这是一篇来自已证抗体库的有关大鼠 大动脉平滑肌肌动蛋白alpha2 (Acta2) 的综述,是根据1167篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合大动脉平滑肌肌动蛋白alpha2 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:100. Cancers (Basel) (2022) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
  • 免疫印迹; 小鼠; 图 3d, 5g
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f), 被用于免疫印迹在小鼠样本上 (图 3d, 5g) 和 被用于免疫印迹在人类样本上 (图 4a). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 5e). Acta Pharm Sin B (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3d
  • 免疫印迹; 大鼠; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3d) 和 被用于免疫印迹在大鼠样本上 (图 3c). Stem Cell Res Ther (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Sci Transl Med (2022) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化; 小鼠; 1:2000; 图 7g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 7g). Sci Transl Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell Death Dis (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell Death Dis (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 5694)被用于被用于免疫组化在小鼠样本上 (图 1h). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 小鼠; 1:2000; 图 2e, 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e, 3e). Life Sci Alliance (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 6a). Theranostics (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
  • 免疫细胞化学; 小鼠; 1:200; 图 s2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s2b). iScience (2022) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Oncogene (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1d). Theranostics (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f). Cell Death Discov (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 1a). BMC Pulm Med (2022) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
  • 免疫组化-石蜡切片; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 1f, 2c, s2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g), 被用于免疫组化-石蜡切片在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 1f, 2c, s2c). Mol Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 5b). Nutrients (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Int J Mol Sci (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1e). iScience (2021) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4d, 5h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, EPR5368)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4d, 5h). Front Genet (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3e). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3i). Sci Adv (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化; 大鼠; 1:250; 图 5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 5a). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2a
  • 免疫细胞化学; 人类; 1:300; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2a) 和 被用于免疫细胞化学在人类样本上浓度为1:300 (图 3c). J Inflamm Res (2021) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 1f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 1f). Bone Res (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 s2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 s2). Pflugers Arch (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3). Front Med (Lausanne) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 1c). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 小鼠; 1:40,000; 图 s4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab124964)被用于被用于免疫印迹在小鼠样本上浓度为1:40,000 (图 s4a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猕猴; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在猕猴样本上 (图 3a). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 1b). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:100. iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s1). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3i
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3i) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 4 ug/ml; 图 1d
  • 免疫细胞化学; 小鼠; 4 ug/ml; 图 3g
  • 免疫印迹; 小鼠; 1 ug/ml; 图 1e, 3f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为4 ug/ml (图 1d), 被用于免疫细胞化学在小鼠样本上浓度为4 ug/ml (图 3g) 和 被用于免疫印迹在小鼠样本上浓度为1 ug/ml (图 1e, 3f). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 人类; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在人类样本上 (图 1d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 人类; 1:400; 图 5c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab209435)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 5c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1a
  • 免疫细胞化学; 人类; 图 s5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1a) 和 被用于免疫细胞化学在人类样本上 (图 s5). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab7817)被用于被用于免疫组化在人类样本上 (图 2a). Cell Stem Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上. elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 1a). Cell Death Dis (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; domestic rabbit; 1:200; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab-7817)被用于被用于免疫组化在domestic rabbit样本上浓度为1:200 (图 2c). FASEB Bioadv (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:500; 图 6b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 7817)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1a). Cancers (Basel) (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:50; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1d). Front Physiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4c). Int J Biol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2h). Nat Commun (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 小鼠; 1:2000; 图 5e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5e). Front Physiol (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化; 小鼠; 1:300
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化在小鼠样本上浓度为1:300. Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 3g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3g). JCI Insight (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化; 小鼠; 1:2000; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, EPR5368)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上. Front Immunol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d, 6l
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 6d, 6l). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). NPJ Aging Mech Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1e). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 图 3c
  • 免疫细胞化学; 小鼠; 图 7a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c) 和 被用于免疫细胞化学在小鼠样本上 (图 7a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 5e). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:3000; 图 3d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3d). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2j
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2j). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s11f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s11f). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫细胞化学; 小鼠; 1:300; 图 s1a
  • 免疫组化; 小鼠; 1:5000; 图 s5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s1a) 和 被用于免疫组化在小鼠样本上浓度为1:5000 (图 s5a). Basic Res Cardiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). Hepatology (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1p
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1p). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫组化-石蜡切片; 小鼠; 图 3e
  • 免疫细胞化学; 小鼠; 图 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a), 被用于免疫组化-石蜡切片在小鼠样本上 (图 3e) 和 被用于免疫细胞化学在小鼠样本上 (图 4c). EBioMedicine (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 5b). J Clin Invest (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3f). Clin Cancer Res (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 小鼠; 图 5j
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在小鼠样本上 (图 5j). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 4c). Kaohsiung J Med Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 2l
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2l). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在大鼠样本上 (图 1a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). Diabetes (2021) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在小鼠样本上 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1f). Life Sci Alliance (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1b). Infect Immun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Vascul Pharmacol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 2i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2i). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1e). Proc Natl Acad Sci U S A (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2s1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab21027)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2s1d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2d). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, Ab5694)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Mol Sci (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹基因敲除验证; 小鼠; 图 4e
  • 免疫组化; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 4e) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Mol Med Rep (2020) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 图 s5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫印迹在大鼠样本上 (图 s5a). Theranostics (2020) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; domestic rabbit; 1:5000; 图 1d, 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:5000 (图 1d, 5b). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 2b
  • 免疫组化; 小鼠; 1:400; 图 2b
  • 免疫印迹; 小鼠; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2b), 被用于免疫组化在小鼠样本上浓度为1:400 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:200; 图 4d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4d). Front Immunol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6j
  • 免疫印迹; 人类; 1:1000; 图 s8e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6j) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s8e). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:100; 图 2r
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2r). J Am Heart Assoc (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). EBioMedicine (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:100; 图 6g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6g). Science (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 7817)被用于被用于免疫组化在小鼠样本上 (图 4a). Redox Biol (2020) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 人类; 1:2000; 图 6e
  • 免疫印迹; 人类; 1:2000; 图 2f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 6e) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 s1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 3i, 4d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 3i, 4d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). J Biomed Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, AB5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1e). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 ev1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 ev1e). EMBO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3c
  • 免疫印迹; 人类; 1:1000; 图 1e, 3b, 4d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 3b, 4d). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
  • 免疫组化; 小鼠; 图 4f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫组化在小鼠样本上 (图 4f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(1A4)
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于. Bioact Mater (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 4a, 6b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 4a, 6b). Biores Open Access (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3a, 3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3a, 3b). Sci Rep (2020) ncbi
小鼠 单克隆(1A4)
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, #ab7817)被用于. Eneuro (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 3p
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3p). Fluids Barriers CNS (2020) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab202509)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1c). Nat Cell Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6d). Sci Adv (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化在人类样本上 (图 1a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Chin Med J (Engl) (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 1:2000; 图 8d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 图 7e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7e). FEBS Open Bio (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s28a, 4i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s28a, 4i). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 3b, 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b, 3c). CNS Neurosci Ther (2020) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫细胞化学; 大鼠; 1:400; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 3a). J Inflamm (Lond) (2020) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, E184)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 4b). Sci Adv (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3e, 3g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上 (图 3e, 3g). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:250; 图 s8
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694,)被用于被用于免疫组化在人类样本上浓度为1:250 (图 s8). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). BMC Ophthalmol (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2e). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3e). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Front Physiol (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上 (图 2c). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 1:200; 图 1c
  • 免疫细胞化学; 人类; 1:200; 图 2f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2f). BMC Mol Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:50; 图 3g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Biomed Res Int (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3d). Cell Death Dis (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 2f, e4f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f, e4f). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 1c). Biol Res (2019) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 3). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:100; 图 5c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 5c). Sci Rep (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 4a). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4c). Cell (2019) ncbi
domestic rabbit 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab202510)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). J Clin Invest (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). J Clin Invest (2019) ncbi
domestic goat 多克隆
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫印迹在人类样本上 (图 1d). J Cell Physiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 7f). Cancer Discov (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 5694)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Mol Med (Berl) (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3a, 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a, 4c). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 3e). Cell Death Dis (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3a). PLoS ONE (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). Stem Cell Reports (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1h, s2h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1h, s2h). Hepatology (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d). Breast Cancer Res (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). Science (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3f). Theranostics (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 2g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 2b). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 1j
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1j). Stem Cell Res (2018) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694-100)被用于被用于免疫组化在小鼠样本上 (图 4i). Nucleic Acids Res (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1g). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 6a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Wound Repair Regen (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3e). Oncogene (2018) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:5000; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Biosci Rep (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 4a). Methods Mol Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 7e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7e). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3j
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3j). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5i). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5b). Clin Chim Acta (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3e). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上. Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 4d). Basic Res Cardiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 1d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1d). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 国内马; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(AbCam, ab5694)被用于被用于免疫组化-冰冻切片在国内马样本上 (图 1e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1g). Stem Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 s3b). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:50; 图 1b
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化; 人类; 1:500; 图 3d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3d). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 3e). J Exp Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 7a). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 1i). Front Immunol (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st1). J Toxicol Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s8d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 s8d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5b
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5b) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3c). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(EPR5368)
  • 流式细胞仪; 人类; 图 2e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于流式细胞仪在人类样本上 (图 2e). Stem Cell Res Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上 (图 2b). Cell Stem Cell (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Lab Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1a). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2i
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 2i). Sci Rep (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 大鼠; 图 s1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 s1b). Sci Rep (2017) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; pigs ; 图 5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在pigs 样本上 (图 5a). J Cell Physiol (2017) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7b). Cell Death Dis (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 1f
  • 免疫组化; 人类; 1:100; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1f) 和 被用于免疫组化在人类样本上浓度为1:100 (图 1e). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化; 人类; 图 1a
  • 免疫组化-冰冻切片; 小鼠; 图 3a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫组化在人类样本上 (图 1a) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s1g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 s1g). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3c). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 6d
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在人类样本上 (图 1a). Pharmacol Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 1f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1f). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1b). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Respir Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5). Int J Med Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫印迹在大鼠样本上 (图 1c). Exp Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:125; 图 5a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(AbCam, ab5694)被用于被用于免疫组化在大鼠样本上浓度为1:125 (图 5a). J Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1h). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 2a). Am J Pathol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 3). Mol Cell Endocrinol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 1c). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5). Nat Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1e). JCI Insight (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 1). J Tissue Eng Regen Med (2018) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫印迹在人类样本上 (图 3b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2h
  • 免疫细胞化学; 小鼠; 图 4c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h) 和 被用于免疫细胞化学在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a,6e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 6a,6e). Acta Pharmacol Sin (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 图 11a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, AB 5694)被用于被用于免疫组化在pigs 样本上 (图 11a). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
  • 免疫组化; 人类; 图 1e
  • 免疫印迹; 人类; 图 2h
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 4b), 被用于免疫组化在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 2h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 8B
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 8B). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Int J Cancer (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 9a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 5b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 5b). Biotechnol J (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 124964)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 牛; 1:1000; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在牛样本上浓度为1:1000 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:300; 图 s1g
  • 免疫组化-冰冻切片; 小鼠; 1:300
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (图 s1g) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3a
  • 免疫组化; 人类; 图 2b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 s3a) 和 被用于免疫组化在人类样本上 (图 2b). Nat Biotechnol (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
  • 免疫细胞化学; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2), 被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s14
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s14) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:1000. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 家羊; 图 s1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, MA ab7817)被用于被用于免疫细胞化学在家羊样本上 (图 s1). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 3d
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Arthritis Res Ther (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). Mol Vis (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1b). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1g
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 3c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 鸡; 1:400; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在鸡样本上浓度为1:400 (图 1). BMC Biol (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:100; 图 3c
  • 免疫印迹; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3b). Lab Invest (2016) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 图 s1
  • 免疫细胞化学; 人类; 图 4e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于流式细胞仪在人类样本上 (图 s1) 和 被用于免疫细胞化学在人类样本上 (图 4e). Exp Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5
  • 免疫细胞化学; 人类; 1:200; 图 5
  • 免疫印迹; 人类; 1:150; 图 6
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:150 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫细胞化学; 人类; 1:400; 图 3
  • 免疫组化; 人类; 1:400; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab124964)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3) 和 被用于免疫组化在人类样本上浓度为1:400 (图 1). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 3). Fertil Steril (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5e). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 人类; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab32575)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). FEBS Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Dis Model Mech (2016) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab21027)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Acta Neuropathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab-5694)被用于被用于免疫印迹在人类样本上 (图 6). Cardiovasc Diabetol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 表 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cell Stem Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). J Forensic Leg Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 6f
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 2c). Biomaterials (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:100; 表 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (表 1). Wound Repair Regen (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; pigs ; 图 7
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在pigs 样本上 (图 7). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化在人类样本上 (图 3). J Invest Dermatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:400; 图 s5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(AbCam, ab5694)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 s5). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:400; 图 s2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(AbCam, ab5694)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 s2). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 家羊; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫印迹在家羊样本上 (图 3). J Thorac Cardiovasc Surg (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 2c). Reprod Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab-5694)被用于被用于免疫印迹在小鼠样本上 (图 3). Aging Cell (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠; 图 8
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS Genet (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1d
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1c). Wound Repair Regen (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4). J Gastrointest Surg (2016) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (表 2). J Cell Physiol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 2g
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2g). Biomed Res Int (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, AB32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 8
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 (图 8). Cytotherapy (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Cancer (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; giant panda; 1:100; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在giant panda样本上浓度为1:100 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 图 2
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, E184)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Cell Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2e
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2e). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; domestic rabbit; 1:200; 图 6a
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab-7817)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:200 (图 6a). J Orthop Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 s1
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, AB32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 s1). elife (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5). Int J Clin Exp Pathol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化在小鼠样本上 (图 4). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 大鼠; 图 7
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 7). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(EPR5368)
  • 免疫组化-石蜡切片; 人类; 1:1000
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(abcam, ab124964)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Dis Esophagus (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100, 被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上浓度为1:200. Tumour Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab5694)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Cytotechnology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上. Am J Physiol Gastrointest Liver Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; pigs ; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 人类; 1:500
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, E184)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在人类样本上. J Control Release (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫细胞化学在人类样本上. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; pigs ; 1:100
  • 免疫印迹; pigs
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 和 被用于免疫印迹在pigs 样本上. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:300
  • 免疫组化-石蜡切片; 小鼠; 1:500
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 鸡
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817-500)被用于被用于免疫细胞化学在鸡样本上. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:250
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, AB7817)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1,000
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1,000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:200
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫印迹; 人类; 1:500
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫印迹在人类样本上浓度为1:500. Autophagy (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化在小鼠样本上 (图 5). BMC Biol (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上. Endocrinology (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Malays J Med Sci (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Am Heart Assoc (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫组化-石蜡切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. J Am Heart Assoc (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 2 ug/ml
  • 免疫细胞化学; 大鼠; 2 ug/ml
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为2 ug/ml 和 被用于免疫细胞化学在大鼠样本上浓度为2 ug/ml. Biol Reprod (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab7817)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell Tissue Res (2013) ncbi
domestic rabbit 单克隆(E184)
  • 免疫细胞化学; 小鼠; 1:400
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, ab32575)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Lipids (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司大动脉平滑肌肌动蛋白alpha2抗体(Abcam, Ab7817)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫细胞化学在人类样本上. Pediatr Dev Pathol (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B4)
  • 免疫印迹; 小鼠; 1:200; 图 2r
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc53142)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2r). Nat Commun (2022) ncbi
小鼠 单克隆(a-SM1)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130616)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cell Death Dis (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 2b
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2b). Nat Cardiovasc Res (2022) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Front Immunol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 6d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, SC-32251)被用于被用于免疫组化在人类样本上 (图 6d). Sci Adv (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5f
  • 免疫印迹; 小鼠; 图 5d
  • 免疫印迹; 人类; 图 4f
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 7a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5f), 被用于免疫印迹在小鼠样本上 (图 5d), 被用于免疫印迹在人类样本上 (图 4f) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 7a). Theranostics (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:150; 图 2b
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 2b). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:50; 图 4a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a). Exp Ther Med (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc- 32251)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Eur J Histochem (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-冰冻切片; 小鼠; 图 2f
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2e
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53015)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2f) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2e). Cell Prolif (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4g). Cell Cycle (2020) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:200; 图 1c
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, CGA7)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Science (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 e2j
  • 免疫组化-石蜡切片; 小鼠; 1:1500; 图 e2i
  • 免疫印迹; 小鼠; 1:5000; 图 e2h
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 e2j), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1500 (图 e2i) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 e2h). Nature (2019) ncbi
小鼠 单克隆(B4)
  • 免疫组化; 小鼠; 1:100; 图 s1b
  • 免疫印迹; 小鼠; 1:1000; 图 6c
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). J Clin Invest (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1d
  • 免疫印迹; 小鼠; 1:1000; 图 1d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, C-2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). Genes Dev (2018) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:2500; 图 3a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, Inc, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 3a). Mol Med Rep (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). PLoS ONE (2017) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 S4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上 (图 S4). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 4b
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:50; 图 3a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3a). Sci Rep (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 7c
  • 免疫细胞化学; 小鼠; 1:50; 图 3e
  • 免疫印迹; 小鼠; 1:1000; 图 7a
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-32251)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 7c), 被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 3e), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a), 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Nat Commun (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 人类; 1:500
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53015)被用于被用于免疫组化在人类样本上浓度为1:500. Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 家羊; 1:450
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫细胞化学在家羊样本上浓度为1:450. Int J Trichology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(0.N.5)
  • 免疫组化-石蜡切片; 豚鼠; 图 7
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-58669)被用于被用于免疫组化-石蜡切片在豚鼠样本上 (图 7). Mediators Inflamm (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 1). Mol Med Rep (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Mol Med (2016) ncbi
小鼠 单克隆(a-SM1)
  • 免疫组化; 大鼠; 1:100; 图 4B
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130616)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4B). Am J Transl Res (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, Sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Front Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(0.N.5)
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, Sc-58669)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹; 人类; 1:1500; 图 2B
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53015)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2B). Mol Med Rep (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc53142)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(a-SM1)
  • 免疫细胞化学; 人类; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130616)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Biofactors (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(B4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-53142)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:500; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 2b). elife (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫组化-石蜡切片; 大鼠; 图 2
  • 免疫组化-石蜡切片; 人类; 图 8
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-130617)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 2), 被用于免疫组化-石蜡切片在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-32251)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Peerj (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, Biotechnology, sc-32251)被用于被用于免疫组化在人类样本上 (图 2). Int Braz J Urol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1 ug/ml; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2A
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:5000; 图 1
  • 免疫印迹; 小鼠; 1:5000; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2). Biochemistry (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:800; 图 3
  • 免疫印迹; 小鼠; 1:10,000; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(H-6)
  • 免疫印迹; 大鼠; 1:500; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-376421)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 犬; 图 1b
  • 免疫印迹; 犬; 1:1000; 图 s1d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上浓度为1:1000 (图 s1d). Mol Biol Cell (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 2). J Transl Med (2015) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa-Cruz, sc-130617)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa Cruz, sc32251)被用于被用于免疫印迹在人类样本上 (图 s1). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 4c
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Ther (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 犬; 1:50,000; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在犬样本上浓度为1:50,000 (图 1). BMC Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫印迹在人类样本上浓度为1:5000. J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 小鼠; 图 3d
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-8432)被用于被用于免疫细胞化学在小鼠样本上 (图 3d). Cell Cycle (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(C-2)
  • 染色质免疫沉淀 ; 人类; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc8432)被用于被用于染色质免疫沉淀 在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa-Cruz, sc-130617)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 f6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在小鼠样本上 (图 f6). Sci Signal (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 1g
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1g). Int J Obes (Lond) (2015) ncbi
小鼠 单克隆(B4)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53142)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Cell Signaling Technology, sc-32251)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100. Ups J Med Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Diabetes (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 犬; 1:600; 图  2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:600 (图  2). Res Vet Sci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa Cruz, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS Pathog (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, sc-32251)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:3000; 图 2
  • 免疫印迹; 小鼠; 1:3000; 图 6
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432HRP)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000; 图 5
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, SC-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa cruz, sc-32251)被用于被用于免疫细胞化学在大鼠样本上 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. FASEB J (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa Cruz, sc-8432)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:2000. Nat Commun (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(SantaCruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化; 小鼠; 1:100; 图 4
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(santa cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-32251)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. Sci Rep (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:600
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:600. J Sex Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotech, sc-8432)被用于被用于免疫印迹在人类样本上. Proteomics (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 图 3
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-130617)被用于被用于免疫印迹在小鼠样本上. Mol Ther (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:400
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, 1A4)被用于被用于免疫组化在人类样本上浓度为1:400. Biol Reprod (2014) ncbi
小鼠 单克隆(CGA7)
  • 免疫组化-石蜡切片; 豚鼠
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-53015)被用于被用于免疫组化-石蜡切片在豚鼠样本上 和 被用于免疫组化-石蜡切片在小鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:5000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Cell Biol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:4000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-8432)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. Exp Neurol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫组化-冰冻切片在大鼠样本上. Tissue Eng Part A (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:100
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-32251)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Am J Respir Cell Mol Biol (2014) ncbi
小鼠 单克隆(alpha-SM1)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, sc-130617)被用于被用于免疫印迹在小鼠样本上 (图 2). J Urol (2014) ncbi
小鼠 单克隆(a-SM1)
  • 免疫组化; 人类; 1:150
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz Biotechnology, SC-130616)被用于被用于免疫组化在人类样本上浓度为1:150 和 被用于免疫印迹在人类样本上浓度为1:2000. FASEB J (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上. J Cell Sci (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上浓度为1:500. Eur J Hum Genet (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-8432)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2013) ncbi
小鼠 单克隆(B4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc-53142)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Cycle (2013) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术大动脉平滑肌肌动蛋白alpha2抗体(Santa Cruz, sc8432)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2013) ncbi
赛默飞世尔
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 3f
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, 14-9760-82)被用于被用于免疫印迹在小鼠样本上 (图 3f). Commun Biol (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3c
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3c). Biochem Biophys Rep (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 5a, 5b, 5c
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a, 5b, 5c). PLoS ONE (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 53-9760-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2a). Cell Rep (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 41-9760-82)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6b). Commun Biol (2022) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 50 -9760 - 82)被用于被用于流式细胞仪在小鼠样本上 (图 2). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在人类样本上. PLoS ONE (2020) ncbi
domestic rabbit 单克隆(17HCLC)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2s1a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(ThermoFisher, 710487)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2s1a). elife (2020) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(thermo fisher, MA1-744)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 1A4)被用于被用于免疫细胞化学在人类样本上 (图 2b). BMC Cancer (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:2500; 图 1a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 14-9760-82)被用于被用于免疫细胞化学在人类样本上浓度为1:2500 (图 1a). elife (2020) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(ThermoFisher, MA5-14084)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2b). Stem Cell Res Ther (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4d
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 14-9760)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4d). Transl Oncol (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1c
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Invitrogen, 14-9760-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1c). Sci Rep (2020) ncbi
小鼠 单克隆(1A4)
  • mass cytometry; 小鼠; 1:500; 图 s32a, s32c
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Invitrogen, 14-9760-82)被用于被用于mass cytometry在小鼠样本上浓度为1:500 (图 s32a, s32c). Nat Commun (2020) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:2000; 图 1b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(ThermoFisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 s3g
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 50-9760-82)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 s3g). Nat Commun (2019) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:4000; 图 1b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo fisher, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1b). Nature (2019) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermofisher, MS-113-P)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Cell Death Dis (2018) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 1:50; 图 s1e
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 41-9760-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 s1e). J Clin Invest (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:50; 图 2d
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 2d). Nat Commun (2018) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 8d
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MA5-11547)被用于被用于免疫组化在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 8d). FASEB J (2018) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000; 图 2e
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MS-1295-P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nature (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 11a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher Scientific, 1A4)被用于被用于免疫组化在人类样本上 (图 11a). Front Immunol (2017) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫细胞化学; 人类; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher Scientific, MA5-11547)被用于被用于免疫细胞化学在人类样本上 (图 3). J Vis Exp (2017) ncbi
domestic rabbit 重组(17H19L35)
  • 免疫组化; 小鼠; 1:200; 图 2a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermofisher, 701457)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2a). Biol Sex Differ (2017) ncbi
小鼠 单克隆(5C5.F8.C7 (alpha-Sr-1))
  • 免疫细胞化学; 小鼠; 1:500; 图 s1c
  • 免疫印迹; 小鼠; 1:2500; 图 3a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher Scientific, MA5-12542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:2500 (图 3a). J Cell Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3e
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Lab Vision, 1A4)被用于被用于免疫印迹在人类样本上 (图 3e). Wound Repair Regen (2017) ncbi
domestic rabbit 重组(17H19L35)
  • 免疫组化; 小鼠; 图 4d
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, 17H19L35)被用于被用于免疫组化在小鼠样本上 (图 4d). Atherosclerosis (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 斑马鱼; 1:5000; 图 s2e
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 s2e). Dis Model Mech (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:100; 图 1b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Invitrogen, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Clin Sci (Lond) (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 5 ug/ml; 图 7
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(e bioscience, 14-9760)被用于被用于免疫印迹在小鼠样本上浓度为5 ug/ml (图 7). Inflammation (2017) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 5g
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 5g). J Cell Physiol (2017) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 小鼠; 1:600; 图 5a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS-113-P)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600 (图 5a). Lab Invest (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:300; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher Scientific, Ab-5)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oncol Lett (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上 (图 2). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3b). Am J Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(eBioscience, 50-9760-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:500; 图 1a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Pierce, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1a). DNA Repair (Amst) (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neo Markers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫沉淀; 大鼠; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo scientific, MA1-744)被用于被用于免疫沉淀在大鼠样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上 (图 1). Plant Physiol (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; pigs ; 图 2c
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在pigs 样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 3b
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 3b). Antimicrob Agents Chemother (2016) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化-石蜡切片; domestic rabbit; 1:4; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(ThermoFisher Scientific, MA5-14084)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:4 (图 1). Acta Histochem (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:3000; 图 1
  • 免疫印迹; 人类; 1:3000; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, Ab-5)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 3). elife (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher scientific, mAbGEa)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS-1295-P1)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 图 8
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, pan Ab-5)被用于被用于免疫印迹在犬样本上 (图 8). Arthritis Res Ther (2016) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS-113-P0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS-113-P0)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, mAbGEa)被用于被用于免疫印迹在小鼠样本上 (图 2). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Pierce Biotechnology, MA5-11869)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 3). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 6
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, 1A4)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 6). Diagn Pathol (2015) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 牛; 1:100; 图 6
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo, MS-113-P0)被用于被用于免疫组化在牛样本上浓度为1:100 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000; 图 9
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA5-11869))被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000 (图 9). PLoS Biol (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; brewer's yeast; 1:1000; 图 2, 4
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Fisher, MA1-744)被用于被用于免疫印迹在brewer's yeast样本上浓度为1:1000 (图 2, 4). Nat Commun (2015) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 拟南芥; 1:1000; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在拟南芥样本上浓度为1:1000 (图 1). Plant Physiol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Eur J Pharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:5000
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Lab Vision Corporation, alpha-Actin)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:5000. Tissue Cell (2015) ncbi
小鼠 单克隆(0.N.5)
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-26017)被用于被用于免疫印迹在人类样本上. BMC Cancer (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MA5-11869)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Ethnopharmacol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, ACTN05)被用于被用于免疫印迹在小鼠样本上. Eur J Nutr (2016) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类; 1:1000; 图 6
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, MA1-744)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:300
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(生活技术, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Hepatology (2015) ncbi
小鼠 单克隆(mAbGEa)
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Fisher, MA1-744)被用于. Traffic (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Lab Vision, MS-113)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Histol Histopathol (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:10,000; 图 5
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(分子探针, C4)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Nat Commun (2015) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1,2,3,4,5,6
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 1,2,3,4,5,6). Breast Cancer Res (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, ACTN05)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(1A4)
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS113)被用于. J Pharmacol Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:600
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(LabVision, 1A4)被用于被用于免疫组化在人类样本上浓度为1:600. Arch Dermatol Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1H8)
  • 流式细胞仪; 小鼠
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA5-15805)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; fruit fly ; 1:4000
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA5-11869)被用于被用于免疫印迹在fruit fly 样本上浓度为1:4000. Mech Dev (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 犬; 1:2000
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo, MS-1295-P1)被用于被用于免疫印迹在犬样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher Scientific, MS-1295-P1ABX)被用于. Am J Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Fisher/Thermo Scientific, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, MS-1295-P1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Cell Physiol (2014) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MS1295P1)被用于被用于免疫印迹在小鼠样本上 (图 1). Front Cell Infect Microbiol (2013) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Fisher, ACTN05)被用于被用于免疫印迹在小鼠样本上. Cancer Prev Res (Phila) (2014) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Invitrogen, IA4)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(HHF35)
  • 免疫组化; 人类; 1:100; 表 1
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarker, HHF-35)被用于被用于免疫组化在人类样本上浓度为1:100 (表 1). Int J Surg Pathol (2014) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫细胞化学; 人类; 1:100; 图 7a
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(LabVision, MS-113-P0)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). Nat Protoc (2013) ncbi
小鼠 单克隆(mAbGEa)
  • 免疫印迹; 非洲爪蛙
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Thermo Scientific, MA1-744)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, MS-113-P0)被用于被用于免疫组化在小鼠样本上. Am J Pathol (2012) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2, 3, 4
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(NeoMarkers, IA4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2, 3, 4). Int J Surg Pathol (2011) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Lab Vision, Ab-5)被用于被用于免疫印迹在人类样本上 (图 3). Exp Cell Res (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2010) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 8
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 8). Neuropathology (2009) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 图 4
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Neomarkers, ACTN05)被用于被用于免疫印迹在人类样本上 (图 4). Mol Hum Reprod (2008) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化; pigs ; 图 3
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(LabVision, 1A4)被用于被用于免疫组化在pigs 样本上 (图 3). Acta Biomater (2008) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; pigs ; 图 3
  • 免疫组化; 人类
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(LabVision, 1A4)被用于被用于免疫组化在pigs 样本上 (图 3) 和 被用于免疫组化在人类样本上. Acta Biomater (2008) ncbi
小鼠 单克隆(ACTN05 (C4))
  • 免疫印迹; 人类; 1:1000
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(LabVision, ACTN05)被用于被用于免疫印迹在人类样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Brain (2007) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 0.34 ug/ml
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Zymed, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.34 ug/ml. Development (2006) ncbi
小鼠 单克隆(1A4 (asm-1))
  • 免疫组化-石蜡切片; 小鼠; 0.34 ug/ml
赛默飞世尔大动脉平滑肌肌动蛋白alpha2抗体(Zymed, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.34 ug/ml. Development (2006) ncbi
安迪生物R&D
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2b
安迪生物R&D大动脉平滑肌肌动蛋白alpha2抗体(R&D, MAB1420)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2b). Sci Rep (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
安迪生物R&D大动脉平滑肌肌动蛋白alpha2抗体(R&D, MAB1420)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). J Immunol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:2000; 图 2g
安迪生物R&D大动脉平滑肌肌动蛋白alpha2抗体(R&D Systems, MAB1420)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2000 (图 2g). J Pers Med (2021) ncbi
BioLegend
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:100; 图 6b
BioLegend大动脉平滑肌肌动蛋白alpha2抗体(Biolegend, 904601)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6b). Cells (2022) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 7
BioLegend大动脉平滑肌肌动蛋白alpha2抗体(Biolegend, 1A4)被用于被用于流式细胞仪在小鼠样本上 (图 7). Nat Immunol (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldric, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4b). elife (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c). Front Oncol (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 2e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2e). Heliyon (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100. elife (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3). PLoS Genet (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:50; 图 3c, e5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3c, e5b). Nat Cell Biol (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Nat Cardiovasc Res (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2f). Nat Commun (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1e). Cell Rep (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1e
  • 免疫印迹; 小鼠; 图 6a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1e) 和 被用于免疫印迹在小鼠样本上 (图 6a). J Biol Chem (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:2000; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma/Aldrich, A2547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4c). J Cell Mol Med (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Nat Commun (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 8g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8g). J Clin Invest (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1e). J Clin Invest (2022) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 3i
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3i). Theranostics (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s10f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s10f). Sci Adv (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 3a). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 4d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, a2547)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4d). BMC Dev Biol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 图 3b
  • 免疫组化; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在大鼠样本上 (图 3b), 被用于免疫组化在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 5e
  • 免疫印迹; 大鼠; 图 2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在小鼠样本上 (图 5e) 和 被用于免疫印迹在大鼠样本上 (图 2b). Int J Nanomedicine (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:800; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 1c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 s1f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在小鼠样本上 (图 s1f). J Hematol Oncol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在小鼠样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4b). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 5b
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
  • 免疫印迹; 小鼠; 图 2c, 2j
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5b), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 2c, 2j). Sci Adv (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:400; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 5b). Eur Respir J (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell Metab (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma?\Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 2d). Clin Transl Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c). J Am Heart Assoc (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 4
  • 免疫印迹; 大鼠; 1:1000; 图 5d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5d). Front Physiol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1a
  • 免疫细胞化学; 人类; 1:1000; 图 7b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1a) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100; 图 s1g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s1g). NPJ Parkinsons Dis (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2b). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 7e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 7e). elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1h). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). J Mol Med (Berl) (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上 (图 2a). J Biol Chem (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 5b
  • 免疫细胞化学; 小鼠; 1:4000; 图 5c
  • 免疫组化; 小鼠; 1:1000; 图 s3e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 5b), 被用于免疫细胞化学在小鼠样本上浓度为1:4000 (图 5c) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3e). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 2a). Circulation (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:25,000; 图 6b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25,000 (图 6b). Sci Adv (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1d). ERJ Open Res (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b). J Cell Commun Signal (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:2000; 图 s1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldric, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6i
  • 免疫细胞化学; 小鼠; 1:1000; 图 2g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6i) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2g). Cancer Res (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Cell Death Dis (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1d). Int J Mol Sci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1c). Sci Rep (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1h
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Millipore-Sigma, A-2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1h) 和 被用于免疫印迹在人类样本上 (图 3b). Am J Pathol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上 (图 4c). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5a
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A-2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A2547)被用于被用于免疫组化在人类样本上. Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s16a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Millipore, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s16a). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 5e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5e). elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 6a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 6a). NPJ Regen Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000; 图 1s1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1s1b). elife (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4c). Sci Rep (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 3f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3f). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). Nat Metab (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:800; 图 s4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:800 (图 s4). Cardiovasc Diabetol (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 6g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(MiliporeSigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6g). Oncogene (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Cell Mol Med (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:10,000; 图 4h
  • 免疫印迹; 大鼠; 1:10,000; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4h) 和 被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5b). Cell Death Dis (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 e1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 e1a). Nat Neurosci (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cell Transplant (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 7c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 7c). EBioMedicine (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
  • 免疫组化; 小鼠; 1:500; 图 3e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Nat Commun (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:2000; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3f). Clin Cancer Res (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在人类样本上 (图 1a). Amino Acids (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1a). Thromb Haemost (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(SIGMA, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1b). Nat Commun (2021) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:4000; 图 s3-1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3-1c). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(SIGMA, A5228)被用于被用于免疫印迹在大鼠样本上. FASEB J (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 s2-1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 s2-1c). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4g
  • 免疫印迹; 大鼠; 1:2000; 图 6b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4g) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:5000; 图 3h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3h). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1b). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:50; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2c). Cancers (Basel) (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5a). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:2000; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma?\Aldrich, A2547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c). Br J Pharmacol (2020) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 1:500; 图 s1c, s10a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s1c, s10a). Hepatology (2021) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 6o
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 6o). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 猕猴; 1:1000; 图 6a
  • 免疫细胞化学; African green monkey; 1:1000; 图 6a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在猕猴样本上浓度为1:1000 (图 6a) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 6a). Cells (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 s1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上 (图 s1d). Nucleic Acids Res (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6f). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上 (图 2c). Arterioscler Thromb Vasc Biol (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 8a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 8a). Theranostics (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 7
  • 免疫印迹; 小鼠; 1:250; 图 7g, h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, Darmstadt, Germany, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 7g, h). Sci Rep (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5a). Nat Commun (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:50; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在人类样本上浓度为1:50 (图 3). BMC Ophthalmol (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 8c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 8c). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 其他; 小鼠; 图 2h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于其他在小鼠样本上 (图 2h). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 图 s10
  • 免疫印迹; 大鼠; 图 7a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在大鼠样本上 (图 s10) 和 被用于免疫印迹在大鼠样本上 (图 7a). JACC Basic Transl Sci (2020) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a, 4a, 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 1a, 4a, 4b). JCI Insight (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6c). elife (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2b, 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b, 2f). Sci Adv (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 5b
  • 免疫细胞化学; 人类; 1:200; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 5b) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2a). Biosci Rep (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 1b, 1c
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上 (图 1b, 1c) 和 被用于免疫印迹在人类样本上 (图 s3a). Cell Rep (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s8c, s9c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s8c, s9c). BMC Immunol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g, 1m
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g, 1m). Sci Rep (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Sci Rep (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 4h, s3j, s6f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4h, s3j, s6f). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4a). FEBS Open Bio (2020) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:100; 图 13a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 13a). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 鸡; 1:500; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:500 (图 2a). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2f). Sci Adv (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:50; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 2a). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 s1f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1f). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, a2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 3f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 3f). elife (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 s8c
  • 免疫印迹; 小鼠; 1:1000; 图 7d
  • 免疫组化-石蜡切片; 人类; 1:500; 图 8a
  • 免疫印迹; 人类; 1:500; 图 4d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8c), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d), 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 8a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Nat Commun (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 4c26
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4c26). Ocul Surf (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6f). elife (2019) ncbi
小鼠 单克隆(1A4)
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, mAb A2547)被用于. J Biol Chem (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Redox Biol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2a). J Clin Invest (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 s5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 s5c). Dev Cell (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 1j
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1j). Cell (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 1i
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上 (图 1i). Nature (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2g). Am J Physiol Cell Physiol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上 (图 s1b). J Cell Biol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1a
  • 免疫组化-冰冻切片; 小鼠; 图 7e
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上 (图 1a), 被用于免疫组化-冰冻切片在小鼠样本上 (图 7e) 和 被用于免疫印迹在小鼠样本上 (图 1c). J Biol Chem (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228-100)被用于被用于免疫印迹在人类样本上 (图 1c). Am J Physiol Lung Cell Mol Physiol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 s4e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上 (图 s4e). Cell (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). Anat Rec (Hoboken) (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Biomed Pharmacother (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 s5f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s5f). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(SP171)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 e2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, SP171)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e2d). J Allergy Clin Immunol (2019) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 3c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A5228)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3c). Cell Death Dis (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s13a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s13a). Science (2018) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3a). PLoS Pathog (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1c). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Nat Neurosci (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s4b). Nat Commun (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 1i
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在小鼠样本上 (图 1i). Nucleic Acids Res (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 8a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Invest Ophthalmol Vis Sci (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2c
  • 免疫细胞化学; 小鼠; 1:200; 图 5f
  • 免疫组化-冰冻切片; 人类; 1:200; 图 11c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2c), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5f) 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 11c). J Clin Invest (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1a). Genes Dev (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1e). J Am Heart Assoc (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(MilliporeSigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2d). J Clin Invest (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:600; 图 8a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:600 (图 8a). J Histochem Cytochem (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上 (图 s4b). Int J Cancer (2018) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4h
  • 免疫组化-石蜡切片; 人类; 1:500; 图 7c
  • 免疫印迹; 人类; 1:500; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4h), 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 7c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 图 1j
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1j). Stem Cell Res (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 9c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9c). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1i
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1i). PLoS Genet (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:250; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 5). Hum Mol Genet (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2f). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:2500; 图 s9
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (图 s9). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 10
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 10). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1a). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:200; 图 s2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(SigmaAldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2d). Nat Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Cell Signaling, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1e). JCI Insight (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5a). elife (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
  • 免疫印迹; 小鼠; 1:500; 图 3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3c). PLoS ONE (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich Chemicals Co., A2547)被用于被用于免疫印迹在人类样本上 (图 2a). J Gerontol A Biol Sci Med Sci (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000; 图 8i
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 8i). J Comp Neurol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上 (图 4b). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 3c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 5q
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5q). Mol Cell Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 s1e
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 s1e) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 5e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上 (图 5e). Stem Cell Res (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化-石蜡切片; pigs ; 1:200; 图 st1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:200 (图 st1). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3b). J Cell Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 1e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2e
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上 (图 2e). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:100; 图 3a
  • 免疫印迹; 大鼠; 1:2000; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3a) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 s1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 6b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 6b). Cell (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上 (图 2f). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:500; 图 2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 7a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). elife (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3h). Nat Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b). Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4f). EMBO Mol Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:150; 图 s1j
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s1j). Cell Rep (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d). Nat Commun (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 e1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 e1a). Nature (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s14a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s14a). J Clin Invest (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 e5m
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在人类样本上 (图 e5m). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 6b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6b). EMBO Mol Med (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1d). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:500; 图 2f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2f). Dis Model Mech (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:2000; 图 2a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 2a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 6a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上 (图 6a). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2c). Oncogene (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:2000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). Stem Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s6f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s6f). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上 (图 5c). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 3o
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3o). Exp Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 3c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4d). Oncogene (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5b). Development (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; pigs ; 1:200; 图 3d
  • 流式细胞仪; pigs
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200 (图 3d) 和 被用于流式细胞仪在pigs 样本上. Tissue Eng Part A (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 5f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5f). Autophagy (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2d). Oncogene (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). Am J Pathol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 s5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 s5c). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, a2547)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上 (图 1b). Int J Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6c). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:4000; 表 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:4000 (表 2). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:500; 图 3c
  • 免疫印迹; 大鼠; 1:500; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, A2547)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3c) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图 4A
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4A). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 2h
  • 免疫细胞化学; 小鼠; 图 4c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2h) 和 被用于免疫细胞化学在小鼠样本上 (图 4c). J Exp Med (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1A
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1A). Exp Cell Res (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:2000; 图 1
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
  • 免疫印迹; 小鼠; 1:2000; 图 s1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在人类样本上 (图 8). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 5228)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 4). Carcinogenesis (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1
  • 免疫组化-石蜡切片; 小鼠; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Respir Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:500; 表 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). Endocrinology (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 1). Biosci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 7b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7b). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫组化; 小鼠; 1:500; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 3). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:5000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:900; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:900 (图 1d). Fertil Steril (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上 (图 2). Physiol Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 图 8c
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫细胞化学; 人类; 图 2g
  • 免疫组化; 人类; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 6198)被用于被用于免疫组化在大鼠样本上 (图 8c), 被用于免疫细胞化学在小鼠样本上 (图 1a), 被用于免疫细胞化学在人类样本上 (图 2g) 和 被用于免疫组化在人类样本上 (图 s2). Arterioscler Thromb Vasc Biol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:4000; 表 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:4000 (表 1). World J Nephrol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2c). J Neurochem (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 3k
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3k). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 2d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Sci Signal (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫组化; 人类; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫组化在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 4l
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4l). Cell Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 s7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 s7). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 3b). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 1
  • 免疫印迹; 小鼠; 1:1000; 表 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (表 2). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:4000; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-2547)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 6). Biomed Res Int (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). Histochem Cell Biol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Signal (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:250; 图 s9d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在人类样本上浓度为1:250 (图 s9d). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Int J Mol Sci (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). Small Gtpases (2017) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 2). Cancer Discov (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Cell Signal (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:300; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5). FASEB J (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 4 ug/ml; 图 8
  • 免疫印迹; 人类; 图 7a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为4 ug/ml (图 8) 和 被用于免疫印迹在人类样本上 (图 7a). Mol Biol Cell (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 3d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在人类样本上 (图 3d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 s1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s1). J Cell Sci (2017) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 5
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 5A
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上 (图 5A). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3). Exp Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3B
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, a5228)被用于被用于免疫印迹在人类样本上 (图 3B). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6d
  • 免疫细胞化学; 小鼠; 1:1000; 图 1g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 3). Am J Transl Res (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 1). Brain Behav (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1d). Stem Cells Transl Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1). Nat Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, a2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4). Hepatology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 3). Tissue Eng Part A (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 st1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上 (图 st1). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在人类样本上 (图 2). Stem Cells Int (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
  • 免疫印迹; 人类; 1:5000; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上 (图 6). Stem Cell Reports (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). Endocrinology (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3b). Methods Mol Biol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Vis Exp (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:100; 图 4d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4d). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 3a). JCI Insight (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:50,000; 图 12
  • 免疫印迹; 大鼠; 1:2000; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在人类样本上浓度为1:50,000 (图 12) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1a). Transplantation (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Cell Death Differ (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(1A4)
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于. Dis Model Mech (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化在小鼠样本上 (图 8). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:2500; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在大鼠样本上浓度为1:2500 (图 4a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c). Development (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1a). Cell (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000; 图 s5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s5). Nature (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:500; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1). Mucosal Immunol (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7). J Biol Chem (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:3000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2). Nat Biotechnol (2016) ncbi
小鼠 单克隆(AC-40)
  • 其他; 人类; 图 st1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(SIGMA, AC-40)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). Int J Cancer (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 国内马; 1:300; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在国内马样本上浓度为1:300 (图 1). Stem Cell Reports (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3
  • 免疫细胞化学; 小鼠; 1:100; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5). Am J Respir Crit Care Med (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫细胞化学在小鼠样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 3). PLoS Pathog (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, ac-40)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫细胞化学; 大鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫细胞化学在大鼠样本上 (图 2). elife (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 s7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 s7). J Clin Invest (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Stem Cell Reports (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Dis Model Mech (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 犬; 图 S1g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在犬样本上 (图 S1g). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:200; 图 1p
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1p). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-自由浮动切片; 小鼠; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Reproduction (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-2547)被用于被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 2.5 ug/ml; 图 4b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上浓度为2.5 ug/ml (图 4b). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Cancer Discov (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在斑马鱼样本上 (图 2). J Muscle Res Cell Motil (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, c6198)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Pathol Res Pract (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 7). Am J Physiol Renal Physiol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100-1:200; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 6). Toxicol Pathol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Cell Sci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 2g, h
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 2g, h). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2000; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Eur Surg Res (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 图 7b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于流式细胞仪在人类样本上 (图 7b). Oncotarget (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 s7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nat Immunol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a). Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100; 图 8i-l
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8i-l). Oncogene (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上. Biochem J (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:2500; 图 2c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 2c). Nat Commun (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2b). Mol Cell (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:500; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3
  • 免疫组化-冰冻切片; 小鼠; 图 7
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上 (图 3), 被用于免疫组化-冰冻切片在小鼠样本上 (图 7), 被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上 (图 3). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 4B
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在小鼠样本上 (图 4B). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100-1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:5000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1 ug/ml; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1 ug/ml (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; domestic rabbit; 图 3d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, V5228)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 3d). Ann Biomed Eng (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1a
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1a) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1b). J Cell Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上. Autophagy (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 1). Biomed Res Int (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:800
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A-2547)被用于被用于免疫组化在小鼠样本上浓度为1:800. Cell Tissue Res (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 3). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 6f
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, a2547)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6f). J Biol Chem (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Stem Cell Reports (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上. Cell Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1c). J Clin Invest (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:300
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300. Ann Clin Transl Neurol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 1d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 非洲爪蛙; 1:800; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, Ac-40)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:800 (图 3). Protoplasma (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 1b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS Pathog (2015) ncbi
小鼠 单克隆(1A4)
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于. J Clin Invest (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:300; 图 5g
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 5g). Nat Biotechnol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:250; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A 5228)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2). J Cell Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:200; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:10,000; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, # A5228)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 6). Reprod Sci (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 s1p
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1p). Development (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 仓鼠; 1:2000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 3). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:5000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000 (图 1). Heart Vessels (2016) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 大鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8a). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:500
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在大鼠样本上浓度为1:500 和 被用于免疫组化在小鼠样本上浓度为1:500. Cancer Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:4000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000. PLoS ONE (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:1000; 图 s5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s1). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:10,000; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:10,000 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-2547)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. Cardiovasc Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; pigs ; 1:5000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在pigs 样本上浓度为1:5000 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Andrology (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). Nature (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在大鼠样本上 (图 1). Cell Tissue Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:2000; 图 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). PLoS Genet (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠; 1:50; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nature (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫组化-石蜡切片; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Nat Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 国内马; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在国内马样本上浓度为1:500. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A 4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). J Neurosci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫细胞化学; 大鼠; 图 2
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4), 被用于免疫细胞化学在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 3). Kidney Int (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 2.5 ug/ml; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为2.5 ug/ml (图 2). Am J Physiol Endocrinol Metab (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Chemical, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:100. Am J Pathol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:2000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Cell Death Dis (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:600; 图 s4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:600 (图 s4). Nature (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:400; 图  S2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图  S2). J Cell Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:10,000; 表 2, f5, s5, s6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (表 2, f5, s5, s6). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A-2547)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000; 图 3d
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3d). Gastroenterology (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Ethnopharmacol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich-Aldrich, AC-40)被用于被用于免疫印迹在小鼠样本上. J Am Soc Nephrol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上 (图 s2). Nature (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫印迹在大鼠样本上 (图 1). EMBO Mol Med (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:5000; 图 3
  • 免疫印迹; African green monkey; 1:5000; 图 s8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在African green monkey样本上浓度为1:5000 (图 s8). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上 (图 3b). Breast Cancer Res (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:500; 图 8
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC-40)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). J Cell Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 7
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 5). J Vasc Surg (2016) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 3a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上 (图 3a). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上浓度为1:5000. J Biol Chem (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
  • 流式细胞仪; 小鼠; 图 2d
  • 免疫印迹; 小鼠; 图 1c, 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a), 被用于流式细胞仪在小鼠样本上 (图 2d) 和 被用于免疫印迹在小鼠样本上 (图 1c, 5c). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Brain Pathol (2016) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 1:1000; 表 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 2). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在人类样本上 (图 2). J Histochem Cytochem (2015) ncbi
小鼠 单克隆(1A4)
  • 其他; 人类; 图 6b
  • 免疫印迹; 人类; 图 2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于其他在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 2b). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Am J Pathol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 图 s1
  • 免疫印迹; 人类; 图 s1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在人类样本上 (图 s1) 和 被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; common marmoset; 1:750; 图 3
  • 免疫组化; common marmoset; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在common marmoset样本上浓度为1:750 (图 3) 和 被用于免疫组化在common marmoset样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Mol Med (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Biol Pharm Bull (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 犬; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在犬样本上浓度为1:400. Vet J (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:15,000; 图 s3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上浓度为1:15,000 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Mol Ther (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在人类样本上浓度为1:10,000. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上. J Vis Exp (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, A2547)被用于被用于免疫印迹在大鼠样本上 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Chemical, A4700)被用于被用于免疫印迹在大鼠样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 s3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上 (图 s3). Aging Cell (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A-2547)被用于被用于流式细胞仪在人类样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 1A
  • 免疫印迹; 人类; 图 2A
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上 (图 1A) 和 被用于免疫印迹在人类样本上 (图 2A). Sci Rep (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Transpl Int (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1 A4)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 2). Br J Cancer (2015) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(SIGMA, C6198)被用于被用于流式细胞仪在小鼠样本上. Stem Cells (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. J Cell Physiol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, clone 1A4)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). Eur J Immunol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:4000; 表 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:4000 (表 2). Physiol Rep (2014) ncbi
小鼠 单克隆(CGA7)
  • 免疫细胞化学; 人类; 1:100; 表 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A7607)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1). Acta Biomater (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Dev Neurosci (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:30,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:30,000. Diagn Pathol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC-40)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:4000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:4000. Hum Mol Genet (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化在小鼠样本上. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich , A-2547)被用于被用于免疫组化在小鼠样本上 (图 s2). FASEB J (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1600
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1600. J Leukoc Biol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-冰冻切片在小鼠样本上. Cardiovasc Diabetol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:300; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4). EMBO Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上 (图 1). Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A 2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Tissue Eng Part C Methods (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Biochemistry (Mosc) (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200; 图 5c
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). Development (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:1000; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Neurosci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 2
  • 免疫组化; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2), 被用于免疫组化在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 2). J Exp Med (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在小鼠样本上浓度为1:20,000. Neurobiol Dis (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Behav Brain Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上. Genesis (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Oncol (2015) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; domestic goat; 1:1000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在domestic goat样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Vis Exp (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A-2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Cell Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A-2547)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich Corp, A2547)被用于被用于免疫组化在人类样本上 (图 6). Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC40)被用于被用于免疫印迹在人类样本上 (图 6). Oncogene (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上 (图 1). J Clin Invest (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在人类样本上. J Periodontal Res (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; pigs
  • 免疫组化; 人类; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在pigs 样本上 和 被用于免疫组化在人类样本上浓度为1:500. J Invest Dermatol (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫细胞化学在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC40)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Oncogene (2015) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在人类样本上浓度为1:1000. Cell Tissue Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 大鼠; 1:20,000; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:20,000 (图 3). Am J Physiol Lung Cell Mol Physiol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. Eur Neuropsychopharmacol (2014) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于流式细胞仪在人类样本上浓度为1:400 和 被用于免疫细胞化学在人类样本上浓度为1:400. J Vis Exp (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Am J Physiol Heart Circ Physiol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). J Am Soc Nephrol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Nature (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫细胞化学在人类样本上. Cell Tissue Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; domestic rabbit; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:500. Stem Cells Dev (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A 2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:10,000. Gen Comp Endocrinol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上. BMC Biol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 家羊; 1:1000
  • 免疫细胞化学; 家羊; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A 2547)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:1000 和 被用于免疫细胞化学在家羊样本上浓度为1:400. Tissue Eng Part C Methods (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:250
  • 免疫组化; 人类; 1:250
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫细胞化学在人类样本上浓度为1:250 和 被用于免疫组化在人类样本上浓度为1:250. Am J Pathol (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, #AC40)被用于被用于免疫印迹在小鼠样本上 (图 4). Cancer Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. Dev Growth Differ (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Vasc Cell (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Thromb Haemost (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. Cilia (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000. J Thorac Cardiovasc Surg (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A 2547)被用于被用于免疫组化在小鼠样本上浓度为1:200. Invest Ophthalmol Vis Sci (2014) ncbi
小鼠 单克隆(1A4)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A5228)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; fruit fly ; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在fruit fly 样本上 (图 1). EMBO J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:250
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Cell Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上. J Cell Mol Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Sex Med (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. Breast Cancer Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:5000. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在人类样本上. Acta Orthop (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:400
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 和 被用于免疫组化在小鼠样本上浓度为1:400. Genes Dev (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, AC40)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cells (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:2000. Biol Reprod (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在大鼠样本上. J Control Release (2014) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-冰冻切片在人类样本上. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. J Cell Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上 (图 1). Oncogene (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, C-6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. J Exp Med (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:250
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250. FASEB J (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫组化; 人类; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫组化在人类样本上浓度为1:1000. Hum Reprod (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:4000
  • 免疫组化; 人类; 1:4000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化在小鼠样本上浓度为1:4000 和 被用于免疫组化在人类样本上浓度为1:4000. Early Hum Dev (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上. Cardiovasc Res (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Cancer Res (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 1:600
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学在小鼠样本上浓度为1:600. Mol Endocrinol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上. Nature (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 人类; 1:250
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, F3777)被用于被用于免疫细胞化学在人类样本上浓度为1:250. PLoS ONE (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:3000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A4700)被用于被用于免疫印迹在人类样本上浓度为1:3000. Head Neck (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncogene (2014) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:7500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在大鼠样本上浓度为1:7500. Nephron Exp Nephrol (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上. Hum Mol Genet (2013) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC40)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Mol Cell Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 15 ug/ml
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化在人类样本上浓度为15 ug/ml. PLoS ONE (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 大鼠; 1:7500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在大鼠样本上浓度为1:7500. Calcif Tissue Int (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Hum Genet (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:200
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, C6198)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Development (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Am J Physiol Cell Physiol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化在小鼠样本上 (图 5b). FASEB J (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学基因敲除验证; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 5a
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 5a). Wound Repair Regen (2013) ncbi
小鼠 单克隆(CGA7)
  • 免疫印迹基因敲除验证; 小鼠; 图 5b
  • 免疫细胞化学; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 图 5b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A7607)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 5b), 被用于免疫细胞化学在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上 (图 5b). Wound Repair Regen (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 1
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:3000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3000. Tissue Eng Part A (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 人类; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Cytometry A (2013) ncbi
小鼠 单克隆(1A4)
  • 流式细胞仪; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, 1A4)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 鸡; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫印迹在鸡样本上浓度为1:10,000. Gene (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma Aldrich, A2547)被用于被用于免疫印迹在小鼠样本上 (图 2). Eur J Pharmacol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 小鼠; 1:3000
  • 免疫印迹; 小鼠; 1:10,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:3000 和 被用于免疫印迹在小鼠样本上浓度为1:10,000. Dev Biol (2013) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上. Am J Pathol (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 斑马鱼; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, AC40)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000. Dev Biol (2012) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 大鼠; 1:4000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在大鼠样本上浓度为1:4000. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 小鼠; 1:2000; 图 4
  • 免疫印迹; 小鼠; 1:3000; 图 4
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A5228)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Fibrogenesis Tissue Repair (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 小鼠; 图 s2b
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫细胞化学在小鼠样本上 (图 s2b). Mol Cell Proteomics (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Am J Physiol Heart Circ Physiol (2012) ncbi
小鼠 单克隆(1A4)
  • 免疫组化; 人类; 1:5000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma BioSciences, 1A4)被用于被用于免疫组化在人类样本上浓度为1:5000. Pathol Int (2011) ncbi
小鼠 单克隆(AC-40)
  • 免疫印迹; 人类; 1:10,000; 图 s2
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A4700)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s2). PLoS ONE (2010) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, F3777)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. FEBS Lett (2010) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 人类; 图 3
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, A2547)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3). Am J Transplant (2009) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-石蜡切片; 小鼠; 1:600
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma, 1A4)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:600. Hypertension (2009) ncbi
小鼠 单克隆(1A4)
  • 免疫组化-冰冻切片; 大鼠; 1:1,000
西格玛奥德里奇大动脉平滑肌肌动蛋白alpha2抗体(Sigma-Aldrich, A2547)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1,000. J Comp Neurol (2008) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(JLA20)
  • 免疫组化; 鸡; 1:250; 图 3j
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫组化在鸡样本上浓度为1:250 (图 3j). elife (2019) ncbi
小鼠 单克隆(JLA20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2n
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2n). Neuron (2018) ncbi
小鼠 单克隆(JLA20)
  • 免疫细胞化学; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 1:2000; 图 2a
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫细胞化学在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Neurosci (2018) ncbi
小鼠 单克隆(JLA20)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA-20)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). J Cell Biol (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 1
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 1). Eneuro (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 2e
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 2e). elife (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 图 3
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA20)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; fruit fly ; 1:2000; 图 1F
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA20)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 1F). Dis Model Mech (2016) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; fruit fly ; 1:50
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA20)被用于被用于免疫印迹在fruit fly 样本上浓度为1:50. Nat Commun (2015) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类; 1:4000; 图 1, 2
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1, 2). J Immunol (2015) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; fruit fly ; 1:1000; 图 1
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 1). Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 非洲爪蛙; 1:300; 图 3
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:300 (图 3). J Cell Biol (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; fruit fly ; 1:5000
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000. Hum Mol Genet (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 小鼠; 图 5c
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在小鼠样本上 (图 5c). Hum Mol Genet (2014) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; 人类
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(DSHB, JLA20)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(JLA20)
  • 免疫印迹; fruit fly ; 1:10
Developmental Studies Hybridoma Bank大动脉平滑肌肌动蛋白alpha2抗体(Developmental Studies Hybridoma Bank, JLA20)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10. Proteomics (2011) ncbi
文章列表
  1. Hopkins J, Asada K, Leung A, Papadaki V, Davaapil H, Morrison M, et al. PRELP Regulates Cell-Cell Adhesion and EMT and Inhibits Retinoblastoma Progression. Cancers (Basel). 2022;14: pubmed 出版商
  2. Kuo A, Checa A, Niaudet C, Jung B, Fu Z, Wheelock C, et al. Murine endothelial serine palmitoyltransferase 1 (SPTLC1) is required for vascular development and systemic sphingolipid homeostasis. elife. 2022;11: pubmed 出版商
  3. Wu B, Feng J, Guo J, Wang J, Xiu G, Xu J, et al. ADSCs-derived exosomes ameliorate hepatic fibrosis by suppressing stellate cell activation and remodeling hepatocellular glutamine synthetase-mediated glutamine and ammonia homeostasis. Stem Cell Res Ther. 2022;13:494 pubmed 出版商
  4. Tong J, Li D, Meng H, Sun D, Lan X, Ni M, et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm Sin B. 2022;12:3650-3666 pubmed 出版商
  5. Dufour C, Xia H, B chir W, Perry M, Kuzmanov U, Gainullina A, et al. Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol. 2022;5:955 pubmed 出版商
  6. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  7. Mart xed nez Nieto G, Teppo H, Petrelius N, Izzi V, Devarajan R, Pet xe4 ist xf6 T, et al. Upregulated integrin α11 in the stroma of cutaneous squamous cell carcinoma promotes skin carcinogenesis. Front Oncol. 2022;12:981009 pubmed 出版商
  8. Murata S, Yamanaka M, Taniguchi W, Kajioka D, Suzuki K, Yamada G, et al. Lack of transient receptor potential ankyrin 1 (TRPA1) retards cutaneous wound healing in mice: A preliminary study. Biochem Biophys Rep. 2022;31:101322 pubmed 出版商
  9. Kasahara K, Sasaki N, Amin H, Tanaka T, Horibe S, Yamashita T, et al. Depletion of Foxp3+ regulatory T cells augments CD4+ T cell immune responses in atherosclerosis-prone hypercholesterolemic mice. Heliyon. 2022;8:e09981 pubmed 出版商
  10. Selle J, Dinger K, Jentgen V, Zanetti D, Will J, Georgomanolis T, et al. Maternal and perinatal obesity induce bronchial obstruction and pulmonary hypertension via IL-6-FoxO1-axis in later life. Nat Commun. 2022;13:4352 pubmed 出版商
  11. Richards M, Nwadozi E, Pal S, Martinsson P, Kaakinen M, Gloger M, et al. Claudin5 protects the peripheral endothelial barrier in an organ and vessel-type-specific manner. elife. 2022;11: pubmed 出版商
  12. Dinnon K, Leist S, Okuda K, Dang H, Fritch E, Gully K, et al. SARS-CoV-2 infection produces chronic pulmonary epithelial and immune cell dysfunction with fibrosis in mice. Sci Transl Med. 2022;14:eabo5070 pubmed 出版商
  13. Wu T, Wang W, Shi G, Hao M, Wang Y, Yao M, et al. Targeting HIC1/TGF-β axis-shaped prostate cancer microenvironment restrains its progression. Cell Death Dis. 2022;13:624 pubmed 出版商
  14. Inubushi T, Nakanishi Y, Abe M, Takahata Y, Nishimura R, Kurosaka H, et al. The cell surface hyaluronidase TMEM2 plays an essential role in mouse neural crest cell development and survival. PLoS Genet. 2022;18:e1009765 pubmed 出版商
  15. Duan S, Sawyer T, Sontz R, Wieland B, Diaz A, Merchant J. GFAP-directed Inactivation of Men1 Exploits Glial Cell Plasticity in Favor of Neuroendocrine Reprogramming. Cell Mol Gastroenterol Hepatol. 2022;14:1025-1051 pubmed 出版商
  16. Wang H, Zhang W, Liu R, Zheng J, Yao X, Chen H, et al. Lack of bombesin receptor-activated protein attenuates bleomycin-induced pulmonary fibrosis in mice. Life Sci Alliance. 2022;5: pubmed 出版商
  17. Bhattacharya N, INDRA A, Ganguli Indra G. Selective Ablation of BCL11A in Epidermal Keratinocytes Alters Skin Homeostasis and Accelerates Excisional Wound Healing In Vivo. Cells. 2022;11: pubmed 出版商
  18. Huang C, Schuring J, Skinner J, Mok L, Chong M. MYL9 deficiency is neonatal lethal in mice due to abnormalities in the lung and the muscularis propria of the bladder and intestine. PLoS ONE. 2022;17:e0270820 pubmed 出版商
  19. Mao L, Xin F, Ren J, Xu S, Huang H, Zha X, et al. 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Theranostics. 2022;12:3928-3945 pubmed 出版商
  20. Verginadis I, Avgousti H, Monslow J, Skoufos G, Chinga F, Kim K, et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression. Nat Cell Biol. 2022;24:940-953 pubmed 出版商
  21. Jin Y, Liu Y, Xu L, Xu J, Xiong Y, Peng Y, et al. Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis. 2022;13:512 pubmed 出版商
  22. Fleming Martinez A, D xf6 ppler H, Bastea L, Edenfield B, Liou G, Storz P. Ym1+ macrophages orchestrate fibrosis, lesion growth, and progression during development of murine pancreatic cancer. iScience. 2022;25:104327 pubmed 出版商
  23. Kloth B, Mearini G, Weinberger F, Stenzig J, Geertz B, Starbatty J, et al. Piezo2 is not an indispensable mechanosensor in murine cardiomyocytes. Sci Rep. 2022;12:8193 pubmed 出版商
  24. Krolak T, Chan K, Kaplan L, Huang Q, Wu J, Zheng Q, et al. A High-Efficiency AAV for Endothelial Cell Transduction Throughout the Central Nervous System. Nat Cardiovasc Res. 2022;1:389-400 pubmed 出版商
  25. Liu Y, Deguchi Y, Wei D, Liu F, Moussalli M, Deguchi E, et al. Rapid acceleration of KRAS-mutant pancreatic carcinogenesis via remodeling of tumor immune microenvironment by PPARδ. Nat Commun. 2022;13:2665 pubmed 出版商
  26. Kidger A, Saville M, Rushworth L, Davidson J, Stellzig J, Ono M, et al. Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene. 2022;41:2811-2823 pubmed 出版商
  27. Mauduit O, Aure M, Delcroix V, Basova L, Srivastava A, Umazume T, et al. A mesenchymal to epithelial switch in Fgf10 expression specifies an evolutionary-conserved population of ionocytes in salivary glands. Cell Rep. 2022;39:110663 pubmed 出版商
  28. Maiseyeu A, Di L, Ravodina A, Barajas Espinosa A, Sakamoto A, Chaplin A, et al. Plaque-targeted, proteolysis-resistant, activatable and MRI-visible nano-GLP-1 receptor agonist targets smooth muscle cell differentiation in atherosclerosis. Theranostics. 2022;12:2741-2757 pubmed 出版商
  29. Yang H, Shi Y, Liu H, Lin F, Qiu B, Feng Q, et al. Pyroptosis executor gasdermin D plays a key role in scleroderma and bleomycin-induced skin fibrosis. Cell Death Discov. 2022;8:183 pubmed 出版商
  30. Ye C, Lian G, Wang T, Chen A, Chen W, Gong J, et al. The zinc transporter ZIP12 regulates monocrotaline-induced proliferation and migration of pulmonary arterial smooth muscle cells via the AKT/ERK signaling pathways. BMC Pulm Med. 2022;22:111 pubmed 出版商
  31. Liu S, Han D, Xu C, Yang F, Li Y, Zhang K, et al. Antibody-drug conjugates targeting CD248 inhibits liver fibrosis through specific killing on myofibroblasts. Mol Med. 2022;28:37 pubmed 出版商
  32. Feng S, Peden E, Guo Q, Lee T, Li Q, Yuan Y, et al. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem. 2022;298:101816 pubmed 出版商
  33. Dai X, Liu S, Cheng L, Huang T, Guo H, Wang D, et al. Betaine Supplementation Attenuates S-Adenosylhomocysteine Hydrolase-Deficiency-Accelerated Atherosclerosis in Apolipoprotein E-Deficient Mice. Nutrients. 2022;14: pubmed 出版商
  34. Nishtala K, Panigrahi T, Shetty R, Kumar D, Khamar P, Mohan R, et al. Quantitative Proteomics Reveals Molecular Network Driving Stromal Cell Differentiation: Implications for Corneal Wound Healing. Int J Mol Sci. 2022;23: pubmed 出版商
  35. Choi J, Maddala R, Karnam S, Skiba N, Vann R, Challa P, et al. Role of vasorin, an anti-apoptotic, anti-TGF-β and hypoxia-induced glycoprotein in the trabecular meshwork cells and glaucoma. J Cell Mol Med. 2022;26:2063-2075 pubmed 出版商
  36. Osokine I, Siewiera J, Rideaux D, Ma S, Tsukui T, Erlebacher A. Gene silencing by EZH2 suppresses TGF-β activity within the decidua to avert pregnancy-adverse wound healing at the maternal-fetal interface. Cell Rep. 2022;38:110329 pubmed 出版商
  37. Lee C, Kim J, Han J, Oh D, Kim M, Jeong H, et al. Formyl peptide receptor 2 determines sex-specific differences in the progression of nonalcoholic fatty liver disease and steatohepatitis. Nat Commun. 2022;13:578 pubmed 出版商
  38. Rodriguez E, Boelaars K, Brown K, Madunić K, van Ee T, Dijk F, et al. Analysis of the glyco-code in pancreatic ductal adenocarcinoma identifies glycan-mediated immune regulatory circuits. Commun Biol. 2022;5:41 pubmed 出版商
  39. Dave J, Chakraborty R, Ntokou A, Saito J, Saddouk F, Feng Z, et al. JAGGED1/NOTCH3 activation promotes aortic hypermuscularization and stenosis in elastin deficiency. J Clin Invest. 2022;132: pubmed 出版商
  40. Yoshida J, Ohishi T, Abe H, Ohba S, Inoue H, Usami I, et al. Mitochondrial complex I inhibitors suppress tumor growth through concomitant acidification of the intra- and extracellular environment. iScience. 2021;24:103497 pubmed 出版商
  41. Naruse M, Ishigamori R, Imai T. The Unique Genetic and Histological Characteristics of DMBA-Induced Mammary Tumors in an Organoid-Based Carcinogenesis Model. Front Genet. 2021;12:765131 pubmed 出版商
  42. Humeres C, Shinde A, Hanna A, Alex L, Hern xe1 ndez S, Li R, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 2022;132: pubmed 出版商
  43. Hua X, Ge S, Zhang M, Mo F, Zhang L, Zhang J, et al. Pathogenic Roles of CXCL10 in Experimental Autoimmune Prostatitis by Modulating Macrophage Chemotaxis and Cytokine Secretion. Front Immunol. 2021;12:706027 pubmed 出版商
  44. Li H, Xu H, Wen H, Wang H, Zhao R, Sun Y, et al. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm. Theranostics. 2021;11:9587-9604 pubmed 出版商
  45. Valussi M, Besser J, Wystub Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7:eabi6648 pubmed 出版商
  46. Van Maldegem F, Valand K, Cole M, Patel H, Angelova M, Rana S, et al. Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nat Commun. 2021;12:5906 pubmed 出版商
  47. Khasawneh R, Kist R, Queen R, Hussain R, Coxhead J, Schneider J, et al. Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype. BMC Dev Biol. 2021;21:14 pubmed 出版商
  48. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  49. Huang H, Liu Q, Zhang T, Zhang J, Zhou J, Jing X, et al. Farnesylthiosalicylic Acid-Loaded Albumin Nanoparticle Alleviates Renal Fibrosis by Inhibiting Ras/Raf1/p38 Signaling Pathway. Int J Nanomedicine. 2021;16:6441-6453 pubmed 出版商
  50. Kiepura A, Stachyra K, Wisniewska A, Kus K, Czepiel K, Suski M, et al. The Anti-Atherosclerotic Action of FFAR4 Agonist TUG-891 in ApoE-Knockout Mice Is Associated with Increased Macrophage Polarization towards M2 Phenotype. Int J Mol Sci. 2021;22: pubmed 出版商
  51. Zhang P, Schlecht A, Wolf J, Boneva S, Laich Y, Koch J, et al. The role of interferon regulatory factor 8 for retinal tissue homeostasis and development of choroidal neovascularisation. J Neuroinflammation. 2021;18:215 pubmed 出版商
  52. Lee J, Hur J, Kwon Y, Chae C, Choi J, Hwang I, et al. KAI1(CD82) is a key molecule to control angiogenesis and switch angiogenic milieu to quiescent state. J Hematol Oncol. 2021;14:148 pubmed 出版商
  53. Fang L, Wang W, Chen J, Zuo A, Gao H, Yan T, et al. Osthole Attenuates Bleomycin-Induced Pulmonary Fibrosis by Modulating NADPH Oxidase 4-Derived Oxidative Stress in Mice. Oxid Med Cell Longev. 2021;2021:3309944 pubmed 出版商
  54. Xi Y, Li Y, Xu P, Li S, Liu Z, Tung H, et al. The anti-fibrotic drug pirfenidone inhibits liver fibrosis by targeting the small oxidoreductase glutaredoxin-1. Sci Adv. 2021;7:eabg9241 pubmed 出版商
  55. Zhao Y, Li W, Zhang D. Gycyrrhizic acid alleviates atherosclerotic lesions in rats with diabetes mellitus. Mol Med Rep. 2021;24: pubmed 出版商
  56. Gredic M, Wu C, Hadžić S, Pak O, Savai R, Kojonazarov B, et al. Myeloid cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J. 2021;: pubmed 出版商
  57. Wang Y, Lyu Y, Tu K, Xu Q, Yang Y, Salman S, et al. Histone citrullination by PADI4 is required for HIF-dependent transcriptional responses to hypoxia and tumor vascularization. Sci Adv. 2021;7: pubmed 出版商
  58. Li T, Yang X, Xu D, Gao Z, Gao Y, Jin F, et al. OC-STAMP Overexpression Drives Lung Alveolar Epithelial Cell Type II Senescence in Silicosis. Oxid Med Cell Longev. 2021;2021:4158495 pubmed 出版商
  59. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  60. Gan Y, He J, Zhu J, Xu Z, Wang Z, Yan J, et al. Spatially defined single-cell transcriptional profiling characterizes diverse chondrocyte subtypes and nucleus pulposus progenitors in human intervertebral discs. Bone Res. 2021;9:37 pubmed 出版商
  61. Fan Z, Turiel G, Ardicoglu R, Ghobrial M, Masschelein E, Kocijan T, et al. Exercise-induced angiogenesis is dependent on metabolically primed ATF3/4+ endothelial cells. Cell Metab. 2021;: pubmed 出版商
  62. Neder T, Schrankl J, Fuchs M, Broeker K, Wagner C. Endothelin receptors in renal interstitial cells do not contribute to the development of fibrosis during experimental kidney disease. Pflugers Arch. 2021;473:1667-1683 pubmed 出版商
  63. Wu C, Cheng D, Peng Y, Li Y, Fu C, Wang Y, et al. Hepatic BRD4 Is Upregulated in Liver Fibrosis of Various Etiologies and Positively Correlated to Fibrotic Severity. Front Med (Lausanne). 2021;8:683506 pubmed 出版商
  64. Lopez Sanz L, Bernal S, Jimenez Castilla L, Prieto I, La Manna S, Gomez Lopez S, et al. Fcγ receptor activation mediates vascular inflammation and abdominal aortic aneurysm development. Clin Transl Med. 2021;11:e463 pubmed 出版商
  65. Srivastava S, Zhou H, Setia O, Dardik A, Fernandez Hernando C, GOODWIN J. Podocyte Glucocorticoid Receptors Are Essential for Glomerular Endothelial Cell Homeostasis in Diabetes Mellitus. J Am Heart Assoc. 2021;10:e019437 pubmed 出版商
  66. Albino A, Zambom F, Foresto Neto O, Oliveira K, Ávila V, Arias S, et al. Renal Inflammation and Innate Immune Activation Underlie the Transition From Gentamicin-Induced Acute Kidney Injury to Renal Fibrosis. Front Physiol. 2021;12:606392 pubmed 出版商
  67. Zehender A, Li Y, Lin N, Stefanica A, Nüchel J, Chen C, et al. TGFβ promotes fibrosis by MYST1-dependent epigenetic regulation of autophagy. Nat Commun. 2021;12:4404 pubmed 出版商
  68. Yoo J, Lee D, Park S, Shin H, Lee K, Kim D, et al. Trophoblast glycoprotein is a marker for efficient sorting of ventral mesencephalic dopaminergic precursors derived from human pluripotent stem cells. NPJ Parkinsons Dis. 2021;7:61 pubmed 出版商
  69. Zhang D, Huang J, Sun X, Chen H, Huang S, Yang J, et al. Targeting local lymphatics to ameliorate heterotopic ossification via FGFR3-BMPR1a pathway. Nat Commun. 2021;12:4391 pubmed 出版商
  70. Ide S, Kobayashi Y, Ide K, Strausser S, Abe K, Herbek S, et al. Ferroptotic stress promotes the accumulation of pro-inflammatory proximal tubular cells in maladaptive renal repair. elife. 2021;10: pubmed 出版商
  71. Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, et al. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis. 2021;12:710 pubmed 出版商
  72. Goyette M, Elkholi I, Apcher C, Kuasne H, Rothlin C, Muller W, et al. Targeting Axl favors an antitumorigenic microenvironment that enhances immunotherapy responses by decreasing Hif-1α levels. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  73. Zhang Y, Ma Y, Chen J, Wang M, Cao Y, Li L, et al. Mesenchymal stem cell transplantation for vaginal repair in an ovariectomized rhesus macaque model. Stem Cell Res Ther. 2021;12:406 pubmed 出版商
  74. Cao W, Song S, Fang G, Li Y, Wang Y, Wang Q. Cadherin-11 Deficiency Attenuates Ang-II-Induced Atrial Fibrosis and Susceptibility to Atrial Fibrillation. J Inflamm Res. 2021;14:2897-2911 pubmed 出版商
  75. Ye S, Yang N, Lu T, Wu T, Wang L, Pan Y, et al. Adamts18 modulates the development of the aortic arch and common carotid artery. iScience. 2021;24:102672 pubmed 出版商
  76. Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, et al. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep. 2021;11:13386 pubmed 出版商
  77. Zhang Y, Hu M, Yang F, Zhang Y, Ma S, Zhang D, et al. Increased uterine androgen receptor protein abundance results in implantation and mitochondrial defects in pregnant rats with hyperandrogenism and insulin resistance. J Mol Med (Berl). 2021;99:1427-1446 pubmed 出版商
  78. Shani O, Raz Y, Monteran L, Scharff Y, Levi Galibov O, Megides O, et al. Evolution of fibroblasts in the lung metastatic microenvironment is driven by stage-specific transcriptional plasticity. elife. 2021;10: pubmed 出版商
  79. Zhang B, Lapenta K, Wang Q, Nam J, Chung D, Robert M, et al. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem. 2021;297:100887 pubmed 出版商
  80. Steffensen L, Stubbe J, Lindholt J, Beck H, Overgaard M, Bloksgaard M, et al. Basement membrane collagen IV deficiency promotes abdominal aortic aneurysm formation. Sci Rep. 2021;11:12903 pubmed 出版商
  81. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, et al. circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. elife. 2021;10: pubmed 出版商
  82. Jungwirth U, van Weverwijk A, Evans R, Jenkins L, Vicente D, Alexander J, et al. Impairment of a distinct cancer-associated fibroblast population limits tumour growth and metastasis. Nat Commun. 2021;12:3516 pubmed 出版商
  83. Ostriker A, Xie Y, Chakraborty R, Sizer A, Bai Y, Ding M, et al. TET2 Protects Against Vascular Smooth Muscle Cell Apoptosis and Intimal Thickening in Transplant Vasculopathy. Circulation. 2021;144:455-470 pubmed 出版商
  84. Wu X, Shu L, Zhang Z, Li J, Zong J, Cheong L, et al. Adipocyte Fatty Acid Binding Protein Promotes the Onset and Progression of Liver Fibrosis via Mediating the Crosstalk between Liver Sinusoidal Endothelial Cells and Hepatic Stellate Cells. Adv Sci (Weinh). 2021;8:e2003721 pubmed 出版商
  85. Huang S, Luo W, Wu G, Shen Q, Zhuang Z, Yang D, et al. Inhibition of CDK9 attenuates atherosclerosis by inhibiting inflammation and phenotypic switching of vascular smooth muscle cells. Aging (Albany NY). 2021;13:14892-14909 pubmed 出版商
  86. Xu Z, Cheng C, Kong R, Liu Y, Wang S, Ma Y, et al. S100A8 and S100A9, both transcriptionally regulated by PU.1, promote epithelial-mesenchymal transformation (EMT) and invasive growth of dermal keratinocytes during scar formation post burn. Aging (Albany NY). 2021;13:15523-15537 pubmed 出版商
  87. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  88. Barthet V, Brucoli M, Ladds M, Nössing C, Kiourtis C, Baudot A, et al. Autophagy suppresses the formation of hepatocyte-derived cancer-initiating ductular progenitor cells in the liver. Sci Adv. 2021;7: pubmed 出版商
  89. van Batenburg A, Kazemier K, Van Oosterhout M, van der Vis J, Grutters J, Goldschmeding R, et al. Telomere shortening and DNA damage in culprit cells of different types of progressive fibrosing interstitial lung disease. ERJ Open Res. 2021;7: pubmed 出版商
  90. Williams H, Wadey K, Frankow A, Blythe H, Forbes T, Johnson J, et al. Aneurysm severity is suppressed by deletion of CCN4. J Cell Commun Signal. 2021;15:421-432 pubmed 出版商
  91. Nam J, Kim A, Choi S, Kim J, Choi K, Cho S, et al. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun. 2021;12:3279 pubmed 出版商
  92. Palau V, Nugraha B, Benito D, Pascual J, Emmert M, Hoerstrup S, et al. Both Specific Endothelial and Proximal Tubular Adam17 Deletion Protect against Diabetic Nephropathy. Int J Mol Sci. 2021;22: pubmed 出版商
  93. Götz P, Braumandl A, Kübler M, Kumaraswami K, Ishikawa Ankerhold H, Lasch M, et al. C3 Deficiency Leads to Increased Angiogenesis and Elevated Pro-Angiogenic Leukocyte Recruitment in Ischemic Muscle Tissue. Int J Mol Sci. 2021;22: pubmed 出版商
  94. Kemp S, Carpenter E, Steele N, Donahue K, Nwosu Z, Pacheco A, et al. Apolipoprotein E Promotes Immune Suppression in Pancreatic Cancer through NF-κB-Mediated Production of CXCL1. Cancer Res. 2021;81:4305-4318 pubmed 出版商
  95. Eriksen A, Møller R, Makovoz B, Uhl S, tenOever B, Blenkinsop T. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28:1205-1220.e7 pubmed 出版商
  96. Hendley A, Rao A, Leonhardt L, Ashe S, Smith J, Giacometti S, et al. Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. elife. 2021;10: pubmed 出版商
  97. Ouyang L, Su X, Li W, Tang L, Zhang M, Zhu Y, et al. ALKBH1-demethylated DNA N6-methyladenine modification triggers vascular calcification via osteogenic reprogramming in chronic kidney disease. J Clin Invest. 2021;131: pubmed 出版商
  98. Tan S, Liu X, Chen L, Wu X, Tao L, Pan X, et al. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474 pubmed 出版商
  99. Anandan V, Thankayyan Retnabai S, Jaleel A, Thulaseedharan T, Mullasari A, Pillai M, et al. Cyclophilin A induces macrophage apoptosis and enhances atherosclerotic lesions in high-fat diet-fed hyperglycemic rabbits. FASEB Bioadv. 2021;3:305-322 pubmed 出版商
  100. Zhang L, He J, Wang J, Liu J, Chen Z, Deng B, et al. Knockout RAGE alleviates cardiac fibrosis through repressing endothelial-to-mesenchymal transition (EndMT) mediated by autophagy. Cell Death Dis. 2021;12:470 pubmed 出版商
  101. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  102. Flamini S, Sergeev P, Viana de Barros Z, Mello T, Biagioli M, Paglialunga M, et al. Glucocorticoid-induced leucine zipper regulates liver fibrosis by suppressing CCL2-mediated leukocyte recruitment. Cell Death Dis. 2021;12:421 pubmed 出版商
  103. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  104. Seol B, Kim Y, Cho Y. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  105. Yamamura Y, Furuichi K, Murakawa Y, Hirabayashi S, Yoshihara M, Sako K, et al. Identification of candidate PAX2-regulated genes implicated in human kidney development. Sci Rep. 2021;11:9123 pubmed 出版商
  106. Wang A, Yang F, Tian Y, Su J, Gu Q, Chen W, et al. Pulmonary Artery Smooth Muscle Cell Senescence Promotes the Proliferation of PASMCs by Paracrine IL-6 in Hypoxia-Induced Pulmonary Hypertension. Front Physiol. 2021;12:656139 pubmed 出版商
  107. O Hare M, Amarnani D, Whitmore H, An M, Marino C, Ramos L, et al. Targeting Runt-Related Transcription Factor 1 Prevents Pulmonary Fibrosis and Reduces Expression of Severe Acute Respiratory Syndrome Coronavirus 2 Host Mediators. Am J Pathol. 2021;191:1193-1208 pubmed 出版商
  108. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  109. Zheng T, Liu X, Li X, Wang Q, Zhao Y, Li X, et al. Dickkopf-1 promotes Vascular Smooth Muscle Cell proliferation and migration through upregulating UHRF1 during Cyclic Stretch application. Int J Biol Sci. 2021;17:1234-1249 pubmed 出版商
  110. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  111. He B, Chen P, Zambrano S, Dabaghie D, Hu Y, Möller Hackbarth K, et al. Single-cell RNA sequencing reveals the mesangial identity and species diversity of glomerular cell transcriptomes. Nat Commun. 2021;12:2141 pubmed 出版商
  112. Jia Y, Kang X, Tan L, Ren Y, Qu L, Tang J, et al. Nicotinamide Mononucleotide Attenuates Renal Interstitial Fibrosis After AKI by Suppressing Tubular DNA Damage and Senescence. Front Physiol. 2021;12:649547 pubmed 出版商
  113. Borges P, Waclawiak I, Georgii J, Fraga Junior V, Barros J, Lemos F, et al. Adenosine Diphosphate Improves Wound Healing in Diabetic Mice Through P2Y12 Receptor Activation. Front Immunol. 2021;12:651740 pubmed 出版商
  114. Kakehashi A, Chariyakornkul A, Suzuki S, Khuanphram N, Tatsumi K, Yamano S, et al. Cache Domain Containing 1 Is a Novel Marker of Non-Alcoholic Steatohepatitis-Associated Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  115. Georgopoulou D, Callari M, Rueda O, Shea A, Martin A, Giovannetti A, et al. Landscapes of cellular phenotypic diversity in breast cancer xenografts and their impact on drug response. Nat Commun. 2021;12:1998 pubmed 出版商
  116. Strowitzki M, Kimmer G, Wehrmann J, Ritter A, Radhakrishnan P, Opitz V, et al. Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses. JCI Insight. 2021;6: pubmed 出版商
  117. Du J, Yu Q, Liu Y, Du S, Huang L, Xu D, et al. A novel role of kallikrein-related peptidase 8 in the pathogenesis of diabetic cardiac fibrosis. Theranostics. 2021;11:4207-4231 pubmed 出版商
  118. Hurtado de Mendoza T, Mose E, Botta G, Braun G, Kotamraju V, French R, et al. Tumor-penetrating therapy for β5 integrin-rich pancreas cancer. Nat Commun. 2021;12:1541 pubmed 出版商
  119. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  120. Bi X, Du C, Wang X, Wang X, Han W, Wang Y, et al. Mitochondrial Damage-Induced Innate Immune Activation in Vascular Smooth Muscle Cells Promotes Chronic Kidney Disease-Associated Plaque Vulnerability. Adv Sci (Weinh). 2021;8:2002738 pubmed 出版商
  121. Heuer A, Stiel C, Elrod J, K xf6 nigs I, Vincent D, Schlegel P, et al. Therapeutic Targeting of Neutrophil Extracellular Traps Improves Primary and Secondary Intention Wound Healing in Mice. Front Immunol. 2021;12:614347 pubmed 出版商
  122. Mart xed nez Ordo xf1 ez A, Seoane S, Avila L, Eiró N, Mac xed a M, Arias E, et al. POU1F1 transcription factor induces metabolic reprogramming and breast cancer progression via LDHA regulation. Oncogene. 2021;40:2725-2740 pubmed 出版商
  123. Turner C, Bolsoni J, Zeglinski M, Zhao H, Ponomarev T, Richardson K, et al. Granzyme B mediates impaired healing of pressure injuries in aged skin. NPJ Aging Mech Dis. 2021;7:6 pubmed 出版商
  124. Hemanthakumar K, Fang S, Anisimov A, Mäyränpää M, Mervaala E, Kivela R. Cardiovascular disease risk factors induce mesenchymal features and senescence in mouse cardiac endothelial cells. elife. 2021;10: pubmed 出版商
  125. Di Luca M, Fitzpatrick E, Burtenshaw D, Liu W, Helt J, Hakimjavadi R, et al. The calcium binding protein S100β marks hedgehog-responsive resident vascular stem cells within vascular lesions. NPJ Regen Med. 2021;6:10 pubmed 出版商
  126. Zheng H, Zhang Y, Li L, Zhang R, Luo Z, Yang Z, et al. Depletion of Toll-Like Receptor-9 Attenuates Renal Tubulointerstitial Fibrosis After Ischemia-Reperfusion Injury. Front Cell Dev Biol. 2021;9:641527 pubmed 出版商
  127. Mehatre S, Roy I, Biswas A, Prit D, Schouteden S, Huelsken J, et al. Niche-Mediated Integrin Signaling Supports Steady-State Hematopoiesis in the Spleen. J Immunol. 2021;206:1549-1560 pubmed 出版商
  128. Hankeova S, Salplachta J, Zikmund T, Kavkova M, Van Hul N, Brinek A, et al. DUCT reveals architectural mechanisms contributing to bile duct recovery in a mouse model for Alagille syndrome. elife. 2021;10: pubmed 出版商
  129. Sivasubramaniyam T, Yang J, Cheng H, Zyla A, Li A, Besla R, et al. Dj1 deficiency protects against atherosclerosis with anti-inflammatory response in macrophages. Sci Rep. 2021;11:4723 pubmed 出版商
  130. Mao C, Li D, Zhou E, Zhang J, Wang C, Xue C. Nicotine exacerbates atherosclerosis through a macrophage-mediated endothelial injury pathway. Aging (Albany NY). 2021;13:7627-7643 pubmed 出版商
  131. Bianchi E, Sun Y, Almansa Ordonez A, Woods M, Goulding D, Martinez Martin N, et al. Control of oviductal fluid flow by the G-protein coupled receptor Adgrd1 is essential for murine embryo transit. Nat Commun. 2021;12:1251 pubmed 出版商
  132. Newman A, Serbulea V, Baylis R, Shankman L, Bradley X, Alencar G, et al. Multiple cell types contribute to the atherosclerotic lesion fibrous cap by PDGFRβ and bioenergetic mechanisms. Nat Metab. 2021;3:166-181 pubmed 出版商
  133. Saw E, Pearson J, Schwenke D, Munasinghe P, Tsuchimochi H, Rawal S, et al. Activation of the cardiac non-neuronal cholinergic system prevents the development of diabetes-associated cardiovascular complications. Cardiovasc Diabetol. 2021;20:50 pubmed 出版商
  134. Solan J, Hingorani S, Lampe P. Cx43 phosphorylation sites regulate pancreatic cancer metastasis. Oncogene. 2021;40:1909-1920 pubmed 出版商
  135. Jaworek C, Verel Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, et al. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med. 2021;11: pubmed 出版商
  136. Chen J, Liu Z, Wang H, Qian L, Li Z, Song Q, et al. SIRT6 enhances telomerase activity to protect against DNA damage and senescence in hypertrophic ligamentum flavum cells from lumbar spinal stenosis patients. Aging (Albany NY). 2021;13:6025-6040 pubmed 出版商
  137. Ma S, McGuire M, Mangala L, Lee S, Stur E, Hu W, et al. Gain-of-function p53 protein transferred via small extracellular vesicles promotes conversion of fibroblasts to a cancer-associated phenotype. Cell Rep. 2021;34:108726 pubmed 出版商
  138. Gajeton J, Krukovets I, Yendamuri R, Verbovetskiy D, Vasanji A, Sul L, et al. miR-467 regulates inflammation and blood insulin and glucose. J Cell Mol Med. 2021;25:2549-2562 pubmed 出版商
  139. Dufeys C, Daskalopoulos E, Castanares Zapatero D, Conway S, Ginion A, Bouzin C, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116:10 pubmed 出版商
  140. Lyu L, Chen J, Wang W, Yan T, Lin J, Gao H, et al. Scoparone alleviates Ang II-induced pathological myocardial hypertrophy in mice by inhibiting oxidative stress. J Cell Mol Med. 2021;25:3136-3148 pubmed 出版商
  141. Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, et al. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis. 2021;12:163 pubmed 出版商
  142. Rosenthal S, Liu X, Ganguly S, Dhar D, Pasillas M, Ricciardelli E, et al. Heterogeneity of HSCs in a Mouse Model of NASH. Hepatology. 2021;74:667-685 pubmed 出版商
  143. Deguise M, Pileggi C, De Repentigny Y, Beauvais A, Tierney A, Chehade L, et al. SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol. 2021;12:354-377.e3 pubmed 出版商
  144. Dorrier C, Aran D, Haenelt E, Sheehy R, Hoi K, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234-244 pubmed 出版商
  145. Jones I, Novikova L, Wiberg M, Carlsson L, Novikov L. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant. 2021;30:963689720988245 pubmed 出版商
  146. Miyauchi K, Nakai T, Saito S, Yamamoto T, Sato K, Kato K, et al. Renal interstitial fibroblasts coproduce erythropoietin and renin under anaemic conditions. EBioMedicine. 2021;64:103209 pubmed 出版商
  147. Wang H, Huang J, Sue M, Ho W, Hsu Y, Chang K, et al. Interleukin-24 protects against liver injury in mouse models. EBioMedicine. 2021;64:103213 pubmed 出版商
  148. Le T, Galmiche L, Levy J, Suwannarat P, Hellebrekers D, Morarach K, et al. Dysregulation of the NRG1/ERBB pathway causes a developmental disorder with gastrointestinal dysmotility in humans. J Clin Invest. 2021;131: pubmed 出版商
  149. Zhou H, Qin L, Jiang Q, Murray K, Zhang H, Li B, et al. Caveolae-mediated Tie2 signaling contributes to CCM pathogenesis in a brain endothelial cell-specific Pdcd10-deficient mouse model. Nat Commun. 2021;12:504 pubmed 出版商
  150. Huang S, You S, Qian J, Dai C, Shen S, Wang J, et al. Myeloid differentiation 2 deficiency attenuates AngII-induced arterial vascular oxidative stress, inflammation, and remodeling. Aging (Albany NY). 2021;13:4409-4427 pubmed 出版商
  151. Price N, Zhang X, Fernández Tussy P, Singh A, Burnap S, Rotllan N, et al. Loss of hepatic miR-33 improves metabolic homeostasis and liver function without altering body weight or atherosclerosis. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  152. Steele N, Biffi G, Kemp S, Zhang Y, Drouillard D, Syu L, et al. Inhibition of Hedgehog Signaling Alters Fibroblast Composition in Pancreatic Cancer. Clin Cancer Res. 2021;: pubmed 出版商
  153. Lv J, Wang H, Cui H, Liu Z, Zhang R, Lu M, et al. Blockade of Macrophage CD147 Protects Against Foam Cell Formation in Atherosclerosis. Front Cell Dev Biol. 2020;8:609090 pubmed 出版商
  154. Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen Dechent W, Huynh Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun. 2021;12:549 pubmed 出版商
  155. Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids. 2021;53:205-217 pubmed 出版商
  156. Henning C, Branopolski A, Follert P, Lewandowska O, Ayhan A, Benkhoff M, et al. Endothelial β1 Integrin-Mediated Adaptation to Myocardial Ischemia. Thromb Haemost. 2021;121:741-754 pubmed 出版商
  157. Lei Z, Wang J, Li K, Liu P. Herp knockout protects against nonalcoholic fatty liver disease in mice on a high fat diet. Kaohsiung J Med Sci. 2021;37:487-496 pubmed 出版商
  158. Sarvestani S, SIGNS S, Hu B, Yeu Y, Feng H, Ni Y, et al. Induced organoids derived from patients with ulcerative colitis recapitulate colitic reactivity. Nat Commun. 2021;12:262 pubmed 出版商
  159. Dong J, Viswanathan S, Adami E, Singh B, Chothani S, Ng B, et al. Hepatocyte-specific IL11 cis-signaling drives lipotoxicity and underlies the transition from NAFLD to NASH. Nat Commun. 2021;12:66 pubmed 出版商
  160. Caetano A, Yianni V, Volponi A, Booth V, D Agostino E, Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. elife. 2021;10: pubmed 出版商
  161. Jiang Y, Xiang C, Zhong F, Zhang Y, Wang L, Zhao Y, et al. Histone H3K27 methyltransferase EZH2 and demethylase JMJD3 regulate hepatic stellate cells activation and liver fibrosis. Theranostics. 2021;11:361-378 pubmed 出版商
  162. Sharma A, Choi J, Stefanovic N, Al Sharea A, Simpson D, Mukhamedova N, et al. Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis. Diabetes. 2021;70:772-787 pubmed 出版商
  163. Liu J, Xie Y, Cui Z, Xia T, Wan L, Zhou H, et al. Bnip3 interacts with vimentin, an intermediate filament protein, and regulates autophagy of hepatic stellate cells. Aging (Albany NY). 2020;13:957-972 pubmed 出版商
  164. Chung W, Challagundla L, Zhou Y, Li M, Atfi A, Xu K. Loss of Jag1 cooperates with oncogenic Kras to induce pancreatic cystic neoplasms. Life Sci Alliance. 2021;4: pubmed 出版商
  165. Zhao J, Liu X, Chen Y, Zhang L, Zhang Y, Ji D, et al. STAT3 Promotes Schistosome-Induced Liver Injury by Inflammation, Oxidative Stress, Proliferation, and Apoptosis Signal Pathway. Infect Immun. 2021;89: pubmed 出版商
  166. Ding Y, Li X, Zhou M, Cai L, Tang H, Xie T, et al. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation. Vascul Pharmacol. 2021;136:106818 pubmed 出版商
  167. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  168. Song L, Chen X, Swanson T, LaViolette B, Pang J, Cunio T, et al. Lymphangiogenic therapy prevents cardiac dysfunction by ameliorating inflammation and hypertension. elife. 2020;9: pubmed 出版商
  169. Fomicheva M, Macara I. Genome-wide CRISPR screen identifies noncanonical NF-κB signaling as a regulator of density-dependent proliferation. elife. 2020;9: pubmed 出版商
  170. Yamamoto A, Morioki H, Nakae T, Miyake Y, Harada T, Noda S, et al. Transcription factor old astrocyte specifically induced substance is a novel regulator of kidney fibrosis. FASEB J. 2021;35:e21158 pubmed 出版商
  171. Flores Costa R, Duran Güell M, Casulleras M, López Vicario C, Alcaraz Quiles J, Diaz A, et al. Stimulation of soluble guanylate cyclase exerts antiinflammatory actions in the liver through a VASP/NF-κB/NLRP3 inflammasome circuit. Proc Natl Acad Sci U S A. 2020;117:28263-28274 pubmed 出版商
  172. Pavlovic N, Calitz C, Thanapirom K, Mazza G, Rombouts K, Gerwins P, et al. Inhibiting IRE1α-endonuclease activity decreases tumor burden in a mouse model for hepatocellular carcinoma. elife. 2020;9: pubmed 出版商
  173. Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, et al. Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 2020;20:1014 pubmed 出版商
  174. Gurley J, Gmyrek G, McClellan M, Hargis E, Hauck S, Dozmorov M, et al. Neuroretinal-Derived Caveolin-1 Promotes Endotoxin-Induced Inflammation in the Murine Retina. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  175. Kasuga A, Semba T, Sato R, Nobusue H, Sugihara E, Takaishi H, et al. Oncogenic KRAS-expressing organoids with biliary epithelial stem cell properties give rise to biliary tract cancer in mice. Cancer Sci. 2021;112:1822-1838 pubmed 出版商
  176. Alonso Herranz L, Sahún Español Á, Paredes A, Gonzalo P, Gkontra P, Núñez V, et al. Macrophages promote endothelial-to-mesenchymal transition via MT1-MMP/TGFβ1 after myocardial infarction. elife. 2020;9: pubmed 出版商
  177. Kim Y, Oh S, Ahn J, Yook J, Kim C, Park S, et al. The Crucial Role of Xanthine Oxidase in CKD Progression Associated with Hypercholesterolemia. Int J Mol Sci. 2020;21: pubmed 出版商
  178. Xu B, Chen X, Ding Y, Chen C, Liu T, Zhang H. Abnormal angiogenesis of placenta in progranulin‑deficient mice. Mol Med Rep. 2020;22:3482-3492 pubmed 出版商
  179. Yan W, Li T, Yin T, Hou Z, Qu K, Wang N, et al. M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation. Theranostics. 2020;10:10712-10728 pubmed 出版商
  180. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  181. Ortiz Otero N, Marshall J, Lash B, King M. Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients. BMC Cancer. 2020;20:873 pubmed 出版商
  182. Bersini S, Schulte R, Huang L, Tsai H, Hetzer M. Direct reprogramming of human smooth muscle and vascular endothelial cells reveals defects associated with aging and Hutchinson-Gilford progeria syndrome. elife. 2020;9: pubmed 出版商
  183. Chen Y, Chen H, Fan H, Tung Y, Kuo C, Tu M, et al. Anti-Inflammatory, Antioxidant, and Antifibrotic Effects of Kefir Peptides on Salt-Induced Renal Vascular Damage and Dysfunction in Aged Stroke-Prone Spontaneously Hypertensive Rats. Antioxidants (Basel). 2020;9: pubmed 出版商
  184. Lee T, Yeh C, Lee Y, Shih Y, Chen Y, Hung C, et al. Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun. 2020;11:4254 pubmed 出版商
  185. Liu Y, Li L, Liu X, Wang Y, Liu L, Peng L, et al. Arginine methylation of SHANK2 by PRMT7 promotes human breast cancer metastasis through activating endosomal FAK signalling. elife. 2020;9: pubmed 出版商
  186. Bennett R, Hu M, Fernandes A, Pérez Rando M, Robbins A, Kamath T, et al. Tau reduction in aged mice does not impact Microangiopathy. Acta Neuropathol Commun. 2020;8:137 pubmed 出版商
  187. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  188. Capaci V, Bascetta L, Fantuz M, Beznoussenko G, Sommaggio R, Cancila V, et al. Mutant p53 induces Golgi tubulo-vesiculation driving a prometastatic secretome. Nat Commun. 2020;11:3945 pubmed 出版商
  189. Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, et al. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc. 2020;9:e016586 pubmed 出版商
  190. Pseftogas A, Xanthopoulos K, Poutahidis T, Ainali C, Dafou D, Panteris E, et al. The Tumor Suppressor CYLD Inhibits Mammary Epithelial to Mesenchymal Transition by the Coordinated Inhibition of YAP/TAZ and TGF Signaling. Cancers (Basel). 2020;12: pubmed 出版商
  191. Lau A, Li Z, Danai L, Westermark A, Darnell A, Ferreira R, et al. Dissecting cell-type-specific metabolism in pancreatic ductal adenocarcinoma. elife. 2020;9: pubmed 出版商
  192. Ledein L, Leger B, Dees C, Beyer C, Distler A, Vettori S, et al. Translational engagement of lysophosphatidic acid receptor 1 in skin fibrosis: from dermal fibroblasts of patients with scleroderma to tight skin 1 mouse. Br J Pharmacol. 2020;177:4296-4309 pubmed 出版商
  193. Song H, Xu T, Feng X, Lai Y, Yang Y, Zheng H, et al. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2. EBioMedicine. 2020;57:102832 pubmed 出版商
  194. McKinsey G, Lizama C, Keown Lang A, Niu A, Santander N, Larpthaveesarp A, et al. A new genetic strategy for targeting microglia in development and disease. elife. 2020;9: pubmed 出版商
  195. Zhang J, Li Y, Liu Q, Huang Y, Li R, Wu T, et al. Sirt6 Alleviated Liver Fibrosis by Deacetylating Conserved Lysine 54 on Smad2 in Hepatic Stellate Cells. Hepatology. 2021;73:1140-1157 pubmed 出版商
  196. Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster M. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science. 2020;: pubmed 出版商
  197. Kuwahara A, Lewis A, Coombes C, Leung F, Percharde M, Bush J. Delineating the early transcriptional specification of the mammalian trachea and esophagus. elife. 2020;9: pubmed 出版商
  198. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  199. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  200. Jakubowska M, Pyka J, Michalczyk Wetula D, Baczynski K, Ciesla M, Susz A, et al. Electron paramagnetic resonance spectroscopy reveals alterations in the redox state of endogenous copper and iron complexes in photodynamic stress-induced ischemic mouse liver. Redox Biol. 2020;34:101566 pubmed 出版商
  201. Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 2020;12:9085-9102 pubmed 出版商
  202. Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, et al. ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res. 2020;48:6001-6018 pubmed 出版商
  203. Dmitrieva N, Walts A, Nguyen D, Grubb A, Zhang X, Wang X, et al. Impaired angiogenesis and extracellular matrix metabolism in autosomal-dominant hyper-IgE syndrome. J Clin Invest. 2020;130:4167-4181 pubmed 出版商
  204. Sun Y, Chen L, Zhao S, Shi L, Li H, Tian W, et al. Effects of nanoparticle-mediated delivery of pitavastatin on atherosclerotic plaques in ApoE-knockout mice and THP-1-derived macrophages. Exp Ther Med. 2020;19:3787-3797 pubmed 出版商
  205. Somerville T, Biffi G, Da ler Plenker J, Hur S, He X, Vance K, et al. Squamous trans-differentiation of pancreatic cancer cells promotes stromal inflammation. elife. 2020;9: pubmed 出版商
  206. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  207. Cai L, Chao G, Li W, Zhu J, Li F, Qi B, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12:7380-7396 pubmed 出版商
  208. Lai Y, Chao H, Lai A, Lin S, Chang Y, Huang Y. CPEB2-activated PDGFRα mRNA translation contributes to myofibroblast proliferation and pulmonary alveologenesis. J Biomed Sci. 2020;27:52 pubmed 出版商
  209. Di Gregoli K, Somerville M, Bianco R, Thomas A, Frankow A, Newby A, et al. Galectin-3 Identifies a Subset of Macrophages With a Potential Beneficial Role in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2020;40:1491-1509 pubmed 出版商
  210. Ruscetti M, Morris J, Mezzadra R, Russell J, Leibold J, Romesser P, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020;181:424-441.e21 pubmed 出版商
  211. Facchin C, Pérez Liva M, Garofalakis A, Viel T, Certain A, Balvay D, et al. Concurrent imaging of vascularization and metabolism in a mouse model of paraganglioma under anti-angiogenic treatment. Theranostics. 2020;10:3518-3532 pubmed 出版商
  212. Gremlich S, Roth Kleiner M, Equey L, Fytianos K, Schittny J, Cremona T. Tenascin-C inactivation impacts lung structure and function beyond lung development. Sci Rep. 2020;10:5118 pubmed 出版商
  213. Steins A, van Mackelenbergh M, van der Zalm A, Klaassen R, Serrels B, Goris S, et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020;21:e48780 pubmed 出版商
  214. Singh S, Adam M, Matkar P, Bugyei Twum A, Desjardins J, Chen H, et al. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 2020;10:4466 pubmed 出版商
  215. Beltran Camacho L, Jimenez Palomares M, Rojas Torres M, Sánchez Gomar I, Rosal Vela A, Eslava Alcon S, et al. Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia. Stem Cell Res Ther. 2020;11:106 pubmed 出版商
  216. Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY). 2020;12:4322-4336 pubmed 出版商
  217. Ma X, Agas A, Siddiqui Z, Kim K, Iglesias Montoro P, Kalluru J, et al. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater. 2020;5:124-132 pubmed 出版商
  218. Nayakawde N, Methe K, Banerjee D, Berg M, Premaratne G, Olausson M. In Vitro Regeneration of Decellularized Pig Esophagus Using Human Amniotic Stem Cells. Biores Open Access. 2020;9:22-36 pubmed 出版商
  219. Miyawaki T, Morikawa S, Susaki E, Nakashima A, Takeuchi H, Yamaguchi S, et al. Visualization and molecular characterization of whole-brain vascular networks with capillary resolution. Nat Commun. 2020;11:1104 pubmed 出版商
  220. Yazawa K, Nakamura F, Masukawa D, Sato S, Hiroshima Y, Yabushita Y, et al. Low Incidence of High-Grade Pancreatic Intraepithelial Neoplasia Lesions in a Crmp4 Gene-Deficient Mouse Model of Pancreatic Cancer. Transl Oncol. 2020;13:100746 pubmed 出版商
  221. Hillenmayer A, Wertheimer C, Kassumeh S, von Studnitz A, Luft N, Ohlmann A, et al. Evaluation of posterior capsule opacification of the Alcon Clareon IOL vs the Alcon Acrysof IOL using a human capsular bag model. BMC Ophthalmol. 2020;20:77 pubmed 出版商
  222. Engelbrecht E, Lévesque M, He L, Vanlandewijck M, Nitzsche A, Niazi H, et al. Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. elife. 2020;9: pubmed 出版商
  223. Ichikawa K, Watanabe Miyano S, Minoshima Y, Matsui J, Funahashi Y. Activated FGF2 signaling pathway in tumor vasculature is essential for acquired resistance to anti-VEGF therapy. Sci Rep. 2020;10:2939 pubmed 出版商
  224. Prahst C, Ashrafzadeh P, Mead T, Figueiredo A, Chang K, Richardson D, et al. Mouse retinal cell behaviour in space and time using light sheet fluorescence microscopy. elife. 2020;9: pubmed 出版商
  225. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  226. Li Q, Aalling N, Förstera B, Erturk A, Nedergaard M, Møllgård K, et al. Aquaporin 1 and the Na+/K+/2Cl- cotransporter 1 are present in the leptomeningeal vasculature of the adult rodent central nervous system. Fluids Barriers CNS. 2020;17:15 pubmed 出版商
  227. Guo X, Kolpakov M, Hooshdaran B, Schappell W, Wang T, Eguchi S, et al. Cardiac Expression of Factor X Mediates Cardiac Hypertrophy and Fibrosis in Pressure Overload. JACC Basic Transl Sci. 2020;5:69-83 pubmed 出版商
  228. Gaglia G, Rashid R, Yapp C, Joshi G, Li C, Lindquist S, et al. HSF1 phase transition mediates stress adaptation and cell fate decisions. Nat Cell Biol. 2020;22:151-158 pubmed 出版商
  229. Brill Karniely Y, Dror D, Duanis Assaf T, Goldstein Y, Schwob O, Millo T, et al. Triangular correlation (TrC) between cancer aggressiveness, cell uptake capability, and cell deformability. Sci Adv. 2020;6:eaax2861 pubmed 出版商
  230. Mallampalli R, Li X, Jang J, Kaminski T, Hoji A, Coon T, et al. Cigarette smoke exposure enhances transforming acidic coiled-coil-containing protein 2 turnover and thereby promotes emphysema. JCI Insight. 2020;5: pubmed 出版商
  231. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  232. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  233. Jin Y, Shi C, Wu Y, Sun J, Gao J, Yang Y. Encapsulated three-dimensional bioprinted structure seeded with urothelial cells: a new construction technique for tissue-engineered urinary tract patch. Chin Med J (Engl). 2020;133:424-434 pubmed 出版商
  234. Liao S, Chen H, Liu M, Gan L, Li C, Zhang W, et al. Aquaporin 9 inhibits growth and metastasis of hepatocellular carcinoma cells via Wnt/β-catenin pathway. Aging (Albany NY). 2020;12:1527-1544 pubmed 出版商
  235. Cozart M, Phelan K, Wu H, Mu S, Birnbaumer L, Rusch N, et al. Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus. Sci Rep. 2020;10:812 pubmed 出版商
  236. Sivaraj K, Dharmalingam B, Mohanakrishnan V, Jeong H, Kato K, Schröder S, et al. YAP1 and TAZ negatively control bone angiogenesis by limiting hypoxia-inducible factor signaling in endothelial cells. elife. 2020;9: pubmed 出版商
  237. Sharma S, Plotkin M. Id1 expression in kidney endothelial cells protects against diabetes-induced microvascular injury. FEBS Open Bio. 2020;: pubmed 出版商
  238. Kim J, Fei L, Yin W, Coquenlorge S, Rao Bhatia A, Zhang X, et al. Single cell and genetic analyses reveal conserved populations and signaling mechanisms of gastrointestinal stromal niches. Nat Commun. 2020;11:334 pubmed 出版商
  239. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  240. Zhang L, Wang Y, Wu G, Rao L, Wei Y, Yue H, et al. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation. Cell Prolif. 2020;53:e12742 pubmed 出版商
  241. Singh V, Khalil M, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle. 2020;19:363-375 pubmed 出版商
  242. Liu H, Mei F, Yang W, Wang H, Wong E, Cai J, et al. Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling. Sci Adv. 2020;6:eaay3566 pubmed 出版商
  243. Wang G, Huang T, Hu Y, Wang K, Shi H, Yin L, et al. Corpus cavernosum smooth muscle cell dysfunction and phenotype transformation are related to erectile dysfunction in prostatitis rats with chronic prostatitis/chronic pelvic pain syndrome. J Inflamm (Lond). 2020;17:2 pubmed 出版商
  244. Cheng M, Chen Y, Huang D, Chen W, Xu W, Chen Y, et al. Intrinsically altered lung-resident γδT cells control lung melanoma by producing interleukin-17A in the elderly. Aging Cell. 2020;19:e13099 pubmed 出版商
  245. Li L, Du Z, Rong B, Zhao D, Wang A, Xu Y, et al. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci Rep. 2020;40: pubmed 出版商
  246. Izadi D, Layton T, Williams L, McCann F, Cabrita M, Espirito Santo A, et al. Identification of TNFR2 and IL-33 as therapeutic targets in localized fibrosis. Sci Adv. 2019;5:eaay0370 pubmed 出版商
  247. Zheng Q, Gao J, Yin P, Wang W, Wang B, Li Y, et al. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci. 2020;111:383-394 pubmed 出版商
  248. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  249. Vijayaraj P, Minasyan A, Durra A, Karumbayaram S, Mehrabi M, Aros C, et al. Modeling Progressive Fibrosis with Pluripotent Stem Cells Identifies an Anti-fibrotic Small Molecule. Cell Rep. 2019;29:3488-3505.e9 pubmed 出版商
  250. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  251. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  252. Henning C, Branopolski A, Schuler D, Dimitroulis D, Huelsemann P, Nicolaus C, et al. Requirement of β1 integrin for endothelium-dependent vasodilation and collateral formation in hindlimb ischemia. Sci Rep. 2019;9:16931 pubmed 出版商
  253. Li X, Wang F, Ren M, Du M, Zhou J. The effects of c-Src kinase on EMT signaling pathway in human lens epithelial cells associated with lens diseases. BMC Ophthalmol. 2019;19:219 pubmed 出版商
  254. Zhou S, da Silva S, Siegel P, Philip A. CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep. 2019;9:16317 pubmed 出版商
  255. Zhu Y, Scheibinger M, Ellwanger D, Krey J, Choi D, Kelly R, et al. Single-cell proteomics reveals changes in expression during hair-cell development. elife. 2019;8: pubmed 出版商
  256. Xue M, Li G, Li D, Wang Z, Mi L, Da J, et al. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production. Biosci Rep. 2019;39: pubmed 出版商
  257. Welk V, Meul T, Lukas C, Kammerl I, Mulay S, Schamberger A, et al. Proteasome activator PA200 regulates myofibroblast differentiation. Sci Rep. 2019;9:15224 pubmed 出版商
  258. Wang X, Zhao L, Ajay A, Jiao B, Zhang X, Wang C, et al. QiDiTangShen Granules Activate Renal Nutrient-Sensing Associated Autophagy in db/db Mice. Front Physiol. 2019;10:1224 pubmed 出版商
  259. Yung T, Poon F, Liang M, Coquenlorge S, McGaugh E, Hui C, et al. Sufu- and Spop-mediated downregulation of Hedgehog signaling promotes beta cell differentiation through organ-specific niche signals. Nat Commun. 2019;10:4647 pubmed 出版商
  260. Meier Bürgisser G, Evrova O, Calcagni M, Scalera C, Giovanoli P, Buschmann J. Impact of PDGF-BB on cellular distribution and extracellular matrix in the healing rabbit Achilles tendon three weeks post-operation. FEBS Open Bio. 2020;10:327-337 pubmed 出版商
  261. Cao W, Feng Y. LncRNA XIST promotes extracellular matrix synthesis, proliferation and migration by targeting miR-29b-3p/COL1A1 in human skin fibroblasts after thermal injury. Biol Res. 2019;52:52 pubmed 出版商
  262. Ren J, Smid M, Iaria J, Salvatori D, van Dam H, Zhu H, et al. Cancer-associated fibroblast-derived Gremlin 1 promotes breast cancer progression. Breast Cancer Res. 2019;21:109 pubmed 出版商
  263. Fons N, Sundaram R, Breuer G, Peng S, McLean R, Kalathil A, et al. PPM1D mutations silence NAPRT gene expression and confer NAMPT inhibitor sensitivity in glioma. Nat Commun. 2019;10:3790 pubmed 出版商
  264. Shen J, Xing W, Liu R, Zhang Y, Xie C, Gong F. MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol. 2019;20:21 pubmed 出版商
  265. V gtle T, Sharma S, Mori J, Nagy Z, Semeniak D, Scandola C, et al. Heparan sulfates are critical regulators of the inhibitory megakaryocyte-platelet receptor G6b-B. elife. 2019;8: pubmed 出版商
  266. Tang W, Martik M, Li Y, Bronner M. Cardiac neural crest contributes to cardiomyocytes in amniotes and heart regeneration in zebrafish. elife. 2019;8: pubmed 出版商
  267. Tan T, Hu H, Wang H, Li J, Wang Z, Wang J, et al. Bioinspired lipoproteins-mediated photothermia remodels tumor stroma to improve cancer cell accessibility of second nanoparticles. Nat Commun. 2019;10:3322 pubmed 出版商
  268. Wang H, Shen L, Sun X, Liu F, Feng W, Jiang C, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat Commun. 2019;10:3254 pubmed 出版商
  269. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  270. Yin Y, Zhang Q, Zhao Q, Ding G, Wei C, Chang L, et al. Tongxinluo Attenuates Myocardiac Fibrosis after Acute Myocardial Infarction in Rats via Inhibition of Endothelial-to-Mesenchymal Transition. Biomed Res Int. 2019;2019:6595437 pubmed 出版商
  271. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  272. Cibi D, Mia M, Guna Shekeran S, Yun L, Sandireddy R, Gupta P, et al. Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate. elife. 2019;8: pubmed 出版商
  273. Quilichini E, Fabre M, Dirami T, Stedman A, De Vas M, Ozguc O, et al. Pancreatic ductal deletion of Hnf1b disrupts exocrine homeostasis, leads to pancreatitis and facilitates tumorigenesis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  274. Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, et al. Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 2019;: pubmed 出版商
  275. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  276. Genet G, Boyé K, Mathivet T, Ola R, Zhang F, Dubrac A, et al. Endophilin-A2 dependent VEGFR2 endocytosis promotes sprouting angiogenesis. Nat Commun. 2019;10:2350 pubmed 出版商
  277. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  278. Ackerman J, Nichols A, Studentsova V, Best K, Knapp E, Loiselle A. Cell non-autonomous functions of S100a4 drive fibrotic tendon healing. elife. 2019;8: pubmed 出版商
  279. Zhao B, Du F, Xu P, Shu C, Sankaran B, Bell S, et al. A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1. Nature. 2019;: pubmed 出版商
  280. Rubio K, Singh I, Dobersch S, Sarvari P, Günther S, Cordero J, et al. Inactivation of nuclear histone deacetylases by EP300 disrupts the MiCEE complex in idiopathic pulmonary fibrosis. Nat Commun. 2019;10:2229 pubmed 出版商
  281. Eckert M, Coscia F, Chryplewicz A, Chang J, Hernandez K, Pan S, et al. Proteomics reveals NNMT as a master metabolic regulator of cancer-associated fibroblasts. Nature. 2019;: pubmed 出版商
  282. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  283. An S, Raju I, Surenkhuu B, Kwon J, Gulati S, Karaman M, et al. Neutrophil extracellular traps (NETs) contribute to pathological changes of ocular graft-vs.-host disease (oGVHD) dry eye: Implications for novel biomarkers and therapeutic strategies. Ocul Surf. 2019;: pubmed 出版商
  284. Farbehi N, Patrick R, Dorison A, Xaymardan M, Janbandhu V, Wystub Lis K, et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. elife. 2019;8: pubmed 出版商
  285. Li W, Yu X, Zhu C, Wang Z, Zhao Z, Li Y, et al. Notum attenuates HBV-related liver fibrosis through inhibiting Wnt 5a mediated non-canonical pathways. Biol Res. 2019;52:10 pubmed 出版商
  286. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  287. DeLalio L, Billaud M, Ruddiman C, Johnstone S, Butcher J, Wolpe A, et al. Constitutive SRC-mediated phosphorylation of pannexin 1 at tyrosine 198 occurs at the plasma membrane. J Biol Chem. 2019;294:6940-6956 pubmed 出版商
  288. Wu W, Zhang W, Choi M, Zhao J, Gao P, Xue M, et al. Vascular smooth muscle-MAPK14 is required for neointimal hyperplasia by suppressing VSMC differentiation and inducing proliferation and inflammation. Redox Biol. 2019;22:101137 pubmed 出版商
  289. Chen X, He Y, Xu A, Deng Z, Feng J, Lu F, et al. Increase of glandular epithelial cell clusters by an external volume expansion device promotes adipose tissue regeneration by recruiting macrophages. Biosci Rep. 2019;39: pubmed 出版商
  290. Albanna M, Binder K, Murphy S, Kim J, Qasem S, Zhao W, et al. In Situ Bioprinting of Autologous Skin Cells Accelerates Wound Healing of Extensive Excisional Full-Thickness Wounds. Sci Rep. 2019;9:1856 pubmed 出版商
  291. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  292. Sahara M, Santoro F, Sohlmér J, Zhou C, Witman N, Leung C, et al. Population and Single-Cell Analysis of Human Cardiogenesis Reveals Unique LGR5 Ventricular Progenitors in Embryonic Outflow Tract. Dev Cell. 2019;48:475-490.e7 pubmed 出版商
  293. Gao Q, Yang Z, Xu S, Li X, Yang X, Jin P, et al. Heterotypic CAF-tumor spheroids promote early peritoneal metastatis of ovarian cancer. J Exp Med. 2019;216:688-703 pubmed 出版商
  294. Das S, Goldstone A, Wang H, Farry J, D Amato G, Paulsen M, et al. A Unique Collateral Artery Development Program Promotes Neonatal Heart Regeneration. Cell. 2019;176:1128-1142.e18 pubmed 出版商
  295. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  296. Wimmer R, Leopoldi A, Aichinger M, Wick N, Hantusch B, Novatchkova M, et al. Human blood vessel organoids as a model of diabetic vasculopathy. Nature. 2019;565:505-510 pubmed 出版商
  297. Mahmoud M, Evans I, Mehta V, Pellet Many C, Paliashvili K, Zachary I. Smooth muscle cell-specific knockout of neuropilin-1 impairs postnatal lung development and pathological vascular smooth muscle cell accumulation. Am J Physiol Cell Physiol. 2019;316:C424-C433 pubmed 出版商
  298. Li B, He J, Lv H, Liu Y, Lv X, Zhang C, et al. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest. 2019;129:1167-1179 pubmed 出版商
  299. Muraoka D, Seo N, Hayashi T, Tahara Y, Fujii K, Tawara I, et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J Clin Invest. 2019;129:1278-1294 pubmed 出版商
  300. Niu F, Liao K, Hu G, Sil S, Callen S, Guo M, et al. Cocaine-induced release of CXCL10 from pericytes regulates monocyte transmigration into the CNS. J Cell Biol. 2019;218:700-721 pubmed 出版商
  301. Liu Z, Li C, Kang N, Malhi H, Shah V, Maiers J. Transforming growth factor β (TGFβ) cross-talk with the unfolded protein response is critical for hepatic stellate cell activation. J Biol Chem. 2019;294:3137-3151 pubmed 出版商
  302. Zhang J, Wang D, Wang L, Wang S, Roden A, Zhao H, et al. Profibrotic effect of IL-17A and elevated IL-17RA in idiopathic pulmonary fibrosis and rheumatoid arthritis-associated lung disease support a direct role for IL-17A/IL-17RA in human fibrotic interstitial lung disease. Am J Physiol Lung Cell Mol Physiol. 2019;316:L487-L497 pubmed 出版商
  303. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  304. Quitterer U, Fu X, Pohl A, Bayoumy K, Langer A, AbdAlla S. Beta-Arrestin1 Prevents Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers. Cell. 2019;176:318-333.e19 pubmed 出版商
  305. Qin L, Min W, Xin S. AIP1 suppresses transplant arteriosclerosis through inhibition of vascular smooth muscle cell inflammatory response to IFNγ. Anat Rec (Hoboken). 2018;: pubmed 出版商
  306. He S, Nian F, Chen W, Yin L, Auchoybur M, Tao Z, et al. I-κB kinase-ε knockout protects against angiotensin II induced aortic valve thickening in apolipoprotein E deficient mice. Biomed Pharmacother. 2019;109:1287-1295 pubmed 出版商
  307. Song S, Zhang R, Cao W, Fang G, Yu Y, Wan Y, et al. Foxm1 is a critical driver of TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds to the Snail promoter. J Cell Physiol. 2019;234:9052-9064 pubmed 出版商
  308. Biffi G, Oni T, Spielman B, Hao Y, Elyada E, Park Y, et al. IL1-Induced JAK/STAT Signaling Is Antagonized by TGFβ to Shape CAF Heterogeneity in Pancreatic Ductal Adenocarcinoma. Cancer Discov. 2019;9:282-301 pubmed 出版商
  309. Zhang N, Wei W, Liao H, Yang Z, Hu C, Wang S, et al. AdipoRon, an adiponectin receptor agonist, attenuates cardiac remodeling induced by pressure overload. J Mol Med (Berl). 2018;96:1345-1357 pubmed 出版商
  310. Zhang X, Zhang M, Wang C. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 2018;506:137-144 pubmed 出版商
  311. Yin J, Wang Y, Chang J, Li B, Zhang J, Liu Y, et al. Apelin inhibited epithelial-mesenchymal transition of podocytes in diabetic mice through downregulating immunoproteasome subunits β5i. Cell Death Dis. 2018;9:1031 pubmed 出版商
  312. Finsterwalder R, Ganesan M, Leb H, Habertheuer A, Basílio J, Lang I, et al. Hypoxia/reperfusion predisposes to atherosclerosis. PLoS ONE. 2018;13:e0205067 pubmed 出版商
  313. Hamanaka S, Umino A, Sato H, Hayama T, Yanagida A, Mizuno N, et al. Generation of Vascular Endothelial Cells and Hematopoietic Cells by Blastocyst Complementation. Stem Cell Reports. 2018;11:988-997 pubmed 出版商
  314. Louveau A, Herz J, Alme M, Salvador A, Dong M, Viar K, et al. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat Neurosci. 2018;21:1380-1391 pubmed 出版商
  315. Russell J, Lu W, Okabe H, Abrams M, Oertel M, Poddar M, et al. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology. 2019;69:742-759 pubmed 出版商
  316. Ke X, Do D, Li C, Zhao Y, Kollarik M, Fu Q, et al. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol. 2019;143:1560-1574.e6 pubmed 出版商
  317. Rodríguez Baena F, Redondo García S, Peris Torres C, Martino Echarri E, Fernández Rodríguez R, Plaza Calonge M, et al. ADAMTS1 protease is required for a balanced immune cell repertoire and tumour inflammatory response. Sci Rep. 2018;8:13103 pubmed 出版商
  318. Kim A, Lee E, Lee E, Kim J, Suk K, Lee E, et al. SIRT2 is required for efficient reprogramming of mouse embryonic fibroblasts toward pluripotency. Cell Death Dis. 2018;9:893 pubmed 出版商
  319. Zhang F, Zarkada G, Han J, Li J, Dubrac A, Ola R, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599-603 pubmed 出版商
  320. Urata S, Kenyon E, Nayak D, Cubitt B, Kurosaki Y, Yasuda J, et al. BST-2 controls T cell proliferation and exhaustion by shaping the early distribution of a persistent viral infection. PLoS Pathog. 2018;14:e1007172 pubmed 出版商
  321. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  322. Weltner J, Balboa D, Katayama S, Bespalov M, Krjutskov K, Jouhilahti E, et al. Human pluripotent reprogramming with CRISPR activators. Nat Commun. 2018;9:2643 pubmed 出版商
  323. Chute C, Yang X, Meyer K, Yang N, O Neil K, Kasza I, et al. Syndecan-1 induction in lung microenvironment supports the establishment of breast tumor metastases. Breast Cancer Res. 2018;20:66 pubmed 出版商
  324. Karow M, Camp J, Falk S, Gerber T, Pataskar A, Gac Santel M, et al. Direct pericyte-to-neuron reprogramming via unfolding of a neural stem cell-like program. Nat Neurosci. 2018;21:932-940 pubmed 出版商
  325. García Nores G, Ly C, Cuzzone D, Kataru R, Hespe G, Torrisi J, et al. CD4+ T cells are activated in regional lymph nodes and migrate to skin to initiate lymphedema. Nat Commun. 2018;9:1970 pubmed 出版商
  326. Pommier A, Anaparthy N, Memos N, Kelley Z, Gouronnec A, Yan R, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science. 2018;360: pubmed 出版商
  327. Canzano J, Nasif L, Butterworth E, Fu D, Atkinson M, Campbell Thompson M. Islet Microvasculature Alterations With Loss of Beta-cells in Patients With Type 1 Diabetes. J Histochem Cytochem. 2018;:22155418778546 pubmed 出版商
  328. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, et al. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Nucleic Acids Res. 2018;46:6026-6040 pubmed 出版商
  329. Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H, et al. Coronary Serum Exosomes Derived from Patients with Myocardial Ischemia Regulate Angiogenesis through the miR-939-mediated Nitric Oxide Signaling Pathway. Theranostics. 2018;8:2079-2093 pubmed 出版商
  330. Ho L, Skiba N, Ullmer C, Rao P. Lysophosphatidic Acid Induces ECM Production via Activation of the Mechanosensitive YAP/TAZ Transcriptional Pathway in Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci. 2018;59:1969-1984 pubmed 出版商
  331. Fu X, Khalil H, Kanisicak O, Boyer J, Vagnozzi R, Maliken B, et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest. 2018;128:2127-2143 pubmed 出版商
  332. Seike M, Omatsu Y, Watanabe H, Kondoh G, Nagasawa T. Stem cell niche-specific Ebf3 maintains the bone marrow cavity. Genes Dev. 2018;32:359-372 pubmed 出版商
  333. Greicius G, Kabiri Z, Sigmundsson K, Liang C, Bunte R, Singh M, et al. PDGFR?+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo. Proc Natl Acad Sci U S A. 2018;115:E3173-E3181 pubmed 出版商
  334. Poli V, Fagnocchi L, Fasciani A, Cherubini A, Mazzoleni S, Ferrillo S, et al. MYC-driven epigenetic reprogramming favors the onset of tumorigenesis by inducing a stem cell-like state. Nat Commun. 2018;9:1024 pubmed 出版商
  335. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  336. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  337. Jansch C, Günther K, Waider J, Ziegler G, Forero A, Kollert S, et al. Generation of a human induced pluripotent stem cell (iPSC) line from a 51-year-old female with attention-deficit/hyperactivity disorder (ADHD) carrying a duplication of SLC2A3. Stem Cell Res. 2018;28:136-140 pubmed 出版商
  338. Nguyen H, Noguchi S, Sugie K, Matsuo Y, Nguyen C, Koito H, et al. Small-Vessel Vasculopathy Due to Aberrant Autophagy in LAMP-2 Deficiency. Sci Rep. 2018;8:3326 pubmed 出版商
  339. Zhou Z, Wang L, Ge F, Gong P, Wang H, Wang F, et al. Pold3 is required for genomic stability and telomere integrity in embryonic stem cells and meiosis. Nucleic Acids Res. 2018;46:3468-3486 pubmed 出版商
  340. Wen G, An W, Chen J, Maguire E, Chen Q, Yang F, et al. Genetic and Pharmacologic Inhibition of the Neutrophil Elastase Inhibits Experimental Atherosclerosis. J Am Heart Assoc. 2018;7: pubmed 出版商
  341. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  342. Su S, Chen J, Yao H, Liu J, Yu S, Lao L, et al. CD10+GPR77+ Cancer-Associated Fibroblasts Promote Cancer Formation and Chemoresistance by Sustaining Cancer Stemness. Cell. 2018;172:841-856.e16 pubmed 出版商
  343. Xu K, Pan X, Qiu X, Wang D, Dong N, Yang L, et al. Neural crest-derived cells migrate from nerve to participate in Achilles tendon remodeling. Wound Repair Regen. 2018;26:54-63 pubmed 出版商
  344. Ireland L, Santos A, Campbell F, Figueiredo C, Hammond D, Ellies L, et al. Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer. Oncogene. 2018;37:2022-2036 pubmed 出版商
  345. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  346. La Porta S, Roth L, Singhal M, Mogler C, Spegg C, Schieb B, et al. Endothelial Tie1-mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. J Clin Invest. 2018;128:834-845 pubmed 出版商
  347. Li T, Zhao J. Knockdown of elF3a inhibits TGF??1?induced extracellular matrix protein expression in keloid fibroblasts. Mol Med Rep. 2018;17:4057-4061 pubmed 出版商
  348. He J, Weng Z, Wu S, Boheler K. Generation of Induced Pluripotent Stem Cells from Patients with COL3A1 Mutations and Differentiation to Smooth Muscle Cells for ECM-Surfaceome Analyses. Methods Mol Biol. 2018;1722:261-302 pubmed 出版商
  349. Ordonez D, Lee M, Feany M. α-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton. Neuron. 2018;97:108-124.e6 pubmed 出版商
  350. Krey J, Dumont R, Wilmarth P, David L, Johnson K, Barr Gillespie P. ELMOD1 Stimulates ARF6-GTP Hydrolysis to Stabilize Apical Structures in Developing Vestibular Hair Cells. J Neurosci. 2018;38:843-857 pubmed 出版商
  351. Yang L, Shen L, Gao P, Li G, He Y, Wang M, et al. Effect of AMPK signal pathway on pathogenesis of abdominal aortic aneurysms. Oncotarget. 2017;8:92827-92840 pubmed 出版商
  352. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  353. Nofi C, Bogatyryov Y, Dedkov E. Preservation of Functional Microvascular Bed Is Vital for Long-Term Survival of Cardiac Myocytes Within Large Transmural Post-Myocardial Infarction Scar. J Histochem Cytochem. 2017;:22155417741640 pubmed 出版商
  354. Xie X, Almuzzaini B, Drou N, Kremb S, Yousif A, Farrants A, et al. β-Actin-dependent global chromatin organization and gene expression programs control cellular identity. FASEB J. 2018;32:1296-1314 pubmed 出版商
  355. Niell N, Larriba M, Ferrer Mayorga G, Sanchez Perez I, Cantero R, Real F, et al. The human PKP2/plakophilin-2 gene is induced by Wnt/?-catenin in normal and colon cancer-associated fibroblasts. Int J Cancer. 2018;142:792-804 pubmed 出版商
  356. Dufton N, Peghaire C, Osuna Almagro L, Raimondi C, Kalna V, Chuahan A, et al. Dynamic regulation of canonical TGFβ signalling by endothelial transcription factor ERG protects from liver fibrogenesis. Nat Commun. 2017;8:895 pubmed 出版商
  357. Hamada S, Shimosegawa T, Taguchi K, Nabeshima T, Yamamoto M, Masamune A. Simultaneous K-ras activation and Keap1 deletion cause atrophy of pancreatic parenchyma. Am J Physiol Gastrointest Liver Physiol. 2018;314:G65-G74 pubmed 出版商
  358. Qiao S, Wang F, Chen H, Jiang S. Inducible knockout of Syncytin-A gene leads to an extensive placental vasculature deficiency, implications for preeclampsia. Clin Chim Acta. 2017;474:137-146 pubmed 出版商
  359. Alonso Barroso E, Brasil S, Briso Montiano Á, Navarrete R, Perez Cerda C, Ugarte M, et al. Generation and characterization of a human iPSC line from a patient with propionic acidemia due to defects in the PCCA gene. Stem Cell Res. 2017;23:173-177 pubmed 出版商
  360. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  361. He H, Huang M, Sun S, Wu Y, Lin X. Epithelial heparan sulfate regulates Sonic Hedgehog signaling in lung development. PLoS Genet. 2017;13:e1006992 pubmed 出版商
  362. Bohnenpoll T, Wittern A, Mamo T, Weiss A, Rudat C, Kleppa M, et al. A SHH-FOXF1-BMP4 signaling axis regulating growth and differentiation of epithelial and mesenchymal tissues in ureter development. PLoS Genet. 2017;13:e1006951 pubmed 出版商
  363. Abu Jhaisha S, Widowati E, Kii I, Sonamoto R, Knapp S, Papadopoulos C, et al. DYRK1B mutations associated with metabolic syndrome impair the chaperone-dependent maturation of the kinase domain. Sci Rep. 2017;7:6420 pubmed 出版商
  364. Aguado L, Schmid S, May J, Sabin L, Panis M, Blanco Melo D, et al. RNase III nucleases from diverse kingdoms serve as antiviral effectors. Nature. 2017;547:114-117 pubmed 出版商
  365. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  366. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  367. Van T, Polykratis A, Straub B, Kondylis V, Papadopoulou N, Pasparakis M. Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. J Clin Invest. 2017;127:2662-2677 pubmed 出版商
  368. Qiu C, Wang Y, Zhao H, Qin L, Shi Y, Zhu X, et al. The critical role of SENP1-mediated GATA2 deSUMOylation in promoting endothelial activation in graft arteriosclerosis. Nat Commun. 2017;8:15426 pubmed 出版商
  369. Garcia Hernandez M, Uribe Uribe N, Espinosa González R, Kast W, Khader S, Rangel Moreno J. A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Front Immunol. 2017;8:563 pubmed 出版商
  370. Xia H, Gilbertsen A, Herrera J, Racila E, Smith K, Peterson M, et al. Calcium-binding protein S100A4 confers mesenchymal progenitor cell fibrogenicity in idiopathic pulmonary fibrosis. J Clin Invest. 2017;127:2586-2597 pubmed 出版商
  371. Whitson J, Zhang X, Medvedovic M, Chen J, Wei Z, Monnier V, et al. Transcriptome of the GSH-Depleted Lens Reveals Changes in Detoxification and EMT Signaling Genes, Transport Systems, and Lipid Homeostasis. Invest Ophthalmol Vis Sci. 2017;58:2666-2684 pubmed 出版商
  372. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  373. Pinnock C, Xu Z, Lam M. Scaling of Engineered Vascular Grafts Using 3D Printed Guides and the Ring Stacking Method. J Vis Exp. 2017;: pubmed 出版商
  374. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  375. Qi W, Keenan H, Li Q, Ishikado A, Kannt A, Sadowski T, et al. Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 2017;23:753-762 pubmed 出版商
  376. Gerarduzzi C, Kumar R, Trivedi P, Ajay A, Iyer A, Boswell S, et al. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight. 2017;2: pubmed 出版商
  377. Esteves C, Sheldrake T, Mesquita S, Pesántez J, Menghini T, Dawson L, et al. Isolation and characterization of equine native MSC populations. Stem Cell Res Ther. 2017;8:80 pubmed 出版商
  378. Jung Klawitter S, Ebersold J, Göhring G, Blau N, Opladen T. Generation of an iPSC line from a patient with GTP cyclohydrolase 1 (GCH1) deficiency: HDMC0061i-GCH1. Stem Cell Res. 2017;20:38-41 pubmed 出版商
  379. Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, et al. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. elife. 2017;6: pubmed 出版商
  380. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  381. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  382. Al Maqtari T, Hong K, Vajravelu B, Moktar A, Cao P, Moore J, et al. Transcription factor-induced activation of cardiac gene expression in human c-kit+ cardiac progenitor cells. PLoS ONE. 2017;12:e0174242 pubmed 出版商
  383. Umar S, Partow Navid R, Ruffenach G, Iorga A, Moazeni S, Eghbali M. Severe pulmonary hypertension in aging female apolipoprotein E-deficient mice is rescued by estrogen replacement therapy. Biol Sex Differ. 2017;8:9 pubmed 出版商
  384. Menicacci B, Laurenzana A, Chillà A, Margheri F, Peppicelli S, Tanganelli E, et al. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. J Gerontol A Biol Sci Med Sci. 2017;72:1187-1195 pubmed 出版商
  385. Barry C, Ji E, Sharma H, Beukes L, Vilimas P, Degraaf Y, et al. Morphological and neurochemical differences in peptidergic nerve fibers of the mouse vagina. J Comp Neurol. 2017;525:2394-2410 pubmed 出版商
  386. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  387. Halim D, Wilson M, Oliver D, Brosens E, Verheij J, Han Y, et al. Loss of LMOD1 impairs smooth muscle cytocontractility and causes megacystis microcolon intestinal hypoperistalsis syndrome in humans and mice. Proc Natl Acad Sci U S A. 2017;114:E2739-E2747 pubmed 出版商
  388. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  389. Chen S, Wang Y, Zhang W, Dong M, Zhang J. Sclareolide enhances gemcitabine?induced cell death through mediating the NICD and Gli1 pathways in gemcitabine?resistant human pancreatic cancer. Mol Med Rep. 2017;15:1461-1470 pubmed 出版商
  390. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37: pubmed 出版商
  391. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  392. Cao P, Aoki Y, Badri L, Walker N, Manning C, Lagstein A, et al. Autocrine lysophosphatidic acid signaling activates ?-catenin and promotes lung allograft fibrosis. J Clin Invest. 2017;127:1517-1530 pubmed 出版商
  393. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  394. Takahashi T, Asano Y, Sugawara K, Yamashita T, Nakamura K, Saigusa R, et al. Epithelial Fli1 deficiency drives systemic autoimmunity and fibrosis: Possible roles in scleroderma. J Exp Med. 2017;214:1129-1151 pubmed 出版商
  395. Stahnke T, Kowtharapu B, Stachs O, Schmitz K, Wurm J, Wree A, et al. Suppression of TGF-β pathway by pirfenidone decreases extracellular matrix deposition in ocular fibroblasts in vitro. PLoS ONE. 2017;12:e0172592 pubmed 出版商
  396. Sanges S, Jendoubi M, Kavian N, Hauspie C, Speca S, Crave J, et al. B Cell Homeostasis and Functional Properties Are Altered in an Hypochlorous Acid-Induced Murine Model of Systemic Sclerosis. Front Immunol. 2017;8:53 pubmed 出版商
  397. Dahan J, Levillayer F, Xia T, Nouet Y, Werts C, Fanton d Andon M, et al. LIM-Only Protein FHL2 Is a Negative Regulator of Transforming Growth Factor ?1 Expression. Mol Cell Biol. 2017;37: pubmed 出版商
  398. Nicolas N, Michel V, Bhushan S, Wahle E, Hayward S, Ludlow H, et al. Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep. 2017;7:42391 pubmed 出版商
  399. Arioka Y, Ito H, Hirata A, Semi K, Yamada Y, Seishima M. Behavior of leucine-rich repeat-containing G-protein coupled receptor 5-expressing cells in the reprogramming process. Stem Cell Res. 2017;20:1-9 pubmed 出版商
  400. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  401. Schatton D, Pla Martín D, Marx M, Hansen H, Mourier A, Nemazanyy I, et al. CLUH regulates mitochondrial metabolism by controlling translation and decay of target mRNAs. J Cell Biol. 2017;216:675-693 pubmed 出版商
  402. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  403. Lovric S, Gonçalves S, Gee H, Oskouian B, Srinivas H, Choi W, et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J Clin Invest. 2017;127:912-928 pubmed 出版商
  404. Shu D, Wojciechowski M, Lovicu F. Bone Morphogenetic Protein-7 Suppresses TGF?2-Induced Epithelial-Mesenchymal Transition in the Lens: Implications for Cataract Prevention. Invest Ophthalmol Vis Sci. 2017;58:781-796 pubmed 出版商
  405. Loomis Z, Eigenberger P, Redinius K, Lisk C, Karoor V, Nozik Grayck E, et al. Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS ONE. 2017;12:e0171219 pubmed 出版商
  406. Tufanlı Ö, Telkoparan Akillilar P, Acosta Alvear D, Kocatürk B, Onat U, Hamid S, et al. Targeting IRE1 with small molecules counteracts progression of atherosclerosis. Proc Natl Acad Sci U S A. 2017;114:E1395-E1404 pubmed 出版商
  407. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  408. Ezquer F, Bahamonde J, Huang Y, Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Res Ther. 2017;8:20 pubmed 出版商
  409. Wu J, Platero Luengo A, Sakurai M, Sugawara A, Gil M, Yamauchi T, et al. Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017;168:473-486.e15 pubmed 出版商
  410. Hasanov Z, Ruckdeschel T, König C, Mogler C, Kapel S, Korn C, et al. Endosialin Promotes Atherosclerosis Through Phenotypic Remodeling of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol. 2017;37:495-505 pubmed 出版商
  411. Xu J, Zhu S, Heng B, Dissanayaka W, Zhang C. TGF-?1-induced differentiation of SHED into functional smooth muscle cells. Stem Cell Res Ther. 2017;8:10 pubmed 出版商
  412. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  413. Conde E, Giménez Moyano S, Martín Gómez L, Rodriguez M, Ramos M, Aguado Fraile E, et al. HIF-1α induction during reperfusion avoids maladaptive repair after renal ischemia/reperfusion involving miR127-3p. Sci Rep. 2017;7:41099 pubmed 出版商
  414. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  415. Roy I, Boyle K, Vonderhaar E, Zimmerman N, Gorse E, Mackinnon A, et al. Cancer cell chemokines direct chemotaxis of activated stellate cells in pancreatic ductal adenocarcinoma. Lab Invest. 2017;97:302-317 pubmed 出版商
  416. Benito Jardón M, Klapproth S, Gimeno LLuch I, Petzold T, Bharadwaj M, Müller D, et al. The fibronectin synergy site re-enforces cell adhesion and mediates a crosstalk between integrin classes. elife. 2017;6: pubmed 出版商
  417. He N, van Iperen L, de Jong D, Szuhai K, Helmerhorst F, van der Westerlaken L, et al. Human Extravillous Trophoblasts Penetrate Decidual Veins and Lymphatics before Remodeling Spiral Arteries during Early Pregnancy. PLoS ONE. 2017;12:e0169849 pubmed 出版商
  418. Christoforou N, Chakraborty S, Kirkton R, Adler A, Addis R, Leong K. Core Transcription Factors, MicroRNAs, and Small Molecules Drive Transdifferentiation of Human Fibroblasts Towards The Cardiac Cell Lineage. Sci Rep. 2017;7:40285 pubmed 出版商
  419. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  420. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  421. de Jong R, Paulin N, Lemnitzer P, Viola J, Winter C, Ferraro B, et al. Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report. Arterioscler Thromb Vasc Biol. 2017;37:312-315 pubmed 出版商
  422. Niu X, Pi S, Baral S, Xia Y, He Q, Li Y, et al. P2Y12 Promotes Migration of Vascular Smooth Muscle Cells Through Cofilin Dephosphorylation During Atherogenesis. Arterioscler Thromb Vasc Biol. 2017;37:515-524 pubmed 出版商
  423. Beigi F, Patel M, Morales Garza M, Winebrenner C, Gobin A, Chau E, et al. Optimized method for isolating highly purified and functional porcine aortic endothelial and smooth muscle cells. J Cell Physiol. 2017;232:3139-3145 pubmed 出版商
  424. Guicciardi M, Krishnan A, Bronk S, Hirsova P, Griffith T, Gores G. Biliary tract instillation of a SMAC mimetic induces TRAIL-dependent acute sclerosing cholangitis-like injury in mice. Cell Death Dis. 2017;8:e2535 pubmed 出版商
  425. Malek Mohammadi M, Kattih B, Grund A, Froese N, Korf Klingebiel M, Gigina A, et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol Med. 2017;9:265-279 pubmed 出版商
  426. Hosoya M, Fujioka M, Sone T, Okamoto S, Akamatsu W, Ukai H, et al. Cochlear Cell Modeling Using Disease-Specific iPSCs Unveils a Degenerative Phenotype and Suggests Treatments for Congenital Progressive Hearing Loss. Cell Rep. 2017;18:68-81 pubmed 出版商
  427. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  428. Kimura M, Hashimoto N, Kusunose M, Aoyama D, Sakamoto K, Miyazaki S, et al. Exogenous induction of unphosphorylated PTEN reduces TGFβ-induced extracellular matrix expressions in lung fibroblasts. Wound Repair Regen. 2017;25:86-97 pubmed 出版商
  429. Baumer Y, McCurdy S, Alcala M, Mehta N, Lee B, Ginsberg M, et al. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis. Atherosclerosis. 2017;256:105-114 pubmed 出版商
  430. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  431. Nonomura K, Woo S, Chang R, Gillich A, Qiu Z, Francisco A, et al. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature. 2017;541:176-181 pubmed 出版商
  432. Du M, Wang X, Tan X, Li X, Huang D, Huang K, et al. Nkx2-5 Is Expressed in Atherosclerotic Plaques and Attenuates Development of Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed
  433. Lee S, Rho S, Park H, Park J, Kim J, Lee I, et al. Carbohydrate-binding protein CLEC14A regulates VEGFR-2- and VEGFR-3-dependent signals during angiogenesis and lymphangiogenesis. J Clin Invest. 2017;127:457-471 pubmed 出版商
  434. Ang Y, Rivas R, Ribeiro A, Srivas R, Rivera J, Stone N, et al. Disease Model of GATA4 Mutation Reveals Transcription Factor Cooperativity in Human Cardiogenesis. Cell. 2016;167:1734-1749.e22 pubmed 出版商
  435. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  436. Comunanza V, Cora D, Orso F, Consonni F, Middonti E, Di Nicolantonio F, et al. VEGF blockade enhances the antitumor effect of BRAFV600E inhibition. EMBO Mol Med. 2017;9:219-237 pubmed 出版商
  437. Yang J, Savvatis K, Kang J, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710 pubmed 出版商
  438. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  439. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  440. Jiang S, Zhang Y, Zheng J, Li X, Yao Y, Wu Y, et al. Potentiation of hepatic stellate cell activation by extracellular ATP is dependent on P2X7R-mediated NLRP3 inflammasome activation. Pharmacol Res. 2017;117:82-93 pubmed 出版商
  441. Yang Z, Peng Y, Gopalan A, Gao D, Chen Y, Joyner A. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech. 2017;10:39-52 pubmed 出版商
  442. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  443. Jung Klawitter S, Blau N, Sebe A, Ebersold J, Göhring G, Opladen T. Generation of an iPSC line from a patient with tyrosine hydroxylase (TH) deficiency: TH-1 iPSC. Stem Cell Res. 2016;17:580-583 pubmed 出版商
  444. Endorf E, Qing H, Aono J, Terami N, Doyon G, Hyzny E, et al. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes. Arterioscler Thromb Vasc Biol. 2017;37:301-311 pubmed 出版商
  445. Hofmann K, Fiedler S, Vierkotten S, Weber J, Klee S, Jia J, et al. Classical transient receptor potential 6 (TRPC6) channels support myofibroblast differentiation and development of experimental pulmonary fibrosis. Biochim Biophys Acta Mol Basis Dis. 2017;1863:560-568 pubmed 出版商
  446. Kim J, Ko I, Atala A, Yoo J. Progressive Muscle Cell Delivery as a Solution for Volumetric Muscle Defect Repair. Sci Rep. 2016;6:38754 pubmed 出版商
  447. Tian S, Li C, Ran R, Chen S. Surfactant protein A deficiency exacerbates renal interstitial fibrosis following obstructive injury in mice. Biochim Biophys Acta Mol Basis Dis. 2017;1863:509-517 pubmed 出版商
  448. Choi S, Piao Z, Jin L, Kim J, Kim G, Ryu Y, et al. Piceatannol Attenuates Renal Fibrosis Induced by Unilateral Ureteral Obstruction via Downregulation of Histone Deacetylase 4/5 or p38-MAPK Signaling. PLoS ONE. 2016;11:e0167340 pubmed 出版商
  449. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  450. Burgy O, Bellaye P, Causse S, Beltramo G, Wettstein G, Boutanquoi P, et al. Pleural inhibition of the caspase-1/IL-1? pathway diminishes profibrotic lung toxicity of bleomycin. Respir Res. 2016;17:162 pubmed
  451. Goreczny G, Ouderkirk Pecone J, Olson E, Krendel M, Turner C. Hic-5 remodeling of the stromal matrix promotes breast tumor progression. Oncogene. 2017;36:2693-2703 pubmed 出版商
  452. Herring A, Messana A, Bara A, Hazelbaker D, Eggan K, Barrett L. Generation of a TLE1 homozygous knockout human embryonic stem cell line using CRISPR-Cas9. Stem Cell Res. 2016;17:430-432 pubmed 出版商
  453. Sung I, Son H, Ullah I, Bharti D, Park J, Cho Y, et al. Cardiomyogenic Differentiation of Human Dental Follicle-derived Stem Cells by Suberoylanilide Hydroxamic Acid and Their In Vivo Homing Property. Int J Med Sci. 2016;13:841-852 pubmed
  454. Liao X, Li J, Dong X, Wang X, Xiang Y, Li H, et al. ER? inhibited myocardin-induced differentiation in uterine fibroids. Exp Cell Res. 2017;350:73-82 pubmed 出版商
  455. Stone O, Carter J, Lin P, Paleolog E, Machado M, Bates D. Differential regulation of blood flow-induced neovascularization and mural cell recruitment by vascular endothelial growth factor and angiopoietin signalling. J Physiol. 2017;595:1575-1591 pubmed 出版商
  456. Okashita N, Suwa Y, Nishimura O, Sakashita N, Kadota M, Nagamatsu G, et al. PRDM14 Drives OCT3/4 Recruitment via Active Demethylation in the Transition from Primed to Naive Pluripotency. Stem Cell Reports. 2016;7:1072-1086 pubmed 出版商
  457. Chauhan P, Dash D, Singh R. Intranasal Curcumin Inhibits Pulmonary Fibrosis by Modulating Matrix Metalloproteinase-9 (MMP-9) in Ovalbumin-Induced Chronic Asthma. Inflammation. 2017;40:248-258 pubmed 出版商
  458. Keshri G, Gupta A, Yadav A, Sharma S, Singh S. Photobiomodulation with Pulsed and Continuous Wave Near-Infrared Laser (810 nm, Al-Ga-As) Augments Dermal Wound Healing in Immunosuppressed Rats. PLoS ONE. 2016;11:e0166705 pubmed 出版商
  459. Pu W, Zhang H, Huang X, Tian X, He L, Wang Y, et al. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat Commun. 2016;7:13369 pubmed 出版商
  460. Birtolo C, Pham H, Morvaridi S, Chheda C, Go V, Ptasznik A, et al. Cadherin-11 Is a Cell Surface Marker Up-Regulated in Activated Pancreatic Stellate Cells and Is Involved in Pancreatic Cancer Cell Migration. Am J Pathol. 2017;187:146-155 pubmed 出版商
  461. Wu X, Wu X, Ma Y, Shao F, Tan Y, Tan T, et al. CUG-binding protein 1 regulates HSC activation and liver fibrogenesis. Nat Commun. 2016;7:13498 pubmed 出版商
  462. Grootaert M, Schrijvers D, Hermans M, Van Hoof V, De Meyer G, Martinet W. Caspase-3 Deletion Promotes Necrosis in Atherosclerotic Plaques of ApoE Knockout Mice. Oxid Med Cell Longev. 2016;2016:3087469 pubmed
  463. Gallini R, Lindblom P, Bondjers C, Betsholtz C, Andrae J. PDGF-A and PDGF-B induces cardiac fibrosis in transgenic mice. Exp Cell Res. 2016;349:282-290 pubmed 出版商
  464. Krey J, Krystofiak E, Dumont R, Vijayakumar S, Choi D, Rivero F, et al. Plastin 1 widens stereocilia by transforming actin filament packing from hexagonal to liquid. J Cell Biol. 2016;215:467-482 pubmed
  465. Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep. 2016;6:36450 pubmed 出版商
  466. Sizemore G, Balakrishnan S, Hammer A, Thies K, Trimboli A, Wallace J, et al. Stromal PTEN inhibits the expansion of mammary epithelial stem cells through Jagged-1. Oncogene. 2017;36:2297-2308 pubmed 出版商
  467. Wang Y, Baeyens N, Corti F, Tanaka K, Fang J, Zhang J, et al. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development. Development. 2016;143:4441-4451 pubmed
  468. Dahan N, Sarig U, Bronshtein T, Baruch L, Karram T, Hoffman A, et al. Dynamic Autologous Reendothelialization of Small-Caliber Arterial Extracellular Matrix: A Preclinical Large Animal Study. Tissue Eng Part A. 2017;23:69-79 pubmed 出版商
  469. Graus Nunes F, Marinho T, Barbosa da Silva S, Aguila M, Mandarim de Lacerda C, Souza Mello V. Differential effects of angiotensin receptor blockers on pancreatic islet remodelling and glucose homeostasis in diet-induced obese mice. Mol Cell Endocrinol. 2017;439:54-64 pubmed 出版商
  470. Han J, Bae J, Choi C, Choi S, Kang H, Jo E, et al. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy. 2016;12:2326-2343 pubmed
  471. Davis F, Lloyd Lewis B, Harris O, Kozar S, Winton D, Muresan L, et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of stem/progenitor cell progeny. Nat Commun. 2016;7:13053 pubmed 出版商
  472. Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 2017;36:2355-2365 pubmed 出版商
  473. Omiya S, Omori Y, Taneike M, Protti A, Yamaguchi O, Akira S, et al. Toll-like receptor 9 prevents cardiac rupture after myocardial infarction in mice independently of inflammation. Am J Physiol Heart Circ Physiol. 2016;311:H1485-H1497 pubmed 出版商
  474. Ren S, Luo Y, Chen H, Warburton D, Lam H, Wang L, et al. Inactivation of Tsc2 in Mesoderm-Derived Cells Causes Polycystic Kidney Lesions and Impairs Lung Alveolarization. Am J Pathol. 2016;186:3261-3272 pubmed 出版商
  475. Takai K, Le A, Weaver V, Werb Z. Targeting the cancer-associated fibroblasts as a treatment in triple-negative breast cancer. Oncotarget. 2016;7:82889-82901 pubmed 出版商
  476. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  477. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  478. Yang T, Wang J, Pang Y, Dang X, Ren H, Liu Y, et al. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact. Mol Med Rep. 2016;14:4643-4649 pubmed 出版商
  479. Frentzas S, Simoneau E, Bridgeman V, Vermeulen P, Foo S, Kostaras E, et al. Vessel co-option mediates resistance to anti-angiogenic therapy in liver metastases. Nat Med. 2016;22:1294-1302 pubmed 出版商
  480. Eleftheriou N, Sjölund J, Bocci M, Cortez E, Lee S, Cunha S, et al. Compound genetically engineered mouse models of cancer reveal dual targeting of ALK1 and endoglin as a synergistic opportunity to impinge on angiogenic TGF-β signaling. Oncotarget. 2016;7:84314-84325 pubmed 出版商
  481. Osterburg A, Nelson R, Yaniv B, Foot R, Donica W, Nashu M, et al. NK cell activating receptor ligand expression in lymphangioleiomyomatosis is associated with lung function decline. JCI Insight. 2016;1:e87270 pubmed 出版商
  482. Ta M, Schwensen K, Foster S, Korgaonkar M, Ozimek Kulik J, Phillips J, et al. Effects of TORC1 Inhibition during the Early and Established Phases of Polycystic Kidney Disease. PLoS ONE. 2016;11:e0164193 pubmed 出版商
  483. He M, Yuan H, Tan B, Bai R, Kim H, Bae S, et al. SIRT1-mediated downregulation of p27Kip1 is essential for overcoming contact inhibition of Kaposi's sarcoma-associated herpesvirus transformed cells. Oncotarget. 2016;7:75698-75711 pubmed 出版商
  484. Gupta S, Zeglinski M, Rattan S, Landry N, Ghavami S, Wigle J, et al. Inhibition of autophagy inhibits the conversion of cardiac fibroblasts to cardiac myofibroblasts. Oncotarget. 2016;7:78516-78531 pubmed 出版商
  485. Sun K, Xu S, Chen J, Liu G, Shen X, Wu X. Atypical presentation of a gastric stromal tumor masquerading as a giant intraabdominal cyst: A case report. Oncol Lett. 2016;12:3018-3020 pubmed
  486. Romeo S, Conti A, Polito F, Tomasello C, Barresi V, La Torre D, et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol Lett. 2016;12:2992-2998 pubmed
  487. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  488. Sidney L, Hopkinson A. Corneal keratocyte transition to mesenchymal stem cell phenotype and reversal using serum-free medium supplemented with fibroblast growth factor-2, transforming growth factor-β3 and retinoic acid. J Tissue Eng Regen Med. 2018;12:e203-e215 pubmed 出版商
  489. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  490. Wang C, Zhang F, Cao Y, Zhang M, Wang A, Xu M, et al. Etoposide Induces Apoptosis in Activated Human Hepatic Stellate Cells via ER Stress. Sci Rep. 2016;6:34330 pubmed 出版商
  491. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  492. Liu Y, Wang T, Zhang R, Fu W, Wang X, Wang F, et al. Calorie restriction protects against experimental abdominal aortic aneurysms in mice. J Exp Med. 2016;213:2473-2488 pubmed
  493. Zhao G, Zhu P, Renvoisé B, Maldonado Baez L, Park S, Blackstone C. Mammalian knock out cells reveal prominent roles for atlastin GTPases in ER network morphology. Exp Cell Res. 2016;349:32-44 pubmed 出版商
  494. Frolikova M, Sebkova N, Ded L, Dvorakova Hortova K. Characterization of CD46 and ?1 integrin dynamics during sperm acrosome reaction. Sci Rep. 2016;6:33714 pubmed 出版商
  495. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  496. Sun X, Yang L, Yan X, Sun Y, Zhao D, Ji Y, et al. DCE-MRI-Derived Parameters in Evaluating Abraxane-Induced Early Vascular Response and the Effectiveness of Its Synergistic Interaction with Cisplatin. PLoS ONE. 2016;11:e0162601 pubmed 出版商
  497. Sari A, Rufaut N, Jones L, Sinclair R. Characterization of Ovine Dermal Papilla Cell Aggregation. Int J Trichology. 2016;8:121-9 pubmed 出版商
  498. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  499. Suzuki Y, Katagiri H, Wang T, Kakisaka K, Kume K, Nishizuka S, et al. Ductular reactions in the liver regeneration process with local inflammation after physical partial hepatectomy. Lab Invest. 2016;96:1211-1222 pubmed 出版商
  500. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  501. Zhou S, Han Q, Wang R, Li X, Wang Q, Wang H, et al. PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett. 2016;12:2217-2221 pubmed
  502. Sousa A, Rei M, Freitas R, Ricardo S, Caffrey T, David L, et al. Effect of MUC1/?-catenin interaction on the tumorigenic capacity of pancreatic CD133+ cells. Oncol Lett. 2016;12:1811-1817 pubmed
  503. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  504. Wu M, Tang R, Liu H, Pan M, Liu B. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition. Acta Pharmacol Sin. 2016;37:1423-1431 pubmed 出版商
  505. D Amore A, Yoshizumi T, Luketich S, Wolf M, Gu X, Cammarata M, et al. Bi-layered polyurethane - Extracellular matrix cardiac patch improves ischemic ventricular wall remodeling in a rat model. Biomaterials. 2016;107:1-14 pubmed 出版商
  506. Sato N, Takasaka N, Yoshida M, Tsubouchi K, Minagawa S, Araya J, et al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir Res. 2016;17:107 pubmed 出版商
  507. Abraham K, Chan J, Salvi J, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res. 2016;44:8870-8884 pubmed
  508. Jurek A, Genander M, Kundu P, Catchpole T, He X, Strååt K, et al. Eph receptor interclass cooperation is required for the regulation of cell proliferation. Exp Cell Res. 2016;348:10-22 pubmed 出版商
  509. Nazari B, Rice L, Stifano G, Barron A, Wang Y, Korndorf T, et al. Altered Dermal Fibroblasts in Systemic Sclerosis Display Podoplanin and CD90. Am J Pathol. 2016;186:2650-64 pubmed 出版商
  510. Görtz G, Moshkelgosha S, Jesenek C, Edelmann B, Horstmann M, Banga J, et al. Pathogenic Phenotype of Adipogenesis and Hyaluronan in Orbital Fibroblasts From Female Graves' Orbitopathy Mouse Model. Endocrinology. 2016;157:3771-3778 pubmed
  511. Matkar P, Singh K, Rudenko D, Kim Y, Kuliszewski M, Prud homme G, et al. Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 2016;7:69489-69506 pubmed 出版商
  512. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  513. Bercovich Kinori A, Tai J, Gelbart I, Shitrit A, Ben Moshe S, Drori Y, et al. A systematic view on influenza induced host shutoff. elife. 2016;5: pubmed 出版商
  514. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  515. Navarro Villarán E, Tinoco J, Jiménez G, Pereira S, Wang J, Aliseda S, et al. Differential Antitumoral Properties and Renal-Associated Tissue Damage Induced by Tacrolimus and Mammalian Target of Rapamycin Inhibitors in Hepatocarcinoma: In Vitro and In Vivo Studies. PLoS ONE. 2016;11:e0160979 pubmed 出版商
  516. Chen Q, Zhang H, Liu Y, Adams S, Eilken H, Stehling M, et al. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat Commun. 2016;7:12422 pubmed 出版商
  517. Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F, Novak I. Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer. 2016;139:2540-52 pubmed 出版商
  518. Gallini R, Huusko J, Yla Herttuala S, Betsholtz C, Andrae J. Isoform-Specific Modulation of Inflammation Induced by Adenoviral Mediated Delivery of Platelet-Derived Growth Factors in the Adult Mouse Heart. PLoS ONE. 2016;11:e0160930 pubmed 出版商
  519. Ramo K, Sugamura K, Craige S, Keaney J, Davis R. Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development. elife. 2016;5: pubmed 出版商
  520. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  521. You Y, Tan J, Dai H, Chen H, Xu X, Yang A, et al. MiRNA-22 inhibits oncogene galectin-1 in hepatocellular carcinoma. Oncotarget. 2016;7:57099-57116 pubmed 出版商
  522. Schuerlein S, Schwarz T, Krziminski S, Gätzner S, Hoppensack A, Schwedhelm I, et al. A versatile modular bioreactor platform for Tissue Engineering. Biotechnol J. 2017;12: pubmed 出版商
  523. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  524. Medrano J, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106:1539-1549.e8 pubmed 出版商
  525. Kaukonen R, Mai A, Georgiadou M, Saari M, De Franceschi N, Betz T, et al. Normal stroma suppresses cancer cell proliferation via mechanosensitive regulation of JMJD1a-mediated transcription. Nat Commun. 2016;7:12237 pubmed 出版商
  526. Huang C, Liu H, Gong X, Wen B, Chen D, Liu J, et al. Analysis of different components in the peritumoral tissue microenvironment of colorectal cancer: A potential prospect in tumorigenesis. Mol Med Rep. 2016;14:2555-65 pubmed 出版商
  527. Löfdahl A, Rydell Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, et al. 5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo. Physiol Rep. 2016;4: pubmed 出版商
  528. Fritzen R, Delbos F, De Smet A, Palancade B, Canman C, Aoufouchi S, et al. A single aspartate mutation in the conserved catalytic site of Rev3L generates a hypomorphic phenotype in vivo and in vitro. DNA Repair (Amst). 2016;46:37-46 pubmed 出版商
  529. Song S, Kim K, Jo E, Kim Y, Kwon J, Bae S, et al. Fibroblast Growth Factor 12 Is a Novel Regulator of Vascular Smooth Muscle Cell Plasticity and Fate. Arterioscler Thromb Vasc Biol. 2016;36:1928-36 pubmed 出版商
  530. Koopmans T, Kumawat K, Halayko A, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676 pubmed 出版商
  531. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  532. Masola V, Zaza G, Gambaro G, Onisto M, Bellin G, Vischini G, et al. Heparanase: A Potential New Factor Involved in the Renal Epithelial Mesenchymal Transition (EMT) Induced by Ischemia/Reperfusion (I/R) Injury. PLoS ONE. 2016;11:e0160074 pubmed 出版商
  533. Das S, Rehman I, Ghosh A, Sengupta S, Majumdar P, Jana B, et al. Poly(ADP-ribose) polymers regulate DNA topoisomerase I (Top1) nuclear dynamics and camptothecin sensitivity in living cells. Nucleic Acids Res. 2016;44:8363-75 pubmed 出版商
  534. Ta M, Schwensen K, Liuwantara D, Huso D, Watnick T, Rangan G. Constitutive renal Rel/nuclear factor-?B expression in Lewis polycystic kidney disease rats. World J Nephrol. 2016;5:339-57 pubmed 出版商
  535. Thomsen M, Birkelund S, Burkhart A, Stensballe A, Moos T. Synthesis and deposition of basement membrane proteins by primary brain capillary endothelial cells in a murine model of the blood-brain barrier. J Neurochem. 2017;140:741-754 pubmed 出版商
  536. Yang X, Zhou X, Tone P, Durkin M, Popescu N. Cooperative antiproliferative effect of coordinated ectopic expression of DLC1 tumor suppressor protein and silencing of MYC oncogene expression in liver cancer cells: Therapeutic implications. Oncol Lett. 2016;12:1591-1596 pubmed
  537. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  538. Reyes García J, Flores Soto E, Solís Chagoyán H, Sommer B, Díaz Hernández V, García Hernández L, et al. Tumor Necrosis Factor Alpha Inhibits L-Type Ca(2+) Channels in Sensitized Guinea Pig Airway Smooth Muscle through ERK 1/2 Pathway. Mediators Inflamm. 2016;2016:5972302 pubmed 出版商
  539. Fransén Pettersson N, Duarte N, Nilsson J, Lundholm M, Mayans S, Larefalk A, et al. A New Mouse Model That Spontaneously Develops Chronic Liver Inflammation and Fibrosis. PLoS ONE. 2016;11:e0159850 pubmed 出版商
  540. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  541. Geng J, Li J, Huang T, Zhao K, Chen Q, Guo W, et al. A novel manganese complex selectively induces malignant glioma cell death by targeting mitochondria. Mol Med Rep. 2016;14:1970-8 pubmed 出版商
  542. Choi S, Kee H, Kurz T, Hansen F, Ryu Y, Kim G, et al. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells. J Cell Mol Med. 2016;20:2289-2298 pubmed 出版商
  543. Dauleh S, Santeramo I, Fielding C, Ward K, Herrmann A, Murray P, et al. Characterisation of Cultured Mesothelial Cells Derived from the Murine Adult Omentum. PLoS ONE. 2016;11:e0158997 pubmed 出版商
  544. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  545. Fang J, Jia C, Zheng Z, Ye X, Wei B, Huang L, et al. Periprostatic implantation of neural differentiated mesenchymal stem cells restores cavernous nerve injury-mediated erectile dysfunction. Am J Transl Res. 2016;8:2549-61 pubmed
  546. Lopez R, Byrne S, Vukcevic M, Sekulic Jablanovic M, Xu L, Brink M, et al. An RYR1 mutation associated with malignant hyperthermia is also associated with bleeding abnormalities. Sci Signal. 2016;9:ra68 pubmed 出版商
  547. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  548. Espinoza I, Sakiyama M, Ma T, Fair L, Zhou X, Hassan M, et al. Hypoxia on the Expression of Hepatoma Upregulated Protein in Prostate Cancer Cells. Front Oncol. 2016;6:144 pubmed 出版商
  549. Yu Q, Song W, Wang D, Zeng Y. Identification of blood vascular endothelial stem cells by the expression of protein C receptor. Cell Res. 2016;26:1079-1098 pubmed 出版商
  550. Costa H, Xu X, Overbeek G, Vasaikar S, Patro C, Kostopoulou O, et al. Human cytomegalovirus may promote tumour progression by upregulating arginase-2. Oncotarget. 2016;7:47221-47231 pubmed 出版商
  551. Bai H, Wang M, Foster T, Hu H, He H, Hashimoto T, et al. Pericardial patch venoplasty heals via attraction of venous progenitor cells. Physiol Rep. 2016;4: pubmed 出版商
  552. Evrard S, Lecce L, Michelis K, Nomura Kitabayashi A, Pandey G, Purushothaman K, et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun. 2016;7:11853 pubmed 出版商
  553. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  554. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  555. Ueno K, Takeuchi Y, Samura M, Tanaka Y, Nakamura T, Nishimoto A, et al. Treatment of refractory cutaneous ulcers with mixed sheets consisting of peripheral blood mononuclear cells and fibroblasts. Sci Rep. 2016;6:28538 pubmed 出版商
  556. Barrionuevo F, Hurtado A, Kim G, Real F, Bakkali M, Kopp J, et al. Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. elife. 2016;5: pubmed 出版商
  557. Modulevsky D, Cuerrier C, Pelling A. Biocompatibility of Subcutaneously Implanted Plant-Derived Cellulose Biomaterials. PLoS ONE. 2016;11:e0157894 pubmed 出版商
  558. Muñoz Félix J, Pérez Roque L, Núñez Gómez E, Oujo B, Arevalo M, Ruiz Remolina L, et al. Overexpression of the short endoglin isoform reduces renal fibrosis and inflammation after unilateral ureteral obstruction. Biochim Biophys Acta. 2016;1862:1801-14 pubmed 出版商
  559. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  560. Lin W, Lim S, Yen T, Alison M. The Influence of Bone Marrow-Secreted IL-10 in a Mouse Model of Cerulein-Induced Pancreatic Fibrosis. Biomed Res Int. 2016;2016:4601532 pubmed 出版商
  561. Liu W, Meng Z, Liu H, Li W, Wu Q, Zhang X, et al. Hepatic epithelioid angiomyolipoma is a rare and potentially severe but treatable tumor: A report of three cases and review of the literature. Oncol Lett. 2016;11:3669-3675 pubmed
  562. Zaglia T, Di Bona A, Chioato T, Basso C, Ausoni S, Mongillo M. Optimized protocol for immunostaining of experimental GFP-expressing and human hearts. Histochem Cell Biol. 2016;146:407-19 pubmed 出版商
  563. Mokhtari S, Colletti E, Atala A, Zanjani E, Porada C, Almeida Porada G. Boosting Hematopoietic Engraftment after in Utero Transplantation through Vascular Niche Manipulation. Stem Cell Reports. 2016;6:957-969 pubmed 出版商
  564. Zheng X, Xu M, Yao B, Wang C, Jia Y, Liu Q. IL-6/STAT3 axis initiated CAFs via up-regulating TIMP-1 which was attenuated by acetylation of STAT3 induced by PCAF in HCC microenvironment. Cell Signal. 2016;28:1314-24 pubmed 出版商
  565. Hyslop L, Blakeley P, Craven L, Richardson J, Fogarty N, Fragouli E, et al. Towards clinical application of pronuclear transfer to prevent mitochondrial DNA disease. Nature. 2016;534:383-6 pubmed 出版商
  566. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  567. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  568. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  569. Ikeuchi M, Fukumoto Y, Honda T, Kuga T, Saito Y, Yamaguchi N, et al. v-Src Causes Chromosome Bridges in a Caffeine-Sensitive Manner by Generating DNA Damage. Int J Mol Sci. 2016;17: pubmed 出版商
  570. Gupta G, Agrawal T, Rai V, Del Core M, Hunter W, Agrawal D. Vitamin D Supplementation Reduces Intimal Hyperplasia and Restenosis following Coronary Intervention in Atherosclerotic Swine. PLoS ONE. 2016;11:e0156857 pubmed 出版商
  571. Wang H, Wang R, Carrera I, Xu S, Lakshmana M. TFEB Overexpression in the P301S Model of Tauopathy Mitigates Increased PHF1 Levels and Lipofuscin Puncta and Rescues Memory Deficits. Eneuro. 2016;3: pubmed 出版商
  572. Greulich F, Rudat C, Farin H, Christoffels V, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS ONE. 2016;11:e0156787 pubmed 出版商
  573. Farrugia A, Calvo F. Cdc42 regulates Cdc42EP3 function in cancer-associated fibroblasts. Small Gtpases. 2017;8:49-57 pubmed 出版商
  574. Incio J, Liu H, Suboj P, Chin S, Chen I, Pinter M, et al. Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov. 2016;6:852-69 pubmed 出版商
  575. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  576. Xu G, Yue F, Huang H, He Y, Li X, Zhao H, et al. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis. Aging (Albany NY). 2016;8:977-85 pubmed 出版商
  577. Nwadozi E, Roudier E, Rullman E, Tharmalingam S, Liu H, Gustafsson T, et al. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet. FASEB J. 2016;30:3039-52 pubmed 出版商
  578. Jang H, Hong Y, Choi H, Song H, Byun S, Uhm S, et al. Changes in Parthenogenetic Imprinting Patterns during Reprogramming by Cell Fusion. PLoS ONE. 2016;11:e0156491 pubmed 出版商
  579. Kelly J, Esseltine J, Shao Q, Jabs E, SAMPSON J, Auranen M, et al. Specific functional pathologies of Cx43 mutations associated with oculodentodigital dysplasia. Mol Biol Cell. 2016;27:2172-85 pubmed 出版商
  580. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  581. Wu H, Chen L, Xie J, Li R, Li G, Chen Q, et al. Periostin expression induced by oxidative stress contributes to myocardial fibrosis in a rat model of high salt-induced hypertension. Mol Med Rep. 2016;14:776-82 pubmed 出版商
  582. Akashi K, Saegusa J, Sendo S, Nishimura K, Okano T, Yagi K, et al. Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. Arthritis Res Ther. 2016;18:113 pubmed 出版商
  583. Stampfl H, Fritz M, Dal Santo S, Jonak C. The GSK3/Shaggy-Like Kinase ASKα Contributes to Pattern-Triggered Immunity. Plant Physiol. 2016;171:1366-77 pubmed 出版商
  584. Freeman S, Christian S, Austin P, Iu I, Graves M, Huang L, et al. Applied stretch initiates directional invasion through the action of Rap1 GTPase as a tension sensor. J Cell Sci. 2017;130:152-163 pubmed 出版商
  585. Speer S, Li Z, Buta S, Payelle Brogard B, Qian L, Vigant F, et al. ISG15 deficiency and increased viral resistance in humans but not mice. Nat Commun. 2016;7:11496 pubmed 出版商
  586. Momcilovic O, Sivapatham R, Oron T, Meyer M, Mooney S, Rao M, et al. Derivation, Characterization, and Neural Differentiation of Integration-Free Induced Pluripotent Stem Cell Lines from Parkinson's Disease Patients Carrying SNCA, LRRK2, PARK2, and GBA Mutations. PLoS ONE. 2016;11:e0154890 pubmed 出版商
  587. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  588. Kobayashi Y, Yoshida S, Zhou Y, Nakama T, Ishikawa K, Arima M, et al. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Mol Vis. 2016;22:436-45 pubmed
  589. Su L, Li X, Wu X, Hui B, Han S, Gao J, et al. Simultaneous deactivation of FAK and Src improves the pathology of hypertrophic scar. Sci Rep. 2016;6:26023 pubmed 出版商
  590. Wang X, Wan H, Wei X, Zhang Y, Qu P. CLI-095 decreases atherosclerosis by modulating foam cell formation in apolipoprotein E-deficient mice. Mol Med Rep. 2016;14:49-56 pubmed 出版商
  591. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  592. Chen Z, Mei Y, Lei H, Tian R, Ni N, Han F, et al. LYTAK1, a TAK1 inhibitor, suppresses proliferation and epithelial?mesenchymal transition in retinal pigment epithelium cells. Mol Med Rep. 2016;14:145-50 pubmed 出版商
  593. Son M, Lee M, Jeon H, Seol B, Kim J, Chang J, et al. Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease. Exp Mol Med. 2016;48:e232 pubmed 出版商
  594. Yu P, Ji L, Lee K, Yu M, He C, Ambati S, et al. Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine. PLoS ONE. 2016;11:e0154949 pubmed 出版商
  595. Kwon O, Kim K, Lee E, Kim M, Choi S, Li H, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE. 2016;11:e0154942 pubmed 出版商
  596. Ramesh S, Singh A, Cibi D, Hausenloy D, Singh M. In Vitro Culture of Epicardial Cells From Mouse Embryonic Heart. J Vis Exp. 2016;: pubmed 出版商
  597. Holditch S, Schreiber C, Burnett J, Ikeda Y. Arterial Remodeling in B-Type Natriuretic Peptide Knock-Out Females. Sci Rep. 2016;6:25623 pubmed 出版商
  598. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  599. Shi H, Drummond C, Fan X, Haller S, Liu J, Malhotra D, et al. Hiding inside? Intracellular expression of non-glycosylated c-kit protein in cardiac progenitor cells. Stem Cell Res. 2016;16:795-806 pubmed 出版商
  600. Ding H, Xu Y, Gao D, Wang L. Glioma-associated oncogene homolog 1 promotes epithelial-mesenchymal transition in human renal tubular epithelial cell. Am J Transl Res. 2016;8:662-9 pubmed
  601. Rai V, Rao V, Shao Z, Agrawal D. Dendritic Cells Expressing Triggering Receptor Expressed on Myeloid Cells-1 Correlate with Plaque Stability in Symptomatic and Asymptomatic Patients with Carotid Stenosis. PLoS ONE. 2016;11:e0154802 pubmed 出版商
  602. Passalacqua K, Charbonneau M, Donato N, Showalter H, Sun D, Wen B, et al. Anti-infective Activity of 2-Cyano-3-Acrylamide Inhibitors with Improved Drug-Like Properties against Two Intracellular Pathogens. Antimicrob Agents Chemother. 2016;60:4183-96 pubmed 出版商
  603. Fajardo V, Smith I, Bombardier E, Chambers P, Quadrilatero J, Tupling A. Diaphragm assessment in mice overexpressing phospholamban in slow-twitch type I muscle fibers. Brain Behav. 2016;6:e00470 pubmed 出版商
  604. Li C, Zhen G, Chai Y, Xie L, Crane J, Farber E, et al. RhoA determines lineage fate of mesenchymal stem cells by modulating CTGF-VEGF complex in extracellular matrix. Nat Commun. 2016;7:11455 pubmed 出版商
  605. McKey J, Martire D, de Santa Barbara P, Faure S. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors. BMC Biol. 2016;14:34 pubmed 出版商
  606. Kayamori K, Katsube K, Sakamoto K, Ohyama Y, Hirai H, Yukimori A, et al. NOTCH3 Is Induced in Cancer-Associated Fibroblasts and Promotes Angiogenesis in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0154112 pubmed 出版商
  607. Choudhary P, Gutteridge A, Impey E, Storer R, Owen R, Whiting P, et al. Targeting the cAMP and Transforming Growth Factor-? Pathway Increases Proliferation to Promote Re-Epithelialization of Human Stem Cell-Derived Retinal Pigment Epithelium. Stem Cells Transl Med. 2016;5:925-37 pubmed 出版商
  608. Kishimoto Y, Kishimoto A, Ye S, Kendziorski C, Welham N. Modeling fibrosis using fibroblasts isolated from scarred rat vocal folds. Lab Invest. 2016;96:807-16 pubmed 出版商
  609. Zhu D, Hadoke P, Wu J, Vesey A, Lerman D, Dweck M, et al. Ablation of the androgen receptor from vascular smooth muscle cells demonstrates a role for testosterone in vascular calcification. Sci Rep. 2016;6:24807 pubmed 出版商
  610. Laklai H, Miroshnikova Y, Pickup M, Collisson E, Kim G, Barrett A, et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat Med. 2016;22:497-505 pubmed 出版商
  611. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  612. Kruzliak P, Hare D, Sabaka P, Delev D, Gaspar L, Rodrigo L, et al. Evidence for CD34/SMA positive cells in the left main coronary artery in atherogenesis. Acta Histochem. 2016;118:413-7 pubmed 出版商
  613. Waisbourd Zinman O, Koh H, Tsai S, Lavrut P, Dang C, Zhao X, et al. The toxin biliatresone causes mouse extrahepatic cholangiocyte damage and fibrosis through decreased glutathione and SOX17. Hepatology. 2016;64:880-93 pubmed 出版商
  614. Timraz S, Farhat I, Alhussein G, Christoforou N, Teo J. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering. Exp Cell Res. 2016;343:168-176 pubmed 出版商
  615. Krawiec J, Weinbaum J, Liao H, Ramaswamy A, Pezzone D, Josowitz A, et al. In Vivo Functional Evaluation of Tissue-Engineered Vascular Grafts Fabricated Using Human Adipose-Derived Stem Cells from High Cardiovascular Risk Populations. Tissue Eng Part A. 2016;22:765-75 pubmed 出版商
  616. Itkin T, Gur Cohen S, Spencer J, Schajnovitz A, Ramasamy S, Kusumbe A, et al. Distinct bone marrow blood vessels differentially regulate haematopoiesis. Nature. 2016;532:323-8 pubmed 出版商
  617. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  618. Ma Z, Shou K, Li Z, Jian C, Qi B, Yu A. Negative pressure wound therapy promotes vessel destabilization and maturation at various stages of wound healing and thus influences wound prognosis. Exp Ther Med. 2016;11:1307-1317 pubmed
  619. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  620. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  621. Miao Y, Han X, Zheng L, Xie Y, Mu Y, Yates J, et al. Fimbrin phosphorylation by metaphase Cdk1 regulates actin cable dynamics in budding yeast. Nat Commun. 2016;7:11265 pubmed 出版商
  622. El Kehdy H, Pourcher G, Zhang W, Hamidouche Z, Goulinet Mainot S, Sokal E, et al. Hepatocytic Differentiation Potential of Human Fetal Liver Mesenchymal Stem Cells: In Vitro and In Vivo Evaluation. Stem Cells Int. 2016;2016:6323486 pubmed 出版商
  623. Wezel A, De Vries M, Maassen J, Kip P, Peters E, Karper J, et al. Deficiency of the TLR4 analogue RP105 aggravates vein graft disease by inducing a pro-inflammatory response. Sci Rep. 2016;6:24248 pubmed 出版商
  624. Körber N, Stein V. In vivo imaging demonstrates dendritic spine stabilization by SynCAM 1. Sci Rep. 2016;6:24241 pubmed 出版商
  625. Choi S, Kim M, Lee H, Kim E, Kim C, Lee Y. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation?induced pulmonary fibrosis. Mol Med Rep. 2016;13:4135-42 pubmed 出版商
  626. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  627. Månsson Broberg A, Rodin S, Bulatovic I, Ibarra C, Löfling M, Genead R, et al. Wnt/?-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells. Stem Cell Reports. 2016;6:607-617 pubmed 出版商
  628. Dey A, Mustafi S, Saha S, Kumar Dhar Dwivedi S, Mukherjee P, Bhattacharya R. Inhibition of BMI1 induces autophagy-mediated necroptosis. Autophagy. 2016;12:659-70 pubmed 出版商
  629. Zhang Z, Ren S, Tan Y, Li Z, Tang X, Wang T, et al. Epigenetic regulation of NKG2D ligands is involved in exacerbated atherosclerosis development in Sirt6 heterozygous mice. Sci Rep. 2016;6:23912 pubmed 出版商
  630. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  631. Negis Y, Karabay A. Expression of cell cycle proteins in cortical neurons-Correlation with glutamate-induced neurotoxicity. Biofactors. 2016;42:358-67 pubmed 出版商
  632. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  633. Park S, Choi Y, Jung N, Yu Y, Ryu K, Kim H, et al. Myogenic differentiation potential of human tonsil-derived mesenchymal stem cells and their potential for use to promote skeletal muscle regeneration. Int J Mol Med. 2016;37:1209-20 pubmed 出版商
  634. Li J, Cen B, Chen S, He Y. MicroRNA-29b inhibits TGF-?1-induced fibrosis via regulation of the TGF-?1/Smad pathway in primary human endometrial stromal cells. Mol Med Rep. 2016;13:4229-37 pubmed 出版商
  635. Jiang Y, Wang X, Li Y, Mu S, Zhou S, Liu Y, et al. GGsTOP increases migration of human periodontal ligament cells in vitro via reactive oxygen species pathway. Mol Med Rep. 2016;13:3813-20 pubmed 出版商
  636. Meng G, Poon A, Liu S, Rancourt D. An Effective and Reliable Xeno-free Cryopreservation Protocol for Single Human Pluripotent Stem Cells. Methods Mol Biol. 2016;1516:47-56 pubmed 出版商
  637. Prieto J, León M, Ponsoda X, Sendra R, Bort R, Ferrer Lorente R, et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat Commun. 2016;7:11124 pubmed 出版商
  638. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  639. Trembley M, Velasquez L, Small E. Epicardial Outgrowth Culture Assay and Ex Vivo Assessment of Epicardial-derived Cell Migration. J Vis Exp. 2016;: pubmed 出版商
  640. Xu X, Tan X, Hulshoff M, Wilhelmi T, Zeisberg M, Zeisberg E. Hypoxia-induced endothelial-mesenchymal transition is associated with RASAL1 promoter hypermethylation in human coronary endothelial cells. FEBS Lett. 2016;590:1222-33 pubmed 出版商
  641. Gruosso T, Mieulet V, Cardon M, Bourachot B, Kieffer Y, Devun F, et al. Chronic oxidative stress promotes H2AX protein degradation and enhances chemosensitivity in breast cancer patients. EMBO Mol Med. 2016;8:527-49 pubmed 出版商
  642. Esbona K, Inman D, Saha S, Jeffery J, Schedin P, Wilke L, et al. COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Res. 2016;18:35 pubmed 出版商
  643. Liu L, Bai Z, Ma X, Wang T, Yang Y, Zhang Z. Effects of taxol resistance gene 1 expression on the chemosensitivity of SGC-7901 cells to oxaliplatin. Exp Ther Med. 2016;11:846-852 pubmed
  644. Galán M, Varona S, Orriols M, Rodríguez J, Aguiló S, Dilmé J, et al. Induction of histone deacetylases (HDACs) in human abdominal aortic aneurysm: therapeutic potential of HDAC inhibitors. Dis Model Mech. 2016;9:541-52 pubmed 出版商
  645. Merlini M, Wanner D, Nitsch R. Tau pathology-dependent remodelling of cerebral arteries precedes Alzheimer's disease-related microvascular cerebral amyloid angiopathy. Acta Neuropathol. 2016;131:737-52 pubmed 出版商
  646. Escobedo N, Proulx S, Karaman S, Dillard M, Johnson N, Detmar M, et al. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice. JCI Insight. 2016;1: pubmed
  647. Jennewein L, Ronellenfitsch M, Antonietti P, Ilina E, Jung J, Stadel D, et al. Diagnostic and clinical relevance of the autophago-lysosomal network in human gliomas. Oncotarget. 2016;7:20016-32 pubmed 出版商
  648. Wang X, Chen L, Liu J, Yan T, Wu G, Xia Y, et al. In vivo treatment of rat arterial adventitia with interleukin‑1β induces intimal proliferation via the JAK2/STAT3 signaling pathway. Mol Med Rep. 2016;13:3451-8 pubmed 出版商
  649. Djamali A, Wilson N, Sadowski E, Zha W, Niles D, Hafez O, et al. Nox2 and Cyclosporine-Induced Renal Hypoxia. Transplantation. 2016;100:1198-210 pubmed 出版商
  650. Regan E, Sibley R, Cenik B, Silva A, Girard L, Minna J, et al. Identification of Gene Expression Differences between Lymphangiogenic and Non-Lymphangiogenic Non-Small Cell Lung Cancer Cell Lines. PLoS ONE. 2016;11:e0150963 pubmed 出版商
  651. Zhu D, Tang R, Lv L, Wen Y, Liu H, Zhang X, et al. Interleukin-1β mediates high glucose induced phenotypic transition in human aortic endothelial cells. Cardiovasc Diabetol. 2016;15:42 pubmed 出版商
  652. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  653. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  654. Liu S, Wu C, Huang K, Wang C, Guan S, Chen L, et al. C/EBP homologous protein (CHOP) deficiency ameliorates renal fibrosis in unilateral ureteral obstructive kidney disease. Oncotarget. 2016;7:21900-12 pubmed 出版商
  655. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  656. Bach F, Zhang Y, Miranda Bedate A, Verdonschot L, Bergknut N, Creemers L, et al. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther. 2016;18:59 pubmed 出版商
  657. Valenzuela N, Fan Q, Fa ak F, Soibam B, Nagandla H, Liu Y, et al. Cardiomyocyte-specific conditional knockout of the histone chaperone HIRA in mice results in hypertrophy, sarcolemmal damage and focal replacement fibrosis. Dis Model Mech. 2016;9:335-45 pubmed 出版商
  658. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  659. Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay H, Yang D, et al. Direct Reprogramming of Hepatic Myofibroblasts into Hepatocytes In Vivo Attenuates Liver Fibrosis. Cell Stem Cell. 2016;18:797-808 pubmed 出版商
  660. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  661. Marneros A. Increased VEGF-A promotes multiple distinct aging diseases of the eye through shared pathomechanisms. EMBO Mol Med. 2016;8:208-31 pubmed 出版商
  662. Rodionova K, Fiedler C, Guenther F, Grouzmann E, Neuhuber W, Fischer M, et al. Complex reinnervation pattern after unilateral renal denervation in rats. Am J Physiol Regul Integr Comp Physiol. 2016;310:R806-18 pubmed 出版商
  663. Yu W, Huang X, Tian X, Zhang H, He L, Wang Y, et al. GATA4 regulates Fgf16 to promote heart repair after injury. Development. 2016;143:936-49 pubmed 出版商
  664. Wang L, Zhao R, Liu C, Liu M, Li S, Li J, et al. A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med. 2016;39:138-46 pubmed 出版商
  665. del Río C, Navarrete C, Collado J, Bellido M, Gómez Cañas M, Pazos M, et al. The cannabinoid quinol VCE-004.8 alleviates bleomycin-induced scleroderma and exerts potent antifibrotic effects through peroxisome proliferator-activated receptor-γ and CB2 pathways. Sci Rep. 2016;6:21703 pubmed 出版商
  666. Alonso F, Domingos Pereira S, Le Gal L, Derré L, Meda P, Jichlinski P, et al. Targeting endothelial connexin40 inhibits tumor growth by reducing angiogenesis and improving vessel perfusion. Oncotarget. 2016;7:14015-28 pubmed 出版商
  667. Liu L, Tong Q, Liu S, Cui J, Zhang Q, Sun W, et al. ZEB1 Upregulates VEGF Expression and Stimulates Angiogenesis in Breast Cancer. PLoS ONE. 2016;11:e0148774 pubmed 出版商
  668. Malecova B, Dall Agnese A, Madaro L, Gatto S, Coutinho Toto P, Albini S, et al. TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. elife. 2016;5: pubmed 出版商
  669. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  670. Ji H, Atchison L, Chen Z, Chakraborty S, Jung Y, Truskey G, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells. Biomaterials. 2016;85:180-194 pubmed 出版商
  671. Walraven M, Talhout W, Beelen R, van Egmond M, Ulrich M. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines. Wound Repair Regen. 2016;24:533-41 pubmed 出版商
  672. Scognamiglio R, Cabezas Wallscheid N, Thier M, Altamura S, Reyes A, Prendergast Ã, et al. Myc Depletion Induces a Pluripotent Dormant State Mimicking Diapause. Cell. 2016;164:668-80 pubmed 出版商
  673. Fattahi F, Steinbeck J, Kriks S, Tchieu J, Zimmer B, Kishinevsky S, et al. Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature. 2016;531:105-9 pubmed 出版商
  674. Patel K, AVEN L, Shao F, Krishnamoorthy N, Duvall M, Levy B, et al. Mast cell-derived neurotrophin 4 mediates allergen-induced airway hyperinnervation in early life. Mucosal Immunol. 2016;9:1466-1476 pubmed 出版商
  675. Kanazawa H, Tseliou E, Dawkins J, de Couto G, Gallet R, Malliaras K, et al. Durable Benefits of Cellular Postconditioning: Long-Term Effects of Allogeneic Cardiosphere-Derived Cells Infused After Reperfusion in Pigs with Acute Myocardial Infarction. J Am Heart Assoc. 2016;5: pubmed 出版商
  676. Kim J, Kim E, Lee B, Min J, Song D, Lim J, et al. The effects of Lycii Radicis Cortex on RANKL-induced osteoclast differentiation and activation in RAW 264.7 cells. Int J Mol Med. 2016;37:649-58 pubmed 出版商
  677. Jean Charles P, Zhang L, Wu J, Han S, Brian L, Freedman N, et al. Ubiquitin-specific Protease 20 Regulates the Reciprocal Functions of β-Arrestin2 in Toll-like Receptor 4-promoted Nuclear Factor κB (NFκB) Activation. J Biol Chem. 2016;291:7450-64 pubmed 出版商
  678. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed 出版商
  679. Shin J, Kim S, Kim H, Noh J, Jin S, Park C, et al. TSLP Is a Potential Initiator of Collagen Synthesis and an Activator of CXCR4/SDF-1 Axis in Keloid Pathogenesis. J Invest Dermatol. 2016;136:507-515 pubmed 出版商
  680. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  681. Kim M, Sandford E, Gatica D, Qiu Y, Liu X, Zheng Y, et al. Mutation in ATG5 reduces autophagy and leads to ataxia with developmental delay. elife. 2016;5: pubmed 出版商
  682. Kretschmar C, Oyarzun C, Villablanca C, Jaramillo C, Alarcón S, Perez G, et al. Reduced Adenosine Uptake and Its Contribution to Signaling that Mediates Profibrotic Activation in Renal Tubular Epithelial Cells: Implication in Diabetic Nephropathy. PLoS ONE. 2016;11:e0147430 pubmed 出版商
  683. Vegas A, Veiseh O, Gürtler M, Millman J, Pagliuca F, Bader A, et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat Med. 2016;22:306-11 pubmed 出版商
  684. Vegas A, Veiseh O, Doloff J, Ma M, Tam H, Bratlie K, et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat Biotechnol. 2016;34:345-52 pubmed 出版商
  685. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  686. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  687. Allaire J, Roy S, Ouellet C, Lemieux Ã, Jones C, Paquet M, et al. Bmp signaling in colonic mesenchyme regulates stromal microenvironment and protects from polyposis initiation. Int J Cancer. 2016;138:2700-12 pubmed 出版商
  688. Quattrocelli M, Giacomazzi G, Broeckx S, Ceelen L, Bolca S, Spaas J, et al. Equine-Induced Pluripotent Stem Cells Retain Lineage Commitment Toward Myogenic and Chondrogenic Fates. Stem Cell Reports. 2016;6:55-63 pubmed 出版商
  689. Katz M, Brandon Warner E, Fargnoli A, Williams R, Kendle A, Hajjar R, et al. Mitigation of myocardial fibrosis by molecular cardiac surgery-mediated gene overexpression. J Thorac Cardiovasc Surg. 2016;151:1191-200.e3 pubmed 出版商
  690. Samura M, Morikage N, Suehiro K, Tanaka Y, Nakamura T, Nishimoto A, et al. Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Sci Rep. 2016;6:19379 pubmed 出版商
  691. Szulcek R, Happé C, Rol N, Fontijn R, Dickhoff C, Hartemink K, et al. Delayed Microvascular Shear Adaptation in Pulmonary Arterial Hypertension. Role of Platelet Endothelial Cell Adhesion Molecule-1 Cleavage. Am J Respir Crit Care Med. 2016;193:1410-20 pubmed 出版商
  692. Ke W, Chen C, Luo H, Tang J, Zhang Y, Gao W, et al. Histone Deacetylase 1 Regulates the Expression of Progesterone Receptor A During Human Parturition by Occupying the Progesterone Receptor A Promoter. Reprod Sci. 2016;23:955-64 pubmed 出版商
  693. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  694. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  695. Merk H, Zhang S, Lehr T, Müller C, Ulrich M, Bibb J, et al. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis. Oncotarget. 2016;7:6088-104 pubmed 出版商
  696. Yao C, Sun M, Yuan Q, Niu M, Chen Z, Hou J, et al. MiRNA-133b promotes the proliferation of human Sertoli cells through targeting GLI3. Oncotarget. 2016;7:2201-19 pubmed 出版商
  697. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  698. Umazume T, Thomas W, Campbell S, Aluri H, Thotakura S, Zoukhri D, et al. Lacrimal Gland Inflammation Deregulates Extracellular Matrix Remodeling and Alters Molecular Signature of Epithelial Stem/Progenitor Cells. Invest Ophthalmol Vis Sci. 2015;56:8392-402 pubmed 出版商
  699. Lai C, Wang K, Lee F, Tsai H, Ma C, Cheng T, et al. Toll-Like Receptor 4 Is Essential in the Development of Abdominal Aortic Aneurysm. PLoS ONE. 2016;11:e0146565 pubmed 出版商
  700. Suzuki Y, Chin W, Han Q, Ichiyama K, Lee C, Eyo Z, et al. Characterization of RyDEN (C19orf66) as an Interferon-Stimulated Cellular Inhibitor against Dengue Virus Replication. PLoS Pathog. 2016;12:e1005357 pubmed 出版商
  701. Hrstka R, Bouchalova P, Michalová E, Matoulkova E, Muller P, Coates P, et al. AGR2 oncoprotein inhibits p38 MAPK and p53 activation through a DUSP10-mediated regulatory pathway. Mol Oncol. 2016;10:652-62 pubmed 出版商
  702. Tagliatti E, Fadda M, Falace A, Benfenati F, Fassio A. Arf6 regulates the cycling and the readily releasable pool of synaptic vesicles at hippocampal synapse. elife. 2016;5: pubmed 出版商
  703. Chang Y, Yang C, Pan S, Chou Y, Chang F, Lai C, et al. DNA methyltransferase inhibition restores erythropoietin production in fibrotic murine kidneys. J Clin Invest. 2016;126:721-31 pubmed 出版商
  704. Maimets M, Rocchi C, Bron R, Pringle S, Kuipers J, Giepmans B, et al. Long-Term In Vitro Expansion of Salivary Gland Stem Cells Driven by Wnt Signals. Stem Cell Reports. 2016;6:150-62 pubmed 出版商
  705. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  706. Chen P, Li J, Huo Y, Lu J, Wan L, Li B, et al. Orphan nuclear receptor NR4A2 inhibits hepatic stellate cell proliferation through MAPK pathway in liver fibrosis. Peerj. 2015;3:e1518 pubmed 出版商
  707. Zahavi T, Lanton T, Divon M, Salmon A, Peretz T, Galun E, et al. Sorafenib treatment during partial hepatectomy reduces tumorgenesis in an inflammation-associated liver cancer model. Oncotarget. 2016;7:4860-70 pubmed 出版商
  708. Bennett B, Davis R, Civelek M, Orozco L, Wu J, Qi H, et al. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet. 2015;11:e1005711 pubmed 出版商
  709. Silva M, Matheus W, Garcia P, Stopiglia R, Billis A, Ferreira U, et al. Characterization of reactive stroma in prostate cancer: involvement of growth factors, metalloproteinase matrix, sexual hormones receptors and prostatic stem cells. Int Braz J Urol. 2015;41:849-58 pubmed 出版商
  710. Loperfido M, Jarmin S, Dastidar S, Di Matteo M, Perini I, Moore M, et al. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts. Nucleic Acids Res. 2016;44:744-60 pubmed 出版商
  711. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  712. Wang Y, Hou H, Li M, Yang Y, Sun L. Anticancer effect of eupatilin on glioma cells through inhibition of the Notch-1 signaling pathway. Mol Med Rep. 2016;13:1141-6 pubmed 出版商
  713. Noizet M, Lagoutte E, Gratigny M, Bouschbacher M, Lazareth I, Roest Crollius H, et al. Master regulators in primary skin fibroblast fate reprogramming in a human ex vivo model of chronic wounds. Wound Repair Regen. 2016;24:247-62 pubmed 出版商
  714. Lee S, Bang S, Hong Y, Lee J, Jeong H, Park S, et al. The calcineurin inhibitor Sarah (Nebula) exacerbates Aβ42 phenotypes in a Drosophila model of Alzheimer's disease. Dis Model Mech. 2016;9:295-306 pubmed 出版商
  715. Patel A, Yamashita N, Ascano M, Bodmer D, Boehm E, Bodkin Clarke C, et al. RCAN1 links impaired neurotrophin trafficking to aberrant development of the sympathetic nervous system in Down syndrome. Nat Commun. 2015;6:10119 pubmed 出版商
  716. Stefanitsch C, Lawrence A, Olverling A, Nilsson I, Fredriksson L. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci. 2015;9:456 pubmed 出版商
  717. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  718. Zhou Y, Williams J, Smallwood P, Nathans J. Sox7, Sox17, and Sox18 Cooperatively Regulate Vascular Development in the Mouse Retina. PLoS ONE. 2015;10:e0143650 pubmed 出版商
  719. Mallol A, Piqué L, Santaló J, Ibáñez E. Morphokinetics of cloned mouse embryos treated with epigenetic drugs and blastocyst prediction. Reproduction. 2016;151:203-14 pubmed 出版商
  720. Tarin C, Carril M, Martin Ventura J, Markuerkiaga I, Padro D, Llamas Granda P, et al. Targeted gold-coated iron oxide nanoparticles for CD163 detection in atherosclerosis by MRI. Sci Rep. 2015;5:17135 pubmed 出版商
  721. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  722. Leclercq A, Veillat V, Loriot S, Spuul P, Madonna F, Roques X, et al. A Methodology for Concomitant Isolation of Intimal and Adventitial Endothelial Cells from the Human Thoracic Aorta. PLoS ONE. 2015;10:e0143144 pubmed 出版商
  723. Dimitrova N, Gocheva V, Bhutkar A, Resnick R, Jong R, Miller K, et al. Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development. Cancer Discov. 2016;6:188-201 pubmed 出版商
  724. Furlan S, Mosole S, Murgia M, Nagaraj N, Argenton F, Volpe P, et al. Calsequestrins in skeletal and cardiac muscle from adult Danio rerio. J Muscle Res Cell Motil. 2016;37:27-39 pubmed 出版商
  725. Cao J, Zhang X, Wang Q, Qiu G, Hou C, Wang J, et al. Smad4 represses the generation of memory-precursor effector T cells but is required for the differentiation of central memory T cells. Cell Death Dis. 2015;6:e1984 pubmed 出版商
  726. Majumder K, Arora N, Modi S, Chugh R, Nomura A, Giri B, et al. A Novel Immunocompetent Mouse Model of Pancreatic Cancer with Robust Stroma: a Valuable Tool for Preclinical Evaluation of New Therapies. J Gastrointest Surg. 2016;20:53-65; discussion 65 pubmed 出版商
  727. Wang W, Liu H, Dai X, Fang S, Wang X, Zhang Y, et al. p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep. 2015;5:16900 pubmed 出版商
  728. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  729. Hu Z, Hu J, Shen W, Kraemer F, Azhar S. A Novel Role of Salt-Inducible Kinase 1 (SIK1) in the Post-Translational Regulation of Scavenger Receptor Class B Type 1 Activity. Biochemistry. 2015;54:6917-30 pubmed 出版商
  730. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  731. Alnasser H, Guan Q, Zhang F, Gleave M, Nguan C, Du C. Requirement of clusterin expression for prosurvival autophagy in hypoxic kidney tubular epithelial cells. Am J Physiol Renal Physiol. 2016;310:F160-73 pubmed 出版商
  732. Lohberger B, Leithner A, Stuendl N, Kaltenegger H, Kullich W, Steinecker Frohnwieser B. Diacerein retards cell growth of chondrosarcoma cells at the G2/M cell cycle checkpoint via cyclin B1/CDK1 and CDK2 downregulation. BMC Cancer. 2015;15:891 pubmed 出版商
  733. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  734. Hall A, Ashton S, Horner J, Wilson Z, Reens J, Richmond G, et al. PDGFR Inhibition Results in Pericyte Depletion and Hemorrhage into the Corpus Luteum of the Rat Ovary. Toxicol Pathol. 2016;44:98-111 pubmed 出版商
  735. Li Y, Adomat H, Guns E, Hojabrpour P, Duronio V, Curran T, et al. Identification of a Hematopoietic Cell Dedifferentiation-Inducing Factor. J Cell Physiol. 2016;231:1350-63 pubmed 出版商
  736. Osmanagic Myers S, Rus S, Wolfram M, Brunner D, Goldmann W, Bonakdar N, et al. Plectin reinforces vascular integrity by mediating crosstalk between the vimentin and the actin networks. J Cell Sci. 2015;128:4138-50 pubmed 出版商
  737. Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S, et al. Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun. 2015;6:8701 pubmed 出版商
  738. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  739. Oh Y, Park H, Shin J, Lee J, Park H, Kho D, et al. Ndrg1 is a T-cell clonal anergy factor negatively regulated by CD28 costimulation and interleukin-2. Nat Commun. 2015;6:8698 pubmed 出版商
  740. Abshagen K, Senne M, Genz B, Thomas M, Vollmar B. Differential Effects of Axin2 Deficiency on the Fibrogenic and Regenerative Response in Livers of Bile Duct-Ligated Mice. Eur Surg Res. 2015;55:328-340 pubmed
  741. Rohnalter V, Roth K, Finkernagel F, Adhikary T, Obert J, Dorzweiler K, et al. A multi-stage process including transient polyploidization and EMT precedes the emergence of chemoresistent ovarian carcinoma cells with a dedifferentiated and pro-inflammatory secretory phenotype. Oncotarget. 2015;6:40005-25 pubmed 出版商
  742. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  743. Baba I, Egi Y, Utsumi H, Kakimoto T, Suzuki K. Inhibitory effects of fasudil on renal interstitial fibrosis induced by unilateral ureteral obstruction. Mol Med Rep. 2015;12:8010-20 pubmed 出版商
  744. Siciliano C, Chimenti I, Bordin A, Ponti D, Iudicone P, Peruzzi M, et al. The potential of GMP-compliant platelet lysate to induce a permissive state for cardiovascular transdifferentiation in human mediastinal adipose tissue-derived mesenchymal stem cells. Biomed Res Int. 2015;2015:162439 pubmed 出版商
  745. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  746. Kokkinopoulos I, Ishida H, Saba R, Ruchaya P, Cabrera C, Struebig M, et al. Single-Cell Expression Profiling Reveals a Dynamic State of Cardiac Precursor Cells in the Early Mouse Embryo. PLoS ONE. 2015;10:e0140831 pubmed 出版商
  747. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  748. Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, et al. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep. 2015;12:7374-88 pubmed 出版商
  749. Takeda S, Wegmann S, Cho H, DeVos S, Commins C, Roe A, et al. Neuronal uptake and propagation of a rare phosphorylated high-molecular-weight tau derived from Alzheimer's disease brain. Nat Commun. 2015;6:8490 pubmed 出版商
  750. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  751. Sidney L, Branch M, Dua H, Hopkinson A. Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells. Cytotherapy. 2015;17:1706-22 pubmed 出版商
  752. Aoki K, Teshima Y, Kondo H, Saito S, Fukui A, Fukunaga N, et al. Role of Indoxyl Sulfate as a Predisposing Factor for Atrial Fibrillation in Renal Dysfunction. J Am Heart Assoc. 2015;4:e002023 pubmed 出版商
  753. Yu D, Makkar G, Strickland D, Blanpied T, Stumpo D, Blackshear P, et al. Myristoylated Alanine-Rich Protein Kinase Substrate (MARCKS) Regulates Small GTPase Rac1 and Cdc42 Activity and Is a Critical Mediator of Vascular Smooth Muscle Cell Migration in Intimal Hyperplasia Formation. J Am Heart Assoc. 2015;4:e002255 pubmed 出版商
  754. Guan S, Sheu M, Wu C, Chiang C, Liu S. ATP synthase subunit-β down-regulation aggravates diabetic nephropathy. Sci Rep. 2015;5:14561 pubmed 出版商
  755. Ertoy Baydar D, Kosemehmetoglu K, Aydin O, Bridge J, Buyukeren B, Aki F. Primary sclerosing epithelioid fibrosarcoma of kidney with variant histomorphologic features: report of 2 cases and review of the literature. Diagn Pathol. 2015;10:186 pubmed 出版商
  756. Zaitoun I, Johnson R, Jamali N, Almomani R, Wang S, Sheibani N, et al. Endothelium Expression of Bcl-2 Is Essential for Normal and Pathological Ocular Vascularization. PLoS ONE. 2015;10:e0139994 pubmed 出版商
  757. Huan C, Yang T, Liang J, Xie T, Cheng L, Liu N, et al. Methylation-mediated BMPER expression in fibroblast activation in vitro and lung fibrosis in mice in vivo. Sci Rep. 2015;5:14910 pubmed 出版商
  758. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  759. Su S, Zhao Q, He C, Huang D, Liu J, Chen F, et al. miR-142-5p and miR-130a-3p are regulated by IL-4 and IL-13 and control profibrogenic macrophage program. Nat Commun. 2015;6:8523 pubmed 出版商
  760. Gamat M, Malinowski R, Parkhurst L, Steinke L, Marker P. Ornithine Decarboxylase Activity Is Required for Prostatic Budding in the Developing Mouse Prostate. PLoS ONE. 2015;10:e0139522 pubmed 出版商
  761. Xing M, Wang X, Palmai Pallag T, Shen H, Helleday T, Hickson I, et al. Acute MUS81 depletion leads to replication fork slowing and a constitutive DNA damage response. Oncotarget. 2015;6:37638-46 pubmed 出版商
  762. Izumi D, Ishimoto T, Miyake K, Sugihara H, Eto K, Sawayama H, et al. CXCL12/CXCR4 activation by cancer-associated fibroblasts promotes integrin β1 clustering and invasiveness in gastric cancer. Int J Cancer. 2016;138:1207-19 pubmed 出版商
  763. Li Z, Hao Q, Luo J, Xiong J, Zhang S, Wang T, et al. USP4 inhibits p53 and NF-κB through deubiquitinating and stabilizing HDAC2. Oncogene. 2016;35:2902-12 pubmed 出版商
  764. Deckx S, Carai P, Bateman J, Heymans S, Papageorgiou A. Breeding Strategy Determines Rupture Incidence in Post-Infarct Healing WARPing Cardiovascular Research. PLoS ONE. 2015;10:e0139199 pubmed 出版商
  765. Seidel T, Edelmann J, Sachse F. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Ann Biomed Eng. 2016;44:1436-1448 pubmed 出版商
  766. Prescott H, Manning C, Gardner A, Ritchie W, Pizzi R, Girling S, et al. Giant Panda (Ailuropoda melanoleuca) Buccal Mucosa Tissue as a Source of Multipotent Progenitor Cells. PLoS ONE. 2015;10:e0138840 pubmed 出版商
  767. Vandersmissen I, Craps S, Depypere M, Coppiello G, van Gastel N, Maes F, et al. Endothelial Msx1 transduces hemodynamic changes into an arteriogenic remodeling response. J Cell Biol. 2015;210:1239-56 pubmed 出版商
  768. Gopal S, Søgaard P, Multhaupt H, Pataki C, Okina E, Xian X, et al. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol. 2015;210:1199-211 pubmed 出版商
  769. Grootaert M, da Costa Martins P, Bitsch N, Pintelon I, De Meyer G, Martinet W, et al. Defective autophagy in vascular smooth muscle cells accelerates senescence and promotes neointima formation and atherogenesis. Autophagy. 2015;11:2014-2032 pubmed 出版商
  770. Doldi V, Callari M, Giannoni E, D Aiuto F, Maffezzini M, Valdagni R, et al. Integrated gene and miRNA expression analysis of prostate cancer associated fibroblasts supports a prominent role for interleukin-6 in fibroblast activation. Oncotarget. 2015;6:31441-60 pubmed 出版商
  771. Woolery K, Mohamed M, Linger R, Dobrinski K, Roman J, Kruk P. BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. Biomed Res Int. 2015;2015:652017 pubmed 出版商
  772. Zhao Y, Londono P, Cao Y, Sharpe E, Proenza C, O Rourke R, et al. High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling. Nat Commun. 2015;6:8243 pubmed 出版商
  773. Yao J, Zheng K, Zhang X. Rosiglitazone exerts neuroprotective effects via the suppression of neuronal autophagy and apoptosis in the cortex following traumatic brain injury. Mol Med Rep. 2015;12:6591-7 pubmed 出版商
  774. Forbes M, Thornhill B, Galarreta C, Chevalier R. A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res. 2016;363:791-803 pubmed 出版商
  775. Keable A, Fenna K, Yuen H, Johnston D, Smyth N, Smith C, et al. Deposition of amyloid β in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochim Biophys Acta. 2016;1862:1037-46 pubmed 出版商
  776. Rybinski K, Imtiyaz H, Mittica B, Drozdowski B, Fulmer J, Furuuchi K, et al. Targeting endosialin/CD248 through antibody-mediated internalization results in impaired pericyte maturation and dysfunctional tumor microvasculature. Oncotarget. 2015;6:25429-40 pubmed 出版商
  777. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  778. Choi H, Kim J, Hong Y, Song H, Seo H, Do J. In vivo reprogrammed pluripotent stem cells from teratomas share analogous properties with their in vitro counterparts. Sci Rep. 2015;5:13559 pubmed 出版商
  779. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  780. Chang C, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, et al. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports. 2015;5:378-91 pubmed 出版商
  781. Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013-24 pubmed 出版商
  782. Kawaguchi T, Tsukiyama T, Kimura K, Matsuyama S, Minami N, Yamada M, et al. Generation of Naïve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE. 2015;10:e0135403 pubmed 出版商
  783. Manieri N, Mack M, Himmelrich M, Worthley D, Hanson E, Eckmann L, et al. Mucosally transplanted mesenchymal stem cells stimulate intestinal healing by promoting angiogenesis. J Clin Invest. 2015;125:3606-18 pubmed 出版商
  784. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  785. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  786. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  787. Khan I, Zakaria M, Kumar M, Mani P, Chattopadhyay P, Sarkar D, et al. A novel placental like alkaline phosphatase promoter driven transcriptional silencing combined with single chain variable fragment antibody based virosomal delivery for neoplastic cell targeting [corrected]. J Transl Med. 2015;13:254 pubmed 出版商
  788. Fan Z, Hao C, Li M, Dai X, Qin H, Li J, et al. MKL1 is an epigenetic modulator of TGF-β induced fibrogenesis. Biochim Biophys Acta. 2015;1849:1219-28 pubmed 出版商
  789. Thomsen L, Burkhart A, Moos T. A Triple Culture Model of the Blood-Brain Barrier Using Porcine Brain Endothelial cells, Astrocytes and Pericytes. PLoS ONE. 2015;10:e0134765 pubmed 出版商
  790. Steplewski A, Fertala J, Beredjiklian P, Abboud J, Wang M, Namdari S, et al. Auxiliary proteins that facilitate formation of collagen-rich deposits in the posterior knee capsule in a rabbit-based joint contracture model. J Orthop Res. 2016;34:489-501 pubmed 出版商
  791. Xie X, Hsu F, Gao X, Xu W, Ni J, Xing Y, et al. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol. 2015;13:e1002207 pubmed 出版商
  792. Jovicic N, Jeftic I, Jovanovic I, Radosavljevic G, Arsenijevic N, Lukic M, et al. Differential Immunometabolic Phenotype in Th1 and Th2 Dominant Mouse Strains in Response to High-Fat Feeding. PLoS ONE. 2015;10:e0134089 pubmed 出版商
  793. DubiÅ„ska Magiera M, Chmielewska M, KozioÅ‚ K, Machowska M, Hutchison C, Goldberg M, et al. Xenopus LAP2β protein knockdown affects location of lamin B and nucleoporins and has effect on assembly of cell nucleus and cell viability. Protoplasma. 2016;253:943-56 pubmed 出版商
  794. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Yamada D, et al. Neuromedin B Restores Erectile Function by Protecting the Cavernous Body and the Nitrergic Nerves from Injury in a Diabetic Rat Model. PLoS ONE. 2015;10:e0133874 pubmed 出版商
  795. Chung D, Chan J, Strecker J, Zhang W, Ebrahimi Ardebili S, Lu T, et al. Perinuclear tethers license telomeric DSBs for a broad kinesin- and NPC-dependent DNA repair process. Nat Commun. 2015;6:7742 pubmed 出版商
  796. Zhao L, Tang M, Hu Z, Yan B, Pi W, Li Z, et al. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma. Oncotarget. 2015;6:15995-6018 pubmed
  797. Sloan E, Tatham M, Groslambert M, Glass M, Orr A, Hay R, et al. Analysis of the SUMO2 Proteome during HSV-1 Infection. PLoS Pathog. 2015;11:e1005059 pubmed 出版商
  798. Kramann R, Fleig S, Schneider R, Fabian S, DiRocco D, Maarouf O, et al. Pharmacological GLI2 inhibition prevents myofibroblast cell-cycle progression and reduces kidney fibrosis. J Clin Invest. 2015;125:2935-51 pubmed 出版商
  799. Birket M, Ribeiro M, Verkerk A, Ward D, Leitoguinho A, Den Hartogh S, et al. Expansion and patterning of cardiovascular progenitors derived from human pluripotent stem cells. Nat Biotechnol. 2015;33:970-9 pubmed 出版商
  800. Shah S, Miller P, Garcia Contreras M, Ao Z, Machlin L, Issa E, et al. Hierarchical paracrine interaction of breast cancer associated fibroblasts with cancer cells via hMAPK-microRNAs to drive ER-negative breast cancer phenotype. Cancer Biol Ther. 2015;16:1671-81 pubmed 出版商
  801. He C, Medley S, Hu T, Hinsdale M, Lupu F, Virmani R, et al. PDGFRβ signalling regulates local inflammation and synergizes with hypercholesterolaemia to promote atherosclerosis. Nat Commun. 2015;6:7770 pubmed 出版商
  802. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  803. Han H, Yan P, Chen L, Luo C, Gao H, Deng Q, et al. Flaxseed Oil Containing α -Linolenic Acid Ester of Plant Sterol Improved Atherosclerosis in ApoE Deficient Mice. Oxid Med Cell Longev. 2015;2015:958217 pubmed 出版商
  804. Malik I, Stange I, Martius G, Cameron S, Rave Fränk M, Hess C, et al. Role of PECAM-1 in radiation-induced liver inflammation. J Cell Mol Med. 2015;19:2441-52 pubmed 出版商
  805. Carthy J, Meredith A, Boroomand S, Abraham T, Luo Z, Knight D, et al. Versican V1 Overexpression Induces a Myofibroblast-Like Phenotype in Cultured Fibroblasts. PLoS ONE. 2015;10:e0133056 pubmed 出版商
  806. Ruiz de Garibay G, Herranz C, Llorente A, Boni J, Serra Musach J, Mateo F, et al. Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. PLoS ONE. 2015;10:e0132546 pubmed 出版商
  807. Kontro H, Cannino G, Rustin P, Dufour E, Kainulainen H. DAPIT Over-Expression Modulates Glucose Metabolism and Cell Behaviour in HEK293T Cells. PLoS ONE. 2015;10:e0131990 pubmed 出版商
  808. Jones M, Hu W, Litthauer S, Lagarias J, Harmer S. A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light. Plant Physiol. 2015;169:814-25 pubmed 出版商
  809. Regan J, Kannan P, Kemp M, Kramer B, Newnham J, Jobe A, et al. Damage-Associated Molecular Pattern and Fetal Membrane Vascular Injury and Collagen Disorganization in Lipopolysaccharide-Induced Intra-amniotic Inflammation in Fetal Sheep. Reprod Sci. 2016;23:69-80 pubmed 出版商
  810. Krah N, De La O J, Swift G, Hoang C, Willet S, Chen Pan F, et al. The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. elife. 2015;4: pubmed 出版商
  811. Lee J, Kim H, Han J, Kim Y, Son C. Anti-fatigue effect of Myelophil in a chronic forced exercise mouse model. Eur J Pharmacol. 2015;764:100-8 pubmed 出版商
  812. Liu R, Fan M, Candas D, Qin L, Zhang X, Eldridge A, et al. CDK1-Mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance. Mol Cancer Ther. 2015;14:2090-102 pubmed 出版商
  813. Hurtado R, Zewdu R, Mtui J, Liang C, Aho R, Kurylo C, et al. Pbx1-dependent control of VMC differentiation kinetics underlies gross renal vascular patterning. Development. 2015;142:2653-64 pubmed 出版商
  814. Niehues S, Bussmann J, Steffes G, Erdmann I, Köhrer C, Sun L, et al. Impaired protein translation in Drosophila models for Charcot-Marie-Tooth neuropathy caused by mutant tRNA synthetases. Nat Commun. 2015;6:7520 pubmed 出版商
  815. Breslin C, Hornyak P, Ridley A, Rulten S, Hanzlikova H, Oliver A, et al. The XRCC1 phosphate-binding pocket binds poly (ADP-ribose) and is required for XRCC1 function. Nucleic Acids Res. 2015;43:6934-44 pubmed 出版商
  816. Grewal N, Franken R, Mulder B, Goumans M, Lindeman J, Jongbloed M, et al. Histopathology of aortic complications in bicuspid aortic valve versus Marfan syndrome: relevance for therapy?. Heart Vessels. 2016;31:795-806 pubmed 出版商
  817. Jacquin S, Rincheval V, Mignotte B, Richard S, Humbert M, Mercier O, et al. Inactivation of p53 Is Sufficient to Induce Development of Pulmonary Hypertension in Rats. PLoS ONE. 2015;10:e0131940 pubmed 出版商
  818. Choudhary P, Dodsworth B, Sidders B, Gutteridge A, Michaelides C, Duckworth J, et al. A FOXM1 Dependent Mesenchymal-Epithelial Transition in Retinal Pigment Epithelium Cells. PLoS ONE. 2015;10:e0130379 pubmed 出版商
  819. Singh N, Kotla S, Dyukova E, Traylor J, Orr A, Chernoff J, et al. Disruption of p21-activated kinase 1 gene diminishes atherosclerosis in apolipoprotein E-deficient mice. Nat Commun. 2015;6:7450 pubmed 出版商
  820. Nadeau M, Rico C, Tsoi M, Vivancos M, Filimon S, Paquet M, et al. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells. BMC Cancer. 2015;15:479 pubmed 出版商
  821. Zhang M, Jiang S, Tian Z, Wang M, Zhao R, Wang L, et al. CB2R orchestrates fibrogenesis through regulation of inflammatory response during the repair of skeletal muscle contusion. Int J Clin Exp Pathol. 2015;8:3491-502 pubmed
  822. Carthy J, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin C, et al. Tamoxifen Inhibits TGF-β-Mediated Activation of Myofibroblasts by Blocking Non-Smad Signaling Through ERK1/2. J Cell Physiol. 2015;230:3084-92 pubmed 出版商
  823. Huang X, Hu Q, Braun G, Pallaoro A, Morales D, ZASADZINSKI J, et al. Light-activated RNA interference in human embryonic stem cells. Biomaterials. 2015;63:70-9 pubmed 出版商
  824. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  825. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  826. Mercer J, Argus J, Crabtree D, KEENAN M, Wilks M, Chi J, et al. Modulation of PICALM Levels Perturbs Cellular Cholesterol Homeostasis. PLoS ONE. 2015;10:e0129776 pubmed 出版商
  827. Masuda Y, Takahashi H, Hatakeyama S. TRIM29 regulates the p63-mediated pathway in cervical cancer cells. Biochim Biophys Acta. 2015;1853:2296-305 pubmed 出版商
  828. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  829. Ruozi G, Bortolotti F, Falcione A, Dal Ferro M, Ukovich L, Macedo A, et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia. Nat Commun. 2015;6:7388 pubmed 出版商
  830. Frenay A, Yazdani S, Boersema M, van der Graaf A, Waanders F, van den Born J, et al. Incomplete Restoration of Angiotensin II-Induced Renal Extracellular Matrix Deposition and Inflammation Despite Complete Functional Recovery in Rats. PLoS ONE. 2015;10:e0129732 pubmed 出版商
  831. Yan M, Chu L, Qin B, Wang Z, Liu X, Jin C, et al. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis. Sci Rep. 2015;5:10449 pubmed 出版商
  832. Wei K, Díaz Trelles R, Liu Q, Diez Cuñado M, Scimia M, Cai W, et al. Developmental origin of age-related coronary artery disease. Cardiovasc Res. 2015;107:287-94 pubmed 出版商
  833. Zhang T, Zhou Y, Qi S, Wang Z, Qian W, Ouyang Y, et al. Nuf2 is required for chromosome segregation during mouse oocyte meiotic maturation. Cell Cycle. 2015;14:2701-10 pubmed 出版商
  834. Cui J, Bai X, Sun X, Cai G, Hong Q, Ding R, et al. Rapamycin protects against gentamicin-induced acute kidney injury via autophagy in mini-pig models. Sci Rep. 2015;5:11256 pubmed 出版商
  835. Pimenta M, Francisco R, Silva R, Porto C, Lazari M. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells. Andrology. 2015;3:772-86 pubmed 出版商
  836. Barr A, Bakal C. A sensitised RNAi screen reveals a ch-TOG genetic interaction network required for spindle assembly. Sci Rep. 2015;5:10564 pubmed 出版商
  837. Louveau A, Smirnov I, Keyes T, Eccles J, Rouhani S, Peske J, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337-41 pubmed 出版商
  838. Liebl J, Zhang S, Moser M, Agalarov Y, Demir C, Hager B, et al. Cdk5 controls lymphatic vessel development and function by phosphorylation of Foxc2. Nat Commun. 2015;6:7274 pubmed 出版商
  839. Song H, Wang H, Wu W, Qi L, Shao L, Wang F, et al. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res. 2015;362:97-113 pubmed 出版商
  840. Cushing L, Costinean S, Xu W, Jiang Z, Madden L, Kuang P, et al. Disruption of miR-29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature. PLoS Genet. 2015;11:e1005238 pubmed 出版商
  841. Matsunaga A, Harita Y, Shibagaki Y, Shimizu N, Shibuya K, Ono H, et al. Identification of 4-Trimethylaminobutyraldehyde Dehydrogenase (TMABA-DH) as a Candidate Serum Autoantibody Target for Kawasaki Disease. PLoS ONE. 2015;10:e0128189 pubmed 出版商
  842. Klotz L, Norman S, Vieira J, Masters M, Rohling M, Dubé K, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62-7 pubmed
  843. Hashem H, Abd El Haleem M, Abass M. Epithelial and stromal alterations in prostate after cypermethrin administration in adult albino rats (histological and biochemical study). Tissue Cell. 2015;47:366-72 pubmed 出版商
  844. Shankman L, Gomez D, Cherepanova O, Salmon M, Alencar G, Haskins R, et al. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med. 2015;21:628-37 pubmed 出版商
  845. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  846. Chevigny M, Guérin Montpetit K, Vargas A, Lefebvre Lavoie J, Lavoie J. Contribution of SRF, Elk-1, and myocardin to airway smooth muscle remodeling in heaves, an asthma-like disease of horses. Am J Physiol Lung Cell Mol Physiol. 2015;309:L37-45 pubmed 出版商
  847. Kumar P, Gullberg U, Olsson I, Ajore R. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1. PLoS ONE. 2015;10:e0123725 pubmed 出版商
  848. Formisano L, Guida N, Valsecchi V, Cantile M, Cuomo O, Vinciguerra A, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning, by Epigenetic Mechanism. J Neurosci. 2015;35:7332-48 pubmed 出版商
  849. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  850. Yamaleyeva L, Pulgar V, Lindsey S, Yamane L, Varagic J, McGee C, et al. Uterine artery dysfunction in pregnant ACE2 knockout mice is associated with placental hypoxia and reduced umbilical blood flow velocity. Am J Physiol Endocrinol Metab. 2015;309:E84-94 pubmed 出版商
  851. Doni A, Musso T, Morone D, Bastone A, Zambelli V, Sironi M, et al. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode. J Exp Med. 2015;212:905-25 pubmed 出版商
  852. Good R, Gilbane A, Trinder S, Denton C, Coghlan G, Abraham D, et al. Endothelial to Mesenchymal Transition Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension. Am J Pathol. 2015;185:1850-8 pubmed 出版商
  853. Mahale S, Bharate S, Manda S, Joshi P, Jenkins P, Vishwakarma R, et al. Antitumour potential of BPT: a dual inhibitor of cdk4 and tubulin polymerization. Cell Death Dis. 2015;6:e1743 pubmed 出版商
  854. Wu J, Okamura D, Li M, Suzuki K, Luo C, Ma L, et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015;521:316-21 pubmed 出版商
  855. Lei Z, van Mil A, Brandt M, Grundmann S, Hoefer I, Smits M, et al. MicroRNA-132/212 family enhances arteriogenesis after hindlimb ischaemia through modulation of the Ras-MAPK pathway. J Cell Mol Med. 2015;19:1994-2005 pubmed 出版商
  856. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  857. Bernichtein S, Pigat N, Capiod T, Boutillon F, Verkarre V, Camparo P, et al. High milk consumption does not affect prostate tumor progression in two mouse models of benign and neoplastic lesions. PLoS ONE. 2015;10:e0125423 pubmed 出版商
  858. Katanov C, Lerrer S, Liubomirski Y, Leider Trejo L, Meshel T, Bar J, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-? and the NF-?B pathway. Stem Cell Res Ther. 2015;6:87 pubmed 出版商
  859. Kondo J, Powell A, Wang Y, Musser M, Southard Smith E, Franklin J, et al. LRIG1 Regulates Ontogeny of Smooth Muscle-Derived Subsets of Interstitial Cells of Cajal in Mice. Gastroenterology. 2015;149:407-19.e8 pubmed 出版商
  860. Yongping M, Zhang X, Xuewei L, Fan W, Chen J, Zhang H, et al. Astragaloside prevents BDL-induced liver fibrosis through inhibition of notch signaling activation. J Ethnopharmacol. 2015;169:200-9 pubmed 出版商
  861. Peiris Pagès M, Sotgia F, Lisanti M. Chemotherapy induces the cancer-associated fibroblast phenotype, activating paracrine Hedgehog-GLI signalling in breast cancer cells. Oncotarget. 2015;6:10728-45 pubmed
  862. Randles M, Woolf A, Huang J, Byron A, Humphries J, Price K, et al. Genetic Background is a Key Determinant of Glomerular Extracellular Matrix Composition and Organization. J Am Soc Nephrol. 2015;26:3021-34 pubmed 出版商
  863. Berkovits B, Mayr C. Alternative 3' UTRs act as scaffolds to regulate membrane protein localization. Nature. 2015;522:363-7 pubmed 出版商
  864. Nishimatsu H, Suzuki E, Saito Y, Niimi A, Nomiya A, Fukuhara H, et al. Senescent Cells Impair Erectile Function through Induction of Endothelial Dysfunction and Nerve Injury in Mice. PLoS ONE. 2015;10:e0124129 pubmed 出版商
  865. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  866. Zhao H, Agazie Y. Inhibition of SHP2 in basal-like and triple-negative breast cells induces basal-to-luminal transition, hormone dependency, and sensitivity to anti-hormone treatment. BMC Cancer. 2015;15:109 pubmed 出版商
  867. Wilson C, Jurk D, Fullard N, Banks P, Page A, Luli S, et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun. 2015;6:6818 pubmed 出版商
  868. Chung J, Bauer D, Ghamari A, Nizzi C, Deck K, Kingsley P, et al. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability. Sci Signal. 2015;8:ra34 pubmed 出版商
  869. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  870. Pardo F, Silva L, Sáez T, Salsoso R, Gutiérrez J, Sanhueza C, et al. Human supraphysiological gestational weight gain and fetoplacental vascular dysfunction. Int J Obes (Lond). 2015;39:1264-73 pubmed 出版商
  871. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  872. Hong S, Lee J, Lee J, Lee H, Kim H, Lee S, et al. The traditional drug Gongjin-Dan ameliorates chronic fatigue in a forced-stress mouse exercise model. J Ethnopharmacol. 2015;168:268-78 pubmed 出版商
  873. Lee H, Jeong H, Park S, Yoo W, Choi S, Choi K, et al. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis. EMBO Mol Med. 2015;7:819-30 pubmed 出版商
  874. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  875. Simões A, Pereira D, Gomes S, Brito H, Carvalho T, French A, et al. Aberrant MEK5/ERK5 signalling contributes to human colon cancer progression via NF-κB activation. Cell Death Dis. 2015;6:e1718 pubmed 出版商
  876. Zang G, Sandberg M, Carlsson P, Welsh N, Jansson L, Barbu A. Activated pancreatic stellate cells can impair pancreatic islet function in mice. Ups J Med Sci. 2015;120:169-80 pubmed 出版商
  877. Li Y, Drabsch Y, Pujuguet P, Ren J, van Laar T, Zhang L, et al. Genetic depletion and pharmacological targeting of αv integrin in breast cancer cells impairs metastasis in zebrafish and mouse xenograft models. Breast Cancer Res. 2015;17:28 pubmed 出版商
  878. Okatsu K, Koyano F, Kimura M, Kosako H, Saeki Y, Tanaka K, et al. Phosphorylated ubiquitin chain is the genuine Parkin receptor. J Cell Biol. 2015;209:111-28 pubmed 出版商
  879. Li X, Ballantyne L, Che X, Mewburn J, Kang J, Barkley R, et al. Endogenously generated omega-3 fatty acids attenuate vascular inflammation and neointimal hyperplasia by interaction with free fatty acid receptor 4 in mice. J Am Heart Assoc. 2015;4: pubmed 出版商
  880. Amrutkar M, Cansby E, Chursa U, Nuñez Durán E, Chanclón B, StÃ¥hlman M, et al. Genetic Disruption of Protein Kinase STK25 Ameliorates Metabolic Defects in a Diet-Induced Type 2 Diabetes Model. Diabetes. 2015;64:2791-804 pubmed 出版商
  881. Cremer S, Moesgaard S, Rasmussen C, Zois N, Falk T, Reimann M, et al. Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease. Res Vet Sci. 2015;100:197-206 pubmed 出版商
  882. Bergamo P, Palmieri G, Cocca E, Ferrandino I, Gogliettino M, Monaco A, et al. Adaptive response activated by dietary cis9, trans11 conjugated linoleic acid prevents distinct signs of gliadin-induced enteropathy in mice. Eur J Nutr. 2016;55:729-740 pubmed 出版商
  883. Zhao J, Song Q, Wang L, Dong X, Yang X, Bai X, et al. Detrusor myocyte autophagy protects the bladder function via inhibiting the inflammation in cyclophosphamide-induced cystitis in rats. PLoS ONE. 2015;10:e0122597 pubmed 出版商
  884. Bastijanic J, Marchant R, Kligman F, Allemang M, Lakin R, Kendrick D, et al. In vivo evaluation of biomimetic fluorosurfactant polymer-coated expanded polytetrafluoroethylene vascular grafts in a porcine carotid artery bypass model. J Vasc Surg. 2016;63:1620-1630.e4 pubmed 出版商
  885. Kim J, Wang S, Hyun J, Choi S, Cha H, Ock M, et al. Hepatic stellate cells express thymosin Beta 4 in chronically damaged liver. PLoS ONE. 2015;10:e0122758 pubmed 出版商
  886. Dayer C, Stamenkovic I. Recruitment of Matrix Metalloproteinase-9 (MMP-9) to the Fibroblast Cell Surface by Lysyl Hydroxylase 3 (LH3) Triggers Transforming Growth Factor-β (TGF-β) Activation and Fibroblast Differentiation. J Biol Chem. 2015;290:13763-78 pubmed 出版商
  887. Maquigussa E, Arnoni C, Pereira L, Boim M. Calcitriol ameliorates renal damage in a pre-established proteinuria model. Mol Med Rep. 2015;12:1009-15 pubmed 出版商
  888. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  889. Lee S, Chang J, Wu J, Sheu D. Antineoplastic effect of a novel chemopreventive agent, neokestose, on the Caco-2 cell line via inhibition of expression of nuclear factor-κB and cyclooxygenase-2. Mol Med Rep. 2015;12:1114-8 pubmed 出版商
  890. Majumdar T, Chattopadhyay S, Ozhegov E, Dhar J, Goswami R, Sen G, et al. Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii. PLoS Pathog. 2015;11:e1004779 pubmed 出版商
  891. Yokobori T, Suzuki S, Miyazaki T, Sohda M, Sakai M, Tanaka N, et al. Intestinal epithelial culture under an air-liquid interface: a tool for studying human and mouse esophagi. Dis Esophagus. 2016;29:843-847 pubmed 出版商
  892. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  893. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  894. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  895. Yoshiba N, Yoshiba K, Ohkura N, Takei E, Edanami N, Oda Y, et al. Correlation between Fibrillin-1 Degradation and mRNA Downregulation and Myofibroblast Differentiation in Cultured Human Dental Pulp Tissue. J Histochem Cytochem. 2015;63:438-48 pubmed 出版商
  896. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  897. Wang Y, Shi C, Lu Y, Poulin E, Franklin J, Coffey R. Loss of Lrig1 leads to expansion of Brunner glands followed by duodenal adenomas with gastric metaplasia. Am J Pathol. 2015;185:1123-34 pubmed 出版商
  898. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  899. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  900. Debowski K, Warthemann R, Lentes J, Salinas Riester G, Dressel R, Langenstroth D, et al. Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. PLoS ONE. 2015;10:e0118424 pubmed 出版商
  901. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  902. Cuadrado E, Michailidou I, van Bodegraven E, Jansen M, Sluijs J, Geerts D, et al. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J Immunol. 2015;194:3623-33 pubmed 出版商
  903. Kim S, Wen W, Prowse P, Hamilton D. Regulation of matrix remodelling phenotype in gingival fibroblasts by substratum topography. J Cell Mol Med. 2015;19:1183-96 pubmed 出版商
  904. Kitamura M, Nishino T, Obata Y, Oka S, Abe S, Muta K, et al. The kampo medicine Daikenchuto inhibits peritoneal fibrosis in mice. Biol Pharm Bull. 2015;38:193-200 pubmed 出版商
  905. Liu M, Flanagan T, Lu C, French A, Argyle D, Corcoran B. Culture and characterisation of canine mitral valve interstitial and endothelial cells. Vet J. 2015;204:32-9 pubmed 出版商
  906. McKee C, Sigala B, Soeda J, Mouralidarane A, Morgan M, Mazzoccoli G, et al. Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep. 2015;5:8812 pubmed 出版商
  907. Kijani S, Yrlid U, Heyden M, Levin M, Borén J, Fogelstrand P. Filter-Dense Multicolor Microscopy. PLoS ONE. 2015;10:e0119499 pubmed 出版商
  908. Yang Y, Deng Q, Feng X, Sun J. Use of the disulfiram/copper complex for breast cancer chemoprevention in MMTV-erbB2 transgenic mice. Mol Med Rep. 2015;12:746-52 pubmed 出版商
  909. Ma T, Wang Z, Yang Z, Chen J. Cluster of differentiation 147 is a key molecule during hepatocellular carcinoma cell-hepatic stellate cell cross-talk in the rat liver. Mol Med Rep. 2015;12:111-8 pubmed 出版商
  910. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  911. Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, et al. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS ONE. 2015;10:e0118655 pubmed 出版商
  912. Yang L, Liu L, Xu Z, Liao W, Feng D, Dong X, et al. EBV-LMP1 targeted DNAzyme enhances radiosensitivity by inhibiting tumor angiogenesis via the JNKs/HIF-1 pathway in nasopharyngeal carcinoma. Oncotarget. 2015;6:5804-17 pubmed
  913. Trylcova J, Busek P, Smetana K, Balaziova E, Dvořánková B, Mifková A, et al. Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumour Biol. 2015;36:5873-9 pubmed 出版商
  914. Fang J, Zhou H, Zhang C, Shang L, Zhang L, Xu J, et al. A novel vascular pattern promotes metastasis of hepatocellular carcinoma in an epithelial-mesenchymal transition-independent manner. Hepatology. 2015;62:452-65 pubmed 出版商
  915. Polletta L, Vernucci E, Carnevale I, Arcangeli T, Rotili D, Palmerio S, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11:253-70 pubmed 出版商
  916. TaÅŸlı P, DoÄŸan A, Demirci S, Åžahin F. Myogenic and neurogenic differentiation of human tooth germ stem cells (hTGSCs) are regulated by pluronic block copolymers. Cytotechnology. 2016;68:319-29 pubmed 出版商
  917. Lin S, Huang S, Kuo H, Chen C, Ma Y, Chu T, et al. Coral-derived compound WA-25 inhibits angiogenesis by attenuating the VEGF/VEGFR2 signaling pathway. Mar Drugs. 2015;13:861-78 pubmed 出版商
  918. Fritz A, Adil M, Mao S, Schaffer D. cAMP and EPAC Signaling Functionally Replace OCT4 During Induced Pluripotent Stem Cell Reprogramming. Mol Ther. 2015;23:952-963 pubmed 出版商
  919. Gallos G, Yocum G, Siviski M, Yim P, Fu X, Poe M, et al. Selective targeting of the α5-subunit of GABAA receptors relaxes airway smooth muscle and inhibits cellular calcium handling. Am J Physiol Lung Cell Mol Physiol. 2015;308:L931-42 pubmed 出版商
  920. Afzal M, Strande J. Generation of induced pluripotent stem cells from muscular dystrophy patients: efficient integration-free reprogramming of urine derived cells. J Vis Exp. 2015;:52032 pubmed 出版商
  921. Yang L, Hu J, Hao H, Yin Z, Liu G, Zou X. Sodium tanshinone IIA sulfonate attenuates the transforming growth factor-β1-induced differentiation of atrial fibroblasts into myofibroblasts in vitro. Int J Mol Med. 2015;35:1026-32 pubmed 出版商
  922. Bobba A, Amadoro G, La Piana G, Petragallo V, Calissano P, Atlante A. Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett. 2015;589:651-8 pubmed 出版商
  923. Gibbs Seymour I, Markiewicz E, Bekker Jensen S, Mailand N, Hutchison C. Lamin A/C-dependent interaction with 53BP1 promotes cellular responses to DNA damage. Aging Cell. 2015;14:162-9 pubmed 出版商
  924. Johnson J, Folestad E, Rowley J, Noll E, Walker S, Lloyd C, et al. Pericytes contribute to airway remodeling in a mouse model of chronic allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2015;308:L658-71 pubmed 出版商
  925. Shapero K, Wylie Sears J, Levine R, Mayer J, Bischoff J. Reciprocal interactions between mitral valve endothelial and interstitial cells reduce endothelial-to-mesenchymal transition and myofibroblastic activation. J Mol Cell Cardiol. 2015;80:175-85 pubmed 出版商
  926. Feliciano D, Tolsma T, Farrell K, Aradi A, Di Pietro S. A second Las17 monomeric actin-binding motif functions in Arp2/3-dependent actin polymerization during endocytosis. Traffic. 2015;16:379-97 pubmed 出版商
  927. Amrutkar M, Cansby E, Nuñez Durán E, Pirazzi C, StÃ¥hlman M, Stenfeldt E, et al. Protein kinase STK25 regulates hepatic lipid partitioning and progression of liver steatosis and NASH. FASEB J. 2015;29:1564-76 pubmed 出版商
  928. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  929. Bárcena C, Stefanovic M, Tutusaus A, Martinez Nieto G, Martinez L, García Ruiz C, et al. Angiogenin secretion from hepatoma cells activates hepatic stellate cells to amplify a self-sustained cycle promoting liver cancer. Sci Rep. 2015;5:7916 pubmed 出版商
  930. Konoeda C, Nakajima J, Murakawa T. Fibroblasts of recipient origin contribute to airway fibrosis in murine tracheal transplantations. Transpl Int. 2015;28:761-3 pubmed 出版商
  931. Malhotra R, Burke M, Martyn T, Shakartzi H, Thayer T, O Rourke C, et al. Inhibition of bone morphogenetic protein signal transduction prevents the medial vascular calcification associated with matrix Gla protein deficiency. PLoS ONE. 2015;10:e0117098 pubmed 出版商
  932. Liu Q, Hu T, He L, Huang X, Tian X, Zhang H, et al. Genetic targeting of sprouting angiogenesis using Apln-CreER. Nat Commun. 2015;6:6020 pubmed 出版商
  933. Yu T, Wang X, Zhao R, Zheng J, Li L, Ma W, et al. Beneficial effects of cannabinoid receptor type 2 (CB2R) in injured skeletal muscle post-contusion. Histol Histopathol. 2015;30:737-49 pubmed 出版商
  934. Miyata M, Lee J, Susuki Miyata S, Wang W, Xu H, Kai H, et al. Glucocorticoids suppress inflammation via the upregulation of negative regulator IRAK-M. Nat Commun. 2015;6:6062 pubmed 出版商
  935. Matsuda Y, Kobayashi Ishihara M, Fujikawa D, Ishida T, Watanabe T, Yamagishi M. Epigenetic heterogeneity in HIV-1 latency establishment. Sci Rep. 2015;5:7701 pubmed 出版商
  936. Xue C, Zhang J, Lv Z, Liu H, Huang C, Yang J, et al. Angiotensin II promotes differentiation of mouse c-kit-positive cardiac stem cells into pacemaker-like cells. Mol Med Rep. 2015;11:3249-58 pubmed 出版商
  937. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  938. Gravez B, Tarjus A, Pelloux V, Ouvrard Pascaud A, Delcayre C, Samuel J, et al. Aldosterone promotes cardiac endothelial cell proliferation in vivo. J Am Heart Assoc. 2015;4:e001266 pubmed 出版商
  939. Coutelle O, Schiffmann L, Liwschitz M, Brunold M, Goede V, Hallek M, et al. Dual targeting of Angiopoetin-2 and VEGF potentiates effective vascular normalisation without inducing empty basement membrane sleeves in xenograft tumours. Br J Cancer. 2015;112:495-503 pubmed 出版商
  940. Chen T, Margariti A, Kelaini S, Cochrane A, Guha S, Hu Y, et al. MicroRNA-199b Modulates Vascular Cell Fate During iPS Cell Differentiation by Targeting the Notch Ligand Jagged1 and Enhancing VEGF Signaling. Stem Cells. 2015;33:1405-18 pubmed 出版商
  941. Karaca G, Xie G, Moylan C, Swiderska Syn M, Guy C, Krüger L, et al. Role of Fn14 in acute alcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 2015;308:G325-34 pubmed 出版商
  942. Kalwa H, Storch U, Demleitner J, Fiedler S, Mayer T, Kannler M, et al. Phospholipase C epsilon (PLCε) induced TRPC6 activation: a common but redundant mechanism in primary podocytes. J Cell Physiol. 2015;230:1389-99 pubmed 出版商
  943. LUCAS B, White A, Ulvmar M, Nibbs R, Sitnik K, Agace W, et al. CCRL1/ACKR4 is expressed in key thymic microenvironments but is dispensable for T lymphopoiesis at steady state in adult mice. Eur J Immunol. 2015;45:574-83 pubmed 出版商
  944. Chen J, Wang Z, Xu D, Liu Y, Gao Y. Aquaporin 3 promotes prostate cancer cell motility and invasion via extracellular signal-regulated kinase 1/2-mediated matrix metalloproteinase-3 secretion. Mol Med Rep. 2015;11:2882-8 pubmed 出版商
  945. Ta M, Rao P, Korgaonkar M, Foster S, Peduto A, Harris D, et al. Pyrrolidine dithiocarbamate reduces the progression of total kidney volume and cyst enlargement in experimental polycystic kidney disease. Physiol Rep. 2014;2: pubmed 出版商
  946. Huang Y, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, et al. RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS ONE. 2014;9:e114973 pubmed 出版商
  947. Da Ros M, Hirvonen N, Olotu O, Toppari J, Kotaja N. Retromer vesicles interact with RNA granules in haploid male germ cells. Mol Cell Endocrinol. 2015;401:73-83 pubmed 出版商
  948. Izzo F, Mercogliano F, Venturutti L, Tkach M, Inurrigarro G, Schillaci R, et al. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth. Breast Cancer Res. 2014;16:491 pubmed 出版商
  949. Kim H, Li A, Ahn S, Song H, Zhang W. Inositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity. Sci Rep. 2014;4:7330 pubmed 出版商
  950. Johnstone S, Liley M, Dalby M, Barnett S. Comparison of human olfactory and skeletal MSCs using osteogenic nanotopography to demonstrate bone-specific bioactivity of the surfaces. Acta Biomater. 2015;13:266-76 pubmed 出版商
  951. Merlo P, Frost B, Peng S, Yang Y, Park P, Feany M. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111:18055-60 pubmed 出版商
  952. Colman J, Laureano D, Reis T, Krolow R, Dalmaz C, Benetti C, et al. Variations in the neonatal environment modulate adult behavioral and brain responses to palatable food withdrawal in adult female rats. Int J Dev Neurosci. 2015;40:70-5 pubmed 出版商
  953. Vogels R, Vlenterie M, Versleijen Jonkers Y, Ruijter E, Bekers E, Verdijk M, et al. Solitary fibrous tumor - clinicopathologic, immunohistochemical and molecular analysis of 28 cases. Diagn Pathol. 2014;9:224 pubmed 出版商
  954. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  955. Roufayel R, Johnston D, Mosser D. The elimination of miR-23a in heat-stressed cells promotes NOXA-induced cell death and is prevented by HSP70. Cell Death Dis. 2014;5:e1546 pubmed 出版商
  956. Heude Ã, Bellessort B, Fontaine A, Hamazaki M, Treier A, Treier M, et al. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Hum Mol Genet. 2015;24:1670-81 pubmed 出版商
  957. Rattner A, Wang Y, Zhou Y, Williams J, Nathans J. The role of the hypoxia response in shaping retinal vascular development in the absence of Norrin/Frizzled4 signaling. Invest Ophthalmol Vis Sci. 2014;55:8614-25 pubmed 出版商
  958. Fraga Silva R, Costa Fraga F, Montecucco F, Sturny M, Faye Y, Mach F, et al. Diminazene protects corpus cavernosum against hypercholesterolemia-induced injury. J Sex Med. 2015;12:289-302 pubmed 出版商
  959. O Hara L, McInnes K, Simitsidellis I, Morgan S, Atanassova N, Slowikowska Hilczer J, et al. Autocrine androgen action is essential for Leydig cell maturation and function, and protects against late-onset Leydig cell apoptosis in both mice and men. FASEB J. 2015;29:894-910 pubmed 出版商
  960. Barnes M, McMullen M, Roychowdhury S, Madhun N, Niese K, Olman M, et al. Macrophage migration inhibitory factor is required for recruitment of scar-associated macrophages during liver fibrosis. J Leukoc Biol. 2015;97:161-9 pubmed 出版商
  961. Zhu L, He Z, Wu F, Ding R, Jiang Q, Zhang J, et al. Immunization with advanced glycation end products modified low density lipoprotein inhibits atherosclerosis progression in diabetic apoE and LDLR null mice. Cardiovasc Diabetol. 2014;13:151 pubmed 出版商
  962. Macías D, Fernández Agüera M, Bonilla Henao V, López Barneo J. Deletion of the von Hippel-Lindau gene causes sympathoadrenal cell death and impairs chemoreceptor-mediated adaptation to hypoxia. EMBO Mol Med. 2014;6:1577-92 pubmed 出版商
  963. Taniguchi T, Asano Y, Akamata K, Noda S, Takahashi T, Ichimura Y, et al. Fibrosis, vascular activation, and immune abnormalities resembling systemic sclerosis in bleomycin-treated Fli-1-haploinsufficient mice. Arthritis Rheumatol. 2015;67:517-26 pubmed 出版商
  964. Moreira R, Velz T, Alves N, Gesche V, Malischewski A, Schmitz Rode T, et al. Tissue-engineered heart valve with a tubular leaflet design for minimally invasive transcatheter implantation. Tissue Eng Part C Methods. 2015;21:530-40 pubmed 出版商
  965. Lan N, Luo G, Yang X, Cheng Y, Zhang Y, Wang X, et al. 25-Hydroxyvitamin D3-deficiency enhances oxidative stress and corticosteroid resistance in severe asthma exacerbation. PLoS ONE. 2014;9:e111599 pubmed 出版商
  966. Venalis P, Kumánovics G, Schulze Koops H, Distler A, Dees C, Zerr P, et al. Cardiomyopathy in murine models of systemic sclerosis. Arthritis Rheumatol. 2015;67:508-16 pubmed 出版商
  967. Kuznetsova N, Vodovozova E. Differential binding of plasma proteins by liposomes loaded with lipophilic prodrugs of methotrexate and melphalan in the bilayer. Biochemistry (Mosc). 2014;79:797-804 pubmed 出版商
  968. Lim A, Shin K, Zhao C, Kawano S, Beachy P. Spatially restricted Hedgehog signalling regulates HGF-induced branching of the adult prostate. Nat Cell Biol. 2014;16:1135-45 pubmed 出版商
  969. Delgado Olguín P, Dang L, He D, Thomas S, Chi L, Sukonnik T, et al. Ezh2-mediated repression of a transcriptional pathway upstream of Mmp9 maintains integrity of the developing vasculature. Development. 2014;141:4610-7 pubmed 出版商
  970. Bantikassegn A, Song X, Politi K. Isolation of epithelial, endothelial, and immune cells from lungs of transgenic mice with oncogene-induced lung adenocarcinomas. Am J Respir Cell Mol Biol. 2015;52:409-17 pubmed 出版商
  971. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  972. Fukuda M, Aoki T, Manabe T, Maekawa A, Shirakawa T, Kataoka H, et al. Exacerbation of intracranial aneurysm and aortic dissection in hypertensive rat treated with the prostaglandin F-receptor antagonist AS604872. J Pharmacol Sci. 2014;126:230-42 pubmed
  973. Dammer E, Lee A, Duong D, Gearing M, Lah J, Levey A, et al. Quantitative phosphoproteomics of Alzheimer's disease reveals cross-talk between kinases and small heat shock proteins. Proteomics. 2015;15:508-519 pubmed 出版商
  974. Oujo B, Muñoz Félix J, Arévalo M, Núñez Gómez E, Pérez Roque L, Pericacho M, et al. L-Endoglin overexpression increases renal fibrosis after unilateral ureteral obstruction. PLoS ONE. 2014;9:e110365 pubmed 出版商
  975. Kim W, Barron D, San Martin R, Chan K, Tran L, Yang F, et al. RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proc Natl Acad Sci U S A. 2014;111:16389-94 pubmed 出版商
  976. Huang L, Zhang S, Zhang P, Zhang X, Zhu L, Chen K, et al. Interferon regulatory factor 7 protects against vascular smooth muscle cell proliferation and neointima formation. J Am Heart Assoc. 2014;3:e001309 pubmed 出版商
  977. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  978. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  979. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  980. Bernard Marissal N, Sunyach C, Marissal T, Raoul C, Pettmann B. Calreticulin levels determine onset of early muscle denervation by fast motoneurons of ALS model mice. Neurobiol Dis. 2015;73:130-6 pubmed 出版商
  981. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  982. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  983. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  984. Gurzu S, Ciortea D, Tamasi A, Golea M, Bodi A, Sahlean D, et al. The immunohistochemical profile of granular cell (Abrikossoff) tumor suggests an endomesenchymal origin. Arch Dermatol Res. 2015;307:151-7 pubmed 出版商
  985. Naylor A, McGettrick H, Maynard W, May P, Barone F, Croft A, et al. A differential role for CD248 (Endosialin) in PDGF-mediated skeletal muscle angiogenesis. PLoS ONE. 2014;9:e107146 pubmed 出版商
  986. Chibly A, Querin L, Harris Z, Limesand K. Label-retaining cells in the adult murine salivary glands possess characteristics of adult progenitor cells. PLoS ONE. 2014;9:e107893 pubmed 出版商
  987. Pickup M, Hover L, Polikowsky E, Chytil A, Gorska A, Novitskiy S, et al. BMPR2 loss in fibroblasts promotes mammary carcinoma metastasis via increased inflammation. Mol Oncol. 2015;9:179-91 pubmed 出版商
  988. Pál G, Lovas G, Dobolyi A. Induction of transforming growth factor beta receptors following focal ischemia in the rat brain. PLoS ONE. 2014;9:e106544 pubmed 出版商
  989. Ni W, Qiao J, Hu S, Zhao X, Regouski M, Yang M, et al. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS ONE. 2014;9:e106718 pubmed 出版商
  990. Li J, Liu J, Li P, Mao X, Li W, Yang J, et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res. 2014;33:70 pubmed 出版商
  991. Miller L, Lincoln J. Isolation of murine valve endothelial cells. J Vis Exp. 2014;: pubmed 出版商
  992. Tobar N, Toyos M, Urra C, Méndez N, Arancibia R, Smith P, et al. c-Jun N terminal kinase modulates NOX-4 derived ROS production and myofibroblasts differentiation in human breast stromal cells. BMC Cancer. 2014;14:640 pubmed 出版商
  993. Torsvik J, Johansson B, Dalva M, Marie M, Fjeld K, Johansson S, et al. Endocytosis of secreted carboxyl ester lipase in a syndrome of diabetes and pancreatic exocrine dysfunction. J Biol Chem. 2014;289:29097-111 pubmed 出版商
  994. Cremasco V, Woodruff M, Onder L, Cupovic J, Nieves Bonilla J, Schildberg F, et al. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15:973-81 pubmed 出版商
  995. McGowan S, McCoy D. Regulation of fibroblast lipid storage and myofibroblast phenotypes during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2014;307:L618-31 pubmed 出版商
  996. Vannucchi M, Traini C, Guasti D, Del Popolo G, Faussone Pellegrini M. Telocytes subtypes in human urinary bladder. J Cell Mol Med. 2014;18:2000-8 pubmed 出版商
  997. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, et al. NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE. 2014;9:e104771 pubmed 出版商
  998. Traini C, Faussone Pellegrini M, Evangelista S, Mazzaferro K, Cipriani G, Santicioli P, et al. Inner and outer portions of colonic circular muscle: ultrastructural and immunohistochemical changes in rat chronically treated with otilonium bromide. PLoS ONE. 2014;9:e103237 pubmed 出版商
  999. Aga M, Bradley J, Wanchu R, Yang Y, Acott T, Keller K. Differential effects of caveolin-1 and -2 knockdown on aqueous outflow and altered extracellular matrix turnover in caveolin-silenced trabecular meshwork cells. Invest Ophthalmol Vis Sci. 2014;55:5497-509 pubmed 出版商
  1000. Viceconte N, McKenna T, Eriksson M. Low levels of the reverse transactivator fail to induce target transgene expression in vascular smooth muscle cells. PLoS ONE. 2014;9:e104098 pubmed 出版商
  1001. Zhang X, Ma W, Cui J, Yao H, Zhou H, Ge Y, et al. Regulation of p21 by TWIST2 contributes to its tumor-suppressor function in human acute myeloid leukemia. Oncogene. 2015;34:3000-10 pubmed 出版商
  1002. Zhou Y, Wang Y, TISCHFIELD M, Williams J, Smallwood P, Rattner A, et al. Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 2014;124:3825-46 pubmed 出版商
  1003. Calabro S, Maczurek A, Morgan A, Tu T, Wen V, Yee C, et al. Hepatocyte produced matrix metalloproteinases are regulated by CD147 in liver fibrogenesis. PLoS ONE. 2014;9:e90571 pubmed 出版商
  1004. Romero A, Caceres M, Arancibia R, Silva D, Couve E, Martinez C, et al. Cigarette smoke condensate inhibits collagen gel contraction and prostaglandin E2 production in human gingival fibroblasts. J Periodontal Res. 2015;50:371-9 pubmed 出版商
  1005. Werner M, Mitchell J, Putzbach W, Bacon E, Kim S, Mitchell B. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J Cell Biol. 2014;206:367-76 pubmed 出版商
  1006. Le Provost G, Pullar C. ?2-adrenoceptor activation modulates skin wound healing processes to reduce scarring. J Invest Dermatol. 2015;135:279-88 pubmed 出版商
  1007. José A, Rovira Rigau M, Luna J, Gimenez Alejandre M, Vaquero E, García de la Torre B, et al. A genetic fiber modification to achieve matrix-metalloprotease-activated infectivity of oncolytic adenovirus. J Control Release. 2014;192:148-56 pubmed 出版商
  1008. Carlessi L, Fusar Poli E, Bechi G, Mantegazza M, Pascucci B, Narciso L, et al. Functional and molecular defects of hiPSC-derived neurons from patients with ATM deficiency. Cell Death Dis. 2014;5:e1342 pubmed 出版商
  1009. Yuan S, Guo Y, Zhou X, Shen W, Chen H. PDGFR-? (+) perivascular cells from infantile hemangioma display the features of mesenchymal stem cells and show stronger adipogenic potential in vitro and in vivo. Int J Clin Exp Pathol. 2014;7:2861-70 pubmed
  1010. Zheng Y, Hsu F, Xu W, Xie X, Ren X, Gao X, et al. A developmental genetic analysis of the lysine demethylase KDM2 mutations in Drosophila melanogaster. Mech Dev. 2014;133:36-53 pubmed 出版商
  1011. Doceul V, Chauveau E, Lara E, Breard E, Sailleau C, Zientara S, et al. Dual modulation of type I interferon response by bluetongue virus. J Virol. 2014;88:10792-802 pubmed 出版商
  1012. Wang H, Leinwand L, Anseth K. Roles of transforming growth factor-?1 and OB-cadherin in porcine cardiac valve myofibroblast differentiation. FASEB J. 2014;28:4551-62 pubmed 出版商
  1013. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  1014. Cansby E, Nerstedt A, Amrutkar M, Durán E, Smith U, Mahlapuu M. Partial hepatic resistance to IL-6-induced inflammation develops in type 2 diabetic mice, while the anti-inflammatory effect of AMPK is maintained. Mol Cell Endocrinol. 2014;393:143-51 pubmed 出版商
  1015. Rizvi S, Mertens J, Bronk S, Hirsova P, Dai H, Roberts L, et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem. 2014;289:22835-49 pubmed 出版商
  1016. Prakash A, Udager A, Saenz D, Gumucio D. Roles for Nkx2-5 and Gata3 in the ontogeny of the murine smooth muscle gastric ligaments. Am J Physiol Gastrointest Liver Physiol. 2014;307:G430-6 pubmed 出版商
  1017. Hu Q, Dong J, DU H, Zhang D, Ren H, Ma M, et al. Constitutive G?i coupling activity of very large G protein-coupled receptor 1 (VLGR1) and its regulation by PDZD7 protein. J Biol Chem. 2014;289:24215-25 pubmed 出版商
  1018. Jabari S, da Silveira A, de Oliveira E, Quint K, Wirries A, Neuhuber W, et al. Mucosal layers and related nerve fibres in non-chagasic and chagasic human colon--a quantitative immunohistochemical study. Cell Tissue Res. 2014;358:75-83 pubmed 出版商
  1019. Wagenaar G, Sengers R, Laghmani E, Chen X, Lindeboom M, Roks A, et al. Angiotensin II type 2 receptor ligand PD123319 attenuates hyperoxia-induced lung and heart injury at a low dose in newborn rats. Am J Physiol Lung Cell Mol Physiol. 2014;307:L261-72 pubmed 出版商
  1020. Howell K, Pillai A. Effects of prenatal hypoxia on schizophrenia-related phenotypes in heterozygous reeler mice: a gene × environment interaction study. Eur Neuropsychopharmacol. 2014;24:1324-36 pubmed 出版商
  1021. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  1022. Chong H, Chan J, Goh C, Gounko N, Luo B, Wang X, et al. Angiopoietin-like 4 stimulates STAT3-mediated iNOS expression and enhances angiogenesis to accelerate wound healing in diabetic mice. Mol Ther. 2014;22:1593-604 pubmed 出版商
  1023. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  1024. Gracanin A, Timmermans Sprang E, van Wolferen M, Rao N, Grizelj J, Vince S, et al. Ligand-independent canonical Wnt activity in canine mammary tumor cell lines associated with aberrant LEF1 expression. PLoS ONE. 2014;9:e98698 pubmed 出版商
  1025. Gotha L, Lim S, Osherov A, Wolff R, Qiang B, Erlich I, et al. Heparan sulfate side chains have a critical role in the inhibitory effects of perlecan on vascular smooth muscle cell response to arterial injury. Am J Physiol Heart Circ Physiol. 2014;307:H337-45 pubmed 出版商
  1026. Ying Y, Kim J, Westphal S, Long K, Padanilam B. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25:2707-16 pubmed 出版商
  1027. Verstegen A, Tagliatti E, Lignani G, Marte A, Stolero T, Atias M, et al. Phosphorylation of synapsin I by cyclin-dependent kinase-5 sets the ratio between the resting and recycling pools of synaptic vesicles at hippocampal synapses. J Neurosci. 2014;34:7266-80 pubmed 出版商
  1028. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  1029. Yuan B, Wan P, Chu D, Nie J, Cao Y, Luo W, et al. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice. Am J Pathol. 2014;184:1967-80 pubmed 出版商
  1030. Srikhajon K, Shynlova O, Preechapornprasert A, Chanrachakul B, Lye S. A new role for monocytes in modulating myometrial inflammation during human labor. Biol Reprod. 2014;91:10 pubmed 出版商
  1031. Ben Zvi A, Lacoste B, Kur E, Andreone B, Mayshar Y, Yan H, et al. Mfsd2a is critical for the formation and function of the blood-brain barrier. Nature. 2014;509:507-11 pubmed 出版商
  1032. Cheng Y, Cao A, Zheng J, Wang H, Sun Y, Liu C, et al. Airway hyperresponsiveness induced by repeated esophageal infusion of HCl in guinea pigs. Am J Respir Cell Mol Biol. 2014;51:701-8 pubmed 出版商
  1033. Mrosewski I, Jork N, Gorte K, Conrad C, Wiegand E, Kohl B, et al. Regulation of osteoarthritis-associated key mediators by TNF? and IL-10: effects of IL-10 overexpression in human synovial fibroblasts and a synovial cell line. Cell Tissue Res. 2014;357:207-23 pubmed 出版商
  1034. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  1035. Wang J, Eguchi K, Matsumoto S, Fujiu K, Komuro I, Nagai R, et al. The ?-3 polyunsaturated fatty acid, eicosapentaenoic acid, attenuates abdominal aortic aneurysm development via suppression of tissue remodeling. PLoS ONE. 2014;9:e96286 pubmed 出版商
  1036. Helm O, Mennrich R, Petrick D, Goebel L, Freitag Wolf S, Roder C, et al. Comparative characterization of stroma cells and ductal epithelium in chronic pancreatitis and pancreatic ductal adenocarcinoma. PLoS ONE. 2014;9:e94357 pubmed 出版商
  1037. Bach F, Rutten K, Hendriks K, Riemers F, Cornelissen P, de Bruin A, et al. The paracrine feedback loop between vitamin D? (1,25(OH)?D?) and PTHrP in prehypertrophic chondrocytes. J Cell Physiol. 2014;229:1999-2014 pubmed 出版商
  1038. Hegde V, Vogel R, Feany M. Glia are critical for the neuropathology of complex I deficiency in Drosophila. Hum Mol Genet. 2014;23:4686-92 pubmed 出版商
  1039. Quintin J, Le Péron C, Palierne G, Bizot M, Cunha S, Sérandour A, et al. Dynamic estrogen receptor interactomes control estrogen-responsive trefoil Factor (TFF) locus cell-specific activities. Mol Cell Biol. 2014;34:2418-36 pubmed 出版商
  1040. Lu Y, West F, Jordan B, Jordan E, West R, Yu P, et al. Induced pluripotency in chicken embryonic fibroblast results in a germ cell fate. Stem Cells Dev. 2014;23:1755-64 pubmed 出版商
  1041. Zhang J, Hatakeyama J, Eto K, Abe S. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix. Gen Comp Endocrinol. 2014;205:121-32 pubmed 出版商
  1042. Li Y, Pan J, Wei C, Chen J, Liu Y, Liu J, et al. LIM homeodomain transcription factor Isl1 directs normal pyloric development by targeting Gata3. BMC Biol. 2014;12:25 pubmed 出版商
  1043. Moreira R, Gesche V, Hurtado Aguilar L, Schmitz Rode T, Frese J, Jockenhoevel S, et al. TexMi: development of tissue-engineered textile-reinforced mitral valve prosthesis. Tissue Eng Part C Methods. 2014;20:741-8 pubmed 出版商
  1044. Swärd K, Albinsson S, Rippe C. Arterial dysfunction but maintained systemic blood pressure in cavin-1-deficient mice. PLoS ONE. 2014;9:e92428 pubmed 出版商
  1045. Balk Møller E, Kim J, Hopkinson B, Timmermans Wielenga V, Petersen O, Villadsen R. A marker of endocrine receptor-positive cells, CEACAM6, is shared by two major classes of breast cancer: luminal and HER2-enriched. Am J Pathol. 2014;184:1198-208 pubmed 出版商
  1046. Schroder W, Major L, Le T, Gardner J, Sweet M, Janciauskiene S, et al. Tumor cell-expressed SerpinB2 is present on microparticles and inhibits metastasis. Cancer Med. 2014;3:500-13 pubmed 出版商
  1047. Kaenel P, Hahnewald S, Wotzkow C, Strange R, Andres A. Overexpression of EphB4 in the mammary epithelium shifts the differentiation pathway of progenitor cells and promotes branching activity and vascularization. Dev Growth Differ. 2014;56:255-75 pubmed 出版商
  1048. Carloni S, Albertini M, Galluzzi L, Buonocore G, Proietti F, Balduini W. Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia-ischemia: role of protein synthesis and autophagic pathways. Exp Neurol. 2014;255:103-12 pubmed 出版商
  1049. Kennedy E, Hakimjavadi R, Greene C, Mooney C, Fitzpatrick E, Collins L, et al. Embryonic rat vascular smooth muscle cells revisited - a model for neonatal, neointimal SMC or differentiated vascular stem cells?. Vasc Cell. 2014;6:6 pubmed 出版商
  1050. Mäkelä J, Toppari J, Rivero Muller A, Ventelä S. Reconstruction of mouse testicular cellular microenvironments in long-term seminiferous tubule culture. PLoS ONE. 2014;9:e90088 pubmed 出版商
  1051. Hultman K, Cortes Canteli M, Bounoutas A, Richards A, Strickland S, Norris E. Plasmin deficiency leads to fibrin accumulation and a compromised inflammatory response in the mouse brain. J Thromb Haemost. 2014;12:701-12 pubmed 出版商
  1052. Namba F, Go H, Murphy J, La P, Yang G, Sengupta S, et al. Expression level and subcellular localization of heme oxygenase-1 modulates its cytoprotective properties in response to lung injury: a mouse model. PLoS ONE. 2014;9:e90936 pubmed 出版商
  1053. Mitchell E, Serra R. Normal mammary development and function in mice with Ift88 deleted in MMTV- and K14-Cre expressing cells. Cilia. 2014;3:4 pubmed 出版商
  1054. Yao Y, Chen Z, Norris E, Strickland S. Astrocytic laminin regulates pericyte differentiation and maintains blood brain barrier integrity. Nat Commun. 2014;5:3413 pubmed 出版商
  1055. Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, et al. Role of mouse and human autophagy proteins in IFN-?-induced cell-autonomous responses against Toxoplasma gondii. J Immunol. 2014;192:3328-35 pubmed 出版商
  1056. Grewal N, Gittenberger de Groot A, Poelmann R, Klautz R, Lindeman J, Goumans M, et al. Ascending aorta dilation in association with bicuspid aortic valve: a maturation defect of the aortic wall. J Thorac Cardiovasc Surg. 2014;148:1583-90 pubmed 出版商
  1057. Son A, Sheleg M, Cooper M, Sun Y, Kleiman N, Zhou R. Formation of persistent hyperplastic primary vitreous in ephrin-A5-/- mice. Invest Ophthalmol Vis Sci. 2014;55:1594-606 pubmed 出版商
  1058. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  1059. Hum S, Rymer C, Schaefer C, Bushnell D, Sims Lucas S. Ablation of the renal stroma defines its critical role in nephron progenitor and vasculature patterning. PLoS ONE. 2014;9:e88400 pubmed 出版商
  1060. Cuartero S, Fresán U, Reina O, Planet E, Espinàs M. Ibf1 and Ibf2 are novel CP190-interacting proteins required for insulator function. EMBO J. 2014;33:637-47 pubmed 出版商
  1061. Mamuya F, Wang Y, Roop V, Scheiblin D, Zajac J, Duncan M. The roles of ?V integrins in lens EMT and posterior capsular opacification. J Cell Mol Med. 2014;18:656-70 pubmed 出版商
  1062. Sastre C, Fernández Laso V, Madrigal Matute J, Munoz Garcia B, Moreno J, Pastor Vargas C, et al. Genetic deletion or TWEAK blocking antibody administration reduce atherosclerosis and enhance plaque stability in mice. J Cell Mol Med. 2014;18:721-34 pubmed 出版商
  1063. Yoshida T, Yamashita M, Horimai C, Hayashi M. Deletion of Krüppel-like factor 4 in endothelial and hematopoietic cells enhances neointimal formation following vascular injury. J Am Heart Assoc. 2014;3:e000622 pubmed 出版商
  1064. Hagiwara K, Obayashi T, Sakayori N, Yamanishi E, Hayashi R, Osumi N, et al. Molecular and cellular features of murine craniofacial and trunk neural crest cells as stem cell-like cells. PLoS ONE. 2014;9:e84072 pubmed 出版商
  1065. Grünberg J, Hammarstedt A, Hedjazifar S, Smith U. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT. J Biol Chem. 2014;289:6899-907 pubmed 出版商
  1066. Song K, Chung J, Choi M, Jin H, Yin G, Kwon M, et al. Effectiveness of intracavernous delivery of adenovirus encoding Smad7 gene on erectile function in a mouse model of cavernous nerve injury. J Sex Med. 2014;11:51-63 pubmed 出版商
  1067. Redmond E, Liu W, Hamm K, Hatch E, Cahill P, Morrow D. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling. PLoS ONE. 2014;9:e84122 pubmed 出版商
  1068. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  1069. Chang T, Kunasegaran K, Tarulli G, De Silva D, Voorhoeve P, Pietersen A. New insights into lineage restriction of mammary gland epithelium using parity-identified mammary epithelial cells. Breast Cancer Res. 2014;16:R1 pubmed 出版商
  1070. Zhao L, Sullivan M, Chase M, Gonzales A, Earley S. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol. 2014;50:1064-75 pubmed 出版商
  1071. Toko H, Hariharan N, Konstandin M, Ormachea L, McGregor M, Gude N, et al. Differential regulation of cellular senescence and differentiation by prolyl isomerase Pin1 in cardiac progenitor cells. J Biol Chem. 2014;289:5348-56 pubmed 出版商
  1072. Qi M, Zhang J, Zeng W, Chen X. DNAJB1 stabilizes MDM2 and contributes to cancer cell proliferation in a p53-dependent manner. Biochim Biophys Acta. 2014;1839:62-9 pubmed 出版商
  1073. Holzer L, Cor A, Holzer G. Expression of gap junction proteins connexins 26, 30, and 43 in Dupuytren's disease. Acta Orthop. 2014;85:97-101 pubmed 出版商
  1074. Bronner D, O Riordan M, He Y. Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death having features of apoptosis and pyroptosis. Front Cell Infect Microbiol. 2013;3:83 pubmed 出版商
  1075. Okumu L, Braden T, Vail K, Simon L, GOYAL H. Low androgen induced penile maldevelopment involves altered gene expression of biomarkers of smooth muscle differentiation and a key enzyme regulating cavernous smooth muscle cell tone. J Urol. 2014;192:267-73 pubmed 出版商
  1076. Nakayama A, Nakayama M, Turner C, Höing S, Lepore J, Adams R. Ephrin-B2 controls PDGFR? internalization and signaling. Genes Dev. 2013;27:2576-89 pubmed 出版商
  1077. Bi J, Wang R, Zhang Y, Han X, Ampah K, Liu W, et al. Identification of nucleolin as a lipid-raft-dependent ?1-integrin-interacting protein in A375 cell migration. Mol Cells. 2013;36:507-17 pubmed 出版商
  1078. Pérot G, Mendiboure J, Brouste V, Velasco V, Terrier P, Bonvalot S, et al. Smooth muscle differentiation identifies two classes of poorly differentiated pleomorphic sarcomas with distinct outcome. Mod Pathol. 2014;27:840-50 pubmed 出版商
  1079. Hasty P, Livi C, Dodds S, Jones D, Strong R, Javors M, et al. eRapa restores a normal life span in a FAP mouse model. Cancer Prev Res (Phila). 2014;7:169-78 pubmed 出版商
  1080. Karki S, Surolia R, Hock T, Guroji P, Zolak J, Duggal R, et al. Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. FASEB J. 2014;28:1122-31 pubmed 出版商
  1081. Yang C, Gu L, Deng D. Bone marrow-derived cells may not be the original cells for carcinogen-induced mouse gastrointestinal carcinomas. PLoS ONE. 2013;8:e79615 pubmed 出版商
  1082. Kerr G, Young J, Horvay K, Abud H, Loveland K. Regulated Wnt/beta-catenin signaling sustains adult spermatogenesis in mice. Biol Reprod. 2014;90:3 pubmed 出版商
  1083. Zhang S, Gao L, Zhang X, Zhang R, Zhu L, Wang P, et al. Interferon regulatory factor 8 modulates phenotypic switching of smooth muscle cells by regulating the activity of myocardin. Mol Cell Biol. 2014;34:400-14 pubmed 出版商
  1084. Zhu Y, Men R, Wen M, Hu X, Liu X, Yang L. Blockage of TRPM7 channel induces hepatic stellate cell death through endoplasmic reticulum stress-mediated apoptosis. Life Sci. 2014;94:37-44 pubmed 出版商
  1085. Formiga F, Pelacho B, Garbayo E, Imbuluzqueta I, Díaz Herráez P, Abizanda G, et al. Controlled delivery of fibroblast growth factor-1 and neuregulin-1 from biodegradable microparticles promotes cardiac repair in a rat myocardial infarction model through activation of endogenous regeneration. J Control Release. 2014;173:132-9 pubmed 出版商
  1086. Sadakata T, Kakegawa W, Shinoda Y, Hosono M, Katoh Semba R, Sekine Y, et al. CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci. 2013;33:17326-34 pubmed 出版商
  1087. Turnbull I, Karakikes I, Serrao G, Backeris P, Lee J, Xie C, et al. Advancing functional engineered cardiac tissues toward a preclinical model of human myocardium. FASEB J. 2014;28:644-54 pubmed 出版商
  1088. Wu J, Dong F, Wang R, Wang J, Zhao J, Yang M, et al. Central role of cellular senescence in TSLP-induced airway remodeling in asthma. PLoS ONE. 2013;8:e77795 pubmed 出版商
  1089. Peng Y, Shi Y, Ding Z, Ke A, Gu C, Hui B, et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy. 2013;9:2056-68 pubmed 出版商
  1090. Dai X, Jiang W, Zhang Q, Xu L, Geng P, Zhuang S, et al. Requirement for integrin-linked kinase in neural crest migration and differentiation and outflow tract morphogenesis. BMC Biol. 2013;11:107 pubmed 出版商
  1091. Wang H, Yang B, Qiu L, Yang C, Kramer J, Su Q, et al. Widespread spinal cord transduction by intrathecal injection of rAAV delivers efficacious RNAi therapy for amyotrophic lateral sclerosis. Hum Mol Genet. 2014;23:668-81 pubmed 出版商
  1092. Lafkas D, Rodilla V, Huyghe M, Mourao L, Kiaris H, Fre S. Notch3 marks clonogenic mammary luminal progenitor cells in vivo. J Cell Biol. 2013;203:47-56 pubmed 出版商
  1093. Dowman J, Hopkins L, Reynolds G, Armstrong M, Nasiri M, Nikolaou N, et al. Loss of 5?-reductase type 1 accelerates the development of hepatic steatosis but protects against hepatocellular carcinoma in male mice. Endocrinology. 2013;154:4536-47 pubmed 出版商
  1094. Cagnet S, Faraldo M, Kreft M, Sonnenberg A, Raymond K, Glukhova M. Signaling events mediated by ?3?1 integrin are essential for mammary tumorigenesis. Oncogene. 2014;33:4286-95 pubmed 出版商
  1095. Salem S, Hwie A, Saim A, Chee Kong C, Sagap I, Singh R, et al. Human adipose tissue derived stem cells as a source of smooth muscle cells in the regeneration of muscular layer of urinary bladder wall. Malays J Med Sci. 2013;20:80-7 pubmed
  1096. Soler A, Serra H, Pearce W, Angulo A, Guillermet Guibert J, Friedman L, et al. Inhibition of the p110? isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis. J Exp Med. 2013;210:1937-45 pubmed 出版商
  1097. Sollome J, Thavathiru E, Camenisch T, Vaillancourt R. HER2/HER3 regulates extracellular acidification and cell migration through MTK1 (MEKK4). Cell Signal. 2014;26:70-82 pubmed 出版商
  1098. Dellinger M, Meadows S, Wynne K, Cleaver O, Brekken R. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS ONE. 2013;8:e74686 pubmed 出版商
  1099. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  1100. Kossack N, Terwort N, Wistuba J, Ehmcke J, Schlatt S, Scholer H, et al. A combined approach facilitates the reliable detection of human spermatogonia in vitro. Hum Reprod. 2013;28:3012-25 pubmed 出版商
  1101. Burger N, Haak M, de Bakker B, Al Shaibani Z, de Groot C, Christoffels V, et al. Systematic analysis of the development of the ductus venosus in wild type mouse and human embryos. Early Hum Dev. 2013;89:1067-73 pubmed 出版商
  1102. Yang J, Zeini M, Lin C, Lin C, Xiong Y, Shang C, et al. Epicardial calcineurin-NFAT signals through Smad2 to direct coronary smooth muscle cell and arterial wall development. Cardiovasc Res. 2014;101:120-9 pubmed 出版商
  1103. Orecchioni S, Gregato G, Martin Padura I, Reggiani F, Braidotti P, Mancuso P, et al. Complementary populations of human adipose CD34+ progenitor cells promote growth, angiogenesis, and metastasis of breast cancer. Cancer Res. 2013;73:5880-91 pubmed 出版商
  1104. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  1105. Xiong Y, Yu Y, Montani J, Yang Z, Ming X. Arginase-II induces vascular smooth muscle cell senescence and apoptosis through p66Shc and p53 independently of its l-arginine ureahydrolase activity: implications for atherosclerotic plaque vulnerability. J Am Heart Assoc. 2013;2:e000096 pubmed 出版商
  1106. Lee P, Yau D, Lau P, Chan J. Plexiform fibromyxoma (plexiform angiomyxoid myofibroblastic tumor) of stomach: an unusual presentation as a fistulating abscess. Int J Surg Pathol. 2014;22:286-90 pubmed 出版商
  1107. Kuroda Y, Wakao S, Kitada M, Murakami T, Nojima M, Dezawa M. Isolation, culture and evaluation of multilineage-differentiating stress-enduring (Muse) cells. Nat Protoc. 2013;8:1391-415 pubmed 出版商
  1108. Chandra S, Priyadarshini R, Madhavan V, Tikoo S, Hussain M, Mudgal R, et al. Enhancement of c-Myc degradation by BLM helicase leads to delayed tumor initiation. J Cell Sci. 2013;126:3782-95 pubmed 出版商
  1109. Maddaluno L, Rudini N, Cuttano R, Bravi L, Giampietro C, Corada M, et al. EndMT contributes to the onset and progression of cerebral cavernous malformations. Nature. 2013;498:492-6 pubmed 出版商
  1110. Mendel T, Clabough E, Kao D, Demidova Rice T, Durham J, Zotter B, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS ONE. 2013;8:e65691 pubmed 出版商
  1111. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  1112. Weyers J, Schwartz S, Minami E, Carlson D, Dupras S, Weitz K, et al. Effects of cell grafting on coronary remodeling after myocardial infarction. J Am Heart Assoc. 2013;2:e000202 pubmed 出版商
  1113. Bohnenpoll T, Bettenhausen E, Weiss A, Foik A, Trowe M, Blank P, et al. Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. Dev Biol. 2013;380:25-36 pubmed 出版商
  1114. Martino Echarri E, Fernández Rodríguez R, Rodríguez Baena F, Barrientos Duran A, Torres Collado A, Plaza Calonge M, et al. Contribution of ADAMTS1 as a tumor suppressor gene in human breast carcinoma. Linking its tumor inhibitory properties to its proteolytic activity on nidogen-1 and nidogen-2. Int J Cancer. 2013;133:2315-24 pubmed 出版商
  1115. Chatterjee S, Wang Y, Duncan M, Naik U. Junctional adhesion molecule-A regulates vascular endothelial growth factor receptor-2 signaling-dependent mouse corneal wound healing. PLoS ONE. 2013;8:e63674 pubmed 出版商
  1116. Tripathi P, Wang Y, Coussens M, Manda K, Casey A, Lin C, et al. Activation of NFAT signaling establishes a tumorigenic microenvironment through cell autonomous and non-cell autonomous mechanisms. Oncogene. 2014;33:1840-9 pubmed 出版商
  1117. Pantaleo M, Astolfi A, Urbini M, Nannini M, Paterini P, Indio V, et al. Analysis of all subunits, SDHA, SDHB, SDHC, SDHD, of the succinate dehydrogenase complex in KIT/PDGFRA wild-type GIST. Eur J Hum Genet. 2014;22:32-9 pubmed 出版商
  1118. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  1119. Ciceri P, Elli F, Brenna I, Volpi E, Brancaccio D, Cozzolino M. The calcimimetic calindol prevents high phosphate-induced vascular calcification by upregulating matrix GLA protein. Nephron Exp Nephrol. 2012;122:75-82 pubmed 出版商
  1120. Jones G, Bown M, Gretarsdottir S, Romaine S, Helgadottir A, Yu G, et al. A sequence variant associated with sortilin-1 (SORT1) on 1p13.3 is independently associated with abdominal aortic aneurysm. Hum Mol Genet. 2013;22:2941-7 pubmed 出版商
  1121. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  1122. Xu J, Deng X, Tang M, Li L, Xiao L, Yang L, et al. Tyrosylprotein sulfotransferase-1 and tyrosine sulfation of chemokine receptor 4 are induced by Epstein-Barr virus encoded latent membrane protein 1 and associated with the metastatic potential of human nasopharyngeal carcinoma. PLoS ONE. 2013;8:e56114 pubmed 出版商
  1123. Pe er T, Lahmi R, Sharaby Y, Chorni E, Noach M, Vecsler M, et al. Gas2l3, a novel constriction site-associated protein whose regulation is mediated by the APC/C Cdh1 complex. PLoS ONE. 2013;8:e57532 pubmed 出版商
  1124. Yu D, Ware C, Waterland R, Zhang J, Chen M, Gadkari M, et al. Developmentally programmed 3' CpG island methylation confers tissue- and cell-type-specific transcriptional activation. Mol Cell Biol. 2013;33:1845-58 pubmed 出版商
  1125. Brereton M, Wareing M, Jones R, Greenwood S. Characterisation of K+ channels in human fetoplacental vascular smooth muscle cells. PLoS ONE. 2013;8:e57451 pubmed 出版商
  1126. Ciceri P, Elli F, Brenna I, Volpi E, Romagnoli S, Tosi D, et al. Lanthanum prevents high phosphate-induced vascular calcification by preserving vascular smooth muscle lineage markers. Calcif Tissue Int. 2013;92:521-30 pubmed 出版商
  1127. Pu X, Xiao Q, Kiechl S, Chan K, Ng F, Gor S, et al. ADAMTS7 cleavage and vascular smooth muscle cell migration is affected by a coronary-artery-disease-associated variant. Am J Hum Genet. 2013;92:366-74 pubmed 出版商
  1128. Davis R, Curtis C, Griffin C. BRG1 promotes COUP-TFII expression and venous specification during embryonic vascular development. Development. 2013;140:1272-81 pubmed 出版商
  1129. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  1130. Ho W, Davis A, Chadha P, Greenwood I. Effective contractile response to voltage-gated Na+ channels revealed by a channel activator. Am J Physiol Cell Physiol. 2013;304:C739-47 pubmed 出版商
  1131. Du M, Young J, De Asis M, Cipollone J, Roskelley C, Takai Y, et al. A novel subcellular machine contributes to basal junction remodeling in the seminiferous epithelium. Biol Reprod. 2013;88:60 pubmed 出版商
  1132. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  1133. Huggins C, Povstyan O, Harhun M. Characterization of transcriptional and posttranscriptional properties of native and cultured phenotypically modulated vascular smooth muscle cells. Cell Tissue Res. 2013;352:265-75 pubmed 出版商
  1134. Sánchez Alvarez R, Martinez Outschoorn U, Lin Z, Lamb R, Hulit J, Howell A, et al. Ethanol exposure induces the cancer-associated fibroblast phenotype and lethal tumor metabolism: implications for breast cancer prevention. Cell Cycle. 2013;12:289-301 pubmed 出版商
  1135. Tomasek J, Haaksma C, Schwartz R, Howard E. Whole animal knockout of smooth muscle alpha-actin does not alter excisional wound healing or the fibroblast-to-myofibroblast transition. Wound Repair Regen. 2013;21:166-76 pubmed 出版商
  1136. Steenhard B, Vanacore R, Friedman D, Zelenchuk A, Stroganova L, Isom K, et al. Upregulated expression of integrin ?1 in mesangial cells and integrin ?3 and vimentin in podocytes of Col4a3-null (Alport) mice. PLoS ONE. 2012;7:e50745 pubmed 出版商
  1137. Hoss M, Saric T, Denecke B, Peinkofer G, Bovi M, Groll J, et al. Expansion and differentiation of germline-derived pluripotent stem cells on biomaterials. Tissue Eng Part A. 2013;19:1067-80 pubmed 出版商
  1138. Zimmerlin L, Donnenberg V, Rubin J, Donnenberg A. Mesenchymal markers on human adipose stem/progenitor cells. Cytometry A. 2013;83:134-40 pubmed 出版商
  1139. Peddigari S, Li P, Rabe J, Martin S. hnRNPL and nucleolin bind LINE-1 RNA and function as host factors to modulate retrotransposition. Nucleic Acids Res. 2013;41:575-85 pubmed 出版商
  1140. Bouacida A, Rosset P, Trichet V, Guilloton F, Espagnolle N, Cordonier T, et al. Pericyte-like progenitors show high immaturity and engraftment potential as compared with mesenchymal stem cells. PLoS ONE. 2012;7:e48648 pubmed 出版商
  1141. Kosla J, Dvorak M, Cermák V. Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. Gene. 2013;513:90-100 pubmed 出版商
  1142. Rahman A, Ekman M, Shakirova Y, Andersson K, Morgelin M, Erjefalt J, et al. Late onset vascular dysfunction in the R6/1 model of Huntington's disease. Eur J Pharmacol. 2013;698:345-53 pubmed 出版商
  1143. St Denis C, Cloutier I, Tanguay J. Key fatty acid combinations define vascular smooth muscle cell proliferation and viability. Lipids. 2012;47:1073-84 pubmed 出版商
  1144. Harmelink C, Peng Y, Debenedittis P, Chen H, Shou W, Jiao K. Myocardial Mycn is essential for mouse ventricular wall morphogenesis. Dev Biol. 2013;373:53-63 pubmed 出版商
  1145. Syu L, El Zaatari M, Eaton K, Liu Z, Tetarbe M, Keeley T, et al. Transgenic expression of interferon-? in mouse stomach leads to inflammation, metaplasia, and dysplasia. Am J Pathol. 2012;181:2114-25 pubmed 出版商
  1146. Cigna N, Farrokhi Moshai E, Brayer S, Marchal Sommé J, Wemeau Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-?-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181:2126-37 pubmed 出版商
  1147. Chen Y, Sundvik M, Rozov S, Priyadarshini M, Panula P. MANF regulates dopaminergic neuron development in larval zebrafish. Dev Biol. 2012;370:237-49 pubmed 出版商
  1148. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  1149. Sha W, Thompson K, South J, Baron M, Leask A. Loss of PPAR? expression by fibroblasts enhances dermal wound closure. Fibrogenesis Tissue Repair. 2012;5:5 pubmed 出版商
  1150. Tondeleir D, Lambrechts A, Muller M, Jonckheere V, Doll T, Vandamme D, et al. Cells lacking ?-actin are genetically reprogrammed and maintain conditional migratory capacity. Mol Cell Proteomics. 2012;11:255-71 pubmed 出版商
  1151. Johnson K, Petersen Jones H, Thompson J, Hitomi K, Itoh M, Bakker E, et al. Vena cava and aortic smooth muscle cells express transglutaminases 1 and 4 in addition to transglutaminase 2. Am J Physiol Heart Circ Physiol. 2012;302:H1355-66 pubmed 出版商
  1152. Yamada Y, Yamamoto H, Ohishi Y, Nishiyama K, Fukuhara M, Saitou T, et al. Sclerosing variant of perivascular epithelioid cell tumor in the female genital organs. Pathol Int. 2011;61:768-72 pubmed 出版商
  1153. Koppen T, Weckmann A, Muller S, Staubach S, Bloch W, Dohmen R, et al. Proteomics analyses of microvesicles released by Drosophila Kc167 and S2 cells. Proteomics. 2011;11:4397-410 pubmed 出版商
  1154. Yuan S, Chen R, Shen W, Chen H, Zhou X. Mesenchymal stem cells in infantile hemangioma reside in the perivascular region. Pediatr Dev Pathol. 2012;15:5-12 pubmed 出版商
  1155. Baydar D, Kulac I, Gurel B, De Marzo A. A case of prostatic adenocarcinoma with aberrant p63 expression: presentation with detailed immunohistochemical study and FISH analysis. Int J Surg Pathol. 2011;19:131-6 pubmed 出版商
  1156. Tai C, Shen S, Lee W, Liao C, Deng W, Chiou H, et al. Increased cellular apoptosis susceptibility (CSE1L/CAS) protein expression promotes protrusion extension and enhances migration of MCF-7 breast cancer cells. Exp Cell Res. 2010;316:2969-81 pubmed 出版商
  1157. Kurz A, Double K, Lastres Becker I, Tozzi A, Tantucci M, Bockhart V, et al. A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS ONE. 2010;5:e11464 pubmed 出版商
  1158. Qi Y, Liang J, She Z, Cai Y, Wang J, Lei T, et al. MCP-induced protein 1 suppresses TNFalpha-induced VCAM-1 expression in human endothelial cells. FEBS Lett. 2010;584:3065-72 pubmed 出版商
  1159. Polo M, Arnoni M, Riggio M, Wargon V, Lanari C, Novaro V. Responsiveness to PI3K and MEK inhibitors in breast cancer. Use of a 3D culture system to study pathways related to hormone independence in mice. PLoS ONE. 2010;5:e10786 pubmed 出版商
  1160. von Toerne C, Schmidt C, Adams J, Kiss E, Bedke J, Porubsky S, et al. Wnt pathway regulation in chronic renal allograft damage. Am J Transplant. 2009;9:2223-39 pubmed 出版商
  1161. Yamazato Y, Ferreira A, Hong K, Sriramula S, Francis J, Yamazato M, et al. Prevention of pulmonary hypertension by Angiotensin-converting enzyme 2 gene transfer. Hypertension. 2009;54:365-71 pubmed 出版商
  1162. Holthouse D, Dallas P, Ford J, Fabian V, Murch A, Watson M, et al. Classic and desmoplastic medulloblastoma: complete case reports and characterizations of two new cell lines. Neuropathology. 2009;29:398-409 pubmed 出版商
  1163. Marín Briggiler C, Veiga M, Matos M, Echeverría M, Furlong L, Vazquez Levin M. Expression of epithelial cadherin in the human male reproductive tract and gametes and evidence of its participation in fertilization. Mol Hum Reprod. 2008;14:561-71 pubmed 出版商
  1164. Liao H, Munoz Pinto D, Qu X, Hou Y, Grunlan M, Hahn M. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta Biomater. 2008;4:1161-71 pubmed 出版商
  1165. Lennerz J, Rühle V, Ceppa E, Neuhuber W, Bunnett N, Grady E, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribu. J Comp Neurol. 2008;507:1277-99 pubmed 出版商
  1166. Rigau V, Morin M, Rousset M, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007;130:1942-56 pubmed
  1167. Hirose T, Karasawa M, Sugitani Y, Fujisawa M, Akimoto K, Ohno S, et al. PAR3 is essential for cyst-mediated epicardial development by establishing apical cortical domains. Development. 2006;133:1389-98 pubmed