). 2016;8:1670-89 pubmed 出版商
  48. Müller S, Acevedo L, Wang X, Karim M, Matta A, Mehrkens A, et al. Notochordal cell conditioned medium (NCCM) regenerates end-stage human osteoarthritic articular chondrocytes and promotes a healthy phenotype. Arthritis Res Ther. 2016;18:125 pubmed 出版商
  49. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed 出版商
  50. Wang X, Wang N, Li H, Liu M, Cao F, Yu X, et al. Up-Regulation of PAI-1 and Down-Regulation of uPA Are Involved in Suppression of Invasiveness and Motility of Hepatocellular Carcinoma Cells by a Natural Compound Berberine. Int J Mol Sci. 2016;17:577 pubmed 出版商
  51. Lin A, Wang G, Zhao H, Zhang Y, Han Q, Zhang C, et al. TLR4 signaling promotes a COX-2/PGE2/STAT3 positive feedback loop in hepatocellular carcinoma (HCC) cells. Oncoimmunology. 2016;5:e1074376 pubmed
  52. Li J, Tang C, Li L, Li R, Fan Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. J Exp Clin Cancer Res. 2016;35:61 pubmed 出版商
  53. Abu N, Akhtar M, Yeap S, Lim K, Ho W, Abdullah M, et al. Flavokawain B induced cytotoxicity in two breast cancer cell lines, MCF-7 and MDA-MB231 and inhibited the metastatic potential of MDA-MB231 via the regulation of several tyrosine kinases In vitro. BMC Complement Altern Med. 2016;16:86 pubmed 出版商
  54. Tsaousi A, Hayes E, Di Gregoli K, Bond A, Bevan L, Thomas A, et al. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice. PLoS ONE. 2016;11:e0148873 pubmed 出版商
  55. Ding X, Pan L, Wang Y, Xu Q. Baicalin exerts protective effects against lipopolysaccharide-induced acute lung injury by regulating the crosstalk between the CX3CL1-CX3CR1 axis and NF-κB pathway in CX3CL1-knockout mice. Int J Mol Med. 2016;37:703-15 pubmed 出版商
  56. Chiou S, Ha C, Wu P, Yeh C, Su Y, Li M, et al. Antioxidant, Anti-Tyrosinase and Anti-Inflammatory Activities of Oil Production Residues from Camellia tenuifloria. Int J Mol Sci. 2015;16:29522-41 pubmed 出版商
  57. Lowin T, Apitz M, Anders S, Straub R. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther. 2015;17:321 pubmed 出版商
  58. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  59. Lu S, Yang Y, Du Y, Cao L, Li M, Shen C, et al. The transcription factor c-Fos coordinates with histone lysine-specific demethylase 2A to activate the expression of cyclooxygenase-2. Oncotarget. 2015;6:34704-17 pubmed 出版商
  60. Radhika N, Govindaraj V, Sarangi S, Rao A. Neonatal exposure to 17β-estradiol down-regulates the expression of synaptogenesis related genes in selected brain regions of adult female rats. Life Sci. 2015;141:1-7 pubmed 出版商
  61. Bugajev V, Hálová I, Dráberová L, Bambousková M, Potůčková L, Draberova H, et al. Negative regulatory roles of ORMDL3 in the FcεRI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells. Cell Mol Life Sci. 2016;73:1265-85 pubmed 出版商
  62. Kim J, Sato M, Choi J, Kim H, Yeh B, Larsen J, et al. Nuclear Receptor Expression and Function in Human Lung Cancer Pathogenesis. PLoS ONE. 2015;10:e0134842 pubmed 出版商
  63. Chew G, Huo C, Huang D, Hill P, Cawson J, Frazer H, et al. Increased COX-2 expression in epithelial and stromal cells of high mammographic density tissues and in a xenograft model of mammographic density. Breast Cancer Res Treat. 2015;153:89-99 pubmed 出版商
  64. Pogue A, Dua P, Hill J, Lukiw W. Progressive inflammatory pathology in the retina of aluminum-fed 5xFAD transgenic mice. J Inorg Biochem. 2015;152:206-9 pubmed 出版商
  65. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed 出版商
  66. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  67. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  68. Giunta S, Castorina A, Marzagalli R, Szychlinska M, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922-44 pubmed 出版商
  69. Yang J, Chi C, Liu Z, Yang G, Shen Z, Yang X. Ultrastructure damage of oviduct telocytes in rat model of acute salpingitis. J Cell Mol Med. 2015;19:1720-8 pubmed 出版商
  70. Yang X, Yang J, Liu Z, Yang G, Shen Z. Telocytes damage in endometriosis-affected rat oviduct and potential impact on fertility. J Cell Mol Med. 2015;19:452-62 pubmed 出版商
  71. Lei Q, Qiang F, Chao D, Di W, Guoqian Z, Bo Y, et al. Amelioration of hypoxia and LPS-induced intestinal epithelial barrier dysfunction by emodin through the suppression of the NF-κB and HIF-1α signaling pathways. Int J Mol Med. 2014;34:1629-39 pubmed 出版商
  72. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  73. Bhat I, Rasool R, Qasim I, Masoodi K, Paul S, Bhat B, et al. COX-2 overexpression and -8473 T/C polymorphism in 3' UTR in non-small cell lung cancer. Tumour Biol. 2014;35:11209-18 pubmed 出版商
  74. Gao Y, Chen Y, Xu D, Wang J, Yu G. Differential expression of ANXA1 in benign human gastrointestinal tissues and cancers. BMC Cancer. 2014;14:520 pubmed 出版商
  75. Malaviya A, Sylvester P. Synergistic Antiproliferative Effects of Combined ? -Tocotrienol and PPAR ? Antagonist Treatment Are Mediated through PPAR ? -Independent Mechanisms in Breast Cancer Cells. PPAR Res. 2014;2014:439146 pubmed 出版商
  76. Sharma A, Huard C, Vernochet C, Ziemek D, Knowlton K, Tyminski E, et al. Brown fat determination and development from muscle precursor cells by novel action of bone morphogenetic protein 6. PLoS ONE. 2014;9:e92608 pubmed 出版商
  77. Wang L, Wang J, Wang Y, Fu Q, Lei Y, Nie Z, et al. Protective effect of exogenous matrix metalloproteinase-9 on chronic renal failure. Exp Ther Med. 2014;7:329-334 pubmed
  78. Chen H, Sohn J, Zhang L, Tian J, Chen S, Bjeldanes L. Anti-inflammatory effects of chicanine on murine macrophage by down-regulating LPS-induced inflammatory cytokines in I?B?/MAPK/ERK signaling pathways. Eur J Pharmacol. 2014;724:168-74 pubmed 出版商
  79. Ramyaa P, Krishnaswamy R, Padma V. Quercetin modulates OTA-induced oxidative stress and redox signalling in HepG2 cells - up regulation of Nrf2 expression and down regulation of NF-?B and COX-2. Biochim Biophys Acta. 2014;1840:681-92 pubmed 出版商
  80. Jourdain A, Koppen M, Wydro M, Rodley C, Lightowlers R, Chrzanowska Lightowlers Z, et al. GRSF1 regulates RNA processing in mitochondrial RNA granules. Cell Metab. 2013;17:399-410 pubmed 出版商
  81. Taskin S, Dunder I, Erol E, Taşkin E, Kiremitci S, Oztuna D, et al. Roles of E-cadherin and cyclooxygenase enzymes in predicting different survival patterns of optimally cytoreduced serous ovarian cancer patients. Asian Pac J Cancer Prev. 2012;13:5715-9 pubmed
  82. Lundström S, Levänen B, Nording M, Klepczynska Nyström A, Sköld M, Haeggstrom J, et al. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure. PLoS ONE. 2011;6:e23864 pubmed 出版商
  83. Luo H, Chen Z, Jin H, Zhuang M, Wang T, Su C, et al. Cyclooxygenase-2 up-regulates vascular endothelial growth factor via a protein kinase C pathway in non-small cell lung cancer. J Exp Clin Cancer Res. 2011;30:6 pubmed 出版商
  84. Shiirevnyamba A, Takahashi T, Shan H, Ogawa H, Yano S, Kanayama H, et al. Enhancement of osteoclastogenic activity in osteolytic prostate cancer cells by physical contact with osteoblasts. Br J Cancer. 2011;104:505-13 pubmed 出版商
  85. Lage K, Møllgård K, Greenway S, Wakimoto H, Gorham J, Workman C, et al. Dissecting spatio-temporal protein networks driving human heart development and related disorders. Mol Syst Biol. 2010;6:381 pubmed 出版商
  86. Maloney S, Fernandes B, Castiglione E, Antecka E, Martins C, Marshall J, et al. Expression of cyclooxygenase-2 in choroidal neovascular membranes from age-related macular degeneration patients. Retina. 2009;29:176-80 pubmed 出版商
  87. Sackett M, Bairati I, Meyer F, Jobin E, Lussier S, Fortin A, et al. Prognostic significance of cyclooxygenase-2 overexpression in glottic cancer. Clin Cancer Res. 2008;14:67-73 pubmed 出版商
  88. Ketabchi S, Massi D, Ficarra G, Rubino I, Franchi A, Paglierani M, et al. Expression of protease-activated receptor-1 and -2 in orofacial granulomatosis. Oral Dis. 2007;13:419-25 pubmed
  89. Buccoliero A, Castiglione F, Rossi Degl Innocenti D, Arganini L, Taddei A, Ammannati F, et al. Cyclooxygenase-2 (COX-2) overexpression in meningiomas: real time PCR and immunohistochemistry. Appl Immunohistochem Mol Morphol. 2007;15:187-92 pubmed
  90. Bianchini F, Massi D, Marconi C, Franchi A, Baroni G, Santucci M, et al. Expression of cyclo-oxygenase-2 in macrophages associated with cutaneous melanoma at different stages of progression. Prostaglandins Other Lipid Mediat. 2007;83:320-8 pubmed
  91. Marshall J, Fernandes B, Di Cesare S, Maloney S, Logan P, Antecka E, et al. The use of a cyclooxygenase-2 inhibitor (Nepafenac) in an ocular and metastatic animal model of uveal melanoma. Carcinogenesis. 2007;28:2053-8 pubmed
  92. Kim K, Kim S, Kim S, Back J, Park M, Kim J. Cyclooxygenase-2 and inducible nitric oxide synthase expression in thyroid neoplasms and their clinicopathological correlation. J Korean Med Sci. 2006;21:1064-9 pubmed
  93. Souza Filho J, Martins M, Correa Z, Odashiro A, Antecka E, Coutinho A, et al. The expression of cyclooxygenase 2 in retinoblastoma: primary enucleated eyes and enucleation after conservative treatment. Am J Ophthalmol. 2006;142:625-31 pubmed
  94. Asaad N, Sadek G. Pulmonary cryptosporidiosis: role of COX2 and NF-kB. APMIS. 2006;114:682-9 pubmed
  95. Bodey B, Siegel S, Kaiser H. Cyclooxygenase-2 (COX-2) overexpression in childhood brain tumors. In Vivo. 2006;20:519-25 pubmed