这是一篇来自已证抗体库的有关大鼠 Aif1的综述,是根据69篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Aif1 抗体。
Aif1 同义词: BART-1; Bart1; iba1; mrf-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4e). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4m
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4m). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7e). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:1000; 图 13a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 (图 13a). Brain Struct Funct (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫印迹; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫印迹在小鼠样本上 (图 10a). Neurochem Res (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2f). Sci Adv (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫细胞化学; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Neuron (2020) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab108539)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3h). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:8000; 图 1, 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 1, 2a). JCI Insight (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Neuropharmacology (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 5c). J Histochem Cytochem (2019) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 大鼠; 1:8000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:8000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Biol Res (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st9
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022-5)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st9), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st9) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st9). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). Mol Psychiatry (2017) ncbi
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab108539)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 4). Oncol Lett (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化在小鼠样本上 (图 1a). Glia (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab107159)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 大鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab-15690)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s3). EMBO Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022?C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上. Life Sci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图 s10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10a). Nat Neurosci (2014) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Radiother Oncol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab15690)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurotrauma (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Aif1抗体(Santa, sc-32,725)被用于被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology Inc, sc-32,725)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫组化; 小鼠; 1:10; 图 6
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, SC-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10 (图 6). J Neuroinflammation (2010) ncbi
赛默飞世尔
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 大鼠; 图 6d1
赛默飞世尔 Aif1抗体(TermoFisher, MA5-27726)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6d1). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6i
赛默飞世尔 Aif1抗体(Thermo Fisher, PA5-18039)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6i). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6g
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5?C21274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6g). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3c
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图 6
赛默飞世尔 Aif1抗体(Thermo Scientific, PA5-27436)被用于被用于免疫印迹在大鼠样本上浓度为1:2400 (图 6). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5- 27436)被用于. J Neurosci (2015) ncbi
domestic goat 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5-18039)被用于. PLoS ONE (2015) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6h
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6h). Acta Neuropathol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7i
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3c
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1e
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1e). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals Aif1抗体(Wako, NB100-1028)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Mol Brain (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). J Neuropathol Exp Neurol (2016) ncbi
Synaptic Systems
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7j
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7j). Cell Rep (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
Synaptic Systems Aif1抗体(Synaptic Systems, 134 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Glia (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
GeneTex
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 s1d
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1d). J Neuroinflammation (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7i
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4e
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7i) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4d
GeneTex Aif1抗体(GeneTex, GTX100042)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4d). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a-c
GeneTex Aif1抗体(Gene Tex, GTX100042)被用于被用于免疫组化在小鼠样本上 (图 3a-c). Sci Rep (2016) ncbi
文章列表
  1. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  2. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  3. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  4. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  5. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  6. Cernit V, Sénécal J, Othman R, Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci. 2020;21: pubmed 出版商
  7. Dobolyi A, Bagó A, Palkovits M, Nemeria N, Jordan F, Doczi J, et al. Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Struct Funct. 2020;225:639-667 pubmed 出版商
  8. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  9. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  10. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  11. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  12. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  13. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  14. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  15. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  16. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  17. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  18. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  19. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  20. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  21. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  22. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  23. Rotoli D, Morales M, Maeso M, Avila J, Pérez Rodríguez N, Mobasheri A, et al. IQGAP1, AmotL2, and FKBP51 Scaffoldins in the Glioblastoma Microenvironment. J Histochem Cytochem. 2019;67:481-494 pubmed 出版商
  24. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  25. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  26. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  27. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  28. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  29. Huang W, Lin S, Chen H, Chen Y, Chen T, Hsu K, et al. NADPH oxidases as potential pharmacological targets against increased seizure susceptibility after systemic inflammation. J Neuroinflammation. 2018;15:140 pubmed 出版商
  30. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  31. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  32. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  33. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res. 2017;50:26 pubmed 出版商
  34. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  35. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  36. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  37. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  38. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  39. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  40. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  41. Xu J, Wang H, Won S, Basu J, Kapfhamer D, Swanson R. Microglial activation induced by the alarmin S100B is regulated by poly(ADP-ribose) polymerase-1. Glia. 2016;64:1869-78 pubmed 出版商
  42. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  43. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  44. Thakurela S, Garding A, Jung R, Müller C, Goebbels S, White R, et al. The transcriptome of mouse central nervous system myelin. Sci Rep. 2016;6:25828 pubmed 出版商
  45. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  46. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  47. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  48. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  49. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  50. Liu H, Shi H, Huang F, Peterson K, Wu H, Lan Y, et al. Astragaloside IV inhibits microglia activation via glucocorticoid receptor mediated signaling pathway. Sci Rep. 2016;6:19137 pubmed 出版商
  51. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  52. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  53. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  54. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  55. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  56. Kim S, Chung Y, Lee H, Chung S, Lee J, Sohn U, et al. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015;130:81-7 pubmed 出版商
  57. Åšlusarczyk J, Trojan E, GÅ‚ombik K, Budziszewska B, Kubera M, LasoÅ„ W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82 pubmed 出版商
  58. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  59. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  60. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  61. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  62. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  63. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  64. Dilworth J, Krueger S, Dabjan M, Grills I, Torma J, Wilson G, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control. Radiother Oncol. 2013;108:149-54 pubmed 出版商
  65. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  66. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  67. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  68. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  69. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商