这是一篇来自已证抗体库的有关小鼠 微管相关蛋白2激酶 (microtubule associated protein 2 kinase) 的综述,是根据515篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合微管相关蛋白2激酶 抗体。
微管相关蛋白2激酶 同义词: Erk-1; Erk1; Ert2; Esrk1; Mnk1; Mtap2k; Prkm3; p44; p44erk1; p44mapk

圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-271269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Front Pharmacol (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Front Pharmacol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Discov (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Sci Rep (2021) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000; 图 ev5b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-271269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev5b). EMBO Mol Med (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Biomol Ther (Seoul) (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Parkinsons Dis (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 2f
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2f). Oncogene (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 7d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7d). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 7k
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383 HRP)被用于被用于免疫印迹在人类样本上 (图 7k). Amino Acids (2021) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:3000. elife (2020) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 s3b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 s3b). Nature (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 4s2a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4s2a). elife (2019) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 3c, 3d, s8b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3c, 3d, s8b). Science (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa, sc-135,900)被用于被用于免疫印迹在大鼠样本上 (图 3c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514,302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). EBioMedicine (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-271270)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SCB, E-4)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(G-8)
  • 免疫印迹; 小鼠; 1:1000; 图 9a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-271269)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, E-4)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 8). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 1d
  • 免疫组化; 小鼠; 图 7
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫组化在小鼠样本上 (图 7). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s7) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; pigs ; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在pigs 样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-6)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-271270)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术微管相关蛋白2激酶抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Biometals (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; domestic rabbit; 1:1,000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术微管相关蛋白2激酶抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术微管相关蛋白2激酶抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔微管相关蛋白2激酶抗体(Thermo Fisher Scientific, 44-6544)被用于被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 s5
赛默飞世尔微管相关蛋白2激酶抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 s5). Eur J Immunol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔微管相关蛋白2激酶抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 人类; 图 3b
赛默飞世尔微管相关蛋白2激酶抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在人类样本上 (图 3b). J Immunol (2018) ncbi
domestic rabbit 单克隆(B.742.5)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔微管相关蛋白2激酶抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔微管相关蛋白2激酶抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 5e). MAbs (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔微管相关蛋白2激酶抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
  • 免疫印迹; 人类; 图 s3b
赛默飞世尔微管相关蛋白2激酶抗体(生活技术, 44-654G)被用于被用于免疫印迹在小鼠样本上 (图 5e) 和 被用于免疫印迹在人类样本上 (图 s3b). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔微管相关蛋白2激酶抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔微管相关蛋白2激酶抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(MILAN8R)
  • 流式细胞仪; 小鼠
赛默飞世尔微管相关蛋白2激酶抗体(eBioscience, MILAN8R)被用于被用于流式细胞仪在小鼠样本上. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
小鼠 单克隆(12D11)
  • 免疫印迹; 人类; 图 s6
赛默飞世尔微管相关蛋白2激酶抗体(ThermoFisher Scientific, MA1-13041)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44680G)被用于. Int J Mol Sci (2015) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-8600)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Thermo Fisher Scientific, 44-680G)被用于. Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(生活技术, 44-654-G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 44680G)被用于. Biochem Pharmacol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(生活技术, 44680G)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Biosource, 44-680G)被用于. Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, CA 61-7400)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen Life Technologies, 44680G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen Life Technologies, 44-654G)被用于. Cell Death Dis (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔微管相关蛋白2激酶抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔微管相关蛋白2激酶抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000; 图 3
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-6B11)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). J Neurosci (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔微管相关蛋白2激酶抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). J Endocrinol Invest (2011) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 小鼠; 1:3000
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-8600)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. J Neurosci (2009) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 人类; 图 5
赛默飞世尔微管相关蛋白2激酶抗体(Zymed Laboratories, 13-8600)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2007) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Immunol (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 6). Cardiovasc Res (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样本上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-6B11)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-8600)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Obes Relat Metab Disord (2003) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔微管相关蛋白2激酶抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样本上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
赛默飞世尔微管相关蛋白2激酶抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔微管相关蛋白2激酶抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (1997) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP4967)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab109282)被用于被用于免疫印迹在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上 (图 7). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(Y72)
  • 免疫印迹; pigs ; 1:1000; 图 6
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab32537)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 6). Animals (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3e
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab214362)被用于被用于免疫印迹在大鼠样本上 (图 3e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5f
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e, 6g
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上 (图 6e, 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab76299)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab115799)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 人类; 1:5000; 图 s4
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s4). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab214362,)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab115799)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EPR17526)
  • 免疫印迹; 大鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab184699)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP197Y)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab76299)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 单克隆(Y72)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab32537)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(Y72)
  • 免疫印迹; pigs
艾博抗(上海)贸易有限公司微管相关蛋白2激酶抗体(Abcam, ab32537)被用于被用于免疫印迹在pigs 样本上. Eur J Nutr (2015) ncbi
BioLegend
大鼠 单克隆(W15133B)
  • 免疫印迹; 人类; 1:1000; 图 3a
BioLegend微管相关蛋白2激酶抗体(BioLegend, 686902)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司微管相关蛋白2激酶抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling Technology, CST9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Commun (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200; 图 s3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 s3). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9216)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 4372S)被用于被用于免疫印迹在小鼠样本上 (图 s3). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Tech, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4b). Clin Transl Immunology (2020) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 6b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 28B10)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化; fruit fly ; 1:100; 图 5f
  • 免疫印迹; fruit fly ; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 5f) 和 被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s5b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Alzheimers Res Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:500; 图 2g, 2s1a, 2s3d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2g, 2s1a, 2s3d). elife (2020) ncbi
小鼠 单克隆(28B10)
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 4b). Drug Des Devel Ther (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 6b). Cell Commun Signal (2020) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 4372)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Nature (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上 (图 4c). Cells (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 人类; 1:100; 图 2a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2a). FASEB J (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). elife (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 8c, 9b
  • 免疫印迹; 大鼠; 1:250; 图 s1f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 8c, 9b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 s1f). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6a
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 3a, 3c, s3d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a, 3c, s3d). Sci Adv (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(12F8)
  • 流式细胞仪; 人类; 图 2e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 12F8)被用于被用于流式细胞仪在人类样本上 (图 2e). Front Immunol (2018) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s4b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2018) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9215)被用于被用于免疫印迹在小鼠样本上 (图 4b). Infect Immun (2019) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9215)被用于被用于免疫印迹在人类样本上 (图 7c). Cell Death Differ (2019) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2500; 图 s4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 s4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 2i
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上 (图 2i). Nat Med (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell signalling, 4631)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:200; 图 3d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 s7f
  • 免疫印迹; 小鼠; 图 s7e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 s7f) 和 被用于免疫印迹在小鼠样本上 (图 s7e). Cell (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cst, 9215s)被用于被用于免疫印迹在人类样本上 (图 1g). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 EV3d
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell signalling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 EV3d) 和 被用于免疫印迹在人类样本上 (图 7a). EMBO J (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 S17A
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 S17A). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell signalling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:500; 图 6c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell signalling, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 4c). EMBO J (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:2000; 图 5E
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5E). PLoS ONE (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 2c). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Arch Biochem Biophys (2017) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Autophagy (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Evid Based Complement Alternat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; pigs ; 1:1000; 图 2A
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在pigs 样本上浓度为1:1000 (图 2A). Toxins (Basel) (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 小鼠; 图 s10b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling Technologies, 9216)被用于被用于免疫组化在小鼠样本上 (图 s10b). Open Biol (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化; 斑马鱼; 1:500; 图 5a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5a). Neurotox Res (2016) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 人类; 图 s18a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 28B10)被用于被用于流式细胞仪在人类样本上 (图 s18a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 流式细胞仪; 人类; 图 5b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 3D7)被用于被用于流式细胞仪在人类样本上 (图 5b). Cell Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在小鼠样本上 (图 4c). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 4). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Leukemia (2017) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Tech, 9215S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫细胞化学; 小鼠; 1:50; 图 3g
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3g). Nat Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s3e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3e). Sci Rep (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:250; 图 6a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5d). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). J Ovarian Res (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2C
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2C). PLoS ONE (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫组化; 大鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 牛; 图 9f
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在牛样本上 (图 9f) 和 被用于免疫印迹在人类样本上 (图 9e). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 1c). EMBO Rep (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫细胞化学; 犬; 1:50; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫细胞化学在犬样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫细胞化学; 小鼠; 图 s1a,s1b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a,s1b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 12F8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 8a, 8b
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 8a, 8b). J Mol Cell Cardiol (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 3). Cell Stress Chaperones (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s10f
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 3). Int J Cancer (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Immunol (2016) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Neuropharmacology (2016) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 1). J Cell Biol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 28B10)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; domestic rabbit; 1:1000; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling Technology, 9215)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠; 图 S3
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在大鼠样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Tech, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9,216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 2). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling, 9216)被用于被用于免疫印迹在人类样本上 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上 (图 4). Int J Biol Sci (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 1). EMBO J (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 4631)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫印迹在人类样本上 (图 5). Evid Based Complement Alternat Med (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling, 9215)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631S)被用于被用于免疫印迹在大鼠样本上. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215S)被用于被用于免疫印迹在小鼠样本上. J Agric Food Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 9215)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9215)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signalling, 9216S)被用于被用于免疫印迹在人类样本上. Mech Ageing Dev (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631)被用于被用于免疫印迹在人类样本上 (图 8). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化; 鸡; 1:400
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technologies, 12F8)被用于被用于免疫组化在鸡样本上浓度为1:400. Glia (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 犬
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在犬样本上. J Vet Med Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(CST, 9215)被用于被用于免疫印迹在大鼠样本上. FASEB J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(28B10)
  • 流式细胞仪; 小鼠
  • 免疫细胞化学; 小鼠; 1:50
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216S)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上浓度为1:50. Nat Med (2014) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(cell signalling technology, 9216)被用于被用于免疫印迹在小鼠样本上 (图 1e). Arthritis Res Ther (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 4631)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Dermatol Sci (2014) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631S)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technology, 9216)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling Technologies, 4631)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; pigs
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在pigs 样本上. Basic Res Cardiol (2013) ncbi
小鼠 单克隆(28B10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9216)被用于被用于免疫印迹在人类样本上. Am J Physiol Renal Physiol (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell signaling, 4631)被用于被用于免疫组化-石蜡切片在小鼠样本上. Exp Toxicol Pathol (2013) ncbi
domestic rabbit 单克隆(12F8)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 4631S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 9215S)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
domestic rabbit 单克隆(3D7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司微管相关蛋白2激酶抗体(Cell Signaling, 3D7)被用于被用于免疫印迹在人类样本上 (图 7d). EMBO J (2012) ncbi
西格玛奥德里奇
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1500; 图 2c
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; Ciona; 1:500; 图 2d
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫组化在Ciona样本上浓度为1:500 (图 2d). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 s1c
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s1b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1b). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样本上 (图 s5d). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇微管相关蛋白2激酶抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:2000; 图 s8a
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; pigs ; 图 1b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2f
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:40,000; 图 s2a
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000 (图 s2a). Metallomics (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M5670)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 犬; 图 1d
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在犬样本上 (图 1d). BMC Genomics (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于. BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Chemical Co, M5670)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:500
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 2
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M5670)被用于. Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M-5670)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, 8159)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M 5670)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; fruit fly ; 1:200
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫组化在fruit fly 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样本上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇微管相关蛋白2激酶抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇微管相关蛋白2激酶抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
碧迪BD
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 e2c
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 e2c). Nature (2016) ncbi
小鼠 单克隆(G262-118)
  • 免疫印迹; 人类; 图 s6
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 554100)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:4000; 图 4
碧迪BD微管相关蛋白2激酶抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 5
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610031)被用于被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 图 2c
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610030)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类; 图 3
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上 (图 3). Cell Mol Life Sci (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 s5c
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 s5c). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 大鼠; 1:5000
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610030)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Cell Death Dis (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:5000; 图 7
碧迪BD微管相关蛋白2激酶抗体(BD Transduction Laboratories, 610408)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7). PLoS ONE (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 1d
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610408)被用于被用于免疫印迹在小鼠样本上 (图 1d). Arthritis Res Ther (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 人类
碧迪BD微管相关蛋白2激酶抗体(BD Biosciences, 610031)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
小鼠 单克隆(MK12)
  • 免疫印迹; 小鼠; 1:2000
碧迪BD微管相关蛋白2激酶抗体(BD Transduction Laboratories, 610031)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2013) ncbi
文章列表
  1. Hoste E, Lecomte K, Annusver K, Vandamme N, Roels J, Maschalidi S, et al. OTULIN maintains skin homeostasis by controlling keratinocyte death and stem cell identity. Nat Commun. 2021;12:5913 pubmed 出版商
  2. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  3. Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, et al. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol. 2021;12:754976 pubmed 出版商
  4. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  6. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  7. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  8. Fan H, Wang S, Wang H, Sun M, Wu S, Bao W. Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects. Antioxidants (Basel). 2021;10: pubmed 出版商
  9. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  11. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  12. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  13. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  14. Zhang W, Xiong L, Chen J, Tian Z, Liu J, Chen F, et al. Artemisinin Protects Porcine Mammary Epithelial Cells against Lipopolysaccharide-Induced Inflammatory Injury by Regulating the NF-κB and MAPK Signaling Pathways. Animals (Basel). 2021;11: pubmed 出版商
  15. Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra G, Franchin G, et al. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 2021;13:e12872 pubmed 出版商
  16. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  17. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  18. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  19. Renko J, Mahato A, Visnapuu T, Valkonen K, Karelson M, Voutilainen M, et al. Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. J Parkinsons Dis. 2021;11:1023-1046 pubmed 出版商
  20. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  21. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  22. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  23. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  24. Gualtieri A, Kyprianou N, Gregory L, Vignola M, Nicholson J, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun. 2021;12:2028 pubmed 出版商
  25. Ngamsri K, Gamper Tsigaras J, Reutershan J, Konrad F. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne). 2021;8:591790 pubmed 出版商
  26. Sadeghi M, Hemmati S, Mohammadi S, Yousefi Manesh H, Vafaei A, Zare M, et al. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun. 2021;9:53 pubmed 出版商
  27. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  28. Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids. 2021;53:205-217 pubmed 出版商
  29. Li X, Zhang M, Huang X, Liang W, Li G, Lu X, et al. Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun. 2020;11:6364 pubmed 出版商
  30. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  31. Zhang X, Gou Y, Zhang Y, Li J, Han K, Xu Y, et al. Hepcidin overexpression in astrocytes alters brain iron metabolism and protects against amyloid-β induced brain damage in mice. Cell Death Discov. 2020;6:113 pubmed 出版商
  32. Fujiwara Y, Ohnishi K, Horlad H, Saito Y, Shiraishi D, Takeya H, et al. CD163 deficiency facilitates lipopolysaccharide-induced inflammatory responses and endotoxin shock in mice. Clin Transl Immunology. 2020;9:e1162 pubmed 出版商
  33. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  34. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  35. Kim K, Gibboney S, Razy Krajka F, Lowe E, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol. 2020;8:477 pubmed 出版商
  36. Seong K, Ly N, Katou Y, Yokota N, Nakato R, Murakami S, et al. Paternal restraint stress affects offspring metabolism via ATF-2 dependent mechanisms in Drosophila melanogaster germ cells. Commun Biol. 2020;3:208 pubmed 出版商
  37. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  38. Gee M, Son S, Jeon S, Do J, Kim N, Ju Y, et al. A selective p38α/β MAPK inhibitor alleviates neuropathology and cognitive impairment, and modulates microglia function in 5XFAD mouse. Alzheimers Res Ther. 2020;12:45 pubmed 出版商
  39. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. elife. 2020;9: pubmed 出版商
  40. Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics. 2020;10:5137-5153 pubmed 出版商
  41. Yeom J, Ma S, Lim Y. Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  42. Lu G, Li L, Wang B, Kuang L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging (Albany NY). 2020;12:3218-3237 pubmed 出版商
  43. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  44. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  45. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  46. Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, et al. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal. 2020;18:17 pubmed 出版商
  47. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  48. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  49. Zewinger S, Reiser J, Jankowski V, Alansary D, Hahm E, Triem S, et al. Apolipoprotein C3 induces inflammation and organ damage by alternative inflammasome activation. Nat Immunol. 2020;21:30-41 pubmed 出版商
  50. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  51. Hamilton W, Mosesson Y, Monteiro R, Emdal K, Knudsen T, Francavilla C, et al. Dynamic lineage priming is driven via direct enhancer regulation by ERK. Nature. 2019;: pubmed 出版商
  52. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  53. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  54. Zhang L, Zheng C, Sun Z, Wang H, Wang F. Long non-coding RNA urothelial cancer associated 1 can regulate the migration and invasion of colorectal cancer cells (SW480) via myocardin-related transcription factor-A. Oncol Lett. 2019;18:4185-4193 pubmed 出版商
  55. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  56. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  57. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  58. Linnebacher A, Mayer P, Marnet N, Bergmann F, Herpel E, Revia S, et al. Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells. 2019;8: pubmed 出版商
  59. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  60. Bailey K, Moreno E, Haj F, Simon S, Passerini A. Mechanoregulation of p38 activity enhances endoplasmic reticulum stress-mediated inflammation by arterial endothelium. FASEB J. 2019;33:12888-12899 pubmed 出版商
  61. Sang D, Pinglay S, Wiewiora R, Selvan M, Lou H, Chodera J, et al. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. elife. 2019;8: pubmed 出版商
  62. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  63. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  64. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  65. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  66. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  67. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  68. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  69. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  70. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  71. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  72. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  73. Liu Z, Wu C, Pan Y, Liu H, Wang X, Yang Y, et al. NDR2 promotes the antiviral immune response via facilitating TRIM25-mediated RIG-I activation in macrophages. Sci Adv. 2019;5:eaav0163 pubmed 出版商
  74. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  75. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  76. Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194-206 pubmed 出版商
  77. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  78. Richardson J, Armbruster N, Günter M, Henes J, Autenrieth S. Staphylococcus aureus PSM Peptides Modulate Human Monocyte-Derived Dendritic Cells to Prime Regulatory T Cells. Front Immunol. 2018;9:2603 pubmed 出版商
  79. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  80. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  81. Panda S, Gekara N. The deubiquitinase MYSM1 dampens NOD2-mediated inflammation and tissue damage by inactivating the RIP2 complex. Nat Commun. 2018;9:4654 pubmed 出版商
  82. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  83. Hou M, Wang W, Hu F, Zhang Y, Yang D, Liu Q. Phosphothreonine Lyase Promotes p65 Degradation in a Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1-Dependent Manner. Infect Immun. 2019;87: pubmed 出版商
  84. Fauster A, Rebsamen M, Willmann K, César Razquin A, Girardi E, Bigenzahn J, et al. Systematic genetic mapping of necroptosis identifies SLC39A7 as modulator of death receptor trafficking. Cell Death Differ. 2019;26:1138-1155 pubmed 出版商
  85. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  86. Liu Z, Qin Q, Wu C, Li H, Shou J, Yang Y, et al. Downregulated NDR1 protein kinase inhibits innate immune response by initiating an miR146a-STAT1 feedback loop. Nat Commun. 2018;9:2789 pubmed 出版商
  87. Imbrechts M, De Samblancx K, Fierens K, Brisse E, Vandenhaute J, Mitera T, et al. IFN-γ stimulates CpG-induced IL-10 production in B cells via p38 and JNK signalling pathways. Eur J Immunol. 2018;48:1506-1521 pubmed 出版商
  88. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  89. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  90. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  91. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  92. Jun H, Yu H, Gong J, Jiang J, Qiao X, Perkey E, et al. An immune-beige adipocyte communication via nicotinic acetylcholine receptor signaling. Nat Med. 2018;24:814-822 pubmed 出版商
  93. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  94. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  95. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  96. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  97. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  98. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  99. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  100. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  101. Wang C, Edilova M, Wagar L, Mujib S, Singer M, Bernard N, et al. Effect of IL-7 Therapy on Phospho-Ribosomal Protein S6 and TRAF1 Expression in HIV-Specific CD8 T Cells in Patients Receiving Antiretroviral Therapy. J Immunol. 2018;200:558-564 pubmed 出版商
  102. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  103. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  104. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  105. Magilnick N, Reyes E, Wang W, Vonderfecht S, Gohda J, Inoue J, et al. miR-146a-Traf6 regulatory axis controls autoimmunity and myelopoiesis, but is dispensable for hematopoietic stem cell homeostasis and tumor suppression. Proc Natl Acad Sci U S A. 2017;114:E7140-E7149 pubmed 出版商
  106. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  107. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  108. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  109. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  110. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  111. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  112. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  113. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  114. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  115. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  116. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency. Cell. 2017;169:243-257.e25 pubmed 出版商
  117. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  118. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  119. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  120. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  121. Song Y, Lai L, Chong Z, He J, Zhang Y, Xue Y, et al. E3 ligase FBXW7 is critical for RIG-I stabilization during antiviral responses. Nat Commun. 2017;8:14654 pubmed 出版商
  122. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  123. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  124. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  125. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  126. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  127. Gautam J, Nirwane A, Yao Y. Laminin differentially regulates the stemness of type I and type II pericytes. Stem Cell Res Ther. 2017;8:28 pubmed 出版商
  128. Li C, Bi Y, Li Y, Yang H, Yu Q, Wang J, et al. Dendritic cell MST1 inhibits Th17 differentiation. Nat Commun. 2017;8:14275 pubmed 出版商
  129. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  130. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  131. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  132. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  133. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  134. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  135. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  136. Schwarz F, Landig C, Siddiqui S, Secundino I, Olson J, Varki N, et al. Paired Siglec receptors generate opposite inflammatory responses to a human-specific pathogen. EMBO J. 2017;36:751-760 pubmed 出版商
  137. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  138. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  139. Pyle C, Akhter S, Bao S, Dodd C, Schlesinger L, Knoell D. Zinc Modulates Endotoxin-Induced Human Macrophage Inflammation through ZIP8 Induction and C/EBP? Inhibition. PLoS ONE. 2017;12:e0169531 pubmed 出版商
  140. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  141. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  142. Wamsley J, Issaeva N, An H, Lu X, Donehower L, Yarbrough W. LZAP is a novel Wip1 binding partner and positive regulator of its phosphatase activity in vitro. Cell Cycle. 2017;16:213-223 pubmed 出版商
  143. Marmisolle I, Martínez J, Liu J, Mastrogiovanni M, Fergusson M, Rovira I, et al. Reciprocal regulation of acetyl-CoA carboxylase 1 and senescence in human fibroblasts involves oxidant mediated p38 MAPK activation. Arch Biochem Biophys. 2017;613:12-22 pubmed 出版商
  144. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  145. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  146. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  147. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  148. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  149. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  150. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  151. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  152. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  153. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  154. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  155. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  156. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  157. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  158. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  159. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  160. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  161. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  162. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  163. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  164. Yan S, Wang Y, Liu P, Chen A, Chen M, Yao D, et al. Baicalin Attenuates Hypoxia-Induced Pulmonary Arterial Hypertension to Improve Hypoxic Cor Pulmonale by Reducing the Activity of the p38 MAPK Signaling Pathway and MMP-9. Evid Based Complement Alternat Med. 2016;2016:2546402 pubmed 出版商
  165. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  166. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  167. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  168. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  169. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  170. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  171. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  172. Springler A, Hessenberger S, Schatzmayr G, Mayer E. Early Activation of MAPK p44/42 Is Partially Involved in DON-Induced Disruption of the Intestinal Barrier Function and Tight Junction Network. Toxins (Basel). 2016;8: pubmed 出版商
  173. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  174. Thamodaran V, Bruce A. p38 (Mapk14/11) occupies a regulatory node governing entry into primitive endoderm differentiation during preimplantation mouse embryo development. Open Biol. 2016;6: pubmed 出版商
  175. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  176. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  177. Zhang Y, Hu S, Chen Y, Guo M, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med. 2016;38:1055-62 pubmed 出版商
  178. Cheng G, Gao F, Sun X, Bi H, Zhu Y. Paris saponin VII suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway. Mol Med Rep. 2016;14:3199-205 pubmed 出版商
  179. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  180. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  181. Kasica N, Podlasz P, Sundvik M, Tamas A, Reglodi D, Kaleczyc J. Protective Effects of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Against Oxidative Stress in Zebrafish Hair Cells. Neurotox Res. 2016;30:633-647 pubmed
  182. Kagoya Y, Nakatsugawa M, Yamashita Y, Ochi T, Guo T, Anczurowski M, et al. BET bromodomain inhibition enhances T cell persistence and function in adoptive immunotherapy models. J Clin Invest. 2016;126:3479-94 pubmed 出版商
  183. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  184. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  185. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  186. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  187. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  188. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  189. Lyukmanova E, Shulepko M, Shenkarev Z, Bychkov M, Paramonov A, Chugunov A, et al. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep. 2016;6:30698 pubmed 出版商
  190. Kim J, Weeratunga P, Kim M, Nikapitiya C, Lee B, Uddin M, et al. Inhibitory effects of an aqueous extract from Cortex Phellodendri on the growth and replication of broad-spectrum of viruses in vitro and in vivo. BMC Complement Altern Med. 2016;16:265 pubmed 出版商
  191. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  192. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  193. Møller C, Kjøbsted R, Enriori P, Jensen T, Garcia Rudaz C, Litwak S, et al. ?-MSH Stimulates Glucose Uptake in Mouse Muscle and Phosphorylates Rab-GTPase-Activating Protein TBC1D1 Independently of AMPK. PLoS ONE. 2016;11:e0157027 pubmed 出版商
  194. Ciaraldi T, Ryan A, Mudaliar S, Henry R. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in Type 2 Diabetes. PLoS ONE. 2016;11:e0158209 pubmed 出版商
  195. Abdelbaset Ismail A, Borkowska Rzeszotek S, Kubis E, Bujko K, Brzeźniakiewicz Janus K, Bolkun L, et al. Activation of the complement cascade enhances motility of leukemic cells by downregulating expression of HO-1. Leukemia. 2017;31:446-458 pubmed 出版商
  196. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  197. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  198. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  199. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  200. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  201. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  202. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  203. Xiang N, Liu J, Liao Y, Huang Y, Wu Z, Bai Z, et al. Abrogating ClC-3 Inhibits LPS-induced Inflammation via Blocking the TLR4/NF-κB Pathway. Sci Rep. 2016;6:27583 pubmed 出版商
  204. Heckler M, Zeleke T, Divekar S, Fernandez A, Tiek D, Woodrick J, et al. Antimitotic activity of DY131 and the estrogen-related receptor beta 2 (ERRβ2) splice variant in breast cancer. Oncotarget. 2016;7:47201-47220 pubmed 出版商
  205. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  206. Zhang J, Jing X, Niu W, Zhang M, Ge L, Miao C, et al. Peroxiredoxin 1 has an anti-apoptotic role via apoptosis signal-regulating kinase 1 and p38 activation in mouse models with oral precancerous lesions. Oncol Lett. 2016;12:413-420 pubmed
  207. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  208. Ahmad F, Chung Y, Tang Y, Hockman S, Liu S, Khan Y, et al. Phosphodiesterase 3B (PDE3B) regulates NLRP3 inflammasome in adipose tissue. Sci Rep. 2016;6:28056 pubmed 出版商
  209. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  210. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  211. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  212. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  213. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  214. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  215. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  216. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  217. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  218. Ribeiro J, Schorl C, Yano N, Romano N, Kim K, Singh R, et al. HE4 promotes collateral resistance to cisplatin and paclitaxel in ovarian cancer cells. J Ovarian Res. 2016;9:28 pubmed 出版商
  219. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  220. Tortola L, Nitsch R, Bertrand M, Kogler M, Redouane Y, Kozieradzki I, et al. The Tumor Suppressor Hace1 Is a Critical Regulator of TNFR1-Mediated Cell Fate. Cell Rep. 2016;15:1481-1492 pubmed 出版商
  221. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  222. Foxton R, Osborne A, Martin K, Ng Y, Shima D. Distal retinal ganglion cell axon transport loss and activation of p38 MAPK stress pathway following VEGF-A antagonism. Cell Death Dis. 2016;7:e2212 pubmed 出版商
  223. Ishizuka S, Askew E, Ishizuka N, Knudson C, Knudson W. 4-Methylumbelliferone Diminishes Catabolically Activated Articular Chondrocytes and Cartilage Explants via a Mechanism Independent of Hyaluronan Inhibition. J Biol Chem. 2016;291:12087-104 pubmed 出版商
  224. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  225. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  226. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  227. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  228. Wagstaff L, Goschorska M, Kozyrska K, Duclos G, Kucinski I, Chessel A, et al. Mechanical cell competition kills cells via induction of lethal p53 levels. Nat Commun. 2016;7:11373 pubmed 出版商
  229. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  230. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  231. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  232. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  233. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  234. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  235. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  236. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  237. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  238. Yang Y, Xu J, Chen H, Fei X, Tang Y, Yan Y, et al. MiR-128-2 inhibits common lymphoid progenitors from developing into progenitor B cells. Oncotarget. 2016;7:17520-31 pubmed 出版商
  239. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  240. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  241. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  242. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  243. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  244. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  245. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  246. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  247. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  248. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  249. Chusri P, Kumthip K, Hong J, Zhu C, Duan X, Jilg N, et al. HCV induces transforming growth factor β1 through activation of endoplasmic reticulum stress and the unfolded protein response. Sci Rep. 2016;6:22487 pubmed 出版商
  250. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  251. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  252. Cao L, Qin X, Peterson M, Haller S, Wilson K, Hu N, et al. CARD9 knockout ameliorates myocardial dysfunction associated with high fat diet-induced obesity. J Mol Cell Cardiol. 2016;92:185-95 pubmed 出版商
  253. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  254. Pecháčková S, Burdova K, Benada J, Kleiblova P, Jenikova G, Macurek L. Inhibition of WIP1 phosphatase sensitizes breast cancer cells to genotoxic stress and to MDM2 antagonist nutlin-3. Oncotarget. 2016;7:14458-75 pubmed 出版商
  255. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  256. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  257. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  258. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  259. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  260. Tai D, Ragavendran A, Manavalan P, Stortchevoi A, Seabra C, Erdin S, et al. Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci. 2016;19:517-22 pubmed 出版商
  261. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  262. van der Mijn J, Broxterman H, Knol J, Piersma S, de Haas R, Dekker H, et al. Sunitinib activates Axl signaling in renal cell cancer. Int J Cancer. 2016;138:3002-10 pubmed 出版商
  263. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  264. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  265. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  266. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  267. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  268. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  269. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  270. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  271. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  272. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  273. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  274. Roth Flach R, Skoura A, Matevossian A, Danai L, Zheng W, Cortes C, et al. Endothelial protein kinase MAP4K4 promotes vascular inflammation and atherosclerosis. Nat Commun. 2015;6:8995 pubmed 出版商
  275. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  276. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  277. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  278. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  279. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  280. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  281. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  282. Kurioka T, Matsunobu T, Satoh Y, Niwa K, Endo S, Fujioka M, et al. ERK2 mediates inner hair cell survival and decreases susceptibility to noise-induced hearing loss. Sci Rep. 2015;5:16839 pubmed 出版商
  283. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  284. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  285. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  286. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  287. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  288. Waye S, Naeem A, Choudhry M, Parasido E, Tricoli L, Sivakumar A, et al. The p53 tumor suppressor protein protects against chemotherapeutic stress and apoptosis in human medulloblastoma cells. Aging (Albany NY). 2015;7:854-68 pubmed
  289. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  290. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  291. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  292. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  293. Dumas A, Lê Bury G, Marie Anaïs F, Herit F, Mazzolini J, Guilbert T, et al. The HIV-1 protein Vpr impairs phagosome maturation by controlling microtubule-dependent trafficking. J Cell Biol. 2015;211:359-72 pubmed 出版商
  294. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  295. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  296. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  297. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  298. Zhu X, Wang K, Zhang K, Tan X, Wu Z, Sun S, et al. Tetramethylpyrazine Protects Retinal Capillary Endothelial Cells (TR-iBRB2) against IL-1β-Induced Nitrative/Oxidative Stress. Int J Mol Sci. 2015;16:21775-90 pubmed 出版商
  299. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  300. Ashford A, Dunkley T, Cockerill M, Rowlinson R, Baak L, Gallo R, et al. Identification of DYRK1B as a substrate of ERK1/2 and characterisation of the kinase activity of DYRK1B mutants from cancer and metabolic syndrome. Cell Mol Life Sci. 2016;73:883-900 pubmed 出版商
  301. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  302. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  303. Higa Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem. 2015;290:25974-85 pubmed 出版商
  304. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  305. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  306. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  307. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  308. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  309. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  310. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  311. Varela A, Piperi C, Sigala F, Agrogiannis G, Davos C, Andri M, et al. Elevated expression of mechanosensory polycystins in human carotid atherosclerotic plaques: association with p53 activation and disease severity. Sci Rep. 2015;5:13461 pubmed 出版商
  312. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  313. Chichger H, Braza J, Duong H, Stark M, Harrington E. Neovascularization in the pulmonary endothelium is regulated by the endosome: Rab4-mediated trafficking and p18-dependent signaling. Am J Physiol Lung Cell Mol Physiol. 2015;309:L700-9 pubmed 出版商
  314. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  315. Simard E, Söllradl T, Maltais J, Boucher J, D Orléans Juste P, Grandbois M. Receptor for Advanced Glycation End-Products Signaling Interferes with the Vascular Smooth Muscle Cell Contractile Phenotype and Function. PLoS ONE. 2015;10:e0128881 pubmed 出版商
  316. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  317. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  318. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  319. Picot N, Guerrette R, Beauregard A, Jean S, Michaud P, Harquail J, et al. Mammaglobin 1 promotes breast cancer malignancy and confers sensitivity to anticancer drugs. Mol Carcinog. 2016;55:1150-62 pubmed 出版商
  320. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  321. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  322. Ito A, Hong C, Rong X, Zhu X, Tarling E, Hedde P, et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. elife. 2015;4:e08009 pubmed 出版商
  323. Kim J, Lee G, Won Y, Lee M, Kwak J, Chun C, et al. Matrix cross-linking-mediated mechanotransduction promotes posttraumatic osteoarthritis. Proc Natl Acad Sci U S A. 2015;112:9424-9 pubmed 出版商
  324. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  325. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  326. Wu C, Jiao H, Lai Y, Zheng W, Chen K, Qu H, et al. Kindlin-2 controls TGF-β signalling and Sox9 expression to regulate chondrogenesis. Nat Commun. 2015;6:7531 pubmed 出版商
  327. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  328. Zhao L, Liu S, Che X, Hou K, Ma Y, Li C, et al. Bufalin inhibits TGF-β-induced epithelial-to-mesenchymal transition and migration in human lung cancer A549 cells by downregulating TGF-β receptors. Int J Mol Med. 2015;36:645-52 pubmed 出版商
  329. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  330. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  331. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  332. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  333. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  334. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  335. Wang S, Awad K, Elinoff J, Dougherty E, Ferreyra G, Wang J, et al. G Protein-coupled Receptor 40 (GPR40) and Peroxisome Proliferator-activated Receptor γ (PPARγ): AN INTEGRATED TWO-RECEPTOR SIGNALING PATHWAY. J Biol Chem. 2015;290:19544-57 pubmed 出版商
  336. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  337. Wu P, Yen J, Kou M, Wu M. Luteolin and Apigenin Attenuate 4-Hydroxy-2-Nonenal-Mediated Cell Death through Modulation of UPR, Nrf2-ARE and MAPK Pathways in PC12 Cells. PLoS ONE. 2015;10:e0130599 pubmed 出版商
  338. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  339. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  340. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  341. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  342. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  343. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  344. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  345. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  346. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  347. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  348. Sun L, Xu C, Chen G, Yu M, Yang S, Qiu Y, et al. A Novel Role of OS-9 in the Maintenance of Intestinal Barrier Function from Hypoxia-induced Injury via p38-dependent Pathway. Int J Biol Sci. 2015;11:664-71 pubmed 出版商
  349. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  350. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  351. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  352. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  353. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  354. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  355. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  356. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  357. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  358. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  359. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  360. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  361. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  362. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  363. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  364. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  365. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  366. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  367. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  368. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  369. Meena J, Cerutti A, Beichler C, Morita Y, Bruhn C, Kumar M, et al. Telomerase abrogates aneuploidy-induced telomere replication stress, senescence and cell depletion. EMBO J. 2015;34:1371-84 pubmed 出版商
  370. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  371. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  372. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  373. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  374. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  375. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  376. Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, et al. Ppm1b negatively regulates necroptosis through dephosphorylating Rip3. Nat Cell Biol. 2015;17:434-44 pubmed 出版商
  377. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  378. Kollar P, Bárta T, KeltoÅ¡ová S, Trnová P, Müller Závalová V, Å mejkal K, et al. Flavonoid 4'-O-Methylkuwanon E from Morus alba Induces the Differentiation of THP-1 Human Leukemia Cells. Evid Based Complement Alternat Med. 2015;2015:251895 pubmed 出版商
  379. Kim S, Ka S, Lee Y, Park B, Fei X, Jung J, et al. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation. PLoS ONE. 2015;10:e0117120 pubmed 出版商
  380. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  381. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  382. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  383. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  384. Curcio M, Salazar I, Inácio A, Duarte E, Canzoniero L, Duarte C. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis. 2015;6:e1645 pubmed 出版商
  385. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  386. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  387. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  388. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  389. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  390. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  391. Xu B, Zhang Y, Tong X, Liu Y. Characterization of microRNA profile in human cumulus granulosa cells: Identification of microRNAs that regulate Notch signaling and are associated with PCOS. Mol Cell Endocrinol. 2015;404:26-36 pubmed 出版商
  392. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  393. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  394. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  395. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  396. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  397. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  398. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  399. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  400. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  401. Jilg C, Ketscher A, Metzger E, Hummel B, Willmann D, Rüsseler V, et al. PRK1/PKN1 controls migration and metastasis of androgen-independent prostate cancer cells. Oncotarget. 2014;5:12646-64 pubmed
  402. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  403. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  404. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  405. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  406. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  407. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  408. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  409. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  410. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  411. Li X, Sun Q, Li X, Cai D, Sui S, Jia Y, et al. Dietary betaine supplementation to gestational sows enhances hippocampal IGF2 expression in newborn piglets with modified DNA methylation of the differentially methylated regions. Eur J Nutr. 2015;54:1201-10 pubmed 出版商
  412. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  413. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  414. Li Y, Kim B, Cho S, Bang M, Kim S, Park D. 6,7-di-O-acetylsinococuline (FK-3000) induces G2/M phase arrest in breast carcinomas through p38 MAPK phosphorylation and CDC25B dephosphorylation. Int J Oncol. 2015;46:578-86 pubmed 出版商
  415. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  416. Wang Y, Xiao X, Li N, Yang D, Xing Y, Huo R, et al. Oestrogen inhibits BMP4-induced BMP4 expression in cardiomyocytes: a potential mechanism of oestrogen-mediated protection against cardiac hypertrophy. Br J Pharmacol. 2015;172:5586-95 pubmed 出版商
  417. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  418. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  419. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  420. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  421. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  422. Zhao X, Zhu L, Chang Q, Jiang C, You Y, Luo T, et al. C-type lectin receptor dectin-3 mediates trehalose 6,6'-dimycolate (TDM)-induced Mincle expression through CARD9/Bcl10/MALT1-dependent nuclear factor (NF)-κB activation. J Biol Chem. 2014;289:30052-62 pubmed 出版商
  423. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  424. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  425. Huang S, Lee C, Wang H, Chang Y, Lin C, Chen C, et al. 6-Dehydrogingerdione restrains lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages. J Agric Food Chem. 2014;62:9171-9 pubmed 出版商
  426. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  427. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  428. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  429. Yu B, Chang J, Liu Y, Li J, Kevork K, Al Hezaimi K, et al. Wnt4 signaling prevents skeletal aging and inflammation by inhibiting nuclear factor-?B. Nat Med. 2014;20:1009-17 pubmed 出版商
  430. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  431. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  432. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  433. Kurz D, Payeli S, Greutert H, Briand Schumacher S, Luscher T, Tanner F. Epigenetic regulation of tissue factor inducibility in endothelial cell senescence. Mech Ageing Dev. 2014;140:1-9 pubmed 出版商
  434. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  435. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  436. Maeda S, Wada H, Naito Y, Nagano H, Simmons S, Kagawa Y, et al. Interferon-? acts on the S/G2/M phases to induce apoptosis in the G1 phase of an IFNAR2-expressing hepatocellular carcinoma cell line. J Biol Chem. 2014;289:23786-95 pubmed 出版商
  437. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  438. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  439. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  440. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  441. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  442. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  443. Fischer A, Zelinka C, Gallina D, Scott M, Todd L. Reactive microglia and macrophage facilitate the formation of Müller glia-derived retinal progenitors. Glia. 2014;62:1608-28 pubmed 出版商
  444. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  445. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  446. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  447. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  448. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  449. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  450. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  451. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  452. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  453. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  454. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  455. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  456. Smith I, Godinez G, Singh B, McCaughey K, Alcantara R, Gururaja T, et al. Inhibition of Janus kinase signaling during controlled mechanical ventilation prevents ventilation-induced diaphragm dysfunction. FASEB J. 2014;28:2790-803 pubmed 出版商
  457. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  458. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  459. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  460. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  461. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  462. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  463. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  464. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  465. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  466. Bernet J, Doles J, Hall J, Kelly Tanaka K, Carter T, Olwin B. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat Med. 2014;20:265-71 pubmed 出版商
  467. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  468. Willemen H, Campos P, Lucas E, Morreale A, Gil Redondo R, Agut J, et al. A novel p38 MAPK docking-groove-targeted compound is a potent inhibitor of inflammatory hyperalgesia. Biochem J. 2014;459:427-39 pubmed 出版商
  469. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  470. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  471. Shin Y, Huh Y, Kim K, Kim S, Park K, Koh J, et al. Low-density lipoprotein receptor-related protein 5 governs Wnt-mediated osteoarthritic cartilage destruction. Arthritis Res Ther. 2014;16:R37 pubmed 出版商
  472. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  473. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  474. Cao M, Hou D, Liang H, Gong F, Wang Y, Yan X, et al. miR-150 promotes the proliferation and migration of lung cancer cells by targeting SRC kinase signalling inhibitor 1. Eur J Cancer. 2014;50:1013-24 pubmed 出版商
  475. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  476. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  477. Krishna S, Luan C, Mishra R, Xu L, Scheidt K, Anderson W, et al. A fluorescence-based thermal shift assay identifies inhibitors of mitogen activated protein kinase kinase 4. PLoS ONE. 2013;8:e81504 pubmed 出版商
  478. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  479. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  480. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  481. Lee J, Park J, Kwon O, Kim H, Fornace A, Cha H. Off-target response of a Wip1 chemical inhibitor in skin keratinocytes. J Dermatol Sci. 2014;73:125-34 pubmed 出版商
  482. Evans C, Cook S, Coleman M, Gilley J. MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. PLoS ONE. 2013;8:e76505 pubmed 出版商
  483. Lu Q, Harris V, Sun X, Hou Y, Black S. Ca²?/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS ONE. 2013;8:e70750 pubmed 出版商
  484. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  485. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  486. Moberly S, Mather K, Berwick Z, Owen M, Goodwill A, Casalini E, et al. Impaired cardiometabolic responses to glucagon-like peptide 1 in obesity and type 2 diabetes mellitus. Basic Res Cardiol. 2013;108:365 pubmed 出版商
  487. Zhou X, Wang H, Burg M, Ferraris J. High NaCl-induced inhibition of PTG contributes to activation of NFAT5 through attenuation of the negative effect of SHP-1. Am J Physiol Renal Physiol. 2013;305:F362-9 pubmed 出版商
  488. Aoshiba K, Tsuji T, Kameyama S, Itoh M, Semba S, Yamaguchi K, et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury. Exp Toxicol Pathol. 2013;65:1053-62 pubmed 出版商
  489. Maeda Y, Fukushima K, Omichi R, Kariya S, Nishizaki K. Time courses of changes in phospho- and total- MAP kinases in the cochlea after intense noise exposure. PLoS ONE. 2013;8:e58775 pubmed 出版商
  490. Taylor D, Moser R, Regulier E, Breuillaud L, Dixon M, Beesen A, et al. MAP kinase phosphatase 1 (MKP-1/DUSP1) is neuroprotective in Huntington's disease via additive effects of JNK and p38 inhibition. J Neurosci. 2013;33:2313-25 pubmed 出版商
  491. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  492. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  493. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  494. Muller M, Triaca V, Besusso D, Costanzi M, Horn J, Koudelka J, et al. Loss of NGF-TrkA signaling from the CNS is not sufficient to induce cognitive impairments in young adult or intermediate-aged mice. J Neurosci. 2012;32:14885-98 pubmed 出版商
  495. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  496. Joaquin M, Gubern A, Gonzalez Nunez D, Josué Ruiz E, Ferreiro I, de Nadal E, et al. The p57 CDKi integrates stress signals into cell-cycle progression to promote cell survival upon stress. EMBO J. 2012;31:2952-64 pubmed 出版商
  497. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  498. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  499. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  500. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  501. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  502. Musumeci G, Sciarretta C, Rodríguez Moreno A, Al Banchaabouchi M, Negrete Díaz V, Costanzi M, et al. TrkB modulates fear learning and amygdalar synaptic plasticity by specific docking sites. J Neurosci. 2009;29:10131-43 pubmed 出版商
  503. Wu J, Jin Y, Calaf G, Huang W, Yin Y. PAC1 is a direct transcription target of E2F-1 in apoptotic signaling. Oncogene. 2007;26:6526-35 pubmed
  504. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  505. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  506. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  507. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  508. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  509. Farnier C, Krief S, Blache M, Diot Dupuy F, Mory G, Ferre P, et al. Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes Relat Metab Disord. 2003;27:1178-86 pubmed
  510. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  511. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  512. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  513. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  514. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  515. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed