这是一篇来自已证抗体库的有关大鼠 Aif1的综述,是根据110篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Aif1 抗体。
Aif1 同义词: BART-1; Bart1; iba1; mrf-1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 大鼠; 图 4c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在大鼠样本上 (图 4c). Redox Biol (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2a). Cancers (Basel) (2022) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1b, 1e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1b, 1e). Immunohorizons (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-自由浮动切片; 人类; 1:4000; 图 5d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab178846)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:4000 (图 5d). Front Neuroanat (2022) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 图 s3e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, EPR16589)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3e). Neoplasia (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 图 5d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5d). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3e, s3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3e, s3c). J Neuroinflammation (2022) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). Front Mol Neurosci (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 5e
  • 免疫印迹; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Cell Rep (2022) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5e). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3c). Brain Commun (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5e). Transl Vis Sci Technol (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 1f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, EPR16588)被用于被用于免疫组化在小鼠样本上 (图 1f). Sci Rep (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5b). PLoS ONE (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:100; 图 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上 (图 3b). Wellcome Open Res (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab221790)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2c). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s2c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s2c). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 178847)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4a). J Clin Invest (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化; 小鼠; 图 3e
  • 免疫印迹; 小鼠; 图 3f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化在小鼠样本上 (图 3e) 和 被用于免疫印迹在小鼠样本上 (图 3f). Transl Psychiatry (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4e). PLoS Pathog (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4m
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4m). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7e
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7e). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 小鼠; 1:8000; 图 3d
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:8000 (图 3d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫印迹; 小鼠; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫印迹在小鼠样本上 (图 10a). Neurochem Res (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫细胞化学; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Neuron (2020) ncbi
  • 免疫印迹; 大鼠; 1:1000; 图 3h
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab108539)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3h). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化; 小鼠; 1:8000; 图 1, 2a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 1, 2a). JCI Insight (2020) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-冰冻切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5c). Neuropharmacology (2020) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3g). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(EPR16588)
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178846)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
domestic rabbit 单克隆(EPR16589)
  • 免疫组化-石蜡切片; 大鼠; 1:8000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab178847)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:8000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Biol Res (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st9
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st9
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st9), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st9) 和 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st9). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 人类; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s3b). Mol Psychiatry (2017) ncbi
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab108539)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 大鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab-15690)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (表 1). Brain Res Bull (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 s3
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 s3). EMBO Rep (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, 1022?C5)被用于被用于免疫印迹在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上. Life Sci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:200; 图 s10a
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s10a). Nat Neurosci (2014) ncbi
小鼠 单克隆(1022-5)
  • 酶联免疫吸附测定; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于酶联免疫吸附测定在小鼠样本上浓度为1:100. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Radiother Oncol (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, Ab15690)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurotrauma (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000. PLoS ONE (2012) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Aif1抗体(Abcam, ab15690)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Cell Mol Neurobiol (2013) ncbi
Novus Biologicals
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s2a
  • 免疫印迹; 小鼠; 1:1000; 图 2n
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2n). Acta Neuropathol Commun (2022) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5a). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 多克隆(10C3)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 6c, 6d
Novus Biologicals Aif1抗体(Novus, NBP2-19019)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 6c, 6d). Brain Behav (2022) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3a
Novus Biologicals Aif1抗体(Novus Biologicals, NB100-1028)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3a). Front Pharmacol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 人类; 1:500; 图 1a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1a). Nat Immunol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:200; 图 3b
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 3b). Mol Med (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
Novus Biologicals Aif1抗体(Novus, nb100-102)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Aging Dis (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). Sci Rep (2021) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
Novus Biologicals Aif1抗体(Novusbio, NB100-1028)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Theranostics (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1f
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1f). Sci Adv (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 6h
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 6h). Acta Neuropathol (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3d
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3d). Nature (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:100; 图 7i
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7i). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
Novus Biologicals Aif1抗体(Novus Biological, NB100-1028)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Cell Stem Cell (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 3c
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2018) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:50; 图 s1e
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 s1e). Cell Death Differ (2018) ncbi
domestic goat 多克隆
  • 免疫印迹; 小鼠; 1:300
Novus Biologicals Aif1抗体(Wako, NB100-1028)被用于被用于免疫印迹在小鼠样本上浓度为1:300. Mol Brain (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 6a
Novus Biologicals Aif1抗体(Novus, NB100-1028)被用于被用于免疫组化在小鼠样本上 (图 6a). J Neuropathol Exp Neurol (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1e
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1e). iScience (2022) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化; 小鼠; 1:500; 图 s7d
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s7d). Front Endocrinol (Lausanne) (2021) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology, sc- 32725)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Int J Mol Sci (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Aif1抗体(Santa, sc-32,725)被用于被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(1022-5)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
圣克鲁斯生物技术 Aif1抗体(Santa Cruz Biotechnology Inc, sc-32,725)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). J Neuroinflammation (2018) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 表 1
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-1022-5)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (表 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Mol Brain (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫细胞化学; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫细胞化学在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, sc-32725)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(1022-5)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2
  • 免疫组化; 小鼠; 1:10; 图 6
圣克鲁斯生物技术 Aif1抗体(Santa Cruz, SC-32725)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2) 和 被用于免疫组化在小鼠样本上浓度为1:10 (图 6). J Neuroinflammation (2010) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 2a
赛默飞世尔 Aif1抗体(Invitrogen, PA5-27436)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 2a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:1000; 图 6d
赛默飞世尔 Aif1抗体(ThermoFisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 6d). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:75; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛默飞世尔 Aif1抗体(Thermo Fisher, PAS-27436)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4d
赛默飞世尔 Aif1抗体(Thermofisher, PA5-27436)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4d). Nutrients (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 大鼠; 1:200; 图 8c
  • 免疫印迹; 大鼠; 图 8a
赛默飞世尔 Aif1抗体(Thermofisher, MA5-27726)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8c) 和 被用于免疫印迹在大鼠样本上 (图 8a). Biomolecules (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 大鼠; 图 6d1
赛默飞世尔 Aif1抗体(TermoFisher, MA5-27726)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 6d1). Int J Mol Sci (2020) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 6i
赛默飞世尔 Aif1抗体(Thermo Fisher, PA5-18039)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 6i). Eneuro (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 6g
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5?C21274)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 6g). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 3c
赛默飞世尔 Aif1抗体(Invitrogen, PA5-21274)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3c). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2400; 图 6
赛默飞世尔 Aif1抗体(Thermo Scientific, PA5-27436)被用于被用于免疫印迹在大鼠样本上浓度为1:2400 (图 6). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5- 27436)被用于. J Neurosci (2015) ncbi
domestic goat 多克隆
赛默飞世尔 Aif1抗体(Thermo Fisher Scientific, PA5-18039)被用于. PLoS ONE (2015) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:800; 图 s9c
Synaptic Systems Aif1抗体(Synaptic systems, 234004)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:800 (图 s9c). Nat Commun (2022) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4a
  • 免疫组化; 小鼠; 1:1000; 图 s1c
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1c). Sci Adv (2022) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 5a
Synaptic Systems Aif1抗体(Synaptic system, 234004)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). Sci Adv (2022) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a
Synaptic Systems Aif1抗体(Synaptic Systems, 234-004)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). EMBO J (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3e
Synaptic Systems Aif1抗体(Synaptic Systems, 234 003)被用于被用于免疫印迹在小鼠样本上 (图 s3e). Cell Metab (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 7g
Synaptic Systems Aif1抗体(Synaptic systems, 234004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 7g). J Alzheimers Dis (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 1
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上 (图 1). Neurotrauma Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 7j
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 7j). Cell Rep (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4c
Synaptic Systems Aif1抗体(Synaptic Systems, 134 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4c). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3f
Synaptic Systems Aif1抗体(Synaptic Systems, 234006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3f). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
Synaptic Systems Aif1抗体(Synaptic Systems, 234003)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). Glia (2019) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 6
Synaptic Systems Aif1抗体(Synaptic Systems, 234004)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 1:1000; 图 3d
西格玛奥德里奇 Aif1抗体(Sigma-Aldrich, SAB2702364)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3d). elife (2020) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化; 小鼠; 图 7a
西格玛奥德里奇 Aif1抗体(Sigma, SAB2702364)被用于被用于免疫组化在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
小鼠 单克隆(GT10312)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5c
西格玛奥德里奇 Aif1抗体(Sigma, SAB2702364)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5c). Front Aging Neurosci (2019) ncbi
文章列表
  1. Mart xed nez Vacas A, Di Pierdomenico J, Gallego Ortega A, Valiente Soriano F, Vidal Sanz M, Picaud S, et al. Systemic taurine treatment affords functional and morphological neuroprotection of photoreceptors and restores retinal pigment epithelium function in RCS rats. Redox Biol. 2022;57:102506 pubmed 出版商
  2. Hopkins J, Asada K, Leung A, Papadaki V, Davaapil H, Morrison M, et al. PRELP Regulates Cell-Cell Adhesion and EMT and Inhibits Retinoblastoma Progression. Cancers (Basel). 2022;14: pubmed 出版商
  3. O Shea T, Ao Y, Wang S, Wollenberg A, Kim J, Ramos Espinoza R, et al. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun. 2022;13:5702 pubmed 出版商
  4. Welch G, Boix C, Schmauch E, Davila Velderrain J, Victor M, Dileep V, et al. Neurons burdened by DNA double-strand breaks incite microglia activation through antiviral-like signaling in neurodegeneration. Sci Adv. 2022;8:eabo4662 pubmed 出版商
  5. Shi H, Yin Z, Koronyo Y, Fuchs D, Sheyn J, Davis M, et al. Regulating microglial miR-155 transcriptional phenotype alleviates Alzheimer's-induced retinal vasculopathy by limiting Clec7a/Galectin-3+ neurodegenerative microglia. Acta Neuropathol Commun. 2022;10:136 pubmed 出版商
  6. Philpott J, Kazimierczyk S, Korgaonkar P, Bordt E, Zois J, Vasudevan C, et al. RXRα Regulates the Development of Resident Tissue Macrophages. Immunohorizons. 2022;6:366-372 pubmed 出版商
  7. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  8. Yu D, Li T, Delpech J, Zhu B, Kishore P, Koshi T, et al. Microglial GPR56 is the molecular target of maternal immune activation-induced parvalbumin-positive interneuron deficits. Sci Adv. 2022;8:eabm2545 pubmed 出版商
  9. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  10. Haddock S, Alban T, Turcan S, Husic H, Rosiek E, Ma X, et al. Phenotypic and molecular states of IDH1 mutation-induced CD24-positive glioma stem-like cells. Neoplasia. 2022;28:100790 pubmed 出版商
  11. Zhao Q, Dai W, Chen H, Jacobs R, Zlokovic B, Lund B, et al. Prenatal disruption of blood-brain barrier formation via cyclooxygenase activation leads to lifelong brain inflammation. Proc Natl Acad Sci U S A. 2022;119:e2113310119 pubmed 出版商
  12. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  13. Ma N, Li G, Fu X. Protective role of activating transcription factor 3 against neuronal damage in rats with cerebral ischemia. Brain Behav. 2022;12:e2522 pubmed 出版商
  14. Cui H, Liu F, Fang Y, Wang T, Yuan B, Ma C. Neuronal FcεRIα directly mediates ocular itch via IgE-immune complex in a mouse model of allergic conjunctivitis. J Neuroinflammation. 2022;19:55 pubmed 出版商
  15. Li S, Colson T, Abd Elrahman K, Ferguson S. Metabotropic Glutamate Receptor 5 Antagonism Reduces Pathology and Differentially Improves Symptoms in Male and Female Heterozygous zQ175 Huntington's Mice. Front Mol Neurosci. 2022;15:801757 pubmed 出版商
  16. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  17. Kim J, Ahn M, Choi Y, Chun J, Jung K, Tanaka A, et al. Osteopontin is a biomarker for early autoimmune uveoretinitis. Neural Regen Res. 2022;17:1604-1608 pubmed 出版商
  18. Chandrasekaran S, Espeso Gil S, Loh Y, Javidfar B, Kassim B, Zhu Y, et al. Neuron-specific chromosomal megadomain organization is adaptive to recent retrotransposon expansions. Nat Commun. 2021;12:7243 pubmed 出版商
  19. Yu S, Cheng L, Tian D, Li Z, Yao F, Luo Y, et al. Fascin-1 is Highly Expressed Specifically in Microglia After Spinal Cord Injury and Regulates Microglial Migration. Front Pharmacol. 2021;12:729524 pubmed 出版商
  20. Kuo P, Weng W, Scofield B, Furnas D, Paraiso H, Yu I, et al. Immunoresponsive gene 1 modulates the severity of brain injury in cerebral ischaemia. Brain Commun. 2021;3:fcab187 pubmed 出版商
  21. Zhang D, Yamaguchi S, Zhang X, Yang B, Kurooka N, Sugawara R, et al. Upregulation of Mir342 in Diet-Induced Obesity Mouse and the Hypothalamic Appetite Control. Front Endocrinol (Lausanne). 2021;12:727915 pubmed 出版商
  22. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  23. Droho S, Cuda C, Perlman H, Lavine J. Macrophage-derived interleukin-6 is necessary and sufficient for choroidal angiogenesis. Sci Rep. 2021;11:18084 pubmed 出版商
  24. Hülskötter K, Luhder F, Flügel A, Herder V, Baumgartner W. Tamoxifen Application Is Associated with Transiently Increased Loss of Hippocampal Neurons following Virus Infection. Int J Mol Sci. 2021;22: pubmed 出版商
  25. Kuroda R, Tominaga K, Kasashima K, Kuroiwa K, Sakashita E, Hayakawa H, et al. Loss of mitochondrial transcription factor A in neural stem cells leads to immature brain development and triggers the activation of the integral stress response in vivo. PLoS ONE. 2021;16:e0255355 pubmed 出版商
  26. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  27. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  28. Ramaglia V, Dubey M, Malpede M, Petersen N, de Vries S, Ahmed S, et al. Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory. Acta Neuropathol. 2021;142:643-667 pubmed 出版商
  29. Liu W, Rohlman A, Vetreno R, Crews F. Expression of Oligodendrocyte and Oligoprogenitor Cell Proteins in Frontal Cortical White and Gray Matter: Impact of Adolescent Development and Ethanol Exposure. Front Pharmacol. 2021;12:651418 pubmed 出版商
  30. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  31. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  32. Huang Y, Happonen K, Burrola P, O Connor C, Hah N, Huang L, et al. Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol. 2021;22:586-594 pubmed 出版商
  33. Xu H, Wang Y, Luo Y. OTULIN is a new target of EA treatment in the alleviation of brain injury and glial cell activation via suppression of the NF-κB signalling pathway in acute ischaemic stroke rats. Mol Med. 2021;27:37 pubmed 出版商
  34. Zheng W, Zhao D, Zhang H, Chinnasamy P, SIBINGA N, Pollard J. Induction of interferon signaling and allograft inflammatory factor 1 in macrophages in a mouse model of breast cancer metastases. Wellcome Open Res. 2021;6:52 pubmed 出版商
  35. Saunders D, Aamodt K, Richardson T, Hopkirk A, Aramandla R, Poffenberger G, et al. Coordinated interactions between endothelial cells and macrophages in the islet microenvironment promote β cell regeneration. NPJ Regen Med. 2021;6:22 pubmed 出版商
  36. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  37. Liu X, Wang Q, Yang Y, Stewart T, Shi M, Soltys D, et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. Acta Neuropathol Commun. 2021;9:37 pubmed 出版商
  38. Hinteregger B, Loeffler T, Flunkert S, Neddens J, Bayer T, Madl T, et al. Metabolic, Phenotypic, and Neuropathological Characterization of the Tg4-42 Mouse Model for Alzheimer's Disease. J Alzheimers Dis. 2021;80:1151-1168 pubmed 出版商
  39. Ping S, Qiu X, Kyle M, Zhao L. Brain-derived CCR5 Contributes to Neuroprotection and Brain Repair after Experimental Stroke. Aging Dis. 2021;12:72-92 pubmed 出版商
  40. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  41. Li Z, Song Y, He T, Wen R, Li Y, Chen T, et al. M2 microglial small extracellular vesicles reduce glial scar formation via the miR-124/STAT3 pathway after ischemic stroke in mice. Theranostics. 2021;11:1232-1248 pubmed 出版商
  42. Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, et al. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci. 2020;21: pubmed 出版商
  43. Zhang X, Wang R, Hu D, Sun X, Fujioka H, Lundberg K, et al. Oligodendroglial glycolytic stress triggers inflammasome activation and neuropathology in Alzheimer's disease. Sci Adv. 2020;6: pubmed 出版商
  44. Vita S, Redell J, Maynard M, Zhao J, Grill R, Dash P, et al. P-glycoprotein Expression Is Upregulated in a Pre-Clinical Model of Traumatic Brain Injury. Neurotrauma Rep. 2020;1:207-217 pubmed 出版商
  45. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  46. Cignarella F, Filipello F, Bollman B, Cantoni C, Locca A, Mikesell R, et al. TREM2 activation on microglia promotes myelin debris clearance and remyelination in a model of multiple sclerosis. Acta Neuropathol. 2020;140:513-534 pubmed 出版商
  47. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  48. Kukharsky M, Ninkina N, An H, Telezhkin V, Wei W, Meritens C, et al. Long non-coding RNA Neat1 regulates adaptive behavioural response to stress in mice. Transl Psychiatry. 2020;10:171 pubmed 出版商
  49. Tomassoni D, Martinelli I, Moruzzi M, Micioni Di Bonaventura M, Cifani C, Amenta F, et al. Obesity and Age-Related Changes in the Brain of the Zucker Lepr fa/fa Rats. Nutrients. 2020;12: pubmed 出版商
  50. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  51. Doll J, Hoebe K, Thompson R, Sawtell N. Resolution of herpes simplex virus reactivation in vivo results in neuronal destruction. PLoS Pathog. 2020;16:e1008296 pubmed 出版商
  52. Merlo S, Luaces J, Spampinato S, Toro Urrego N, Caruso G, D Amico F, et al. SIRT1 Mediates Melatonin's Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence. Biomolecules. 2020;10: pubmed 出版商
  53. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  54. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  55. Cernit V, Sénécal J, Othman R, Couture R. Reciprocal Regulatory Interaction between TRPV1 and Kinin B1 Receptor in a Rat Neuropathic Pain Model. Int J Mol Sci. 2020;21: pubmed 出版商
  56. Wang T, Wu C, Ouzounov D, Gu W, Xia F, Kim M, et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. elife. 2020;9: pubmed 出版商
  57. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  58. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  59. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  60. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  61. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  62. Giridharan V, Collodel A, Generoso J, Scaini G, Wassather R, Selvaraj S, et al. Neuroinflammation trajectories precede cognitive impairment after experimental meningitis-evidence from an in vivo PET study. J Neuroinflammation. 2020;17:5 pubmed 出版商
  63. Robison L, Albert N, Camargo L, Anderson B, Salinero A, Riccio D, et al. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. Eneuro. 2020;7: pubmed 出版商
  64. Ward L, Lee D, Sharma A, Wang A, Naouar I, Ma X, et al. Siponimod therapy implicates Th17 cells in a preclinical model of subpial cortical injury. JCI Insight. 2020;5: pubmed 出版商
  65. Wang X, Chang Y, He Y, Lyu C, Li H, Zhu J, et al. Glimepiride and glibenclamide have comparable efficacy in treating acute ischemic stroke in mice. Neuropharmacology. 2020;162:107845 pubmed 出版商
  66. Feng Y, Feng F, Zheng C, Zhou Z, Jiang M, Liu Z, et al. Tanshinone IIA attenuates demyelination and promotes remyelination in A. cantonensis-infected BALB/c mice. Int J Biol Sci. 2019;15:2211-2223 pubmed 出版商
  67. Yagensky O, Kohansal Nodehi M, Gunaseelan S, Rabe T, Zafar S, Zerr I, et al. Increased expression of heme-binding protein 1 early in Alzheimer's disease is linked to neurotoxicity. elife. 2019;8: pubmed 出版商
  68. Dulken B, Buckley M, Navarro Negredo P, Saligrama N, Cayrol R, Leeman D, et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature. 2019;571:205-210 pubmed 出版商
  69. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  70. Garcia Agudo L, Janova H, Sendler L, Arinrad S, Steixner A, Hassouna I, et al. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion. FASEB J. 2019;33:8634-8647 pubmed 出版商
  71. Zhang X, He Q, Huang T, Zhao N, Liang F, Xu B, et al. Treadmill Exercise Decreases Aβ Deposition and Counteracts Cognitive Decline in APP/PS1 Mice, Possibly via Hippocampal Microglia Modifications. Front Aging Neurosci. 2019;11:78 pubmed 出版商
  72. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  73. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  74. Düsedau H, Kleveman J, Figueiredo C, Biswas A, Steffen J, Kliche S, et al. p75NTR regulates brain mononuclear cell function and neuronal structure in Toxoplasma infection-induced neuroinflammation. Glia. 2019;67:193-211 pubmed 出版商
  75. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  76. Han L, Wang L, Tang S, Yuan L, Wu S, Du X, et al. ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation. 2018;15:246 pubmed 出版商
  77. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  78. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  79. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  80. Zhang L, Tan J, Jiang X, Qian W, Yang T, Sun X, et al. Neuron-derived CCL2 contributes to microglia activation and neurological decline in hepatic encephalopathy. Biol Res. 2017;50:26 pubmed 出版商
  81. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  82. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  83. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  84. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  85. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  86. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  87. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  88. Fan J, Fan X, Li Y, Guo J, Xia D, Ding L, et al. Blunted inflammation mediated by NF-κB activation in hippocampus alleviates chronic normobaric hypoxia-induced anxiety-like behavior in rats. Brain Res Bull. 2016;122:54-61 pubmed 出版商
  89. Loewen J, Barker Haliski M, Dahle E, White H, Wilcox K. Neuronal Injury, Gliosis, and Glial Proliferation in Two Models of Temporal Lobe Epilepsy. J Neuropathol Exp Neurol. 2016;75:366-78 pubmed 出版商
  90. Maeda S, Djukic B, Taneja P, Yu G, Lo I, Davis A, et al. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice. EMBO Rep. 2016;17:530-51 pubmed 出版商
  91. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  92. Ostapchenko V, Chen M, Guzman M, Xie Y, Lavine N, Fan J, et al. The Transient Receptor Potential Melastatin 2 (TRPM2) Channel Contributes to β-Amyloid Oligomer-Related Neurotoxicity and Memory Impairment. J Neurosci. 2015;35:15157-69 pubmed 出版商
  93. Gatticchi L, Bellezza I, Del Sordo R, Peirce M, Sidoni A, Roberti R, et al. The Tm7sf2 Gene Deficiency Protects Mice against Endotoxin-Induced Acute Kidney Injury. PLoS ONE. 2015;10:e0141885 pubmed 出版商
  94. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  95. Lutzenberger M, Burwinkel M, Riemer C, Bode V, Baier M. Ablation of CCAAT/Enhancer-Binding Protein Delta (C/EBPD): Increased Plaque Burden in a Murine Alzheimer's Disease Model. PLoS ONE. 2015;10:e0134228 pubmed 出版商
  96. Rolón Reyes K, Kucheryavykh Y, Cubano L, Inyushin M, Skatchkov S, Eaton M, et al. Microglia Activate Migration of Glioma Cells through a Pyk2 Intracellular Pathway. PLoS ONE. 2015;10:e0131059 pubmed 出版商
  97. Kim S, Chung Y, Lee H, Chung S, Lee J, Sohn U, et al. Protective effects of phosphatidylcholine on oxaliplatin-induced neuropathy in rats. Life Sci. 2015;130:81-7 pubmed 出版商
  98. Åšlusarczyk J, Trojan E, GÅ‚ombik K, Budziszewska B, Kubera M, LasoÅ„ W, et al. Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells. Front Cell Neurosci. 2015;9:82 pubmed 出版商
  99. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  100. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  101. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  102. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  103. Tan M, Yu J, Jiang T, Zhu X, Guan H, Tan L. IL12/23 p40 inhibition ameliorates Alzheimer's disease-associated neuropathology and spatial memory in SAMP8 mice. J Alzheimers Dis. 2014;38:633-46 pubmed 出版商
  104. Savard A, Lavoie K, Brochu M, Grbic D, Lepage M, Gris D, et al. Involvement of neuronal IL-1? in acquired brain lesions in a rat model of neonatal encephalopathy. J Neuroinflammation. 2013;10:110 pubmed 出版商
  105. Dilworth J, Krueger S, Dabjan M, Grills I, Torma J, Wilson G, et al. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control. Radiother Oncol. 2013;108:149-54 pubmed 出版商
  106. Harris N, Nogueira M, Verley D, Sutton R. Chondroitinase enhances cortical map plasticity and increases functionally active sprouting axons after brain injury. J Neurotrauma. 2013;30:1257-69 pubmed 出版商
  107. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  108. Cao L, Li L, Lin D, Zuo Z. Isoflurane induces learning impairment that is mediated by interleukin 1? in rodents. PLoS ONE. 2012;7:e51431 pubmed 出版商
  109. Zhu X, Huang C, Li Q, Guo Q, Wang Y, He X, et al. Temporal distribution of p300/CBP immunoreactivity in the adult rat spinal dorsal horn following chronic constriction injury (CCI). Cell Mol Neurobiol. 2013;33:197-204 pubmed 出版商
  110. Roltsch E, Holcomb L, Young K, Marks A, Zimmer D. PSAPP mice exhibit regionally selective reductions in gliosis and plaque deposition in response to S100B ablation. J Neuroinflammation. 2010;7:78 pubmed 出版商