这是一篇来自已证抗体库的有关大鼠 Akt1的综述,是根据1701篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Akt1 抗体。
Akt1 同义词: Akt

圣克鲁斯生物技术
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:3000; 图 1a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1a). Sci Rep (2021) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:2000; 图 1d
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Bioeng Transl Med (2021) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:100; 图 7i
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:500; 图 7i
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7i). Cancers (Basel) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-514032)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图 5c
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotech, sc-5298)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Death Dis (2020) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 人类; 1:500; 图 3a
圣克鲁斯生物技术 Akt1抗体(Santa, sc-271149)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Theranostics (2020) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 7a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Akt1抗体(Santa, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Akt1抗体(Santa, sc-514032)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Akt1抗体(Santa, sc-5298)被用于被用于免疫印迹在人类样本上 (图 3b). Cells (2019) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Anal Cell Pathol (Amst) (2019) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 Akt1抗体(Santa, sc-5298)被用于被用于免疫印迹在大鼠样本上 (图 3c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图 5k, 5m
  • 免疫沉淀; 人类; 图 5i
  • 免疫印迹; 人类; 图 5i
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在小鼠样本上 (图 5k, 5m), 被用于免疫沉淀在人类样本上 (图 5i) 和 被用于免疫印迹在人类样本上 (图 5i). Cell Death Differ (2018) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-55523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(B-1)
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于. Front Immunol (2018) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2017) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Transl Res (2017) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 s6o
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, B-1)被用于被用于免疫印迹在人类样本上 (图 s6o). Nature (2017) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(5c10)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81434)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(11E6)
  • 其他; 大鼠; 图 1
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81433)被用于被用于其他在大鼠样本上 (图 1). Sci Rep (2017) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000; 图 4d
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Oncol Lett (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:3000; 图 6a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6a). Oncogene (2017) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 小鼠; 1:500; 图 7b
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-293125)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). Exp Ther Med (2016) ncbi
小鼠 单克隆(F-8)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-271149)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Oncol Lett (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS ONE (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 Akt1抗体(santa Cruz, Sc5298)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Akt1抗体(SantaCruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Chemother Pharmacol (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-55523)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81434)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 1:2500; 图 6
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-293125)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, 11E6)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-293125)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(11E6)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-81433)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-55523)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:200; 图 5b
圣克鲁斯生物技术 Akt1抗体(SantaCruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5b). Oncotarget (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(7)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-135829)被用于被用于免疫印迹在大鼠样本上 (图 8a). Int J Mol Med (2016) ncbi
小鼠 单克隆(5.Ser 473)
  • 免疫印迹; 大鼠; 图 8a
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-293125)被用于被用于免疫印迹在大鼠样本上 (图 8a). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 8
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, B-1)被用于被用于免疫印迹在人类样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图 8
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Biol Cell (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:10,000; 图 4c
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4c). Oncoscience (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc5298)被用于被用于免疫印迹在大鼠样本上浓度为1:500. An Acad Bras Cienc (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Differ (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 1:500; 图 4
圣克鲁斯生物技术 Akt1抗体(santa Cruz, Sc5298)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Int J Biol Sci (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上. Colloids Surf B Biointerfaces (2015) ncbi
小鼠 单克隆(5c10)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-81434)被用于被用于免疫印迹在大鼠样本上浓度为1:500. World J Gastroenterol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Lett (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, SC5298)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Dis (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnologies, sc-5298)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Blood (2015) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, B1)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹基因敲除验证; 人类; 图 5
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc55523)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-55523)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上. Anat Rec (Hoboken) (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹基因敲除验证; 人类; 图 1
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc55523)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1). Tumour Biol (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Akt1抗体(Santa Cruz, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS J (2014) ncbi
小鼠 单克隆(B-1)
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术 Akt1抗体(Santa Cruz Biotechnology, sc-5298)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Tumour Biol (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a). Int J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上 (图 7d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上 (图 7d). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 1:3000
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上浓度为1:3000. Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在大鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(EPR6150)
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab133458)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50; 图 s1d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, 38449)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s1d). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2500; 图 9a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 9a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9c
  • 免疫印迹; 小鼠; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7c
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫组化在小鼠样本上 (图 7c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6a). Drug Des Devel Ther (2021) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 大鼠; 图 6b
  • 免疫印迹; 大鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫组化在大鼠样本上 (图 6b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Prolif (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:500; 图 8c, 8d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:500 (图 8c, 8d). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; domestic rabbit; 1:1000; 图 8c, 8d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 8c, 8d). Invest Ophthalmol Vis Sci (2020) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 1:5000; 图 4a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4a). Cancer Manag Res (2020) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 1:1000; 图 6c
艾博抗(上海)贸易有限公司 Akt1抗体(AbCam, ab81283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(EPR6150)
  • 免疫印迹; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, EPR6150)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Cells (2020) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 图 6j
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在小鼠样本上 (图 6j). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6j
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在小鼠样本上 (图 6j). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, Cambridge, England, ab81283)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Integr Cancer Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, Cambridge, England, ab8805)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Integr Cancer Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a, 7b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a, 7b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a, 7b). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a, 6e
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a, 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a, 6e
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a, 6e). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4c, 5d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c, 5d). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab106693)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上 (图 6a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上 (图 6a). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). BMC Complement Altern Med (2019) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 图 7a, 7b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上 (图 7a, 7b). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 5a
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR6150)
  • 免疫印迹; 人类; 图 s4b
  • 免疫印迹; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, 133458)被用于被用于免疫印迹在人类样本上 (图 s4b) 和 被用于免疫印迹在小鼠样本上 (图 3c). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Physiol Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Physiol Biochem (2018) ncbi
domestic rabbit 单克隆(EPR17062)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab182729)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 1:5000; 图 s1c
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s1c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(EPR17062)
  • 免疫印迹; 小鼠; 1:1000; 图 11a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab182729)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Int J Mol Med (2018) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Am J Transl Res (2018) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫组化在小鼠样本上 (图 5b). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 1:1200; 图 2e
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1200 (图 2e). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab38449)被用于被用于免疫印迹在人类样本上 (图 5d). Lab Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在人类样本上 (图 5d). Lab Invest (2017) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 大鼠; 1:2000; 图 2a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2a). Biomed Res Int (2017) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Akt1抗体(abcam, ab81283)被用于被用于免疫印迹在人类样本上 (图 4a). Onco Targets Ther (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, EP2109Y)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 S1b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在小鼠样本上 (图 S1b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 图 S1b
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在小鼠样本上 (图 S1b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EPR6150)
  • 免疫印迹; 人类; 1:2000; 图 3a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab133458)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Med Sci Monit (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 流式细胞仪; 人类; 图 1e
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于流式细胞仪在人类样本上 (图 1e). Cell Rep (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 人类; 图 6
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, EP2109Y)被用于被用于免疫组化在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1500; 图 2k
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab28422)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 2k). Antioxid Redox Signal (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, EP2109Y)被用于被用于免疫印迹在小鼠样本上 (图 1). Iran J Basic Med Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab8805)被用于被用于免疫印迹在小鼠样本上 (图 1). Iran J Basic Med Sci (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于. Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Akt1抗体(Epitomics, 2118-S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, EP2109Y)被用于被用于免疫组化在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(EP2109Y)
  • 免疫组化; 小鼠; 1:100; 图 3
艾博抗(上海)贸易有限公司 Akt1抗体(Abcam, ab81283)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 3). Mol Cancer Res (2015) ncbi
赛默飞世尔
domestic rabbit 单克隆(J.314.4)
  • 免疫印迹; 大鼠; 图 3d
赛默飞世尔 Akt1抗体(ThermoFisher, MA5-14916)被用于被用于免疫印迹在大鼠样本上 (图 3d). Molecules (2019) ncbi
domestic rabbit 单克隆(G.145.7)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔 Akt1抗体(Thermo Fisher Scientific, MA5-14898)被用于被用于免疫印迹在大鼠样本上 (图 3a). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 Akt1抗体(Thermo Scientific, PA1-22099)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛默飞世尔 Akt1抗体(Invitrogen, PA5-36780)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). J Mol Neurosci (2017) ncbi
小鼠 单克隆(9Q7)
  • 免疫印迹; 小鼠; 图 2c
  • 免疫印迹; 人类; 图 s1a
赛默飞世尔 Akt1抗体(Invitrogen, AH01112)被用于被用于免疫印迹在小鼠样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 s1a). Oncogenesis (2016) ncbi
小鼠 单克隆(9Q7)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛默飞世尔 Akt1抗体(Invitrogen, AHO1112)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Chem Biol (2016) ncbi
Rockland Immunochemicals
小鼠 单克隆(14E5.16C8.25F6)
  • 免疫印迹; 人类; 1:1000; 图 1b
Rockland Immunochemicals Akt1抗体(Rockland, 200-301-401)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Cell Biosci (2017) ncbi
小鼠 单克隆(17F6.B11)
  • 免疫组化; 小鼠; 1:500; 图 6
Rockland Immunochemicals Akt1抗体(Rockland Immunochemicals, 200-301-268)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6). Fibrogenesis Tissue Repair (2012) ncbi
安迪生物R&D
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:400; 图 s3c
  • 免疫印迹; 大鼠; 图 s3a
安迪生物R&D Akt1抗体(R&D, AF887)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 s3c) 和 被用于免疫印迹在大鼠样本上 (图 s3a). J Neuroinflammation (2021) ncbi
Enzo Life Sciences
小鼠 单克隆(5c10)
  • 免疫印迹; 人类; 图 2
Enzo Life Sciences Akt1抗体(Enzo Life Sciences, 5c10)被用于被用于免疫印迹在人类样本上 (图 2). Oncol Rep (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a, 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7a, 7b). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4k
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4k). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:2000; 图 4k
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4k). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4). Cells (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, C67E7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 拟南芥; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在拟南芥样本上 (图 5c). Arthritis Res Ther (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s7d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s7d). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s7d). Dev Cell (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上 (图 7b). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 9a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 9a). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 9b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 9b). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 9b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 9b). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). NPJ Breast Cancer (2021) ncbi
小鼠 单克隆(L32A4)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 5106)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在大鼠样本上 (图 6b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上 (图 6b). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 2g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2g). Oncol Lett (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a, 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上 (图 6a, 6b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). J Cell Mol Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). elife (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). elife (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Dis Model Mech (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 斑马鱼; 1:100; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:100 (图 4e). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6d). elife (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 5b). Ther Adv Urol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2b). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 2b). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 4a
  • 免疫印迹; 小鼠; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). Front Pharmacol (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). J Lipid Res (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Sci Rep (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500. EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 1a
  • 免疫印迹; 人类; 1:500-1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 1a) 和 被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 s1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5d
  • 免疫印迹基因敲除验证; 人类; 1:2000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5d) 和 被用于免疫印迹基因敲除验证在人类样本上浓度为1:2000 (图 2b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 1f, 3g, 4j, 5l
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 3g, 4j, 5l). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 1f, 3g, 4j, 5l
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 3g, 4j, 5l). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 1f, 4j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1f, 4j). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 1f). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b, s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7b, s7a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b, s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 7b, s7a). iScience (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). Exp Ther Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹基因敲除验证; 人类; 1:200; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056S)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:200 (图 2d). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 10a). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 5a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3f). J Biomed Sci (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫组化-自由浮动切片; 人类; 1:100; 图 6
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 7a
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:100 (图 6), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cereb Cortex Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 af1a, af1b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 af1a, af1b). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technologies, 4691S)被用于被用于免疫印迹在人类样本上 (图 5d). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technologies, 2965S)被用于被用于免疫印迹在人类样本上 (图 5d). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:15,000; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:15,000 (图 8a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:14,000; 图 8b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:14,000 (图 8b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
  • 免疫印迹; 人类; 1:1000; 图 1h, 3g, 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1h, 3g, 4a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000; 图 1h, 3g, 4a
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h, 3g, 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1h, 3g, 4a
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h, 3g, 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Cachexia Sarcopenia Muscle (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2a). J Cachexia Sarcopenia Muscle (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 8d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 8d). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 8d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 8d). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 人类; 1:1000; 图 1n
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9018)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1n). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Death Discov (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Front Physiol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 5f). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5f). Cells (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在小鼠样本上 (图 1h). Sci Adv (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:3000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3a). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Life Sci Alliance (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3f). PLoS Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上 (图 6a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Metab (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 s5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 3787)被用于被用于免疫印迹在小鼠样本上 (图 s5d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s3e
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s3e) 和 被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Immunother Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). Neoplasia (2021) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3h). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncogene (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7a). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 1c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a, 8d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6a, 8d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a, 8d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a, 8d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:3000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1a, 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:3000; 图 1a, 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1a, 1b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1c). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1c
  • 免疫组化; 小鼠; 1:200; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 1c) 和 被用于免疫组化在小鼠样本上浓度为1:200 (图 3c). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4c, 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4c, 4h). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Theranostics (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:500; 图 s1d
  • 免疫印迹; 小鼠; 1:500; 图 s1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s1d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1d). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 6a). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2c). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938)被用于被用于免疫印迹在人类样本上 (图 5g). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1500; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3e). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上 (图 4d). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在人类样本上 (图 4d). Acta Neuropathol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5e). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 1i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1i). J Clin Invest (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:4000; 图 3c, 3f, 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 3c, 3f, 7e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 2g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2g). J Parkinsons Dis (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4c). J Biol Chem (2021) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2967)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Cell Death Discov (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060T)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 1:200; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 736 E11)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2f). Oncogene (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5c). Theranostics (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Theranostics (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 5c). Theranostics (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Cancer Genomics Proteomics (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5h). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Breast Cancer Res (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling technology, #4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). JCI Insight (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 s6a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938)被用于被用于免疫印迹在人类样本上 (图 1d). Genome Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a, 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6a, 6c). J Nutr Biochem (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Environ Health Perspect (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, #4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1a). Front Immunol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). FEBS Open Bio (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). FEBS Open Bio (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:200; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 1a). Sci Rep (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4
  • 免疫沉淀; 人类; 图 3a, 3b
  • 免疫印迹; 人类; 1:1000; 图 3a, 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4), 被用于免疫沉淀在人类样本上 (图 3a, 3b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a, 3b). Front Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Mol Neurosci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 s5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060s)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s5d). Stem Cell Reports (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:3000; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5d). iScience (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:100; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4e). J Exp Med (2021) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; marine lamprey; 1:1000; 图 7b
  • 免疫印迹; marine lamprey; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫组化-石蜡切片在marine lamprey样本上浓度为1:1000 (图 7b) 和 被用于免疫印迹在marine lamprey样本上浓度为1:1000 (图 6a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 6b, 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060L)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 6b, 7a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 7g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫组化在小鼠样本上 (图 7g). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在小鼠样本上 (图 7e). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 6c). J Cardiovasc Dev Dis (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s9b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Commun Biol (2021) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell Rep (2021) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). elife (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 1:100; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6b). elife (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1b). Science (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). EBioMedicine (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3g). Nature (2021) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 3s1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3s1e). elife (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3s1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technologies, C67E7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3s1e). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Discov (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3c). Cell Biosci (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3b, 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b, 3c). Cell Biosci (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 5a
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). elife (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 4j). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4j
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 4j). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 牛; 图 s2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在牛样本上 (图 s2b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060 and #9018)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Cell Rep (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3g). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3f). Front Oncol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060T)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Biol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d, 2e, 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 2e, 2f). Biotechnol Rep (Amst) (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 3d). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Front Oncol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6c). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 9018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). elife (2020) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 s4-2b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s4-2b). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7g). Diabetes (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 5s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5s2a). elife (2020) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4051)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Aging Cell (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nature (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). Cancers (Basel) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Genome Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). elife (2020) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:2000; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 5d). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s6c). Cell Rep (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 2a). Cell (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2c). elife (2020) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 s2g
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Sci Adv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上. Theranostics (2020) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 5g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 587F11)被用于被用于免疫印迹在人类样本上 (图 5g). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 4a). elife (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6d). Neuron (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6d). Neuron (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 3s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 3s3). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4e). Cancer Res (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2s2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2s2c). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9EXP)被用于被用于免疫印迹在人类样本上 (图 3h). Cells (2020) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 8a). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 猕猴; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 猕猴; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Biol Chem (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1h). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Theranostics (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691S)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Theranostics (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 s4a). Theranostics (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275)被用于被用于免疫印迹在大鼠样本上 (图 5c). Mol Cell Biol (2020) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹基因敲除验证; 大鼠; 图 6b
  • 免疫印迹; 大鼠; 图 6b
  • 免疫印迹基因敲除验证; 小鼠; 图 5a
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938)被用于被用于免疫印迹基因敲除验证在大鼠样本上 (图 6b), 被用于免疫印迹在大鼠样本上 (图 6b), 被用于免疫印迹基因敲除验证在小鼠样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5a). Mol Cell Biol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). EMBO Rep (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 8h
  • 免疫印迹; 小鼠; 1:200; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 8h) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 8a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4b, 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, 4d). Cell Div (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4b, 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b, 4d). Cell Div (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691T)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060T)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b1
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b1). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 1f). FASEB Bioadv (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8d). J Virol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1, 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies Inc., Danvers, MA, USA), #4060)被用于被用于免疫印迹在人类样本上 (图 1, 2). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e, 3c, 3d, 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1e, 3c, 3d, 4b). Mol Ther Oncolytics (2020) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d). Mol Ther Oncolytics (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4i). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3b, 6l
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3b, 6l). PLoS Biol (2020) ncbi
  • 免疫印迹; 小鼠; 图 3b, 6l
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 8200)被用于被用于免疫印迹在小鼠样本上 (图 3b, 6l). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Cell Neurosci (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:200; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6b). Cancer Cell Int (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, Danvers, MA, USA, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, Danvers, MA, USA, mAb #2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 7a). Int J Biol Sci (2020) ncbi
小鼠 单克隆(L32A4)
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 5106S)被用于被用于免疫印迹在小鼠样本上 (图 4f). Sci Transl Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s5). Arthritis Res Ther (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, #4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Eneuro (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, #4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Eneuro (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:200; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7). BMC Pregnancy Childbirth (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 7). BMC Pregnancy Childbirth (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4n, e9s
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 3787L)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4n, e9s). Nature (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4b). Pharmacol Res (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 犬; 1:2000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691s)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 3b). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1k
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1k). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a, 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, S473, 9271)被用于被用于免疫印迹在人类样本上 (图 4a, 4e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 7a
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 10a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:400; 图 1s1
  • 免疫印迹; 人类; 1:1000; 图 1s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). J Clin Med (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). elife (2020) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). elife (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 1:1000; 图 1i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signal Technology, 4691)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 1i). elife (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a, 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a, 2b). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 2a, 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 2a, 2b). J Exp Clin Cancer Res (2020) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6a). J Biomed Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 大鼠; 1:25; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, D9E)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:25 (图 s1a). Cancer Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 9a
  • 免疫印迹; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9a) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Int J Oncol (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:400; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 4a). Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Immunol (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Immunol (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 5d). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5b). J Cancer Res Clin Oncol (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 5b). J Cancer Res Clin Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5b). J Cancer Res Clin Oncol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3f). Sci Adv (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1c). J Biomed Sci (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1c). J Biomed Sci (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-冰冻切片; 斑马鱼; 1:200; 图 s6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:200 (图 s6d). PLoS Biol (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d, 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d, 5a). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). elife (2019) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 5c). BMC Cardiovasc Disord (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫沉淀; 人类; 图 3b
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫沉淀在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 6e). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 e6d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e6d). Nature (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:500; 图 e7j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 e7j). Nature (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6b-c, 6b-g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b-c, 6b-g). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上 (图 5d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Med (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s13h
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 s13h). Science (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Biol Chem (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4d
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; fruit fly ; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在fruit fly 样本上 (图 2a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在fruit fly 样本上 (图 2a). Cell Rep (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a, 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a, 3c). J Am Heart Assoc (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4bd
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4bd). J Proteomics (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 2a
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Science (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Science (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4g). Oncogene (2020) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 4g). Oncogene (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3s2b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 e6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 e6d). Nature (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 e6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 e6d). Nature (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 4051S)被用于被用于免疫印迹在人类样本上 (图 1a). Cells (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalin, 4060)被用于被用于免疫印迹在人类样本上 (图 s6a). Cell (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Metab (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Metab (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Nat Metab (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 e11-7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 e11-7d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:50; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 4g). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Biochem Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 单克隆(D9E)
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于. Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C6E7)被用于被用于免疫印迹在大鼠样本上 (图 5c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Stem Cells (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Anal Cell Pathol (Amst) (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Life Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4s2a). elife (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:3000; 图 2a, 2i, 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2a, 2i, 6d). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Mol Cancer Ther (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4d). Theranostics (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cardiovasc Diabetol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1g). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling technologies, 9271)被用于被用于免疫印迹在人类样本上 (图 10a). Front Genet (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1500; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 3a). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在大鼠样本上 (图 4c). Toxicology (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在大鼠样本上 (图 4c). Toxicology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271s)被用于被用于免疫印迹在牛样本上 (图 2c). Biomed Res Int (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Cancer Discov (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 牛; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在牛样本上 (图 1d). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1e). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2938)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6a). Nanomedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Breast Cancer Res (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051S)被用于被用于免疫印迹在小鼠样本上 (图 s1a). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275S)被用于被用于免疫印迹在小鼠样本上 (图 s1a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4c). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3c
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在人类样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2i
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 s2i) 和 被用于免疫印迹在小鼠样本上 (图 2e). Science (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Rep (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). EMBO Mol Med (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 图 1d
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在人类样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 1c). Front Immunol (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Carcinog (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 e2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2j). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s7). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6s1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s1c). elife (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6s1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6s1c). elife (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • mass cytometry; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1h, 4h, s2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1h, 4h, s2f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Immunity (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Immunity (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nature (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3f). Sci Rep (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2e). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3i). Am J Physiol Endocrinol Metab (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:5000; 图 s1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s1e). Science (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:4000; 图 s1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s1e). Science (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 12a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 12a). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3a). Nature (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 s18a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s18a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s18a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s18a). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6f
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 6f) 和 被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6b
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6f). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
  • 免疫印迹; 人类; 1:2000; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 s2a). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2l
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 2l). Theranostics (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2l
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上 (图 2l). Theranostics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Aging Cell (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6i). Aging Cell (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 4c). Nutrients (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 仓鼠; 1:2000; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在仓鼠样本上浓度为1:2000 (图 8a). J Gen Virol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 1b). BMC Med Genomics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5d). Evid Based Complement Alternat Med (2019) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于. Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 e7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 e7a). Nature (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2e
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2e) 和 被用于免疫印迹在小鼠样本上 (图 2d). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上 (图 2d). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 2d). Nat Cell Biol (2019) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 7c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 7c
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787)被用于被用于免疫印迹在小鼠样本上 (图 7c) 和 被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7c
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7c) 和 被用于免疫印迹在人类样本上 (图 2b). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3e). Oncogene (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 6d). Cell Chem Biol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hepatology (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hepatology (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s1d). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 6b). Cell Rep (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 6e). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 s2). Mol Oncol (2019) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Signal (2018) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:1000; 图 s9a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9a). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1c). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 7h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 7h). Oxid Med Cell Longev (2018) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在大鼠样本上 (图 2a). Oxid Med Cell Longev (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s6f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s6f). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 4e). J Mol Med (Berl) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 s5a). Oncogene (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 3b, 4f, 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b, 4f, 5f). Br J Pharmacol (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 3b, 4f, 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b, 4f, 5f). Br J Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 3a). Oncogene (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4c, s7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s4c, s7c). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 s7f). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s7f). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6c). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6c). Cancer Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1d
  • 免疫印迹; 小鼠; 图 3e, 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 3e, 4e). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
  • 免疫印迹; 大鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 8a). Redox Biol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Front Aging Neurosci (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:800; 图 s6a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 9271)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 s6a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 5k, 5m
  • 免疫印迹; 人类; 图 5q
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology., 2965 S)被用于被用于免疫印迹在小鼠样本上 (图 5k, 5m) 和 被用于免疫印迹在人类样本上 (图 5q). Cell Death Differ (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1b
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1b) 和 被用于免疫印迹在人类样本上 (图 s1c). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10c
  • 免疫印迹; 人类; 图 s10d, s10g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s10c) 和 被用于免疫印迹在人类样本上 (图 s10d, s10g). Science (2018) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2019) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5e). Oncogene (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 5012)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(cst, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5b). Blood (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Metab (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2019) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 2a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 7c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6c). J Autoimmun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). J Autoimmun (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6c). J Autoimmun (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 1:50; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(eBiosciences, D9E)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 6a). J Exp Med (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). EMBO J (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹基因敲除验证; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹基因敲除验证; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1a). BMC Cancer (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 8c). J Cell Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4b). Cell Physiol Biochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275s)被用于被用于免疫印迹在小鼠样本上 (图 s4c). PLoS Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271s)被用于被用于免疫印迹在小鼠样本上 (图 s4c). PLoS Biol (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7a). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 s1b). Autophagy (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nature (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 2d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a, s8h, s14e, s15f
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2a, s8h, s14e, s15f) 和 被用于免疫印迹在人类样本上 (图 4f). Nat Med (2018) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s17b
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6h, s14f, s15g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s17b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6h, s14f, s15g). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s4d). Cell Stem Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). FASEB J (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 7b1
  • 免疫印迹; 小鼠; 图 7b2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上 (图 7b1) 和 被用于免疫印迹在小鼠样本上 (图 7b2). Cell Death Differ (2019) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4b). EMBO J (2018) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018S)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3f). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5c). J Exp Med (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2f). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 1d). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(C31E5E)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3e). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Glia (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 9d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 9d). J Cell Biol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Biol Open (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cereb Cortex (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 5b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 s3b). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 7b
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7b) 和 被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s2d). Nature (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 3a). Immunol Cell Biol (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 s7d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 s7d). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3f). Nature (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3h, 3i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3h, 3i). J Exp Med (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6c). Neurobiol Dis (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s1j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s1j). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1a). Immunity (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7b). J Virol (2018) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Lipid Res (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Lipid Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5a). Immunity (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5a). Immunity (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1f). Autophagy (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2e). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(cst, 2938)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫细胞化学; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(cst, 9018)被用于被用于免疫细胞化学在小鼠样本上 (图 4f). Sci Rep (2017) ncbi
小鼠 单克隆(2H10)
  • 免疫细胞化学; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(cst, 2967)被用于被用于免疫细胞化学在小鼠样本上 (图 4f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691X)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). J Endocrinol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 s4a). Mol Biol Cell (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:3000; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4g). Diabetes (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Diabetes (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:3000; 图 4g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4g). Diabetes (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Cell Biol Int (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 4). Cell Biol Int (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s10c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 5m
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5m). Endocrinology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Nutr Biochem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Inflammation (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7b). Clin Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3d). Oncogene (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6h
  • 免疫印迹; 人类; 1:1000; 图 6h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 13e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 13e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3d
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 2b). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3d
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 3d) 和 被用于免疫印迹在小鼠样本上 (图 2b). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a, 4b
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 4a, 4b) 和 被用于免疫印迹在人类样本上 (图 4b). Oncogene (2018) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Clin Pharmacol Toxicol (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 s5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 s5c). Science (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275S)被用于被用于免疫印迹在人类样本上 (图 4a). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). DNA Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 9c). J Virol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 9c). J Virol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s5g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s5g). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s5g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s5g). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s10a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s10a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 s10a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3). Physiol Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Physiol Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 40602)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4b). Nat Genet (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Death Differ (2017) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056S)被用于被用于免疫印迹在人类样本上 (图 6a). Placenta (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2f). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). EMBO J (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 犬; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在犬样本上 (图 s3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在犬样本上 (图 s3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Oncol Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s5f). Nat Commun (2017) ncbi
小鼠 单克隆(L32A4)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 5106)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Sci Adv (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s10m
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s10m). Nature (2017) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4051S)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Res (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4056S)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Res (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Mol Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 1e). Mol Neurobiol (2018) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 1d
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1j). Nature (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1j
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1j) 和 被用于免疫印迹在人类样本上 (图 1d). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1j
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1j) 和 被用于免疫印迹在人类样本上 (图 1d). Nature (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1j). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在人类样本上 (图 1e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 斑马鱼; 图 3s1g
  • 免疫印迹; 斑马鱼; 图 3s1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在斑马鱼样本上 (图 3s1g) 和 被用于免疫印迹在斑马鱼样本上 (图 3s1e). elife (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5c). J Clin Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signal, 9271)被用于被用于免疫印迹在pigs 样本上 (图 5b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1k
  • 免疫印迹; fruit fly ; 图 1j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 1k) 和 被用于免疫印迹在fruit fly 样本上 (图 1j). Cell (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4b). elife (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4b). elife (2017) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化; 人类; 1:50; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 3787)被用于被用于免疫组化在人类样本上浓度为1:50 (图 7). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Cell Biochem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4a). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4a
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 2h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 2h). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3A). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Immunol Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 6f). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:500; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7b). elife (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Cancer Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Ther Nucleic Acids (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Mol Ther Nucleic Acids (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 7g
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 7b
  • 免疫组化; 人类; 图 5l
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 7b) 和 被用于免疫组化在人类样本上 (图 5l). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s7f
  • 免疫印迹; 人类; 图 2a, 3b, 3c, 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s7f) 和 被用于免疫印迹在人类样本上 (图 2a, 3b, 3c, 4a). Mol Cell (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1b). Sci Rep (2017) ncbi
小鼠 单克隆(40D4)
  • 免疫印迹; 大鼠; 1:1000; 图 5g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4298S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5g). Brain Behav Immun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4c
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4c) 和 被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275s)被用于被用于免疫印迹在小鼠样本上 (图 5a). Diabetes (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Signal (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 4c). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1d). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 13b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 13b). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s6). Metabolism (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biochem Pharmacol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 4691)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Biosci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Biosci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Theranostics (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 1a). EMBO J (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 5e). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Muscle Res Cell Motil (2017) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 5f). Br J Cancer (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4A). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4A). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s9e
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s9e) 和 被用于免疫印迹在人类样本上 (图 1a). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 s9e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 s9e). Nature (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s9a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s9a). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s9a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s9a). Nature (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 s5h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 s5h). Nature (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 s5h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 s5h). Nature (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). FASEB J (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6g). FASEB J (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS Pathog (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 s1a). Cell Death Differ (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 1h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). FASEB J (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6e). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 s9a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 s2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787S)被用于被用于免疫印迹在人类样本上 (图 s2f). Nature (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 大鼠; 1:40; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在大鼠样本上浓度为1:40 (图 7c). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271 s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691 s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 9e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 9e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 s7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1b). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1b). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5a). Autophagy (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Mol Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). Mol Metab (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1500; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1500 (图 2a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化; 小鼠; 图 6a
  • 免疫组化; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 3787)被用于被用于免疫组化在小鼠样本上 (图 6a) 和 被用于免疫组化在人类样本上 (图 5a). Oncogene (2017) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4051)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上 (图 4b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; pigs ; 1:100; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫组化在pigs 样本上浓度为1:100 (图 6a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5d, 5e,5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5d, 5e,5f). Sci Rep (2017) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4i). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Breast Cancer Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 1:200; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 3). Integr Biol (Camb) (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 人类; 1:2000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3a). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Am J Physiol Cell Physiol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c,3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3c,3d). FEBS Open Bio (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3c,3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 3c,3d). FEBS Open Bio (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2c). J Exp Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s7a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图 2b
  • 免疫印迹; 人类; 1:2000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:500; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:3000; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:100; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3b). J Nutr Biochem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5d). Nat Immunol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:10,000; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5d). Nat Immunol (2017) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Neuroinflammation (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9d). J Neurosci (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5c). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5c). Stem Cell Reports (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 8596)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 s4a). PLoS Genet (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2967)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Cardiovasc Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫印迹在人类样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). Nat Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Appl Physiol Nutr Metab (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 7a). Appl Physiol Nutr Metab (2017) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫细胞化学; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 3787)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2b). Mol Carcinog (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 s2d). Oncotarget (2017) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Exp Gerontol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 非洲爪蛙; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在非洲爪蛙样本上 (图 4a). FEBS Lett (2017) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2H10)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 3). Mol Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1b). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6e). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2e
  • 免疫印迹; 大鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2e) 和 被用于免疫印迹在大鼠样本上 (图 2f). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 2d). Exp Clin Endocrinol Diabetes (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). J Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Circ Res (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 4b). Am J Physiol Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4b). Am J Physiol Endocrinol Metab (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2b). Cell Physiol Biochem (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 3a). J Immunol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 3f
  • 免疫细胞化学; 小鼠; 1:200; 图 s7c
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3f), 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Nature (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nature (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 1a). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 1i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2938)被用于被用于免疫印迹在小鼠样本上 (图 1i). Nutr Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上 (图 7). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 7b). J Cell Biochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6b
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫细胞化学在人类样本上 (图 6b) 和 被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 736E11)被用于被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4056)被用于被用于免疫印迹在人类样本上 (图 1a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Diabetes Obes Metab (2017) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C331E5E)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Diabetes Obes Metab (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Cell (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1f). J Allergy Clin Immunol (2017) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2967)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2c). J Allergy Clin Immunol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 3d). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s5a). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271-S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 6a). Oncogene (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d-f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d-f). J Lipid Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4i). JCI Insight (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691L)被用于被用于免疫印迹在大鼠样本上 (图 6d). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在大鼠样本上 (图 6d). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 7). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s4a,s4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a,s4b). Gastroenterology (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691s)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在大鼠样本上 (图 2f). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Nanomedicine (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Adv (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 2d). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 8h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8h). elife (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a, 2b, 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a, 2b, 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 6d
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 1b). Nature (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 仓鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在仓鼠样本上 (图 1b). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271S)被用于被用于免疫印迹在人类样本上 (图 2c). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9275S)被用于被用于免疫印迹在人类样本上 (图 2c). Nat Chem Biol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4051)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Diabetes (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1c). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2017) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). elife (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 6d
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cell Signal (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cell Signal (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2g). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Chem Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Mol Cell Proteomics (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:10,000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 3b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 3b). Obes Res Clin Pract (2017) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4056)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上. Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). Nat Commun (2016) ncbi
小鼠 单克隆(5G3)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2944S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 4c). J Neurosci (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 9c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 9c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 7). elife (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 7) 和 被用于免疫印迹在小鼠样本上 (图 1). elife (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3b). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Nat Genet (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060X)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1b). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6b). J Cell Mol Med (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Toxicol Appl Pharmacol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 2). BMC Res Notes (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Cell Discov (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s23
  • 免疫印迹; 人类; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s23) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a). Am J Pathol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:2000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7c). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 244F9)被用于被用于免疫印迹在小鼠样本上 (图 2f). Nature (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Austin J Med Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Austin J Med Oncol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 中国人仓鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在中国人仓鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6i). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 6b). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, C31E5E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 1:2000; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 1f). Development (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 斑马鱼; 1:5000; 图 1f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在斑马鱼样本上浓度为1:5000 (图 1f). Development (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 7c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在小鼠样本上 (图 7c). J Immunol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在大鼠样本上 (图 8a). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在大鼠样本上 (图 5). Carcinogenesis (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫组化; 小鼠; 图 6b
  • 免疫印迹; 大鼠; 1:1000; 图 5a
  • 免疫组化; 人类; 图 8a
  • 免疫印迹; 人类; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫组化在小鼠样本上 (图 6b), 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a), 被用于免疫组化在人类样本上 (图 8a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 s2b
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:25; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:25 (图 3). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:2000; 图 s5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5b). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 s5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5b). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271L)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s2). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 s7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s7e). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s7g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s7g). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 3787S)被用于被用于免疫印迹在小鼠样本上 (图 5a). Clin Sci (Lond) (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 犬; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在犬样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018P)被用于被用于免疫印迹在人类样本上 (图 6). Biosci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 9f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 9f). Glia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1500; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4075)被用于被用于流式细胞仪在人类样本上 (图 s5). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3, s3
赛信通(上海)生物试剂有限公司 Akt1抗体(NEB (Hitchin, UK), 4060S)被用于被用于免疫印迹在人类样本上 (图 3, s3). Br J Cancer (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3, s3
赛信通(上海)生物试剂有限公司 Akt1抗体(NEB (Hitchin, UK), 4691S)被用于被用于免疫印迹在人类样本上 (图 3, s3). Br J Cancer (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在小鼠样本上 (图 5d). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5d). Oncogene (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7h). Cell Mol Immunol (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 7h). Cell Mol Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271s)被用于被用于免疫印迹在大鼠样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4.a, b, c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4.a, b, c). EJNMMI Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3a). Exp Mol Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a, 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a, 6d). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3f). Cell Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, CST-4691)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, CST-4060)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 5A). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7e
  • 免疫细胞化学; 人类; 图 4c,4d
  • 免疫印迹; 人类; 1:1000; 图 5,6
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7e), 被用于免疫细胞化学在人类样本上 (图 4c,4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5,6). Oncotarget (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 5d). Peptides (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在大鼠样本上 (图 2). Physiol Rep (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 流式细胞仪; 小鼠; 1:100; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 2938S)被用于被用于免疫印迹在人类样本上 (图 2). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060S)被用于被用于免疫印迹在人类样本上 (图 2). Oncoimmunology (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Discov (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4d
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在人类样本上 (图 3c). Mol Cancer Ther (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:800; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4056)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 587F11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上. Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Brain Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4b). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5e). Gut (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7d). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). J Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). Antioxid Redox Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2i
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2i). Antioxid Redox Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在大鼠样本上 (图 1c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 2b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4056)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056S)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060s)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691s)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691s)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Braz J Med Biol Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060 s)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Braz J Med Biol Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Nat Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Nat Med (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在人类样本上 (图 s1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060S)被用于被用于免疫印迹在人类样本上 (图 s4a). Nature (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4f). Oncogene (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:200; 图 14
  • 免疫印迹; 小鼠; 1:4000; 图 13
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 14) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 13). Histochem Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 13
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 13). Histochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Alzheimers Dement (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 5c
  • 免疫印迹; 人类; 1:3000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1e). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E XP)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6A). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6A
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6A). Front Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4c). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signal, 4056s)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1a). Am J Physiol Regul Integr Comp Physiol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1). J Immunol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1). Skelet Muscle (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 大鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4060)被用于被用于免疫组化在大鼠样本上 (图 7a). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫组化; 大鼠; 图 7a
  • 免疫印迹; 大鼠; 1:1000; 图 s2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4056)被用于被用于免疫组化在大鼠样本上 (图 7a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2d). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在人类样本上 (图 4). Open Biol (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 4). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5c). Carcinogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2f). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2f). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 2f). Diabetes (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5c). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上 (图 8). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在fruit fly 样本上 (图 6). elife (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, C73H10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Future Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 1:300-1:500; 图 s1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Abcam, 2965)被用于被用于免疫组化在小鼠样本上浓度为1:300-1:500 (图 s1c). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1h). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4,060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 5). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 s3
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 s3) 和 被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Am Heart Assoc (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Diabetologia (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 斑马鱼; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:600; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:600 (图 6). Autophagy (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 587 F11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Am J Physiol Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Metab (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; fruit fly ; 1:800; 图 s3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化在fruit fly 样本上浓度为1:800 (图 s3c). Mol Psychiatry (2017) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 1:5000; 图 s3e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫印迹在fruit fly 样本上浓度为1:5000 (图 s3e). Mol Psychiatry (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Obes (Lond) (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5). J Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967S)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 5012)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5c). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; African green monkey; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在African green monkey样本上 (图 3). Traffic (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; fruit fly ; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 2a). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; fruit fly ; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 2a). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Hum Mol Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在小鼠样本上 (图 4f). MBio (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 1:3000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3). Dev Cell (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上. Autophagy (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 `1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 `1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060B)被用于被用于免疫印迹在人类样本上 (图 2). Biol Open (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:750; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:750 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
  • 免疫印迹; 大鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 8200)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 1). J Virol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691P)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Genes Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上 (图 7) 和 被用于免疫印迹在人类样本上 (图 1). Cell Signal (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在仓鼠样本上 (图 3a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 3a). Cell Signal (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在人类样本上 (图 3). J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 3). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2967)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Gastroenterol Hepatol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 5012)被用于被用于免疫印迹在人类样本上 (图 s8). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell Signaling Tech, 9271)被用于被用于免疫印迹在斑马鱼样本上浓度为1:1000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4). EMBO Mol Med (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4051S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 4). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signal, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s2). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Acta Neuropathol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 3g). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3g). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Hepatology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 1:5; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 5315)被用于被用于流式细胞仪在人类样本上浓度为1:5 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 1d). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 6g
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 6g) 和 被用于免疫印迹在人类样本上 (图 7f). elife (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691L)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Science (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 7a). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7a). Endocrinology (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060s)被用于被用于免疫印迹在小鼠样本上 (图 4). Stem Cell Reports (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上. J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 2
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2) 和 被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Life Sci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Endocrinol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4051S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Neural Plast (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2938)被用于被用于免疫印迹在小鼠样本上 (图 s4). Oncogene (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 人类; 图 7
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 3787)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5f). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s10b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s10b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7e). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). Stem Cells (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, cst-4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, cst-4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling technologies, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, C67E7)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫细胞化学在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s3). elife (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在大鼠样本上 (图 8). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 736E11)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Mol Cancer Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell Signaling Tech, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, cs-9271)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, #9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051S)被用于被用于免疫印迹在人类样本上 (图 3). J Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275S)被用于被用于免疫印迹在人类样本上 (图 3). J Mol Cell Biol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 8a). Crit Care Med (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 244F9)被用于被用于免疫印迹在小鼠样本上 (图 8a). Crit Care Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 9271)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cancer Res (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Res (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 1s3k
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3k). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1s3j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3j). elife (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, CST4060P)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 st1
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 st1) 和 被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6e). Arthritis Rheumatol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫细胞化学; 人类; 1:1000-1:5000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4691)被用于被用于免疫细胞化学在人类样本上浓度为1:1000-1:5000 (图 5c). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3c). Exp Hematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 仓鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在仓鼠样本上 (图 3a). J Neurochem (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 图 s10a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C50B12)被用于被用于流式细胞仪在人类样本上 (图 s10a). Mol Ther Methods Clin Dev (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Development (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Int J Oncol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在人类样本上 (图 6e). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Immunol (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, cs9271s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6d). Development (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, C67E7)被用于被用于免疫印迹在小鼠样本上 (图 s2). Science (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, D9E)被用于被用于免疫印迹在小鼠样本上 (图 s2). Science (2016) ncbi
小鼠 单克隆(5G3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2917)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在大鼠样本上 (图 s3). Autophagy (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2967)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2965)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Lett (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 s2c). Sci Adv (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, 2965)被用于被用于免疫印迹在人类样本上 (图 2). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271)被用于被用于免疫印迹在小鼠样本上 (图 7). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 5373)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9271)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 9275)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:100; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5). Genes Dev (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3h). J Immunol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3h). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 S3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Cancer Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 犬; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在犬样本上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上 (图 8). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). J Natl Cancer Inst (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). Front Oncol (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). elife (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 2j
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 2j). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cancer Sci (2016) ncbi
domestic rabbit 单克隆(C31E5E)
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于. J Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Nanomedicine (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上. Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9275)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:100; 图 8e-h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060 s)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8e-h). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 s14b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s14b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 3). Cell Death Differ (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 3). Aging Cell (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Aging Cell (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 11
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 11). Anticancer Agents Med Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 6c). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Exp Cell Res (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在人类样本上 (图 3b). Physiol Res (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 1). Glycobiology (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Development (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Development (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 2b). Oncogenesis (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4c). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Diagn Pathol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上 (图 2). J Nutr (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7b). J Cell Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s15d
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s15d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Med (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:4000; 图 s3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 s3). Mol Brain (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 s3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 (图 s3d). Oncogene (2016) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9271)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 3787S)被用于被用于免疫印迹在小鼠样本上 (图 3a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 3a). Cell Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). Leukemia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上 (图 1a). Leukemia (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 1). Drug Des Devel Ther (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(CellSignalingTechnology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 6g). Int J Obes (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6g
赛信通(上海)生物试剂有限公司 Akt1抗体(CellSignalingTechnology, 9271)被用于被用于免疫印迹在小鼠样本上 (图 6g). Int J Obes (Lond) (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在小鼠样本上浓度为1:300. FASEB J (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signal, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Diagn Pathol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 犬; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Front Cell Neurosci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 4a). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Mol Brain (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 e7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上 (图 e7a). Nature (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 e7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在人类样本上 (图 e7d). Nature (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 图 s6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫细胞化学在人类样本上 (图 s6). Oncogene (2016) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1c). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:80; 图 s1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:80 (图 s1a). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Mol Oncol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 4a). Mar Drugs (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cancer Biol Ther (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060X)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:2000; 图 1c
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell SignalinG, 4056)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1b). Nat Commun (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫沉淀; 人类; 1:2000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫沉淀在人类样本上浓度为1:2000 (图 4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060P)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691P)被用于被用于免疫印迹在人类样本上. Clin Transl Gastroenterol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上 (图 6). Autophagy (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Int J Neuropsychopharmacol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 流式细胞仪; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C31E5E)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Immunol (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2967)被用于被用于免疫印迹在人类样本上. Neoplasia (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 人类; 1:50; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于免疫组化在人类样本上浓度为1:50 (图 1e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 Akt1抗体(CellSignaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 Akt1抗体(CellSignaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 2.e
赛信通(上海)生物试剂有限公司 Akt1抗体(CellSignaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2.e). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 5315)被用于被用于流式细胞仪在小鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫组化; 人类; 1:800
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫组化在人类样本上浓度为1:800. Mol Clin Oncol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上. Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上 (图 3). Exp Neurobiol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上 (图 1d). EMBO Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 9). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell-Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s9). Nat Commun (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在小鼠样本上 (图 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 1). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 3787S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 3). MAbs (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:50; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在大鼠样本上. Eur J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9271)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 4). Am J Transl Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在小鼠样本上 (图 5). Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691s)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691s)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060s)被用于被用于免疫印迹在大鼠样本上 (图 3). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4056)被用于被用于免疫印迹在人类样本上 (图 4). Gut (2016) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 736E11)被用于被用于免疫印迹在人类样本上. Cancer Med (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691P)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 1b). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 犬; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在犬样本上 (图 4). PLoS Genet (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 244F9)被用于被用于免疫印迹在人类样本上. Mol Ther Methods Clin Dev (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:200; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060s)被用于被用于免疫印迹在人类样本上 (图 1). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060P)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 1b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Kidney Int (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在大鼠样本上 (图 3). Kidney Int (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 图 1
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 4). Kidney Int (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2000; 图  4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图  4). J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 7d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1500; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 6). Cancer Sci (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在人类样本上 (图 4b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 5). J Neurotrauma (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Muscle Nerve (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 5
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫组化-石蜡切片; 人类; 图 s10
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s10). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 2d). Am J Pathol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology., 2965)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 7). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 1 ug/ml; 表 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1 ug/ml (表 1). Endocrinology (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 0.071 ug/ml; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为0.071 ug/ml (图 4). Endocrinology (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在小鼠样本上. Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 f5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 f5). Oncotarget (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1f, 2e, 4h
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 1f, 2e, 4h). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, D9E)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 s8). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s8). PLoS Pathog (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling TECHNOLOGY, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling TECHNOLOGY, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Signal (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9275)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Psychiatry (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Psychiatry (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫细胞化学在小鼠样本上 (图 4). J Lipid Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancer Res (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 2). Aging Cell (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 S4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上 (图 S4b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 S4b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 S4b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Differ (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:150
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150. Endocrinology (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:400
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 2965)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Development (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8). Development (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Clin Invest (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2967)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 1:1000; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). J Clin Invest (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-自由浮动切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:300. FASEB J (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochem Pharmacol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Biochem Pharmacol (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000; 图 1,2,3,4,5,6,7
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 2938)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1,2,3,4,5,6,7). EMBO J (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 小鼠; 1:50; 图 6c
  • 免疫细胞化学; 人类; 1:50; 图 6d, 6e
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060 L)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 6c), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 6d, 6e) 和 被用于免疫印迹在人类样本上. Sci Rep (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Mol Brain (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上 (图 6a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965L)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 9018)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上. Cancer Lett (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上. J Interferon Cytokine Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 4a). Autophagy (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在小鼠样本上. J Mol Neurosci (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4a,b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4a,b). Onco Targets Ther (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4a,b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 4a,b). Onco Targets Ther (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 7). Tissue Eng Part A (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, D9E)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 斑马鱼; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在斑马鱼样本上 (图 4a). FASEB J (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 斑马鱼; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在斑马鱼样本上 (图 4a). FASEB J (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, #4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, #4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Aging Cell (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, #4691)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Aging Cell (2015) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 9018)被用于被用于免疫印迹在小鼠样本上 (图 2f). Autophagy (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C31E5E)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200. Mol Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 9271S)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060P)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 244F9)被用于被用于免疫印迹在人类样本上 (图 5). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4a). Am J Physiol Endocrinol Metab (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 4a). Am J Physiol Endocrinol Metab (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在大鼠样本上. Prostate (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C73H10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. Arthritis Rheumatol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060L)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signalling, C73H10)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling Technology, 2938)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 587F11)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 9). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 9). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4056)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化; 人类; 1:100; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 3787)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 1:100
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4051)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Exerc Nutrition Biochem (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 s12
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s12). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 s12
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s12). Antioxid Redox Signal (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Stem Cells (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Biotechnology, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Br J Cancer (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500; 图 12
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 12). J Appl Toxicol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:2000; 图 12
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 12). J Appl Toxicol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060P)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Int J Mol Sci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 2965)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 3d
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2g). Nat Med (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2g
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上 (图 2g) 和 被用于免疫印迹在小鼠样本上 (图 3d). Nat Med (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上. Cancer Sci (2015) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2938)被用于被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Dev Biol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:750
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:750. Ann Anat (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 猕猴; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在猕猴样本上 (图 s1). FASEB J (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neuroscience (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691S)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Neuroscience (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cell (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 40605)被用于被用于免疫印迹在小鼠样本上. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在小鼠样本上 (图 8a). Free Radic Biol Med (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4056)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691s)被用于被用于免疫印迹在小鼠样本上 (图 s7). Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(193H12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 193H12)被用于被用于免疫印迹在人类样本上 (图 3). J Cell Biol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Nat Commun (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 587F11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 鸡
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在鸡样本上. Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在大鼠样本上. FEBS Open Bio (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. FEBS Open Bio (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4056)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 5). J Med Chem (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:3000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在大鼠样本上浓度为1:3000. Neurochem Res (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691L)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Biochem (2015) ncbi
domestic rabbit 单克隆(D7F10)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 9018)被用于被用于免疫印迹在人类样本上 (图 1a). J Cell Biochem (2015) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2967)被用于被用于免疫印迹在人类样本上 (图 2). Blood (2015) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 6
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在小鼠样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Blood (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. J Cancer Res Clin Oncol (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化在人类样本上浓度为1:50. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(193H12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 193H12)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上. Infect Immun (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 3, 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 3, 4). Mol Cancer Res (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 587F11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 3787)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2938)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Psychiatry (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 12000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在大鼠样本上浓度为12000. Behav Brain Res (2015) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上. Genesis (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Genesis (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上. J Nutr Biochem (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. BMC Nephrol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫组化-石蜡切片; 人类; 1:300
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Acta Neuropathol (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 5373)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signalling, 4060)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Tech, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 s3b). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 5373)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Oncogene (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051S)被用于被用于免疫印迹在人类样本上浓度为1:200. Biomed Res Int (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Sci (2014) ncbi
domestic rabbit 单克隆(C67E7)
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling technology, 4691)被用于. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling technology, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling technology, 2965)被用于. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:600
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在人类样本上浓度为1:600. Urol Oncol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 1:100
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于流式细胞仪在人类样本上浓度为1:100. Tissue Eng Part A (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上浓度为1:500. J Virol (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Biol Ther (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 2c). Oncotarget (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(cell signaling, 4060S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2965P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691P)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Cell Signal (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-石蜡切片在小鼠样本上. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 7d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, C67E7)被用于被用于免疫印迹在人类样本上 (图 7d). Oncotarget (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691S)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060S)被用于被用于免疫印迹在人类样本上 (图 4). Nature (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; domestic rabbit; 1:2,000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2,000. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; domestic rabbit; 1:2,000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938S)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:2,000. Stem Cells Dev (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 736E11)被用于被用于免疫组化在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. Ann Surg Oncol (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫细胞化学; 人类; 1:300
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C31E5E)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Ann Surg Oncol (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4691)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Cell Cycle (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. Exp Gerontol (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4056)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Eur J Immunol (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Glia (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Melanoma Res (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上. Toxicol Pathol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上. Toxicol Pathol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Cancer Res (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(cst, D9E)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 2965)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 1:500; 图 1
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4056)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1). Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在人类样本上浓度为1:500. Int J Cancer (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4060)被用于被用于免疫组化-石蜡切片在人类样本上. Neuro Oncol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 3787)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Pathol (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. FEBS Lett (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:400
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:400. FASEB J (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Int J Dev Neurosci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. J Nutr Biochem (2014) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2H10)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Nat Commun (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 大鼠
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. Kidney Int (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在大鼠样本上. Kidney Int (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫组化在人类样本上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化在人类样本上浓度为1:2000. Scand J Med Sci Sports (2015) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 图 5, 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在小鼠样本上 (图 5, 7). J Cell Sci (2014) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Tissue Eng Part A (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫组化在小鼠样本上浓度为1:50. Stem Cells (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Am J Physiol Gastrointest Liver Physiol (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, C31E5E)被用于被用于免疫印迹在人类样本上 (图 6b). J Biol Chem (2014) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 2967)被用于被用于免疫印迹在人类样本上 (图 5e). Int J Oncol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 244F9)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(193H12)
  • 流式细胞仪; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 193H12)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 流式细胞仪; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于流式细胞仪在人类样本上 (图 5a). J Immunol (2014) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在大鼠样本上. J Inorg Biochem (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上 (图 5). Calcif Tissue Int (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, D9E)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, C67E7)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuroscience (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-自由浮动切片; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200. J Comp Neurol (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫组化在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Cell Res (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Cell Res (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫印迹在African green monkey样本上. J Cell Sci (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; African green monkey
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在African green monkey样本上. J Cell Sci (2014) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Death Dis (2013) ncbi
小鼠 单克隆(2H10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2H10)被用于被用于免疫印迹在人类样本上 (图 6a). Br J Cancer (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. Diabetes (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:10000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:10000. Diabetes (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. Am J Pathol (2013) ncbi
domestic rabbit 单克隆(736E11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 3787)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000. FASEB J (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2000. FASEB J (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上. Cancer Res (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 1g
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在人类样本上 (图 1g). PLoS ONE (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 587F11)被用于被用于免疫印迹在人类样本上. Lab Invest (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫组化-石蜡切片; 人类; 1:250
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4691)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2965)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4691)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cell Proteomics (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologies, 4060)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上 (图 2b). PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 4). Mol Carcinog (2014) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 4691)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2014) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling Technology, 2965)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2014) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1,000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1,000. J Comp Neurol (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signalling, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologie, 4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogenesis (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technologie, 4691)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Oncogenesis (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在小鼠样本上. Kidney Int (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 和 被用于免疫印迹在小鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Brain Res (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Brain Res (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Cell Death Dis (2013) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 大鼠; 1:1,000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056S)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在人类样本上 (图 7). Exp Cell Res (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4051)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上 (图 2). Genes Dev (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060S)被用于被用于免疫印迹在人类样本上 (图 5). Biochem J (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(CST, 4691)被用于被用于免疫印迹在大鼠样本上. Exp Gerontol (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫组化-冰冻切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C67E7)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4691)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 4060)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(C31E5E)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 2965)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FASEB J (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:2,000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:2,000. PLoS ONE (2012) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell signaling, 4060)被用于被用于免疫印迹在小鼠样本上 (图 4d). Proc Natl Acad Sci U S A (2012) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2013) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 2). J Biol Chem (2013) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4060)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2013) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在小鼠样本上. Exp Cell Res (2013) ncbi
domestic rabbit 单克隆(C73H10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling Technology, 2938)被用于被用于免疫印迹在小鼠样本上. Eur J Immunol (2011) ncbi
domestic rabbit 单克隆(D9E)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, D9E)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2011) ncbi
domestic rabbit 单克隆(244F9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4056)被用于被用于免疫印迹在人类样本上 (图 4a). J Neurochem (2008) ncbi
小鼠 单克隆(587F11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Akt1抗体(Cell Signaling, 4051)被用于被用于免疫印迹在人类样本上. Oncogene (2007) ncbi
碧迪BD
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 小鼠; 图 8b
碧迪BD Akt1抗体(BD Pharmigen, 55/PKBa/AKT)被用于被用于流式细胞仪在小鼠样本上 (图 8b). PLoS Pathog (2018) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 小鼠; 图 1e
碧迪BD Akt1抗体(BD Bioscience, 610860)被用于被用于免疫印迹在小鼠样本上 (图 1e). Mol Neurobiol (2018) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 人类; 图 1
碧迪BD Akt1抗体(BD Biosciences, 560049)被用于被用于流式细胞仪在人类样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(2/PKBa/Akt)
  • 免疫印迹; 犬; 1:1000; 图 5A
碧迪BD Akt1抗体(BD Biosciencies, 610876)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 5A). Mol Biol Cell (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 其他; 人类; 图 st1
碧迪BD Akt1抗体(BD, 55)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
碧迪BD Akt1抗体(BD Biosciences, 610860)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 1:1000
碧迪BD Akt1抗体(BD Transduction Laboratories, 610860)被用于被用于免疫印迹在人类样本上浓度为1:1000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类; 1:500; 图 5f
碧迪BD Akt1抗体(BD Biosciences, 55)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). Oncotarget (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫印迹; 人类
碧迪BD Akt1抗体(BD, 610860)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类; 图 1
碧迪BD Akt1抗体(BD Biosciences, 610860)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
小鼠 单克隆(55/PKBa/Akt)
  • 流式细胞仪; 人类
碧迪BD Akt1抗体(BD Biosciences, 560049)被用于被用于流式细胞仪在人类样本上. Trans Am Ophthalmol Soc (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 s2c
西格玛奥德里奇 Akt1抗体(Sigma, SAB4300043)被用于被用于免疫组化在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 s2c). J Clin Invest (2018) ncbi
文章列表
  1. Yu L, Xie M, Zhang F, Wan C, Yao X. TM9SF4 is a novel regulator in lineage commitment of bone marrow mesenchymal stem cells to either osteoblasts or adipocytes. Stem Cell Res Ther. 2021;12:573 pubmed 出版商
  2. Kim J, Hwang K, Dang B, Eom M, Kong I, Gwack Y, et al. Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nat Commun. 2021;12:6537 pubmed 出版商
  3. Nuernberger V, Mortoga S, Metzendorf C, Burkert C, Ehricke K, Knuth E, et al. Hormonally Induced Hepatocellular Carcinoma in Diabetic Wild Type and Carbohydrate Responsive Element Binding Protein Knockout Mice. Cells. 2021;10: pubmed 出版商
  4. Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, et al. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer. 2021;12:6715-6726 pubmed 出版商
  5. Agostino M, Rooney J, Herat L, Matthews J, Simonds A, Northfield S, et al. TNFSF14-Derived Molecules as a Novel Treatment for Obesity and Type 2 Diabetes. Int J Mol Sci. 2021;22: pubmed 出版商
  6. Eritja N, Navaridas R, Ruiz Mitjana A, Vidal Sabanés M, Egea J, Encinas M, et al. Endometrial PTEN Deficiency Leads to SMAD2/3 Nuclear Translocation. Cancers (Basel). 2021;13: pubmed 出版商
  7. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  8. Passman A, Strauss R, McSpadden S, Finch Edmondson M, Andrewartha N, Woo K, et al. Maraviroc Prevents HCC Development by Suppressing Macrophages and the Liver Progenitor Cell Response in a Murine Chronic Liver Disease Model. Cancers (Basel). 2021;13: pubmed 出版商
  9. Zhu X, Peng S, Wang L, Chen X, Feng C, Liu Y, et al. Identification of phosphoenolpyruvate carboxykinase 1 as a potential therapeutic target for pancreatic cancer. Cell Death Dis. 2021;12:918 pubmed 出版商
  10. Minton D, Elliehausen C, Javors M, Santangello K, Konopka A. Rapamycin-induced hyperglycemia is associated with exacerbated age-related osteoarthritis. Arthritis Res Ther. 2021;23:253 pubmed 出版商
  11. Li R, Hao Y, Wang Q, Meng Y, Wu K, Liu C, et al. ECHS1, an interacting protein of LASP1, induces sphingolipid-metabolism imbalance to promote colorectal cancer progression by regulating ceramide glycosylation. Cell Death Dis. 2021;12:911 pubmed 出版商
  12. Jung S, Kim D, Choi Y, Kim S, Park H, Lee H, et al. Contribution of p53 in sensitivity to EGFR tyrosine kinase inhibitors in non-small cell lung cancer. Sci Rep. 2021;11:19667 pubmed 出版商
  13. Nickl B, Qadri F, Bader M. Anti-inflammatory role of Gpnmb in adipose tissue of mice. Sci Rep. 2021;11:19614 pubmed 出版商
  14. Cao Y, Li Q, Yang Y, Ke Z, Chen S, Li M, et al. Cardioprotective Effect of Stem-Leaf Saponins From Panax notoginseng on Mice With Sleep Derivation by Inhibiting Abnormal Autophagy Through PI3K/Akt/mTOR Pathway. Front Cardiovasc Med. 2021;8:694219 pubmed 出版商
  15. Mesquita F, Abrami L, Sergeeva O, Turelli P, Qing E, Kunz B, et al. S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity. Dev Cell. 2021;56:2790-2807.e8 pubmed 出版商
  16. Ali A, Kuo W, Kuo C, Lo J, Chen M, Daddam J, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234 pubmed 出版商
  17. Zhao Y, Sun J, Li Y, Zhou X, Zhai W, Wu Y, et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharm Sin B. 2021;11:2835-2849 pubmed 出版商
  18. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  19. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  20. Bermúdez Muñoz J, Celaya A, García Mato Á, Muñoz Espín D, Rodriguez de la Rosa L, Serrano M, et al. Dual-Specificity Phosphatase 1 (DUSP1) Has a Central Role in Redox Homeostasis and Inflammation in the Mouse Cochlea. Antioxidants (Basel). 2021;10: pubmed 出版商
  21. Liu C, Chen G, Chen Y, Dang Y, Nie G, Wu D, et al. Danlou Tablets Inhibit Atherosclerosis in Apolipoprotein E-Deficient Mice by Inducing Macrophage Autophagy: The Role of the PI3K-Akt-mTOR Pathway. Front Pharmacol. 2021;12:724670 pubmed 出版商
  22. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  23. Rock S, Jiang K, Wu Y, Liu Y, Li J, Weiss H, et al. Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2022;13:501-516 pubmed 出版商
  24. Rossetti G, Ermer J, Stentenbach M, Siira S, Richman T, Milenkovic D, et al. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. Sci Adv. 2021;7:eabi7514 pubmed 出版商
  25. Hu S, Liu D, Li C, Xu Y, Hu K, Cui L, et al. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway. Sci Rep. 2021;11:18824 pubmed 出版商
  26. Langdon C, Gadek K, Garcia M, Evans M, Reed K, Bush M, et al. Synthetic essentiality between PTEN and core dependency factor PAX7 dictates rhabdomyosarcoma identity. Nat Commun. 2021;12:5520 pubmed 出版商
  27. Liu Y, Li Y, Huang S, Li Y, Xia J, Jia J, et al. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY). 2021;13:21155-21190 pubmed 出版商
  28. Rajendran R, Rajendran V, Giraldo Velasquez M, Megalofonou F, Gurski F, Stadelmann C, et al. Oligodendrocyte-Specific Deletion of FGFR1 Reduces Cerebellar Inflammation and Neurodegeneration in MOG35-55-Induced EAE. Int J Mol Sci. 2021;22: pubmed 出版商
  29. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  30. Machida Y, Imai T. Different properties of mammary carcinogenesis induced by two chemical carcinogens, DMBA and PhIP, in heterozygous BALB/c Trp53 knockout mice. Oncol Lett. 2021;22:738 pubmed 出版商
  31. Wang Y, Liu I, Chen K, Wu H. NOTCH1 signaling promotes protein stability of HER3 through the AKT pathway in squamous cell carcinoma of head and neck. Oncogenesis. 2021;10:59 pubmed 出版商
  32. Wang C, Yang Z, Xu E, Shen X, Wang X, Li Z, et al. Apolipoprotein C-II induces EMT to promote gastric cancer peritoneal metastasis via PI3K/AKT/mTOR pathway. Clin Transl Med. 2021;11:e522 pubmed 出版商
  33. Chen Q, Fan K, Chen X, Xie X, Huang L, Song G, et al. Ezrin regulates synovial angiogenesis in rheumatoid arthritis through YAP and Akt signalling. J Cell Mol Med. 2021;25:9378-9389 pubmed 出版商
  34. De Velasco M, Kura Y, Ando N, Sako N, Banno E, Fujita K, et al. Context-Specific Efficacy of Apalutamide Therapy in Preclinical Models of Pten-Deficient Prostate Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  35. Dong J, Viswanathan S, Adami E, Schafer S, Kuthubudeen F, Widjaja A, et al. The pro-regenerative effects of hyperIL6 in drug-induced liver injury are unexpectedly due to competitive inhibition of IL11 signaling. elife. 2021;10: pubmed 出版商
  36. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  37. Escasany E, Lanzón B, García Carrasco A, Izquierdo Lahuerta A, Torres L, Corrales P, et al. Transforming growth factor β3 deficiency promotes defective lipid metabolism and fibrosis in murine kidney. Dis Model Mech. 2021;14: pubmed 出版商
  38. Luo J, Lu C, Feng M, Dai L, Wang M, Qiu Y, et al. Cooperation between liver-specific mutations of pten and tp53 genetically induces hepatocarcinogenesis in zebrafish. J Exp Clin Cancer Res. 2021;40:262 pubmed 出版商
  39. Reynoso S, Castillo V, Katkar G, López Sánchez I, Taheri S, Espinoza C, et al. GIV/Girdin, a non-receptor modulator for Gαi/s, regulates spatiotemporal signaling during sperm capacitation and is required for male fertility. elife. 2021;10: pubmed 出版商
  40. Kareddula A, Medina D, Petrosky W, Dolfi S, Tereshchenko I, Walton K, et al. The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Ther Adv Urol. 2021;13:17562872211022462 pubmed 出版商
  41. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  42. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  43. Ceccarelli M, D Andrea G, Micheli L, Gentile G, Cavallaro S, Merlino G, et al. Tumor Growth in the High Frequency Medulloblastoma Mouse Model Ptch1+/-/Tis21KO Has a Specific Activation Signature of the PI3K/AKT/mTOR Pathway and Is Counteracted by the PI3K Inhibitor MEN1611. Front Oncol. 2021;11:692053 pubmed 出版商
  44. Wang Y, Liu X, Hu G, Hu C, Gao Y, Huo M, et al. EGFR-IL-6 Signaling Axis Mediated the Inhibitory Effect of Methylseleninic Acid on Esophageal Squamous Cell Carcinoma. Front Pharmacol. 2021;12:719785 pubmed 出版商
  45. Berger C, Heyne H, Heiland T, Dommel S, Höfling C, Guiu Jurado E, et al. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Leprdb/db mice. J Lipid Res. 2021;62:100105 pubmed 出版商
  46. Vinsland E, Baskaran P, Mihaylov S, Hobbs C, Wood H, Bouybayoune I, et al. The zinc finger/RING domain protein Unkempt regulates cognitive flexibility. Sci Rep. 2021;11:16299 pubmed 出版商
  47. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  48. Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, et al. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res. 2021;40:253 pubmed 出版商
  49. Herranz C, Mateo F, Baiges A, Ruiz de Garibay G, Junza A, Johnson S, et al. Histamine signaling and metabolism identify potential biomarkers and therapies for lymphangioleiomyomatosis. EMBO Mol Med. 2021;13:e13929 pubmed 出版商
  50. Vichas A, Riley A, Nkinsi N, Kamlapurkar S, Parrish P, Lo A, et al. Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat Commun. 2021;12:4789 pubmed 出版商
  51. Feng W, Cao Z, Lim P, Zhao H, Luo H, Mao N, et al. Rapid interrogation of cancer cell of origin through CRISPR editing. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  52. Jiang Q, Zheng N, Bu L, Zhang X, Zhang X, Wu Y, et al. SPOP-mediated ubiquitination and degradation of PDK1 suppresses AKT kinase activity and oncogenic functions. Mol Cancer. 2021;20:100 pubmed 出版商
  53. Ye Z, Xu S, Shi Y, Bacolla A, Syed A, Moiani D, et al. GRB2 enforces homology-directed repair initiation by MRE11. Sci Adv. 2021;7: pubmed 出版商
  54. Guo E, Mao X, Wang X, Guo L, An C, Zhang C, et al. Alternatively spliced ANLN isoforms synergistically contribute to the progression of head and neck squamous cell carcinoma. Cell Death Dis. 2021;12:764 pubmed 出版商
  55. Mygland L, Brinch S, Strand M, Olsen P, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience. 2021;24:102807 pubmed 出版商
  56. Meng L, Zhang Y, Li D, Shang X, Hao X, Chen X, et al. TIMP3 attenuates cerebral ischemia/reperfusion-induced apoptosis and oxidative stress in neurocytes by regulating the AKT pathway. Exp Ther Med. 2021;22:973 pubmed 出版商
  57. Laliotis G, Chavdoula E, Paraskevopoulou M, Kaba A, La Ferlita A, Singh S, et al. AKT3-mediated IWS1 phosphorylation promotes the proliferation of EGFR-mutant lung adenocarcinomas through cell cycle-regulated U2AF2 RNA splicing. Nat Commun. 2021;12:4624 pubmed 出版商
  58. Xiong W, Zhang B, Yu H, Zhu L, Yi L, Jin X. RRM2 Regulates Sensitivity to Sunitinib and PD-1 Blockade in Renal Cancer by Stabilizing ANXA1 and Activating the AKT Pathway. Adv Sci (Weinh). 2021;8:e2100881 pubmed 出版商
  59. Jeong A, Cheng S, Zhong R, Bennett D, Bergo M, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9:129 pubmed 出版商
  60. Matsuzawa T, Morita M, Shimane A, Otsuka R, Mei Y, Irie F, et al. Heparan sulfate promotes differentiation of white adipocytes to maintain insulin sensitivity and glucose homeostasis. J Biol Chem. 2021;:101006 pubmed 出版商
  61. Jiao L, Eickhoff R, Egners A, Jumpertz S, Roth J, Erdem M, et al. Deletion of mTOR in liver epithelial cells enhances hepatic metastasis of colon cancer. J Pathol. 2021;255:270-284 pubmed 出版商
  62. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  63. Shen C, Hsieh C, Jiang K, Lin C, Chiang N, Li T, et al. AUY922 induces retinal toxicity through attenuating TRPM1. J Biomed Sci. 2021;28:55 pubmed 出版商
  64. Levenga J, Wong H, Milstead R, LaPlante L, Hoeffer C. Immunohistological Examination of AKT Isoforms in the Brain: Cell-Type Specificity That May Underlie AKT's Role in Complex Brain Disorders and Neurological Disease. Cereb Cortex Commun. 2021;2:tgab036 pubmed 出版商
  65. Lertpatipanpong P, Lee J, Kim I, Eling T, Oh S, Seong J, et al. The anti-diabetic effects of NAG-1/GDF15 on HFD/STZ-induced mice. Sci Rep. 2021;11:15027 pubmed 出版商
  66. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  67. Pang K, Ghim M, Liu C, Tay H, Fhu C, Chia R, et al. Leucine-Rich α-2-Glycoprotein 1 Suppresses Endothelial Cell Activation Through ADAM10-Mediated Shedding of TNF-α Receptor. Front Cell Dev Biol. 2021;9:706143 pubmed 出版商
  68. Innamorati G, Wilkie T, Malpeli G, Paiella S, Grasso S, Rusev B, et al. Gα15 in early onset of pancreatic ductal adenocarcinoma. Sci Rep. 2021;11:14922 pubmed 出版商
  69. Bruce J, Sánchez Alvarez R, Sans M, Sugden S, Qi N, James A, et al. Insulin protects acinar cells during pancreatitis by preserving glycolytic ATP supply to calcium pumps. Nat Commun. 2021;12:4386 pubmed 出版商
  70. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  71. Xu L, Zhang X, Xin Y, Ma J, Yang C, Zhang X, et al. Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway. Cell Death Dis. 2021;12:710 pubmed 出版商
  72. Liu H, Zang P, Lee I, Anderson B, Christiani A, Strait Bodey L, et al. Growth hormone secretagogue receptor-1a mediates ghrelin's effects on attenuating tumour-induced loss of muscle strength but not muscle mass. J Cachexia Sarcopenia Muscle. 2021;12:1280-1295 pubmed 出版商
  73. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  74. Kearney A, Norris D, Ghomlaghi M, Kin Lok Wong M, Humphrey S, Carroll L, et al. Akt phosphorylates insulin receptor substrate to limit PI3K-mediated PIP3 synthesis. elife. 2021;10: pubmed 出版商
  75. Xu J, Liu Y, Liu J, Shou Y, Xiong Z, Xiong H, et al. Low Expression Levels of SLC22A12 Indicates a Poor Prognosis and Progresses Clear Cell Renal Cell Carcinoma. Front Oncol. 2021;11:659208 pubmed 出版商
  76. Wang W, Lu G, Liu H, Xiong Z, Leung H, Cao R, et al. Pten Regulates Cardiomyocyte Differentiation by Modulating Non-CG Methylation via Dnmt3. Adv Sci (Weinh). 2021;:e2100849 pubmed 出版商
  77. Yin H, Wang J, Li H, Yu Y, Wang X, Lu L, et al. Extracellular matrix protein-1 secretory isoform promotes ovarian cancer through increasing alternative mRNA splicing and stemness. Nat Commun. 2021;12:4230 pubmed 出版商
  78. Shang P, Stepicheva N, Teel K, McCauley A, Fitting C, Hose S, et al. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol. 2021;4:850 pubmed 出版商
  79. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  80. Zoma M, Curti L, Shinde D, Albino D, Mitra A, Sgrignani J, et al. EZH2-induced lysine K362 methylation enhances TMPRSS2-ERG oncogenic activity in prostate cancer. Nat Commun. 2021;12:4147 pubmed 出版商
  81. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  82. Barbé C, Loumaye A, Lause P, Ritvos O, Thissen J. p21-Activated Kinase 1 Is Permissive for the Skeletal Muscle Hypertrophy Induced by Myostatin Inhibition. Front Physiol. 2021;12:677746 pubmed 出版商
  83. Saltykova I, Elahi A, Pitale P, Gorbatyuk O, Athar M, Gorbatyuk M. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Dis. 2021;12:664 pubmed 出版商
  84. Winter M, Meignan S, Volkel P, Angrand P, Chopin V, Bidan N, et al. Vimentin Promotes the Aggressiveness of Triple Negative Breast Cancer Cells Surviving Chemotherapeutic Treatment. Cells. 2021;10: pubmed 出版商
  85. Wang Q, Tao C, Hannan A, Yoon S, Min X, Peregrin J, et al. Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling. Sci Adv. 2021;7: pubmed 出版商
  86. Emre C, Do K, Jun B, Hjorth E, Alcalde S, Kautzmann M, et al. Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:116 pubmed 出版商
  87. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  88. Guix F, Capitán A, Casadomé Perales Á, Palomares Perez I, López Del Castillo I, Miguel V, et al. Increased exosome secretion in neurons aging in vitro by NPC1-mediated endosomal cholesterol buildup. Life Sci Alliance. 2021;4: pubmed 出版商
  89. Lin K, Bieri G, Gontier G, Müller S, Smith L, Snethlage C, et al. MHC class I H2-Kb negatively regulates neural progenitor cell proliferation by inhibiting FGFR signaling. PLoS Biol. 2021;19:e3001311 pubmed 出版商
  90. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  91. Zhang X, Zhao S, Yuan Q, Zhu L, Li F, Wang H, et al. TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression. Cell Death Dis. 2021;12:642 pubmed 出版商
  92. Hauffe R, Rath M, Schell M, Ritter K, Kappert K, Deubel S, et al. HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue. Mol Metab. 2021;53:101276 pubmed 出版商
  93. Zhang B, Lapenta K, Wang Q, Nam J, Chung D, Robert M, et al. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. J Biol Chem. 2021;297:100887 pubmed 出版商
  94. Hamm M, Sohier P, Petit V, Raymond J, Delmas V, Le Coz M, et al. BRN2 is a non-canonical melanoma tumor-suppressor. Nat Commun. 2021;12:3707 pubmed 出版商
  95. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  96. Pérez Sisqués L, Sancho Balsells A, Solana Balaguer J, Campoy Campos G, Vives Isern M, Soler Palazón F, et al. RTP801/REDD1 contributes to neuroinflammation severity and memory impairments in Alzheimer's disease. Cell Death Dis. 2021;12:616 pubmed 出版商
  97. Wu Q, Tian A, Li B, Leduc M, Forveille S, Hamley P, et al. IGF1 receptor inhibition amplifies the effects of cancer drugs by autophagy and immune-dependent mechanisms. J Immunother Cancer. 2021;9: pubmed 出版商
  98. Tian L, Chen C, Guo Y, Zhang F, Mi J, Feng Q, et al. mTORC2 regulates ribonucleotide reductase to promote DNA replication and gemcitabine resistance in non-small cell lung cancer. Neoplasia. 2021;23:643-652 pubmed 出版商
  99. Ianni A, Hofmann M, Kumari P, Tarighi S, Al tamari H, Görgens A, et al. Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:639162 pubmed 出版商
  100. Lee H, Donati A, Feliers D, Sun Y, Ding Y, Madesh M, et al. Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in aging-related kidney injury. Aging Cell. 2021;20:e13407 pubmed 出版商
  101. Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, et al. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene. 2021;40:4486-4502 pubmed 出版商
  102. Stagg D, Gillingham J, Nelson A, Lengfeld J, d Avignon D, Puchalska P, et al. Diminished ketone interconversion, hepatic TCA cycle flux, and glucose production in D-β-hydroxybutyrate dehydrogenase hepatocyte-deficient mice. Mol Metab. 2021;53:101269 pubmed 出版商
  103. Ecker V, Stumpf M, Brandmeier L, Neumayer T, Pfeuffer L, Engleitner T, et al. Targeted PI3K/AKT-hyperactivation induces cell death in chronic lymphocytic leukemia. Nat Commun. 2021;12:3526 pubmed 出版商
  104. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  105. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  106. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  107. Wang J, Zhang Y, Xiao Y, Yuan X, Li P, Wang X, et al. Boosting immune surveillance by low-dose PI3K inhibitor facilitates early intervention of breast cancer. Am J Cancer Res. 2021;11:2005-2024 pubmed
  108. Qin X, Li J, Wang S, Lv J, Luan F, Liu Y, et al. Serotonin/HTR1E signaling blocks chronic stress-promoted progression of ovarian cancer. Theranostics. 2021;11:6950-6965 pubmed 出版商
  109. Ayuso Dolado S, Esteban Ortega G, Vidaurre O, Díaz Guerra M. A novel cell-penetrating peptide targeting calpain-cleavage of PSD-95 induced by excitotoxicity improves neurological outcome after stroke. Theranostics. 2021;11:6746-6765 pubmed 出版商
  110. Yan C, Saleh N, Yang J, Nebhan C, Vilgelm A, Reddy E, et al. Novel induction of CD40 expression by tumor cells with RAS/RAF/PI3K pathway inhibition augments response to checkpoint blockade. Mol Cancer. 2021;20:85 pubmed 出版商
  111. Li H, Zhao S, Shen L, Wang P, Liu S, Ma Y, et al. E2F2 inhibition induces autophagy via the PI3K/Akt/mTOR pathway in gastric cancer. Aging (Albany NY). 2021;13:13626-13643 pubmed 出版商
  112. Chen Y, Chen Y, Jiang X, Shi M, Yang Z, Chen Z, et al. Vascular Adventitial Fibroblasts-Derived FGF10 Promotes Vascular Smooth Muscle Cells Proliferation and Migration in vitro and the Neointima Formation in vivo. J Inflamm Res. 2021;14:2207-2223 pubmed 出版商
  113. Palau V, Nugraha B, Benito D, Pascual J, Emmert M, Hoerstrup S, et al. Both Specific Endothelial and Proximal Tubular Adam17 Deletion Protect against Diabetic Nephropathy. Int J Mol Sci. 2021;22: pubmed 出版商
  114. Schwiebs A, Faqar Uz Zaman F, Herrero San Juan M, Radeke H. S1P Lyase Regulates Intestinal Stem Cell Quiescence via Ki-67 and FOXO3. Int J Mol Sci. 2021;22: pubmed 出版商
  115. Errico A, Stocco A, Riccardi V, Gambalunga A, Bassetto F, Grigatti M, et al. Neurofibromin Deficiency and Extracellular Matrix Cooperate to Increase Transforming Potential through FAK-Dependent Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  116. Su S, Chen J, Jiang Y, Wang Y, Vital T, Zhang J, et al. SPOP and OTUD7A Control EWS-FLI1 Protein Stability to Govern Ewing Sarcoma Growth. Adv Sci (Weinh). 2021;8:e2004846 pubmed 出版商
  117. Han Z, Zhang W, Ning W, Wang C, Deng W, Li Z, et al. Model-based analysis uncovers mutations altering autophagy selectivity in human cancer. Nat Commun. 2021;12:3258 pubmed 出版商
  118. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  119. Kulkarni N, O Neill A, Dokoshi T, Luo E, Wong G, Gallo R. Sequence determinants in the cathelicidin LL-37 that promote inflammation via presentation of RNA to scavenger receptors. J Biol Chem. 2021;297:100828 pubmed 出版商
  120. Lötsch D, Kirchhofer D, Englinger B, Jiang L, Okonechnikov K, Senfter D, et al. Targeting fibroblast growth factor receptors to combat aggressive ependymoma. Acta Neuropathol. 2021;142:339-360 pubmed 出版商
  121. Li L, Yang L, Yang F, Zhao X, Xue S, Gong F. Ginkgo biloba Extract 50 (GBE50) Ameliorates Insulin Resistance, Hepatic Steatosis and Liver Injury in High Fat Diet-Fed Mice. J Inflamm Res. 2021;14:1959-1971 pubmed 出版商
  122. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  123. Tamura T, Kodama T, Sato K, Murai K, Yoshioka T, Shigekawa M, et al. Dysregulation of PI3K and Hippo signaling pathways synergistically induces chronic pancreatitis via CTGF upregulation. J Clin Invest. 2021;131: pubmed 出版商
  124. Dai M, Yan G, Wang N, Daliah G, Edick A, Poulet S, et al. In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy. Nat Commun. 2021;12:3055 pubmed 出版商
  125. Renko J, Mahato A, Visnapuu T, Valkonen K, Karelson M, Voutilainen M, et al. Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. J Parkinsons Dis. 2021;11:1023-1046 pubmed 出版商
  126. Kamm D, Pyles K, Sharpe M, Healy L, Colca J, McCommis K. Novel insulin sensitizer MSDC-0602K improves insulinemia and fatty liver disease in mice, alone and in combination with liraglutide. J Biol Chem. 2021;296:100807 pubmed 出版商
  127. Han B, Sun Z, Yu T, Wang Y, Kuang L, Li T, et al. SPOP-PTEN-SUFU axis promotes progression of clear cell renal cell carcinoma via activating SHH and WNT pathway. Cell Death Discov. 2021;7:120 pubmed 出版商
  128. Lei S, Zhang B, Huang L, Zheng Z, Xie S, Shen L, et al. SRSF1 promotes the inclusion of exon 3 of SRA1 and the invasion of hepatocellular carcinoma cells by interacting with exon 3 of SRA1pre-mRNA. Cell Death Discov. 2021;7:117 pubmed 出版商
  129. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  130. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  131. Cao C, Zhang Y, Cheng J, Wu F, Niu X, Hu X, et al. β-Arrestin2 Inhibits the Apoptosis and Facilitates the Proliferation of Fibroblast-like Synoviocytes in Diffuse-type Tenosynovial Giant Cell Tumor. Cancer Genomics Proteomics. 2021;18:461-470 pubmed 出版商
  132. Zheng H, Xu W, Zhou W, Yang R, Chen P, Liu T, et al. Beraprost ameliorates postmenopausal osteoporosis by regulating Nedd4-induced Runx2 ubiquitination. Cell Death Dis. 2021;12:497 pubmed 出版商
  133. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  134. Al Zahrani K, Abou Hamad J, Pascoal J, Labrèche C, Garland B, Sabourin L. AKT-mediated phosphorylation of Sox9 induces Sox10 transcription in a murine model of HER2-positive breast cancer. Breast Cancer Res. 2021;23:55 pubmed 出版商
  135. Luo L, Zhang Z, Qiu N, Ling L, Jia X, Song Y, et al. Disruption of FOXO3a-miRNA feedback inhibition of IGF2/IGF-1R/IRS1 signaling confers Herceptin resistance in HER2-positive breast cancer. Nat Commun. 2021;12:2699 pubmed 出版商
  136. Kaneko K, Lin H, Fu Y, Saha P, De la Puente Gomez A, Xu Y, et al. Rap1 in the VMH regulates glucose homeostasis. JCI Insight. 2021;6: pubmed 出版商
  137. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  138. Di Giorgio E, Paluvai H, Dalla E, Ranzino L, Renzini A, Moresi V, et al. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Genome Biol. 2021;22:129 pubmed 出版商
  139. Zhang G, Li R, Li W, Yang S, Sun Q, Yin H, et al. Toll-like receptor 3 ablation prevented high-fat diet-induced obesity and metabolic disorder. J Nutr Biochem. 2021;95:108761 pubmed 出版商
  140. Yang C, Liu Q, Chen Y, Wang X, Ran Z, Fang F, et al. Melatonin delays ovarian aging in mice by slowing down the exhaustion of ovarian reserve. Commun Biol. 2021;4:534 pubmed 出版商
  141. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  142. Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res. 2021;11:1446-1462 pubmed
  143. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  144. Pan Z, Wang B, Hou D, You R, Wang X, Xie W, et al. METTL3 mediates bone marrow mesenchymal stem cell adipogenesis to promote chemoresistance in acute myeloid leukaemia. FEBS Open Bio. 2021;11:1659-1672 pubmed 出版商
  145. Mirasbekov Y, Zhumakhanova A, Zhantuyakova A, Sarkytbayev K, Malashenkov D, Baishulakova A, et al. Semi-automated classification of colonial Microcystis by FlowCAM imaging flow cytometry in mesocosm experiment reveals high heterogeneity during seasonal bloom. Sci Rep. 2021;11:9377 pubmed 出版商
  146. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  147. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  148. Zhang J, Hu J, Li W, Zhang C, Su P, Wang Y, et al. Rapamycin Antagonizes BCRP-Mediated Drug Resistance Through the PI3K/Akt/mTOR Signaling Pathway in mPRα-Positive Breast Cancer. Front Oncol. 2021;11:608570 pubmed 出版商
  149. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  150. Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, et al. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol. 2021;12:659597 pubmed 出版商
  151. Kvarik T, Reglodi D, Werling D, Vaczy A, Kovari P, Szabó E, et al. The Protective Effects of Endogenous PACAP in Oxygen-Induced Retinopathy. J Mol Neurosci. 2021;71:2546-2557 pubmed 出版商
  152. Wang S, Li S, Li Y, Jiang Q, Li X, Wang Y, et al. Non-muscle myosin heavy chain 9 maintains intestinal homeostasis by preventing epithelium necroptosis and colitis adenoma formation. Stem Cell Reports. 2021;16:1290-1301 pubmed 出版商
  153. Wang Z, Goto Y, Allevato M, Wu V, Saddawi Konefka R, Gilardi M, et al. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat Commun. 2021;12:2383 pubmed 出版商
  154. Sharma V, Sood R, Lou D, Hung T, Levesque M, Han Y, et al. 4E-BP2-dependent translation in parvalbumin neurons controls epileptic seizure threshold. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  155. Maruyama K, Naemura K, Arima Y, Uchijima Y, Nagao H, Yoshihara K, et al. Semaphorin3E-PlexinD1 signaling in coronary artery and lymphatic vessel development with clinical implications in myocardial recovery. iScience. 2021;24:102305 pubmed 出版商
  156. Rupert J, Narasimhan A, Jengelley D, Jiang Y, Liu J, Au E, et al. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J Exp Med. 2021;218: pubmed 出版商
  157. Hu J, Rodemer W, Zhang G, Jin L, Li S, Selzer M. Chondroitinase ABC Promotes Axon Regeneration and Reduces Retrograde Apoptosis Signaling in Lamprey. Front Cell Dev Biol. 2021;9:653638 pubmed 出版商
  158. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  159. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  160. Watahiki A, Hoshikawa S, Chiba M, Egusa H, Fukumoto S, Inuzuka H. Deficiency of Lipin2 Results in Enhanced NF-κB Signaling and Osteoclast Formation in RAW-D Murine Macrophages. Int J Mol Sci. 2021;22: pubmed 出版商
  161. Meng L, Coleman V, Zhao Y, Ost M, Voigt A, Bunschoten A, et al. Pseudo-Starvation Driven Energy Expenditure Negatively Affects Ovarian Follicle Development. Int J Mol Sci. 2021;22: pubmed 出版商
  162. Moore K, Fulmer D, Guo L, Koren N, Glover J, Moore R, et al. PDGFRα: Expression and Function during Mitral Valve Morphogenesis. J Cardiovasc Dev Dis. 2021;8: pubmed 出版商
  163. Shi L, Magee P, Fassan M, Sahoo S, Leong H, LEE D, et al. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun. 2021;12:2038 pubmed 出版商
  164. Cao Z, Cheng Y, Wang J, Liu Y, Yang R, Jiang W, et al. HBP1-mediated transcriptional repression of AFP inhibits hepatoma progression. J Exp Clin Cancer Res. 2021;40:118 pubmed 出版商
  165. Zhang M, Ceyhan Y, Kaftanovskaya E, Vasquez J, Vacher J, Knop F, et al. INPP4B protects from metabolic syndrome and associated disorders. Commun Biol. 2021;4:416 pubmed 出版商
  166. Zhang X, Wang X, Yuan Z, Radford S, Liu C, Libutti S, et al. Amino acids-Rab1A-mTORC1 signaling controls whole-body glucose homeostasis. Cell Rep. 2021;34:108830 pubmed 出版商
  167. Alghanem A, Abello J, Maurer J, Kumar A, Ta C, Gunasekar S, et al. The SWELL1-LRRC8 complex regulates endothelial AKT-eNOS signaling and vascular function. elife. 2021;10: pubmed 出版商
  168. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  169. Chen X, Yao H, Kashif M, Revêchon G, Eriksson M, Hu J, et al. A small-molecule ICMT inhibitor delays senescence of Hutchinson-Gilford progeria syndrome cells. elife. 2021;10: pubmed 出版商
  170. Li H, Xu W, Xia Z, Liu W, Pan G, Ding J, et al. Hsa_circ_0000199 facilitates chemo-tolerance of triple-negative breast cancer by interfering with miR-206/613-led PI3K/Akt/mTOR signaling. Aging (Albany NY). 2021;13:4522-4551 pubmed 出版商
  171. Xu K, Yin N, Peng M, Stamatiades E, Shyu A, Li P, et al. Glycolysis fuels phosphoinositide 3-kinase signaling to bolster T cell immunity. Science. 2021;371:405-410 pubmed 出版商
  172. Ogura Y, Tajiri K, Murakoshi N, Xu D, Yonebayashi S, Li S, et al. Neutrophil Elastase Deficiency Ameliorates Myocardial Injury Post Myocardial Infarction in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  173. Lu C, Yang W, Zhou J, Zhang Z, Gong Y, Hu F, et al. Inhibition of Pre-B Cell Colony Enhancing Factor Reduces Lung Injury in Rats Receiving Cardiopulmonary Bypass. Drug Des Devel Ther. 2021;15:51-60 pubmed 出版商
  174. Lopušná K, Nowialis P, Opavska J, Abraham A, Riva A, Opavsky R. Dnmt3b catalytic activity is critical for its tumour suppressor function in lymphomagenesis and is associated with c-Met oncogenic signalling. EBioMedicine. 2021;63:103191 pubmed 出版商
  175. Yang D, Haemmig S, Zhou H, Pérez Cremades D, Sun X, Chen L, et al. Methotrexate attenuates vascular inflammation through an adenosine-microRNA-dependent pathway. elife. 2021;10: pubmed 出版商
  176. Ben Sasson A, Watson J, Sheffler W, Johnson M, Bittleston A, Somasundaram L, et al. Design of biologically active binary protein 2D materials. Nature. 2021;589:468-473 pubmed 出版商
  177. Cuddy S, Schinlever A, Dochnal S, Seegren P, Suzich J, Kundu P, et al. Neuronal hyperexcitability is a DLK-dependent trigger of herpes simplex virus reactivation that can be induced by IL-1. elife. 2020;9: pubmed 出版商
  178. Karnan S, Ota A, Murakami H, Rahman M, Hasan M, Wahiduzzaman M, et al. Identification of CD24 as a potential diagnostic and therapeutic target for malignant pleural mesothelioma. Cell Death Discov. 2020;6:127 pubmed 出版商
  179. Jiang X, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, et al. KLHL18 inhibits the proliferation, migration, and invasion of non-small cell lung cancer by inhibiting PI3K/PD-L1 axis activity. Cell Biosci. 2020;10:139 pubmed 出版商
  180. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  181. Cai H, Yu Y, Ni X, Li C, Hu Y, Wang J, et al. LncRNA LINC00998 inhibits the malignant glioma phenotype via the CBX3-mediated c-Met/Akt/mTOR axis. Cell Death Dis. 2020;11:1032 pubmed 出版商
  182. Nakayama A, Albarrán Juárez J, Liang G, Roquid K, Iring A, Tonack S, et al. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. JCI Insight. 2020;5: pubmed 出版商
  183. Li Z, Meng Y, Liu C, Liu H, Cao W, Tong C, et al. Kcnh2 mediates FAK/AKT-FOXO3A pathway to attenuate sepsis-induced cardiac dysfunction. Cell Prolif. 2021;54:e12962 pubmed 出版商
  184. Grundmann S, Schutkowski A, Berger C, Baur A, König B, Stangl G. High-phosphorus diets reduce aortic lesions and cardiomyocyte size and modify lipid metabolism in Ldl receptor knockout mice. Sci Rep. 2020;10:20748 pubmed 出版商
  185. Bao Y, Oguz G, Lee W, Lee P, Ghosh K, Li J, et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020;11:5878 pubmed 出版商
  186. Wilson M, Reske J, Holladay J, Neupane S, Ngo J, Cuthrell N, et al. ARID1A Mutations Promote P300-Dependent Endometrial Invasion through Super-Enhancer Hyperacetylation. Cell Rep. 2020;33:108366 pubmed 出版商
  187. Ruan H, Li X, Xu X, Leibowitz B, Tong J, Chen L, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. elife. 2020;9: pubmed 出版商
  188. Sünderhauf A, Raschdorf A, Hicken M, Schlichting H, Fetzer F, Brethack A, et al. GC1qR Cleavage by Caspase-1 Drives Aerobic Glycolysis in Tumor Cells. Front Oncol. 2020;10:575854 pubmed 出版商
  189. Dong X, Feng M, Yang H, Liu H, Guo H, Gao X, et al. Rictor promotes cell migration and actin polymerization through regulating ABLIM1 phosphorylation in Hepatocellular Carcinoma. Int J Biol Sci. 2020;16:2835-2852 pubmed 出版商
  190. Wang Q, Gavin W, Masiello N, Tran K, Laible G, Shepherd P. Cetuximab produced from a goat mammary gland expression system is equally efficacious as innovator cetuximab in animal cancer models. Biotechnol Rep (Amst). 2020;28:e00533 pubmed 出版商
  191. Ganassi M, Badodi S, Wanders K, Zammit P, Hughes S. Myogenin is an essential regulator of adult myofibre growth and muscle stem cell homeostasis. elife. 2020;9: pubmed 出版商
  192. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  193. Zhu W, Liu C, Lu T, Zhang Y, Zhang S, Chen Q, et al. Knockout of EGFL6 by CRISPR/Cas9 Mediated Inhibition of Tumor Angiogenesis in Ovarian Cancer. Front Oncol. 2020;10:1451 pubmed 出版商
  194. Zhao L, Fan M, Zhao L, Yun H, Yang Y, Wang C, et al. Fibroblast growth factor 1 ameliorates adipose tissue inflammation and systemic insulin resistance via enhancing adipocyte mTORC2/Rictor signal. J Cell Mol Med. 2020;24:12813-12825 pubmed 出版商
  195. Wang B, Li Q, Wang J, Zhao S, Nashun B, Qin L, et al. Plasmodium infection inhibits tumor angiogenesis through effects on tumor-associated macrophages in a murine implanted hepatoma model. Cell Commun Signal. 2020;18:157 pubmed 出版商
  196. Felgner S, Preusse M, Beutling U, Stahnke S, Pawar V, Rohde M, et al. Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. elife. 2020;9: pubmed 出版商
  197. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  198. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  199. Tremblay M, Viala S, Shafer M, Graham Paquin A, Liu C, Bouchard M. Regulation of stem/progenitor cell maintenance by BMP5 in prostate homeostasis and cancer initiation. elife. 2020;9: pubmed 出版商
  200. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  201. Zhou Y, Pei F, Ji M, Zhang F, Sun Y, Zhao Q, et al. WDHD1 facilitates G1 checkpoint abrogation in HPV E7 expressing cells by modulating GCN5. BMC Cancer. 2020;20:840 pubmed 出版商
  202. Rogerson C, Ogden S, Britton E, Ang Y, Sharrocks A. Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. elife. 2020;9: pubmed 出版商
  203. Frazier H, Anderson K, Ghoweri A, Lin R, Hawkinson T, Popa G, et al. Molecular elevation of insulin receptor signaling improves memory recall in aged Fischer 344 rats. Aging Cell. 2020;19:e13220 pubmed 出版商
  204. Teramura Y, Tanaka M, Yamazaki Y, Yamashita K, Takazawa Y, Ae K, et al. Identification of Novel Fusion Genes in Bone and Soft Tissue Sarcoma and Their Implication in the Generation of a Mouse Model. Cancers (Basel). 2020;12: pubmed 出版商
  205. Cui P, Jing P, Liu X, Xu W. Prognostic Significance of PD-L1 Expression and Its Tumor-Intrinsic Functions in Hypopharyngeal Squamous Cell Carcinoma. Cancer Manag Res. 2020;12:5893-5902 pubmed 出版商
  206. Chu N, Viennet T, Bae H, Salguero A, Boeszoermenyi A, Arthanari H, et al. The structural determinants of PH domain-mediated regulation of Akt revealed by segmental labeling. elife. 2020;9: pubmed 出版商
  207. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  208. Wu Y, Sarkissyan M, Ogah O, Kim J, Vadgama J. Expression of MALAT1 Promotes Trastuzumab Resistance in HER2 Overexpressing Breast Cancers. Cancers (Basel). 2020;12: pubmed 出版商
  209. Eyler C, Matsunaga H, Hovestadt V, Vantine S, van Galen P, Bernstein B. Single-cell lineage analysis reveals genetic and epigenetic interplay in glioblastoma drug resistance. Genome Biol. 2020;21:174 pubmed 出版商
  210. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  211. Nozaki Y, Motomura H, Tamori S, Kimura Y, Onaga C, Kanai S, et al. High PKCλ expression is required for ALDH1-positive cancer stem cell function and indicates a poor clinical outcome in late-stage breast cancer patients. PLoS ONE. 2020;15:e0235747 pubmed 出版商
  212. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  213. Schmitt B, Boewe A, Becker V, Nalbach L, Gu Y, Götz C, et al. Protein Kinase CK2 Regulates Nerve/Glial Antigen (NG)2-Mediated Angiogenic Activity of Human Pericytes. Cells. 2020;9: pubmed 出版商
  214. Brunner A, Suryo Rahmanto A, Johansson H, Franco M, Viiliäinen J, Gazi M, et al. PTEN and DNA-PK determine sensitivity and recovery in response to WEE1 inhibition in human breast cancer. elife. 2020;9: pubmed 出版商
  215. Wang W, Wang H, Xiang L, Ni T, Jin F, Deng J, et al. DJ‑1 is a new prognostic marker and predicts chemotherapy efficacy in colorectal cancer. Oncol Rep. 2020;44:77-90 pubmed 出版商
  216. Chabloz A, Schaefer J, Kozieradzki I, Cronin S, Strebinger D, Macaluso F, et al. Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol. 2020;3:342 pubmed 出版商
  217. Han C, Kang I, Harten I, Gebe J, Chan C, Omer M, et al. Adipocyte-Derived Versican and Macrophage-Derived Biglycan Control Adipose Tissue Inflammation in Obesity. Cell Rep. 2020;31:107818 pubmed 出版商
  218. Sato K, Hikita H, Myojin Y, Fukumoto K, Murai K, Sakane S, et al. Hyperglycemia enhances pancreatic cancer progression accompanied by elevations in phosphorylated STAT3 and MYC levels. PLoS ONE. 2020;15:e0235573 pubmed 出版商
  219. Silva M, Nandi G, Tentarelli S, Gurrell I, Jamier T, Lucente D, et al. Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun. 2020;11:3258 pubmed 出版商
  220. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  221. Pattwell S, Arora S, Cimino P, Ozawa T, Szulzewsky F, Hoellerbauer P, et al. A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nat Commun. 2020;11:2977 pubmed 出版商
  222. Hastings J, González Rajal A, Latham S, Han J, McCloy R, O Donnell Y, et al. Analysis of pulsed cisplatin signalling dynamics identifies effectors of resistance in lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  223. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  224. Bi H, Zhang X, Zhang Y, Xie X, Xia Y, Du J, et al. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 2020;6:eaax4826 pubmed 出版商
  225. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  226. Zhao Z, Xiang S, Qi J, Wei Y, Zhang M, Yao J, et al. Correction of the tumor suppressor Salvador homolog-1 deficiency in tumors by lycorine as a new strategy in lung cancer therapy. Cell Death Dis. 2020;11:387 pubmed 出版商
  227. El Maï M, Marzullo M, de Castro I, Ferreira M. Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. elife. 2020;9: pubmed 出版商
  228. Jiang H, Gallet S, Klemm P, Scholl P, Folz Donahue K, Altmuller J, et al. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron. 2020;107:306-319.e9 pubmed 出版商
  229. Zhang K, Yao E, Lin C, Chou Y, Wong J, Li J, et al. A mammalian Wnt5a-Ror2-Vangl2 axis controls the cytoskeleton and confers cellular properties required for alveologenesis. elife. 2020;9: pubmed 出版商
  230. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  231. Fan Z, Tian Y, Chen Z, Liu L, Zhou Q, He J, et al. Blocking interaction between SHP2 and PD-1 denotes a novel opportunity for developing PD-1 inhibitors. EMBO Mol Med. 2020;12:e11571 pubmed 出版商
  232. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  233. Marmol P, Krapacher F, Ibanez C. Control of brown adipose tissue adaptation to nutrient stress by the activin receptor ALK7. elife. 2020;9: pubmed 出版商
  234. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  235. Rigiracciolo D, Nohata N, Lappano R, Cirillo F, Talia M, Scordamaglia D, et al. IGF-1/IGF-1R/FAK/YAP Transduction Signaling Prompts Growth Effects in Triple-Negative Breast Cancer (TNBC) Cells. Cells. 2020;9: pubmed 出版商
  236. Edwards G, Perkins G, Kim K, Kong Y, Lee Y, Choi S, et al. Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis. 2020;11:254 pubmed 出版商
  237. Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics. 2020;10:5137-5153 pubmed 出版商
  238. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  239. Ray S, Chee L, Matson D, Palermo N, Bresnick E, Hewitt K. Sterile α-motif domain requirement for cellular signaling and survival. J Biol Chem. 2020;295:7113-7125 pubmed 出版商
  240. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  241. Wu W, Jing D, Meng Z, Hu B, Zhong B, Deng X, et al. FGD1 promotes tumor progression and regulates tumor immune response in osteosarcoma via inhibiting PTEN activity. Theranostics. 2020;10:2859-2871 pubmed 出版商
  242. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  243. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  244. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  245. Funada K, Yoshizaki K, Miyazaki K, Han X, Yuta T, Tian T, et al. microRNA-875-5p plays critical role for mesenchymal condensation in epithelial-mesenchymal interaction during tooth development. Sci Rep. 2020;10:4918 pubmed 出版商
  246. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  247. Peng Z, Aggarwal R, Zeng N, He L, Stiles E, Debebe A, et al. AKT1 Regulates Endoplasmic Reticulum Stress and Mediates the Adaptive Response of Pancreatic β Cells. Mol Cell Biol. 2020;40: pubmed 出版商
  248. Steins A, van Mackelenbergh M, van der Zalm A, Klaassen R, Serrels B, Goris S, et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020;21:e48780 pubmed 出版商
  249. Alshehri B, Pagnin M, Lee J, Petratos S, Richardson S. The Role of Transthyretin in Oligodendrocyte Development. Sci Rep. 2020;10:4189 pubmed 出版商
  250. Qian W, Cai X, Qian Q. Sirt1 antisense long non-coding RNA attenuates pulmonary fibrosis through sirt1-mediated epithelial-mesenchymal transition. Aging (Albany NY). 2020;12:4322-4336 pubmed 出版商
  251. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  252. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  253. Dong C, Zhang J, Fang S, Liu F. IGFBP5 increases cell invasion and inhibits cell proliferation by EMT and Akt signaling pathway in Glioblastoma multiforme cells. Cell Div. 2020;15:4 pubmed 出版商
  254. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  255. McCabe M, Cullen E, Barrows C, Shore A, Tooke K, Laprade K, et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. elife. 2020;9: pubmed 出版商
  256. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  257. Kucharava K, Brand Y, Albano G, Sekulic Jablanovic M, Glutz A, Xian X, et al. Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Sci Rep. 2020;10:3609 pubmed 出版商
  258. Asha K, Balfe N, Sharma Walia N. Concurrent Control of the Kaposi's Sarcoma-Associated Herpesvirus Life Cycle through Chromatin Modulation and Host Hedgehog Signaling: a New Prospect for the Therapeutic Potential of Lipoxin A4. J Virol. 2020;94: pubmed 出版商
  259. Leite M, Marques M, Melo J, Pinto M, Cavadas B, Aroso M, et al. Helicobacter Pylori Targets the EPHA2 Receptor Tyrosine Kinase in Gastric Cells Modulating Key Cellular Functions. Cells. 2020;9: pubmed 出版商
  260. Lee M, Jung K, Song J, Sung M, Ahn S, Lee B, et al. IRS2 Amplification as a Predictive Biomarker in Response to Ceritinib in Small Cell Lung Cancer. Mol Ther Oncolytics. 2020;16:188-196 pubmed 出版商
  261. Pothuraju R, Rachagani S, Krishn S, Chaudhary S, Nimmakayala R, Siddiqui J, et al. Molecular implications of MUC5AC-CD44 axis in colorectal cancer progression and chemoresistance. Mol Cancer. 2020;19:37 pubmed 出版商
  262. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18:e3000603 pubmed 出版商
  263. Duplaquet L, Leroy C, Vinchent A, Paget S, Lefebvre J, Vanden Abeele F, et al. Control of cell death/survival balance by the MET dependence receptor. elife. 2020;9: pubmed 出版商
  264. Zeng S, Bai J, Jiang H, Zhu J, Fu C, He M, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2019;13:585 pubmed 出版商
  265. Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, et al. Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int. 2020;20:50 pubmed 出版商
  266. Koren Iton A, Salomon Zimri S, Smolar A, Shavit Stein E, Dori A, Chapman J, et al. Central and Peripheral Mechanisms in ApoE4-Driven Diabetic Pathology. Int J Mol Sci. 2020;21: pubmed 出版商
  267. Zhang Y, Du P, Li Y, Zhu Q, Song X, Liu S, et al. TASP1 Promotes Gallbladder Cancer Cell Proliferation and Metastasis by Up-regulating FAM49B via PI3K/AKT Pathway. Int J Biol Sci. 2020;16:739-751 pubmed 出版商
  268. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  269. Jaynes J, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020;12: pubmed 出版商
  270. Trimova G, Yamagata K, Iwata S, Hirata S, Zhang T, Uemura F, et al. Tumour necrosis factor alpha promotes secretion of 14-3-3η by inducing necroptosis in macrophages. Arthritis Res Ther. 2020;22:24 pubmed 出版商
  271. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  272. Lai S, Lin H, Liu Y, Yang L, Lu D. Monocarboxylate Transporter 4 Regulates Glioblastoma Motility and Monocyte Binding Ability. Cancers (Basel). 2020;12: pubmed 出版商
  273. Zheng J, Qu D, Wang C, Ding L, Zhou W. Involvement of CXCL12/CXCR4 in the motility of human first-trimester endometrial epithelial cells through an autocrine mechanism by activating PI3K/AKT signaling. BMC Pregnancy Childbirth. 2020;20:87 pubmed 出版商
  274. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  275. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  276. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  277. Yang S, Ma C, Wu H, Zhang H, Yuan F, Yang G, et al. Tectorigenin attenuates diabetic nephropathy by improving vascular endothelium dysfunction through activating AdipoR1/2 pathway. Pharmacol Res. 2020;153:104678 pubmed 出版商
  278. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  279. Wu Q, Li G, Wen C, Zeng T, Fan Y, Liu C, et al. Monoubiquitination of p120-catenin is essential for TGFβ-induced epithelial-mesenchymal transition and tumor metastasis. Sci Adv. 2020;6:eaay9819 pubmed 出版商
  280. Xhima K, Markham Coultes K, Nedev H, Heinen S, Saragovi H, Hynynen K, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci Adv. 2020;6:eaax6646 pubmed 出版商
  281. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594 pubmed 出版商
  282. Song K, Oh S, Kim S, Cho H, Lee H, Song J, et al. HSP90A inhibition promotes anti-tumor immunity by reversing multi-modal resistance and stem-like property of immune-refractory tumors. Nat Commun. 2020;11:562 pubmed 出版商
  283. Zhang Y, Mao X, Chen W, Guo X, Yu L, Jiang F, et al. A Discovery of Clinically Approved Formula FBRP for Repositioning to Treat HCC by Inhibiting PI3K/AKT/NF-κB Activation. Mol Ther Nucleic Acids. 2020;19:890-904 pubmed 出版商
  284. Lyashenko E, Niepel M, Dixit P, Lim S, Sorger P, Vitkup D. Receptor-based mechanism of relative sensing and cell memory in mammalian signaling networks. elife. 2020;9: pubmed 出版商
  285. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  286. Goswami D, Chen D, Yang Y, Gudla P, Columbus J, Worthy K, et al. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. elife. 2020;9: pubmed 出版商
  287. Lin C, Lin W, Cho R, Yang C, Yeh Y, Hsiao L, et al. Induction of HO-1 by Mevastatin Mediated via a Nox/ROS-Dependent c-Src/PDGFRα/PI3K/Akt/Nrf2/ARE Cascade Suppresses TNF-α-Induced Lung Inflammation. J Clin Med. 2020;9: pubmed 出版商
  288. Zhou L, Shao C, Xie Y, Wang N, Xu S, Luo B, et al. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. elife. 2020;9: pubmed 出版商
  289. Kierdorf K, Hersperger F, Sharrock J, Vincent C, Ustaoğlu P, Dou J, et al. Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila. elife. 2020;9: pubmed 出版商
  290. Buhl E, Djudjaj S, Klinkhammer B, Ermert K, Puelles V, Lindenmeyer M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021 pubmed 出版商
  291. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  292. Li H, Lan J, Wang G, Guo K, Han C, Li X, et al. KDM4B facilitates colorectal cancer growth and glucose metabolism by stimulating TRAF6-mediated AKT activation. J Exp Clin Cancer Res. 2020;39:12 pubmed 出版商
  293. Hsu H, Liu C, Lin J, Hsu T, Hsu J, Li A, et al. Involvement of collagen XVII in pluripotency gene expression and metabolic reprogramming of lung cancer stem cells. J Biomed Sci. 2020;27:5 pubmed 出版商
  294. Ye X, Zhu M, Che X, Wang H, Liang X, Wu C, et al. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation. 2020;17:18 pubmed 出版商
  295. Inoue T, Kokubo T, Daino K, Yanagihara H, Watanabe F, Tsuruoka C, et al. Interstitial chromosomal deletion of the tuberous sclerosis complex 2 locus is a signature for radiation-associated renal tumors in Eker rats. Cancer Sci. 2020;111:840-848 pubmed 出版商
  296. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  297. Hong Z, Wang Z, Zhou B, Wang J, Tong H, Liao Y, et al. Effects of evodiamine on PI3K/Akt and MAPK/ERK signaling pathways in pancreatic cancer cells. Int J Oncol. 2020;56:783-793 pubmed 出版商
  298. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  299. Xu Q, Ge Q, Zhou Y, Yang B, Yang Q, Jiang S, et al. MELK promotes Endometrial carcinoma progression via activating mTOR signaling pathway. EBioMedicine. 2020;51:102609 pubmed 出版商
  300. Zhang C, Lin X, Zhao Q, Wang Y, Jiang F, Ji C, et al. YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol. 2020;146:329-342 pubmed 出版商
  301. Liu H, Mei F, Yang W, Wang H, Wong E, Cai J, et al. Epac1 inhibition ameliorates pathological angiogenesis through coordinated activation of Notch and suppression of VEGF signaling. Sci Adv. 2020;6:eaay3566 pubmed 出版商
  302. Modi J, Menzie Suderam J, Xu H, Trujillo P, Medley K, Marshall M, et al. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci. 2020;27:19 pubmed 出版商
  303. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  304. Liu W, Yang L, Liu Y, Yuan D, Zhao Z, Wang Q, et al. Dynamic characterization of intestinal metaplasia in the gastric corpus mucosa of Atp4a-deficient mice. Biosci Rep. 2020;40: pubmed 出版商
  305. Yin Y, Wang X, Li T, Ren Q, Li L, Sun X, et al. MicroRNA-221 promotes breast cancer resistance to adriamycin via modulation of PTEN/Akt/mTOR signaling. Cancer Med. 2020;9:1544-1552 pubmed 出版商
  306. Harde E, Nicholson L, Furones Cuadrado B, Bissen D, Wigge S, Urban S, et al. EphrinB2 regulates VEGFR2 during dendritogenesis and hippocampal circuitry development. elife. 2019;8: pubmed 出版商
  307. Weisell J, Ohukainen P, Näpänkangas J, Ohlmeier S, Bergmann U, Peltonen T, et al. Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovasc Disord. 2019;19:306 pubmed 出版商
  308. Ding X, Hu H, Huang K, Wei R, Min J, Qi C, et al. Ubiquitination of NOTCH2 by DTX3 suppresses the proliferation and migration of human esophageal carcinoma. Cancer Sci. 2020;111:489-501 pubmed 出版商
  309. Zhou H, Zeng H, Yuan D, Ren J, Cheng S, Yu H, et al. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun Signal. 2019;17:168 pubmed 出版商
  310. Huang X, Ni B, Xi Y, Chu X, Zhang R, You H. Protease-activated receptor 2 (PAR-2) antagonist AZ3451 as a novel therapeutic agent for osteoarthritis. Aging (Albany NY). 2019;11:12532-12545 pubmed 出版商
  311. Amendola C, Mahaffey J, Parker S, Ahearn I, Chen W, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482-486 pubmed 出版商
  312. Ramírez C, Hauser A, Vucic E, Bar Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature. 2019;576:477-481 pubmed 出版商
  313. Perri A, Agosti V, Olivo E, Concolino A, Angelis M, Tammè L, et al. Histone proteomics reveals novel post-translational modifications in breast cancer. Aging (Albany NY). 2019;11:11722-11755 pubmed 出版商
  314. Si J, Ma Y, Bi J, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481 pubmed 出版商
  315. Lee Y, Ho S, Graves J, Xiao Y, Huang S, Lin W. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res. 2019;21:134 pubmed 出版商
  316. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  317. Luxan G, Stewen J, Díaz N, Kato K, Maney S, Aravamudhan A, et al. Endothelial EphB4 maintains vascular integrity and transport function in adult heart. elife. 2019;8: pubmed 出版商
  318. Wei X, Yang X, Wang B, Yang Y, Fang Z, Yi C, et al. LncRNA MBNL1-AS1 represses cell proliferation and enhances cell apoptosis via targeting miR-135a-5p/PHLPP2/FOXO1 axis in bladder cancer. Cancer Med. 2020;9:724-736 pubmed 出版商
  319. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  320. Krycer J, Elkington S, Díaz Vegas A, Cooke K, Burchfield J, Fisher Wellman K, et al. Mitochondrial oxidants, but not respiration, are sensitive to glucose in adipocytes. J Biol Chem. 2020;295:99-110 pubmed 出版商
  321. Tian S, Jia W, Lu M, Zhao J, Sun X. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression. J Biol Chem. 2019;: pubmed 出版商
  322. Brosig A, Fuchs J, Ipek F, Kroon C, Schrötter S, Vadhvani M, et al. The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Rep. 2019;29:2028-2040.e8 pubmed 出版商
  323. Ahlers L, Trammell C, Carrell G, Mackinnon S, Torrevillas B, Chow C, et al. Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep. 2019;29:1946-1960.e5 pubmed 出版商
  324. Thirugnanam K, Cossette S, Lu Q, Chowdhury S, Harmann L, Gupta A, et al. Cardiomyocyte-Specific Snrk Prevents Inflammation in the Heart. J Am Heart Assoc. 2019;8:e012792 pubmed 出版商
  325. Yang N, Yu L, Deng Y, Han Q, Wang J, Yu L, et al. Identification and characterization of proteins that are differentially expressed in adipose tissue of olanzapine-induced insulin resistance rat by iTRAQ quantitative proteomics. J Proteomics. 2020;212:103570 pubmed 出版商
  326. VASAN N, Razavi P, Johnson J, Shao H, Shah H, Antoine A, et al. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science. 2019;366:714-723 pubmed 出版商
  327. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  328. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  329. Berndsen K, Lis P, Yeshaw W, Wawro P, Nirujogi R, Wightman M, et al. PPM1H phosphatase counteracts LRRK2 signaling by selectively dephosphorylating Rab proteins. elife. 2019;8: pubmed 出版商
  330. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  331. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  332. Mahmoudi S, Mancini E, Xu L, Moore A, Jahanbani F, Hebestreit K, et al. Heterogeneity in old fibroblasts is linked to variability in reprogramming and wound healing. Nature. 2019;574:553-558 pubmed 出版商
  333. Ali R, Alabdullah M, Miligy I, Normatova M, Babaei Jadidi R, Nateri A, et al. ATM Regulated PTEN Degradation Is XIAP E3 Ubiquitin Ligase Mediated in p85α Deficient Cancer Cells and Influence Platinum Sensitivity. Cells. 2019;8: pubmed 出版商
  334. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  335. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  336. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  337. Ortega Molina A, Deleyto Seldas N, Carreras J, Sanz A, Lebrero Fernández C, Menéndez C, et al. Oncogenic Rag GTPase signaling enhances B cell activation and drives follicular lymphoma sensitive to pharmacological inhibition of mTOR. Nat Metab. 2019;1:775-789 pubmed 出版商
  338. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;: pubmed 出版商
  339. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  340. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  341. Zhu B, Ren C, Du K, Zhu H, Ai Y, Kang F, et al. Olean-28,13b-olide 2 plays a role in cisplatin-mediated apoptosis and reverses cisplatin resistance in human lung cancer through multiple signaling pathways. Biochem Pharmacol. 2019;170:113642 pubmed 出版商
  342. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  343. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  344. Jin Y, Li Y, Wang X, Yang Y. Secretory leukocyte protease inhibitor suppresses HPV E6-expressing HNSCC progression by mediating NF-κB and Akt pathways. Cancer Cell Int. 2019;19:220 pubmed 出版商
  345. Nam S, Gupta V, Lee H, Lee J, Wisdom K, Varma S, et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27Kip1 signaling axis. Sci Adv. 2019;5:eaaw6171 pubmed 出版商
  346. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  347. Nagpal A, Redvers R, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21:94 pubmed 出版商
  348. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609 pubmed 出版商
  349. Eftekharzadeh B, Banduseela V, Chiesa G, Martínez Cristóbal P, Rauch J, Nath S, et al. Hsp70 and Hsp40 inhibit an inter-domain interaction necessary for transcriptional activity in the androgen receptor. Nat Commun. 2019;10:3562 pubmed 出版商
  350. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  351. Menon V, Thomas R, Elgueta C, Horl M, Osborn T, Hallett P, et al. Comprehensive Cell Surface Antigen Analysis Identifies Transferrin Receptor Protein-1 (CD71) as a Negative Selection Marker for Human Neuronal Cells. Stem Cells. 2019;37:1293-1306 pubmed 出版商
  352. El Kott A, Shati A, Al Kahtani M, Alqahtani S. Acylated Ghrelin Renders Chemosensitive Ovarian Cancer Cells Resistant to Cisplatin Chemotherapy via Activation of the PI3K/Akt/mTOR Survival Pathway. Anal Cell Pathol (Amst). 2019;2019:9627810 pubmed 出版商
  353. Gao H, Freeling J, Wu P, Liang A, Wang X, Li Y. UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sci. 2019;233:116699 pubmed 出版商
  354. Sharma A, Oonthonpan L, Sheldon R, Rauckhorst A, Zhu Z, Tompkins S, et al. Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. elife. 2019;8: pubmed 出版商
  355. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  356. Mao N, Gao D, Hu W, Hieronymus H, Wang S, Lee Y, et al. Aberrant Expression of ERG Promotes Resistance to Combined PI3K and AR Pathway Inhibition through Maintenance of AR Target Genes. Mol Cancer Ther. 2019;18:1577-1586 pubmed 出版商
  357. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  358. Uddin G, Zhang L, Shah S, Fukushima A, Wagg C, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18:86 pubmed 出版商
  359. Du T, Li H, Fan Y, Yuan L, Guo X, Zhu Q, et al. The deubiquitylase OTUD3 stabilizes GRP78 and promotes lung tumorigenesis. Nat Commun. 2019;10:2914 pubmed 出版商
  360. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  361. Petersen C, Mahmood B, Badsted C, Dahlby T, Rasmussen H, Hansen M, et al. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer. 2019;19:643 pubmed 出版商
  362. Zhang G, Zhou J, Huang W, Fang M, Yu L, Wang H, et al. Prenatal ethanol exposure-induced a low level of foetal blood cholesterol and its mechanism of IGF1-related placental cholesterol transport dysfunction. Toxicology. 2019;:152237 pubmed 出版商
  363. Guo Z, Zhao K, Feng X, Yan D, Yao R, Chen Y, et al. mTORC2 Regulates Lipogenic Gene Expression through PPARγ to Control Lipid Synthesis in Bovine Mammary Epithelial Cells. Biomed Res Int. 2019;2019:5196028 pubmed 出版商
  364. Zhang J, Lee Y, Dang F, Gan W, Menon A, Katon J, et al. PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage. Cancer Discov. 2019;: pubmed 出版商
  365. Tang K, Tang H, Du Y, Tian T, Xiong S. PAR-2 promotes cell proliferation, migration and invasion through activating PI3K/AKT signaling pathway in oral squamous cell carcinoma. Biosci Rep. 2019;: pubmed 出版商
  366. Iring A, Jin Y, Albarrán Juárez J, Siragusa M, Wang S, Dancs P, et al. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest. 2019;129:2775-2791 pubmed 出版商
  367. Bando H, Pradipta A, Iwanaga S, Okamoto T, Okuzaki D, Tanaka S, et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J Exp Med. 2019;: pubmed 出版商
  368. Wang H, Huang F, Zhang Z, Wang P, Luo Y, Li H, et al. Feedback Activation of SGK3 and AKT Contributes to Rapamycin Resistance by Reactivating mTORC1/4EBP1 Axis via TSC2 in Breast Cancer. Int J Biol Sci. 2019;15:929-941 pubmed 出版商
  369. Zhong H, Wu H, Bai H, Wang M, Wen J, Gong J, et al. Panax notoginseng saponins promote liver regeneration through activation of the PI3K/AKT/mTOR cell proliferation pathway and upregulation of the AKT/Bad cell survival pathway in mice. BMC Complement Altern Med. 2019;19:122 pubmed 出版商
  370. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  371. Wang L, Shi H, Liu Y, Zhang W, Duan X, Li M, et al. Cystathionine‑γ‑lyase promotes the metastasis of breast cancer via the VEGF signaling pathway. Int J Oncol. 2019;55:473-487 pubmed 出版商
  372. Luo X, Jiang X, Li J, Bai Y, Li Z, Wei P, et al. Insulin-like growth factor-1 attenuates oxidative stress-induced hepatocyte premature senescence in liver fibrogenesis via regulating nuclear p53-progerin interaction. Cell Death Dis. 2019;10:451 pubmed 出版商
  373. Franklin W, Krishnan B, Taglialatela G. Chronic synaptic insulin resistance after traumatic brain injury abolishes insulin protection from amyloid beta and tau oligomer-induced synaptic dysfunction. Sci Rep. 2019;9:8228 pubmed 出版商
  374. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  375. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  376. Fei J, Sun Y, Duan Y, Xia J, Yu S, Ouyang P, et al. Low concentration of rutin treatment might alleviate the cardiotoxicity effect of pirarubicin on cardiomyocytes via activation of PI3K/AKT/mTOR signaling pathway. Biosci Rep. 2019;: pubmed 出版商
  377. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  378. Sabol R, Bowles A, Côté A, Wise R, O Donnell B, Matossian M, et al. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res. 2019;21:67 pubmed 出版商
  379. Sivaram N, McLaughlin P, Han H, Petrenko O, Jiang Y, Ballou L, et al. Tumor-intrinsic PIK3CA represses tumor immunogenecity in a model of pancreatic cancer. J Clin Invest. 2019;130: pubmed 出版商
  380. Lee Y, Chen M, Lee J, Zhang J, Lin S, Fu T, et al. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science. 2019;364: pubmed 出版商
  381. Coulombe P, Paliouras G, Clayton A, Hussainkhel A, Fuller M, Jovanovic V, et al. Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling. Cell Rep. 2019;27:1769-1780.e4 pubmed 出版商
  382. Slocum E, Craig A, Villanueva A, Germain D. Parity predisposes breasts to the oncogenic action of PAPP-A and activation of the collagen receptor DDR2. Breast Cancer Res. 2019;21:56 pubmed 出版商
  383. Singh R, Peng S, Viswanath P, Sambandam V, Shen L, Rao X, et al. Non-canonical cMet regulation by vimentin mediates Plk1 inhibitor-induced apoptosis. EMBO Mol Med. 2019;: pubmed 出版商
  384. Thauland T, Pellerin L, Ohgami R, Bacchetta R, Butte M. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol. 2019;10:753 pubmed 出版商
  385. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  386. Cheng Z, Lei Z, Yang P, Si A, Xiang D, Tang X, et al. Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol Carcinog. 2019;: pubmed 出版商
  387. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  388. Ben J, Jiang B, Wang D, Liu Q, Zhang Y, Qi Y, et al. Major vault protein suppresses obesity and atherosclerosis through inhibiting IKK-NF-κB signaling mediated inflammation. Nat Commun. 2019;10:1801 pubmed 出版商
  389. Cohen T, Takahashi V, Bonnell J, Tovchigrechko A, Chaerkady R, Yu W, et al. Staphylococcus aureus drives expansion of low-density neutrophils in diabetic mice. J Clin Invest. 2019;129:2133-2144 pubmed 出版商
  390. Sommars M, Ramachandran K, Senagolage M, Futtner C, Germain D, Allred A, et al. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. elife. 2019;8: pubmed 出版商
  391. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  392. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  393. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  394. Zhang Y, Higgins C, Fortune H, Chen P, Stothard A, Mayer A, et al. Hepatic arginase 2 (Arg2) is sufficient to convey the therapeutic metabolic effects of fasting. Nat Commun. 2019;10:1587 pubmed 出版商
  395. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  396. Wu J, Ma S, Sandhoff R, Ming Y, Hotz Wagenblatt A, Timmerman V, et al. Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity. 2019;50:1218-1231.e5 pubmed 出版商
  397. Araiz C, Yan A, Bettedi L, Samuelson I, Virtue S, McGavigan A, et al. Enhanced β-adrenergic signalling underlies an age-dependent beneficial metabolic effect of PI3K p110α inactivation in adipose tissue. Nat Commun. 2019;10:1546 pubmed 出版商
  398. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  399. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  400. Tsai C, Tsai C, Yi J, Kao H, Huang Y, Wang C, et al. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep. 2019;9:5197 pubmed 出版商
  401. Li L, Kang H, Zhang Q, D Agati V, Al Awqati Q, Lin F. FoxO3 activation in hypoxic tubules prevents chronic kidney disease. J Clin Invest. 2019;129:2374-2389 pubmed 出版商
  402. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  403. Ao Y, Zhang J, Liu Z, Qian M, Li Y, Wu Z, et al. Lamin A buffers CK2 kinase activity to modulate aging in a progeria mouse model. Sci Adv. 2019;5:eaav5078 pubmed 出版商
  404. Kennedy S, Han J, Portman N, Nobis M, Hastings J, Murphy K, et al. Targeting promiscuous heterodimerization overcomes innate resistance to ERBB2 dimerization inhibitors in breast cancer. Breast Cancer Res. 2019;21:43 pubmed 出版商
  405. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  406. Martins V, Dent J, Svensson K, Tahvilian S, Begur M, Lakkaraju S, et al. Germline or inducible knockout of p300 or CBP in skeletal muscle does not alter insulin sensitivity. Am J Physiol Endocrinol Metab. 2019;: pubmed 出版商
  407. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  408. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  409. Lu E, Wolfreys F, Muppidi J, Xu Y, Cyster J. S-Geranylgeranyl-L-glutathione is a ligand for human B cell-confinement receptor P2RY8. Nature. 2019;: pubmed 出版商
  410. Shen T, Li H, Song Y, Li L, Lin J, Wei G, et al. Alternative polyadenylation dependent function of splicing factor SRSF3 contributes to cellular senescence. Aging (Albany NY). 2019;11:1356-1388 pubmed 出版商
  411. Mentrup T, Theodorou K, Cabrera Cabrera F, Helbig A, Happ K, Gijbels M, et al. Atherogenic LOX-1 signaling is controlled by SPPL2-mediated intramembrane proteolysis. J Exp Med. 2019;: pubmed 出版商
  412. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  413. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  414. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  415. Teissier T, Quersin V, Gnemmi V, Daroux M, Howsam M, Delguste F, et al. Knockout of receptor for advanced glycation end-products attenuates age-related renal lesions. Aging Cell. 2019;18:e12850 pubmed 出版商
  416. Kaya P, Lee S, Lee Y, Kwon S, Yang H, Lee H, et al. Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients. 2019;11: pubmed 出版商
  417. Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, et al. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci. 2019;13:44 pubmed 出版商
  418. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  419. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  420. Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, et al. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol. 2019;100:583-601 pubmed 出版商
  421. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  422. Nava M, Dutta P, Zemke N, Farias Eisner R, Vadgama J, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics. 2019;12:32 pubmed 出版商
  423. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  424. Mathieu J, Detraux D, Kuppers D, Wang Y, Cavanaugh C, Sidhu S, et al. Folliculin regulates mTORC1/2 and WNT pathways in early human pluripotency. Nat Commun. 2019;10:632 pubmed 出版商
  425. Guo Y, Pei X. Tetrandrine-Induced Autophagy in MDA-MB-231 Triple-Negative Breast Cancer Cell through the Inhibition of PI3K/AKT/mTOR Signaling. Evid Based Complement Alternat Med. 2019;2019:7517431 pubmed 出版商
  426. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  427. Ranek M, Kokkonen Simon K, Chen A, Dunkerly Eyring B, Vera M, Oeing C, et al. PKG1-modified TSC2 regulates mTORC1 activity to counter adverse cardiac stress. Nature. 2019;566:264-269 pubmed 出版商
  428. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  429. Wang W, Shen T, Dong B, Creighton C, Meng Y, Zhou W, et al. MAPK4 overexpression promotes tumor progression via noncanonical activation of AKT/mTOR signaling. J Clin Invest. 2019;: pubmed 出版商
  430. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  431. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  432. Ruegsegger G, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, et al. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J. 2019;33:4458-4472 pubmed 出版商
  433. Rossi F, Legnini I, Megiorni F, Colantoni A, Santini T, Morlando M, et al. Circ-ZNF609 regulates G1-S progression in rhabdomyosarcoma. Oncogene. 2019;38:3843-3854 pubmed 出版商
  434. Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, et al. VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1β in macrophages. Sci Adv. 2019;5:eaau7426 pubmed 出版商
  435. Duan S, Koziol White C, Jester W, Nycholat C, Macauley M, Panettieri R, et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest. 2019;129:1387-1401 pubmed 出版商
  436. Liu Z, Li H, He L, Xiang Y, Tian C, Li C, et al. Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma. Cell Chem Biol. 2019;26:352-365.e7 pubmed 出版商
  437. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  438. Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194-206 pubmed 出版商
  439. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  440. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  441. Barros Silva J, Linn D, Steiner I, Guo G, Ali A, Pakula H, et al. Single-Cell Analysis Identifies LY6D as a Marker Linking Castration-Resistant Prostate Luminal Cells to Prostate Progenitors and Cancer. Cell Rep. 2018;25:3504-3518.e6 pubmed 出版商
  442. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  443. Roy N, MacKay J, Robertson T, Hammer D, Burkhardt J. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal. 2018;11: pubmed 出版商
  444. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  445. Turowec J, Lau E, Wang X, Brown K, Fellouse F, Jawanda K, et al. Functional genomic characterization of a synthetic anti-HER3 antibody reveals a role for ubiquitination by RNF41 in the anti-proliferative response. J Biol Chem. 2019;294:1396-1409 pubmed 出版商
  446. Bitar M, Nader J, Al Ali W, Al Madhoun A, Arefanian H, Al Mulla F. Hydrogen Sulfide Donor NaHS Improves Metabolism and Reduces Muscle Atrophy in Type 2 Diabetes: Implication for Understanding Sarcopenic Pathophysiology. Oxid Med Cell Longev. 2018;2018:6825452 pubmed 出版商
  447. Ding Y, Li N, Dong B, Guo W, Wei H, Chen Q, et al. Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. J Clin Invest. 2019;129:759-773 pubmed 出版商
  448. Schaffer T, Smith J, Cook E, Phan T, Margolis S. PKCε Inhibits Neuronal Dendritic Spine Development through Dual Phosphorylation of Ephexin5. Cell Rep. 2018;25:2470-2483.e8 pubmed 出版商
  449. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  450. Urtishak K, Wang L, Culjkovic Kraljacic B, Davenport J, Porazzi P, Vincent T, et al. Targeting EIF4E signaling with ribavirin in infant acute lymphoblastic leukemia. Oncogene. 2019;38:2241-2262 pubmed 出版商
  451. Zhou X, Zhang R, Zou Z, Shen X, Xie T, Xu C, et al. Hypoglycaemic effects of glimepiride in sulfonylurea receptor 1 deficient rat. Br J Pharmacol. 2019;176:478-490 pubmed 出版商
  452. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  453. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  454. Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, et al. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun. 2018;9:4874 pubmed 出版商
  455. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  456. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  457. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  458. Yin D, Li Y, Fu C, Feng Y. Pro-Angiogenic Role of LncRNA HULC in Microvascular Endothelial Cells via Sequestrating miR-124. Cell Physiol Biochem. 2018;50:2188-2202 pubmed 出版商
  459. Chen C, Zou L, Lin Q, Yan X, Bi H, Xie X, et al. Resveratrol as a new inhibitor of immunoproteasome prevents PTEN degradation and attenuates cardiac hypertrophy after pressure overload. Redox Biol. 2019;20:390-401 pubmed 出版商
  460. de Jong O, van der Waals L, Kools F, Verhaar M, van Balkom B. Lysyl oxidase-like 2 is a regulator of angiogenesis through modulation of endothelial-to-mesenchymal transition. J Cell Physiol. 2019;234:10260-10269 pubmed 出版商
  461. Jensen I, Winborn C, Fosdick M, Shao P, Tremblay M, Shan Q, et al. Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathog. 2018;14:e1007405 pubmed 出版商
  462. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  463. Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, et al. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun. 2018;9:4259 pubmed 出版商
  464. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  465. Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91-95 pubmed 出版商
  466. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  467. Zhang M, Suarez E, Vasquez J, Nathanson L, Peterson L, Rajapakshe K, et al. Inositol polyphosphate 4-phosphatase type II regulation of androgen receptor activity. Oncogene. 2019;38:1121-1135 pubmed 出版商
  468. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  469. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  470. Chorzalska A, Morgan J, Ahsan N, Treaba D, Olszewski A, Petersen M, et al. Bone marrow-specific loss of ABI1 induces myeloproliferative neoplasm with features resembling human myelofibrosis. Blood. 2018;: pubmed 出版商
  471. Son S, Park S, Lee H, Siddiqi F, Lee J, Menzies F, et al. Leucine Signals to mTORC1 via Its Metabolite Acetyl-Coenzyme A. Cell Metab. 2019;29:192-201.e7 pubmed 出版商
  472. Kim H, Mun Y, Lee K, Park Y, Park J, Park J, et al. T cell microvilli constitute immunological synaptosomes that carry messages to antigen-presenting cells. Nat Commun. 2018;9:3630 pubmed 出版商
  473. Wang X, Li Q, Liu C, Hall P, Jiang J, Katchis C, et al. Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration. Cell Rep. 2018;24:2540-2552.e6 pubmed 出版商
  474. Nnah I, Wang B, Saqcena C, Weber G, Bonder E, Bagley D, et al. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 2019;15:151-164 pubmed 出版商
  475. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  476. Lu D, Song J, Sun Y, Qi F, Liu L, Jin Y, et al. Mutations of deubiquitinase OTUD1 are associated with autoimmune disorders. J Autoimmun. 2018;94:156-165 pubmed 出版商
  477. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  478. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  479. Muller T, Braud S, Jüttner R, Voigt B, Paulick K, Sheean M, et al. Neuregulin 3 promotes excitatory synapse formation on hippocampal interneurons. EMBO J. 2018;37: pubmed 出版商
  480. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  481. Wang J, Zhao W, Guo H, Fang Y, Stockman S, Bai S, et al. AKT isoform-specific expression and activation across cancer lineages. BMC Cancer. 2018;18:742 pubmed 出版商
  482. Xie H, Wang Y, Zhang H, Fan Q, Dai D, Zhuang L, et al. Tubular epithelial C1orf54 mediates protection and recovery from acute kidney injury. J Cell Mol Med. 2018;22:4985-4996 pubmed 出版商
  483. Beyer S, Schwalm S, Pfeilschifter J, Huwiler A. Renal Mesangial Cells Isolated from Sphingosine Kinase 2 Transgenic Mice Show Reduced Proliferation and are More Sensitive to Stress-Induced Apoptosis. Cell Physiol Biochem. 2018;47:2522-2533 pubmed 出版商
  484. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  485. Tan B, Shi X, Zhang J, Qin J, Zhang N, Ren H, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization. Cancer Res. 2018;78:4929-4942 pubmed 出版商
  486. Wang W, Xia Z, Farre J, Subramani S. TRIM37 deficiency induces autophagy through deregulating the MTORC1-TFEB axis. Autophagy. 2018;14:1574-1585 pubmed 出版商
  487. Rapino F, Delaunay S, Rambow F, Zhou Z, Tharun L, de Tullio P, et al. Codon-specific translation reprogramming promotes resistance to targeted therapy. Nature. 2018;558:605-609 pubmed 出版商
  488. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  489. Fan P, Narzisi G, Jayaprakash A, Venturini E, Robine N, Smibert P, et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A. 2018;115:E6030-E6038 pubmed 出版商
  490. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  491. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  492. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  493. Khalifeh Soltani A, Gupta D, Ha A, Podolsky M, Datta R, Atabai K. The Mfge8-α8β1-PTEN pathway regulates airway smooth muscle contraction in allergic inflammation. FASEB J. 2018;:fj201800109R pubmed 出版商
  494. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  495. Zhu Y, Qu C, Hong X, Jia Y, Lin M, Luo Y, et al. Trabid inhibits hepatocellular carcinoma growth and metastasis by cleaving RNF8-induced K63 ubiquitination of Twist1. Cell Death Differ. 2019;26:306-320 pubmed 出版商
  496. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  497. Hyrenius Wittsten A, Pilheden M, Sturesson H, Hansson J, Walsh M, Song G, et al. De novo activating mutations drive clonal evolution and enhance clonal fitness in KMT2A-rearranged leukemia. Nat Commun. 2018;9:1770 pubmed 出版商
  498. Rajgor D, Sanderson T, Amici M, Collingridge G, Hanley J. NMDAR-dependent Argonaute 2 phosphorylation regulates miRNA activity and dendritic spine plasticity. EMBO J. 2018;37: pubmed 出版商
  499. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  500. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  501. Anker J, Naseem A, Mok H, Schaeffer A, Abdulkadir S, Thumbikat P. Multi-faceted immunomodulatory and tissue-tropic clinical bacterial isolate potentiates prostate cancer immunotherapy. Nat Commun. 2018;9:1591 pubmed 出版商
  502. Li H, Zhang P, Zhang Q, Li C, Zou W, Chang Z, et al. WWP2 is a physiological ubiquitin ligase for phosphatase and tensin homolog (PTEN) in mice. J Biol Chem. 2018;293:8886-8899 pubmed 出版商
  503. Salomè M, Magee A, Yalla K, Chaudhury S, Sarrou E, Carmody R, et al. A Trib2-p38 axis controls myeloid leukaemia cell cycle and stress response signalling. Cell Death Dis. 2018;9:443 pubmed 出版商
  504. Silva M, Davoli Ferreira M, Medina T, Sesti Costa R, Silva G, Lopes C, et al. Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun. 2018;9:1513 pubmed 出版商
  505. Mirzamohammadi F, Kozlova A, Papaioannou G, Paltrinieri E, Ayturk U, Kobayashi T. Distinct molecular pathways mediate Mycn and Myc-regulated miR-17-92 microRNA action in Feingold syndrome mouse models. Nat Commun. 2018;9:1352 pubmed 出版商
  506. Chiang A, Fowler S, Savjani R, Hilsenbeck S, Wallace C, Cirrito J, et al. Combination anti-Aβ treatment maximizes cognitive recovery and rebalances mTOR signaling in APP mice. J Exp Med. 2018;215:1349-1364 pubmed 出版商
  507. Muhar M, Ebert A, Neumann T, Umkehrer C, Jude J, Wieshofer C, et al. SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science. 2018;360:800-805 pubmed 出版商
  508. Song H, Li X, Liu Y, Lu W, Cui Z, Zhou L, et al. Carnosic acid protects mice from high-fat diet-induced NAFLD by regulating MARCKS. Int J Mol Med. 2018;42:193-207 pubmed 出版商
  509. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  510. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  511. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  512. Yang R, Tao Z, Huang M, Zheng Y, Dai M, Zou Y, et al. Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3β pathway. Am J Transl Res. 2018;10:455-464 pubmed
  513. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  514. Rizzi C, Tiberi A, Giustizieri M, Marrone M, Gobbo F, Carucci N, et al. NGF steers microglia toward a neuroprotective phenotype. Glia. 2018;66:1395-1416 pubmed 出版商
  515. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  516. Yurchenko M, Skjesol A, Ryan L, Richard G, Kandasamy R, Wang N, et al. SLAMF1 is required for TLR4-mediated TRAM-TRIF-dependent signaling in human macrophages. J Cell Biol. 2018;217:1411-1429 pubmed 出版商
  517. Patra D, DeLassus E, Mueller J, Abou Ezzi G, Sandell L. Site-1 protease regulates skeletal stem cell population and osteogenic differentiation in mice. Biol Open. 2018;7: pubmed 出版商
  518. Agod Z, Pazmandi K, Bencze D, Vereb G, Biro T, Szabo A, et al. Signaling Lymphocyte Activation Molecule Family 5 Enhances Autophagy and Fine-Tunes Cytokine Response in Monocyte-Derived Dendritic Cells via Stabilization of Interferon Regulatory Factor 8. Front Immunol. 2018;9:62 pubmed 出版商
  519. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  520. Nan H, Han L, Ma J, Yang C, Su R, He J. STX3 represses the stability of the tumor suppressor PTEN to activate the PI3K-Akt-mTOR signaling and promotes the growth of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1684-1692 pubmed 出版商
  521. Janes M, Zhang J, Li L, Hansen R, Peters U, Guo X, et al. Targeting KRAS Mutant Cancers with a Covalent G12C-Specific Inhibitor. Cell. 2018;172:578-589.e17 pubmed 出版商
  522. Shen Q, Zhang Q, Shi Y, Shi Q, Jiang Y, Gu Y, et al. Tet2 promotes pathogen infection-induced myelopoiesis through mRNA oxidation. Nature. 2018;554:123-127 pubmed 出版商
  523. Saunders B, Rudnicka C, Filipovska A, Davies S, Ward N, Hricova J, et al. Shining LIGHT on the metabolic role of the cytokine TNFSF14 and the implications on hepatic IL-6 production. Immunol Cell Biol. 2018;96:41-53 pubmed 出版商
  524. Souma T, Thomson B, Heinen S, Carota I, Yamaguchi S, Onay T, et al. Context-dependent functions of angiopoietin 2 are determined by the endothelial phosphatase VEPTP. Proc Natl Acad Sci U S A. 2018;115:1298-1303 pubmed 出版商
  525. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  526. Chang J, Tang N, Fang Q, Zhu K, Liu L, Xiong X, et al. TEMPORARY REMOVAL: Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem Biophys Res Commun. 2018;: pubmed 出版商
  527. Ambrogio C, Köhler J, Zhou Z, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell. 2018;172:857-868.e15 pubmed 出版商
  528. Bekkering S, Arts R, Novakovic B, Kourtzelis I, van der Heijden C, Li Y, et al. Metabolic Induction of Trained Immunity through the Mevalonate Pathway. Cell. 2018;172:135-146.e9 pubmed 出版商
  529. Frattini V, Pagnotta S, Tala -, Fan J, Russo M, Lee S, et al. A metabolic function of FGFR3-TACC3 gene fusions in cancer. Nature. 2018;553:222-227 pubmed 出版商
  530. Khalil S, Delehanty L, Grado S, Holy M, White Z, Freeman K, et al. Iron modulation of erythropoiesis is associated with Scribble-mediated control of the erythropoietin receptor. J Exp Med. 2018;215:661-679 pubmed 出版商
  531. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  532. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  533. Ka M, Kim W. ANKRD11 associated with intellectual disability and autism regulates dendrite differentiation via the BDNF/TrkB signaling pathway. Neurobiol Dis. 2018;111:138-152 pubmed 出版商
  534. Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, et al. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun. 2017;8:2207 pubmed 出版商
  535. Rajbhandari P, Thomas B, Feng A, Hong C, Wang J, Vergnes L, et al. IL-10 Signaling Remodels Adipose Chromatin Architecture to Limit Thermogenesis and Energy Expenditure. Cell. 2018;172:218-233.e17 pubmed 出版商
  536. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  537. Galan A, Jmaeff S, Barcelona P, Brahimi F, Sarunic M, Saragovi H. In retinitis pigmentosa TrkC.T1-dependent vectorial Erk activity upregulates glial TNF-α, causing selective neuronal death. Cell Death Dis. 2017;8:3222 pubmed 出版商
  538. Turkington H, Juozapaitis M, Tsolakos N, Corrales Aguilar E, Schwemmle M, Hale B. Unexpected Functional Divergence of Bat Influenza Virus NS1 Proteins. J Virol. 2018;92: pubmed 出版商
  539. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  540. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  541. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  542. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  543. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  544. Sun H, Krauss R, Chang J, Teng B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B secretion, and endothelial dysfunction. J Lipid Res. 2018;59:207-223 pubmed 出版商
  545. Kishore M, Cheung K, Fu H, Bonacina F, Wang G, Coe D, et al. Regulatory T Cell Migration Is Dependent on Glucokinase-Mediated Glycolysis. Immunity. 2017;47:875-889.e10 pubmed 出版商
  546. Ni Z, HE J, Wu Y, Hu C, Dai X, Yan X, et al. AKT-mediated phosphorylation of ATG4B impairs mitochondrial activity and enhances the Warburg effect in hepatocellular carcinoma cells. Autophagy. 2018;14:685-701 pubmed 出版商
  547. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  548. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  549. Protack C, Foster T, Hashimoto T, Yamamoto K, Lee M, Kraehling J, et al. Eph-B4 regulates adaptive venous remodeling to improve arteriovenous fistula patency. Sci Rep. 2017;7:15386 pubmed 出版商
  550. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  551. Ameen G, Mora S. Cbl downregulation increases RBP4 expression in adipocytes of female mice. J Endocrinol. 2018;236:29-41 pubmed 出版商
  552. Redka D, Gutschow M, Grinstein S, Canton J. Differential ability of proinflammatory and anti-inflammatory macrophages to perform macropinocytosis. Mol Biol Cell. 2018;29:53-65 pubmed 出版商
  553. Meng Z, Tao W, Sun J, Wang Q, Mi L, Lin J. Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes. 2018;67:85-97 pubmed 出版商
  554. Zhang R, Li J, Yan X, Jin K, Li W, Xu J, et al. SODD promotes glucose uptake of colorectal cancer cells via AKT pathway. Cell Biol Int. 2017;: pubmed 出版商
  555. Kang H, Kumar D, Liao G, Lichti Kaiser K, Gerrish K, Liao X, et al. GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. J Clin Invest. 2017;127:4326-4337 pubmed 出版商
  556. Xue X, Bredell B, Anderson E, Martin A, Mays C, Nagao Kitamoto H, et al. Quantitative proteomics identifies STEAP4 as a critical regulator of mitochondrial dysfunction linking inflammation and colon cancer. Proc Natl Acad Sci U S A. 2017;114:E9608-E9617 pubmed 出版商
  557. Frey J, Kim S, Li Z, Wolfgang M, Riddle R. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice. Endocrinology. 2018;159:272-284 pubmed 出版商
  558. Thaler S, Schmidt M, Roβwag S, Thiede G, Schad A, Sleeman J. Proteasome inhibitors prevent bi-directional HER2/estrogen-receptor cross-talk leading to cell death in endocrine and lapatinib-resistant HER2+/ER+ breast cancer cells. Oncotarget. 2017;8:72281-72301 pubmed 出版商
  559. Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, et al. ALK is a therapeutic target for lethal sepsis. Sci Transl Med. 2017;9: pubmed 出版商
  560. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  561. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  562. Bagarolli R, Tobar N, Oliveira A, Araújo T, Carvalho B, Rocha G, et al. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J Nutr Biochem. 2017;50:16-25 pubmed 出版商
  563. Wang N, Li J, Zhao T, Li S, Shen C, Li D, et al. FGF-21 Plays a Crucial Role in the Glucose Uptake of Activated Monocytes. Inflammation. 2018;41:73-80 pubmed 出版商
  564. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  565. Tarjus A, Maase M, Jeggle P, Martínez Martínez E, Fassot C, Loufrani L, et al. The endothelial ?ENaC contributes to vascular endothelial function in vivo. PLoS ONE. 2017;12:e0185319 pubmed 出版商
  566. Zhang F, Virshup D, Cheong J. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene. 2018;37:363-376 pubmed 出版商
  567. Xu Y, Wang Y, Yao A, Xu Z, Dou H, Shen S, et al. Low Frequency Magnetic Fields Induce Autophagy-associated Cell Death in Lung Cancer through miR-486-mediated Inhibition of Akt/mTOR Signaling Pathway. Sci Rep. 2017;7:11776 pubmed 出版商
  568. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  569. Hwangbo C, Wu J, Papangeli I, Adachi T, Sharma B, Park S, et al. Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects. Sci Transl Med. 2017;9: pubmed 出版商
  570. Comiskey D, Jacob A, Sanford B, Montes M, Goodwin A, Steiner H, et al. A novel mouse model of rhabdomyosarcoma underscores the dichotomy of MDM2-ALT1 function in vivo. Oncogene. 2018;37:95-106 pubmed 出版商
  571. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  572. Urbschat A, Baer P, Zacharowski K, Sprunck V, Scheller B, Raimann F, et al. Systemic TLR2 Antibody Application in Renal Ischaemia and Reperfusion Injury Decreases AKT Phosphorylation and Increases Apoptosis in the Mouse Kidney. Basic Clin Pharmacol Toxicol. 2018;122:223-232 pubmed 出版商
  573. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  574. Zaytouni T, Tsai P, Hitchcock D, DuBois C, Freinkman E, Lin L, et al. Critical role for arginase 2 in obesity-associated pancreatic cancer. Nat Commun. 2017;8:242 pubmed 出版商
  575. Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23:1055-1062 pubmed 出版商
  576. Simond A, Rao T, Zuo D, Zhao J, Muller W. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Oncogene. 2017;36:6059-6066 pubmed 出版商
  577. Liu X, Zhou X, Xu H, He Z, Shi X, Wu S. SLC34A2 Regulates the Proliferation, Migration, and Invasion of Human Osteosarcoma Cells Through PTEN/PI3K/AKT Signaling. DNA Cell Biol. 2017;36:775-780 pubmed 出版商
  578. Peterson J, Lin B, Shin J, Phelan P, Tsichlis P, Schwob J, et al. Replication of JC Virus DNA in the G144 Oligodendrocyte Cell Line Is Dependent Upon Akt. J Virol. 2017;91: pubmed 出版商
  579. Chang S, Kohlgruber A, Mizoguchi F, Michelet X, Wolf B, Wei K, et al. Stromal cell cadherin-11 regulates adipose tissue inflammation and diabetes. J Clin Invest. 2017;127:3300-3312 pubmed 出版商
  580. Ogura H, Nagatake Kobayashi Y, Adachi J, Tomonaga T, Fujita N, Katayama R. TKI-addicted ROS1-rearranged cells are destined to survival or death by the intensity of ROS1 kinase activity. Sci Rep. 2017;7:5519 pubmed 出版商
  581. Guilford B, Parson J, Grote C, Vick S, Ryals J, Wright D. Increased FNDC5 is associated with insulin resistance in high fat-fed mice. Physiol Rep. 2017;5: pubmed 出版商
  582. Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol. 2017;11:1430-1447 pubmed 出版商
  583. Guo J, Jayaprakash P, Dan J, Wise P, Jang G, Liang C, et al. PRAS40 Connects Microenvironmental Stress Signaling to Exosome-Mediated Secretion. Mol Cell Biol. 2017;37: pubmed 出版商
  584. Laviolette L, Mermoud J, Calvo I, Olson N, Boukhali M, Steinlein O, et al. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun. 2017;8:15866 pubmed 出版商
  585. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  586. Mamo T, Wittern A, Kleppa M, Bohnenpoll T, Weiss A, Kispert A. BMP4 uses several different effector pathways to regulate proliferation and differentiation in the epithelial and mesenchymal tissue compartments of the developing mouse ureter. Hum Mol Genet. 2017;26:3553-3563 pubmed 出版商
  587. van Groningen T, Koster J, Valentijn L, Zwijnenburg D, Akogul N, Hasselt N, et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat Genet. 2017;49:1261-1266 pubmed 出版商
  588. Wei X, Guo L, Liu Y, Zhou S, Liu Y, Dou X, et al. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes. Biochem Biophys Res Commun. 2017;491:814-820 pubmed 出版商
  589. Lingel H, Wissing J, Arra A, Schanze D, Lienenklaus S, Klawonn F, et al. CTLA-4-mediated posttranslational modifications direct cytotoxic T-lymphocyte differentiation. Cell Death Differ. 2017;24:1739-1749 pubmed 出版商
  590. Al Khalaf H, Amir M, Al Mohanna F, Tulbah A, Al Sayed A, Aboussekhra A. Obesity and p16INK4A Downregulation Activate Breast Adipocytes and Promote Their Protumorigenicity. Mol Cell Biol. 2017;37: pubmed 出版商
  591. Li M, Cheng W, Luo J, Hu X, Nie T, Lai H, et al. Loss of selenocysteine insertion sequence binding protein 2 suppresses the proliferation, migration/invasion and hormone secretion of human trophoblast cells via the PI3K/Akt and ERK signaling pathway. Placenta. 2017;55:81-89 pubmed 出版商
  592. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  593. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  594. Pereira R, Tadinada S, Zasadny F, Oliveira K, Pires K, Olvera A, et al. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. 2017;36:2126-2145 pubmed 出版商
  595. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  596. Wang B, Gu Q, Li J. DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway. Oncol Rep. 2017;38:317-324 pubmed 出版商
  597. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  598. Sinha S, Thomas D, Chan S, Gao Y, Brunen D, Torabi D, et al. Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data. Nat Commun. 2017;8:15580 pubmed 出版商
  599. Miyamoto T, Lo P, Saichi N, Ueda K, Hirata M, Tanikawa C, et al. Argininosuccinate synthase 1 is an intrinsic Akt repressor transactivated by p53. Sci Adv. 2017;3:e1603204 pubmed 出版商
  600. Zhao Y, Xie Z, Lin J, Liu P. MiR-144-3p inhibits cell proliferation and induces apoptosis in multiple myeloma by targeting c-Met. Am J Transl Res. 2017;9:2437-2446 pubmed
  601. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  602. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature. 2017;546:158-161 pubmed 出版商
  603. Liu S, Cheng C. Akt Signaling Is Sustained by a CD44 Splice Isoform-Mediated Positive Feedback Loop. Cancer Res. 2017;77:3791-3801 pubmed 出版商
  604. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  605. Hossain M, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol. 2018;55:3408-3425 pubmed 出版商
  606. Wang B, Jie Z, Joo D, Ordureau A, Liu P, Gan W, et al. TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature. 2017;545:365-369 pubmed 出版商
  607. Ventura E, Weller M, Burghardt I. Cutting Edge: ERK1 Mediates the Autocrine Positive Feedback Loop of TGF-? and Furin in Glioma-Initiating Cells. J Immunol. 2017;198:4569-4574 pubmed 出版商
  608. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  609. Ooi J, Petersen J, Tan Y, Huynh M, Willett Z, Ramarathinam S, et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature. 2017;545:243-247 pubmed 出版商
  610. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed 出版商
  611. Gong B, Shen W, Xiao W, Meng Y, Meng A, Jia S. The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. elife. 2017;6: pubmed 出版商
  612. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  613. Krag T, Ruiz Ruiz C, Vissing J. Glycogen Synthesis in Glycogenin 1-Deficient Patients: A Role for Glycogenin 2 in Muscle. J Clin Endocrinol Metab. 2017;102:2690-2700 pubmed 出版商
  614. Arcego D, Toniazzo A, Krolow R, Lampert C, Berlitz C, Dos Santos Garcia E, et al. Impact of High-Fat Diet and Early Stress on Depressive-Like Behavior and Hippocampal Plasticity in Adult Male Rats. Mol Neurobiol. 2018;55:2740-2753 pubmed 出版商
  615. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  616. Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees J. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol. 2017;317:18-25 pubmed 出版商
  617. Cai C, Qian L, Jiang S, Sun Y, Wang Q, Ma D, et al. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs. Oncotarget. 2017;8:34911-34922 pubmed 出版商
  618. Tawo R, Pokrzywa W, Kevei E, Akyuz M, Balaji V, Adrian S, et al. The Ubiquitin Ligase CHIP Integrates Proteostasis and Aging by Regulation of Insulin Receptor Turnover. Cell. 2017;169:470-482.e13 pubmed 出版商
  619. Vaishnavi A, Schubert L, Rix U, Marek L, Le A, Keysar S, et al. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017;77:3551-3563 pubmed 出版商
  620. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  621. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  622. Zhang X, Spiegelman N, Nelson O, Jing H, Lin H. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. elife. 2017;6: pubmed 出版商
  623. Wang K, Liu W, Song Y, Wu X, Zhang Y, Li S, et al. The role of angiopoietin-2 in nucleus pulposus cells during human intervertebral disc degeneration. Lab Invest. 2017;97:971-982 pubmed 出版商
  624. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  625. Xiao Y, Yang Z, Wu Q, Jiang X, Yuan Y, Chang W, et al. Cucurbitacin B Protects Against Pressure Overload Induced Cardiac Hypertrophy. J Cell Biochem. 2017;118:3899-3910 pubmed 出版商
  626. El Gamal H, Eid A, Munusamy S. Renoprotective Effects of Aldose Reductase Inhibitor Epalrestat against High Glucose-Induced Cellular Injury. Biomed Res Int. 2017;2017:5903105 pubmed 出版商
  627. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  628. Ahmed S, Macara I. The Par3 polarity protein is an exocyst receptor essential for mammary cell survival. Nat Commun. 2017;8:14867 pubmed 出版商
  629. Guo Q, He J, Shen F, Zhang W, Yang X, Zhang C, et al. TCN, an AKT inhibitor, exhibits potent antitumor activity and enhances radiosensitivity in hypoxic esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett. 2017;13:949-954 pubmed 出版商
  630. Zhang X, Fan J, Wang S, Li Y, Wang Y, Li S, et al. Targeting CD47 and Autophagy Elicited Enhanced Antitumor Effects in Non-Small Cell Lung Cancer. Cancer Immunol Res. 2017;5:363-375 pubmed 出版商
  631. He W, Wang C, Mu R, Liang P, Huang Z, Zhang J, et al. MiR-21 is required for anti-tumor immune response in mice: an implication for its bi-directional roles. Oncogene. 2017;36:4212-4223 pubmed 出版商
  632. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  633. Figliozzi R, Chen F, Hsia S. New insights on thyroid hormone mediated regulation of herpesvirus infections. Cell Biosci. 2017;7:13 pubmed 出版商
  634. Ting W, Huang C, Jiang C, Lin Y, Chung L, Shen C, et al. Treatment with 17?-Estradiol Reduced Body Weight and the Risk of Cardiovascular Disease in a High-Fat Diet-Induced Animal Model of Obesity. Int J Mol Sci. 2017;18: pubmed 出版商
  635. Xiong G, Hindi S, Mann A, Gallot Y, Bohnert K, Cavener D, et al. The PERK arm of the unfolded protein response regulates satellite cell-mediated skeletal muscle regeneration. elife. 2017;6: pubmed 出版商
  636. Liu S, Gao G, Yan D, Chen X, Yao X, Guo S, et al. Effects of miR-145-5p through NRAS on the cell proliferation, apoptosis, migration, and invasion in melanoma by inhibiting MAPK and PI3K/AKT pathways. Cancer Med. 2017;6:819-833 pubmed 出版商
  637. Lei L, Chen C, Zhao J, Wang H, Guo M, Zhou Y, et al. Targeted Expression of miR-7 Operated by TTF-1 Promoter Inhibited the Growth of Human Lung Cancer through the NDUFA4 Pathway. Mol Ther Nucleic Acids. 2017;6:183-197 pubmed 出版商
  638. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  639. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  640. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  641. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  642. Merhi A, Delree P, Marini A. The metabolic waste ammonium regulates mTORC2 and mTORC1 signaling. Sci Rep. 2017;7:44602 pubmed 出版商
  643. Rong H, Zhao Z, Feng J, Lei Y, Wu H, Sun R, et al. The effects of dexmedetomidine pretreatment on the pro- and anti-inflammation systems after spinal cord injury in rats. Brain Behav Immun. 2017;64:195-207 pubmed 出版商
  644. Panigrahi S, Manterola M, Wolgemuth D. Meiotic failure in cyclin A1-deficient mouse spermatocytes triggers apoptosis through intrinsic and extrinsic signaling pathways and 14-3-3 proteins. PLoS ONE. 2017;12:e0173926 pubmed 出版商
  645. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  646. Kuo T, Chen T, Lee R, Nguyen N, Broughton A, Zhang D, et al. Pik3r1 Is Required for Glucocorticoid-Induced Perilipin 1 Phosphorylation in Lipid Droplet for Adipocyte Lipolysis. Diabetes. 2017;66:1601-1610 pubmed 出版商
  647. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  648. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  649. Su S, Liao J, Liu J, Huang D, He C, Chen F, et al. Blocking the recruitment of naive CD4+ T cells reverses immunosuppression in breast cancer. Cell Res. 2017;27:461-482 pubmed 出版商
  650. Jacobs B, McNally R, Kim K, Blanco R, Privett R, You J, et al. Identification of mechanically regulated phosphorylation sites on tuberin (TSC2) that control mechanistic target of rapamycin (mTOR) signaling. J Biol Chem. 2017;292:6987-6997 pubmed 出版商
  651. Koyama Y, Wang P, Liang S, Iwaisako K, Liu X, Xu J, et al. Mesothelin/mucin 16 signaling in activated portal fibroblasts regulates cholestatic liver fibrosis. J Clin Invest. 2017;127:1254-1270 pubmed 出版商
  652. Dogan A, Demirci S, Apdik H, Bayrak O, Gulluoglu S, Tuysuz E, et al. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130-142 pubmed 出版商
  653. Samuel S, Ghosh S, Majeed Y, Arunachalam G, Emara M, Ding H, et al. Metformin represses glucose starvation induced autophagic response in microvascular endothelial cells and promotes cell death. Biochem Pharmacol. 2017;132:118-132 pubmed 出版商
  654. Eppler F, Quast T, Kolanus W. Dynamin2 controls Rap1 activation and integrin clustering in human T lymphocyte adhesion. PLoS ONE. 2017;12:e0172443 pubmed 出版商
  655. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  656. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  657. Koenen A, Babendreyer A, Schumacher J, Pasqualon T, Schwarz N, Seifert A, et al. The DRF motif of CXCR6 as chemokine receptor adaptation to adhesion. PLoS ONE. 2017;12:e0173486 pubmed 出版商
  658. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, et al. Targeting glutamine metabolism and the focal adhesion kinase additively inhibits the mammalian target of the rapamycin pathway in spheroid cancer stem-like properties of ovarian clear cell carcinoma in vitro. Int J Oncol. 2017;50:1431-1438 pubmed 出版商
  659. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  660. Deying W, Feng G, Shumei L, Hui Z, Ming L, Hongqing W. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells. Biosci Rep. 2017;37: pubmed 出版商
  661. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  662. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  663. Møller A, Kampmann U, Hedegaard J, Thorsen K, Nordentoft I, Vendelbo M, et al. Altered gene expression and repressed markers of autophagy in skeletal muscle of insulin resistant patients with type 2 diabetes. Sci Rep. 2017;7:43775 pubmed 出版商
  664. Chen J, Wang Z, Yu S. AIM2 regulates viability and apoptosis in human colorectal cancer cells via the PI3K/Akt pathway. Onco Targets Ther. 2017;10:811-817 pubmed 出版商
  665. Lal S, Cheung E, Zarei M, Preet R, Chand S, Mambelli Lisboa N, et al. CRISPR Knockout of the HuR Gene Causes a Xenograft Lethal Phenotype. Mol Cancer Res. 2017;15:696-707 pubmed 出版商
  666. Barilari M, Bonfils G, Treins C, Koka V, De Villeneuve D, Fabrega S, et al. ZRF1 is a novel S6 kinase substrate that drives the senescence programme. EMBO J. 2017;36:736-750 pubmed 出版商
  667. Yang X, Huo F, Liu B, Liu J, Chen T, Li J, et al. Crocin Inhibits Oxidative Stress and Pro-inflammatory Response of Microglial Cells Associated with Diabetic Retinopathy Through the Activation of PI3K/Akt Signaling Pathway. J Mol Neurosci. 2017;61:581-589 pubmed 出版商
  668. Hwang I, Park C, Harrison K, Kehrl J. Normal Thymocyte Egress, T Cell Trafficking, and CD4+ T Cell Homeostasis Require Interactions between RGS Proteins and Gαi2. J Immunol. 2017;198:2721-2734 pubmed 出版商
  669. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  670. Gueffier M, Zintz J, Lambert K, Finan A, Aimond F, Chakouri N, et al. The TRPM4 channel is functionally important for the beneficial cardiac remodeling induced by endurance training. J Muscle Res Cell Motil. 2017;38:3-16 pubmed 出版商
  671. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  672. Sethna F, Feng W, Ding Q, ROBISON A, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017;8:14359 pubmed 出版商
  673. Dong Q, Li J, Wu Q, Zhao N, Qian C, Ding D, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep. 2017;7:42678 pubmed 出版商
  674. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  675. Peng M, Yin N, Li M. SZT2 dictates GATOR control of mTORC1 signalling. Nature. 2017;543:433-437 pubmed 出版商
  676. Compagno M, Wang Q, Pighi C, Cheong T, Meng F, Poggio T, et al. Phosphatidylinositol 3-kinase δ blockade increases genomic instability in B cells. Nature. 2017;542:489-493 pubmed 出版商
  677. Wolfson R, Chantranupong L, Wyant G, Gu X, Orozco J, Shen K, et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature. 2017;543:438-442 pubmed 出版商
  678. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  679. Ganesan R, Hos N, Gutierrez S, Fischer J, Stepek J, Daglidu E, et al. Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 2017;13:e1006227 pubmed 出版商
  680. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  681. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  682. Yang G, Zhao Z, Qin T, Wang D, Chen L, Xiang R, et al. TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. FASEB J. 2017;31:2001-2012 pubmed 出版商
  683. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  684. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  685. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  686. Kocic G, Veljkovic A, Kocic H, Colic M, Mihajlović D, Tomovic K, et al. Depurinized milk downregulates rat thymus MyD88/Akt/p38 function, NF-κB-mediated inflammation, caspase-1 activity but not the endonuclease pathway: in vitro/in vivo study. Sci Rep. 2017;7:41971 pubmed 出版商
  687. Zhao D, Lu X, Wang G, Lan Z, Liao W, Li J, et al. Synthetic essentiality of chromatin remodelling factor CHD1 in PTEN-deficient cancer. Nature. 2017;542:484-488 pubmed 出版商
  688. Zhu Y, Takayama T, Wang B, Kent A, Zhang M, Binder B, et al. Restenosis Inhibition and Re-differentiation of TGFβ/Smad3-activated Smooth Muscle Cells by Resveratrol. Sci Rep. 2017;7:41916 pubmed 出版商
  689. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  690. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  691. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  692. Yang H, Ju F, Guo X, Ma S, Wang L, Cheng B, et al. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143. Sci Rep. 2017;7:41738 pubmed 出版商
  693. Pergola C, Schubert K, Pace S, Ziereisen J, Nikels F, Scherer O, et al. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy. Sci Rep. 2017;7:41434 pubmed 出版商
  694. Sugg K, Korn M, Sarver D, Markworth J, Mendias C. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy. FEBS Lett. 2017;591:801-809 pubmed 出版商
  695. Kissing S, Rudnik S, Damme M, Lüllmann Rauch R, Ichihara A, Kornak U, et al. Disruption of the vacuolar-type H+-ATPase complex in liver causes MTORC1-independent accumulation of autophagic vacuoles and lysosomes. Autophagy. 2017;13:670-685 pubmed 出版商
  696. Liu J, Wang H, Gu J, Deng T, Yuan Z, Hu B, et al. BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy. 2017;13:739-753 pubmed 出版商
  697. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  698. Chen B, Tan Y, Liang Y, Li Y, Chen L, Wu S, et al. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Oncol Lett. 2017;13:423-428 pubmed 出版商
  699. Sheng L, Mao X, Yu Q, Yu D. Effect of the PI3K/AKT signaling pathway on hypoxia-induced proliferation and differentiation of bone marrow-derived mesenchymal stem cells. Exp Ther Med. 2017;13:55-62 pubmed 出版商
  700. Chen Y, Li C, Xie H, Fan Y, Yang Z, Ma J, et al. Infiltrating mast cells promote renal cell carcinoma angiogenesis by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. Oncogene. 2017;36:2879-2888 pubmed 出版商
  701. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  702. Zhang Y, Stefanovic B. mTORC1 phosphorylates LARP6 to stimulate type I collagen expression. Sci Rep. 2017;7:41173 pubmed 出版商
  703. Villar V, Nguyen T, Delcroix V, Terés S, Bouchecareilh M, Salin B, et al. mTORC1 inhibition in cancer cells protects from glutaminolysis-mediated apoptosis during nutrient limitation. Nat Commun. 2017;8:14124 pubmed 出版商
  704. Guo J, Kim N, Cui X. Inhibition of Fatty Acid Synthase Reduces Blastocyst Hatching through Regulation of the AKT Pathway in Pigs. PLoS ONE. 2017;12:e0170624 pubmed 出版商
  705. Kanuri B, Kanshana J, Rebello S, Pathak P, Gupta A, Gayen J, et al. Altered glucose and lipid homeostasis in liver and adipose tissue pre-dispose inducible NOS knockout mice to insulin resistance. Sci Rep. 2017;7:41009 pubmed 出版商
  706. Li S, Sun S, Gao J, Sun F. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol Lett. 2016;12:5059-5067 pubmed 出版商
  707. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  708. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  709. Ertsås H, Nolan G, Labarge M, Lorens J. Microsphere cytometry to interrogate microenvironment-dependent cell signaling. Integr Biol (Camb). 2017;9:123-134 pubmed 出版商
  710. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  711. Yoo S, Latifkar A, Cerione R, Antonyak M. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem. 2017;292:3947-3957 pubmed 出版商
  712. Chaudhari A, Gupta R, Patel S, Velingkaar N, Kondratov R. Cryptochromes regulate IGF-1 production and signaling through control of JAK2-dependent STAT5B phosphorylation. Mol Biol Cell. 2017;28:834-842 pubmed 出版商
  713. Gross S, Rotwein P. Quantification of growth factor signaling and pathway cross talk by live-cell imaging. Am J Physiol Cell Physiol. 2017;312:C328-C340 pubmed 出版商
  714. Jafari N, Kim H, Park R, Li L, Jang M, Morris A, et al. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells. PLoS ONE. 2017;12:e0170327 pubmed 出版商
  715. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  716. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  717. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  718. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  719. Yue F, Bi P, Wang C, Shan T, Nie Y, Ratliff T, et al. Pten is necessary for the quiescence and maintenance of adult muscle stem cells. Nat Commun. 2017;8:14328 pubmed 出版商
  720. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  721. Worrall C, Suleymanova N, Crudden C, Trocoli Drakensjö I, Candrea E, Nedelcu D, et al. Unbalancing p53/Mdm2/IGF-1R axis by Mdm2 activation restrains the IGF-1-dependent invasive phenotype of skin melanoma. Oncogene. 2017;36:3274-3286 pubmed 出版商
  722. Dror E, Dalmas E, Meier D, Wueest S, Thévenet J, Thienel C, et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol. 2017;18:283-292 pubmed 出版商
  723. Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci. 2016;10:569 pubmed 出版商
  724. Merckx E, Albertini G, Paterka M, Jensen C, Albrecht P, Dietrich M, et al. Absence of system xc- on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis. J Neuroinflammation. 2017;14:9 pubmed 出版商
  725. Jung Y, Lee J, Sohn K, Lee Y, Seo Y, Kim C, et al. Adiponectin Signaling Regulates Lipid Production in Human Sebocytes. PLoS ONE. 2017;12:e0169824 pubmed 出版商
  726. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  727. Huang S, Mao J, Ding K, Zhou Y, Zeng X, Yang W, et al. Polysaccharides from Ganoderma lucidum Promote Cognitive Function and Neural Progenitor Proliferation in Mouse Model of Alzheimer's Disease. Stem Cell Reports. 2017;8:84-94 pubmed 出版商
  728. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson I, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE. 2017;12:e0170083 pubmed 出版商
  729. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  730. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  731. Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed 出版商
  732. Yamauchi T, Nishiyama M, Moroishi T, Kawamura A, Nakayama K. FBXL5 Inactivation in Mouse Brain Induces Aberrant Proliferation of Neural Stem Progenitor Cells. Mol Cell Biol. 2017;37: pubmed 出版商
  733. Wu Q, Ma Y, Ruan C, Yang Y, Liu X, Ge Q, et al. Loss of osteoglycin promotes angiogenesis in limb ischaemia mouse models via modulation of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 signalling pathway. Cardiovasc Res. 2017;113:70-80 pubmed 出版商
  734. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  735. Oller J, Méndez Barbero N, Ruiz E, Villahoz S, Renard M, Canelas L, et al. Nitric oxide mediates aortic disease in mice deficient in the metalloprotease Adamts1 and in a mouse model of Marfan syndrome. Nat Med. 2017;23:200-212 pubmed 出版商
  736. Hirai M, Arita Y, McGlade C, Lee K, Chen J, Evans S. Adaptor proteins NUMB and NUMBL promote cell cycle withdrawal by targeting ERBB2 for degradation. J Clin Invest. 2017;127:569-582 pubmed 出版商
  737. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  738. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  739. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  740. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  741. Yu N, Fang X, Zhao D, Mu Q, Zuo J, Ma Y, et al. Anti-Diabetic Effects of Jiang Tang Xiao Ke Granule via PI3K/Akt Signalling Pathway in Type 2 Diabetes KKAy Mice. PLoS ONE. 2017;12:e0168980 pubmed 出版商
  742. Tam K, Dalal K, Hsing M, Cheng C, Khosravi S, Yenki P, et al. Androgen receptor transcriptionally regulates semaphorin 3C in a GATA2-dependent manner. Oncotarget. 2017;8:9617-9633 pubmed 出版商
  743. Ramos P, Guerra A, Guerreiro O, Santos S, Oliveira H, Freire C, et al. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int J Mol Sci. 2016;18: pubmed 出版商
  744. Reynolds L, Dickens B, Green B, Marsit C, Pearson K. Using neonatal skin to study the developmental programming of aging. Exp Gerontol. 2017;94:93-98 pubmed 出版商
  745. Krycer J, Fazakerley D, Cater R, C Thomas K, Naghiloo S, Burchfield J, et al. The amino acid transporter, SLC1A3, is plasma membrane-localised in adipocytes and its activity is insensitive to insulin. FEBS Lett. 2017;591:322-330 pubmed 出版商
  746. Rouhi A, Miller C, Grasedieck S, Reinhart S, Stolze B, Döhner H, et al. Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells. Oncotarget. 2017;8:7678-7690 pubmed 出版商
  747. Sivagurunathan S, Palanisamy K, Arunachalam J, Chidambaram S. Possible role of HIWI2 in modulating tight junction proteins in retinal pigment epithelial cells through Akt signaling pathway. Mol Cell Biochem. 2017;427:145-156 pubmed 出版商
  748. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  749. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  750. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  751. Jin F, Jiang K, Ji S, Wang L, Ni Z, Huang F, et al. Deficient TSC1/TSC2-complex suppression of SOX9-osteopontin-AKT signalling cascade constrains tumour growth in tuberous sclerosis complex. Hum Mol Genet. 2017;26:407-419 pubmed 出版商
  752. Ohtsuka T, Sakaguchi M, Yamamoto H, Tomida S, Takata K, Shien K, et al. Interaction of cytokeratin 19 head domain and HER2 in the cytoplasm leads to activation of HER2-Erk pathway. Sci Rep. 2016;6:39557 pubmed 出版商
  753. Tian X, Ye M, Cao Y, Wang C. Losartan Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes Through Upregulation of Src Phosphorylation. Exp Clin Endocrinol Diabetes. 2017;125:136-140 pubmed 出版商
  754. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed 出版商
  755. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  756. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  757. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  758. Yu Z, Mouillesseaux K, Kushner E, Bautch V. Tumor-Derived Factors and Reduced p53 Promote Endothelial Cell Centrosome Over-Duplication. PLoS ONE. 2016;11:e0168334 pubmed 出版商
  759. Ganta V, Choi M, Kutateladze A, Annex B. VEGF165b Modulates Endothelial VEGFR1-STAT3 Signaling Pathway and Angiogenesis in Human and Experimental Peripheral Arterial Disease. Circ Res. 2017;120:282-295 pubmed 出版商
  760. Yang J, Savvatis K, Kang J, Fan P, Zhong H, Schwartz K, et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat Commun. 2016;7:13710 pubmed 出版商
  761. Kocsis T, Trencsenyi G, Szabó K, Baán J, Müller G, Mendler L, et al. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity. Am J Physiol Endocrinol Metab. 2017;312:E150-E160 pubmed 出版商
  762. Zhang H, Wang W, Ren L, Zhao X, Wang Z, Zhuang D, et al. The mTORC2/Akt/NFκB Pathway-Mediated Activation of TRPC6 Participates in Adriamycin-Induced Podocyte Apoptosis. Cell Physiol Biochem. 2016;40:1079-1093 pubmed
  763. Hess N, Jiang S, Li X, Guan Y, Tapping R. TLR10 Is a B Cell Intrinsic Suppressor of Adaptive Immune Responses. J Immunol. 2017;198:699-707 pubmed 出版商
  764. Karki R, Man S, Malireddi R, Kesavardhana S, Zhu Q, Burton A, et al. NLRC3 is an inhibitory sensor of PI3K-mTOR pathways in cancer. Nature. 2016;540:583-587 pubmed 出版商
  765. Abshire C, Dragoi A, Roy C, Ivanov S. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis. PLoS Pathog. 2016;12:e1006088 pubmed 出版商
  766. Pal M, Gupta S. Testosterone supplementation improves glucose homeostasis despite increasing hepatic insulin resistance in male mouse model of type 2 diabetes mellitus. Nutr Diabetes. 2016;6:e236 pubmed 出版商
  767. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  768. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  769. Li L, Byrd M, Doh K, Dixon P, Lee H, Tiwari S, et al. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice. Physiol Rep. 2016;4: pubmed
  770. Natarajan S, Muthukrishnan E, Khalimonchuk O, Mott J, Becker D. Evidence for Pipecolate Oxidase in Mediating Protection Against Hydrogen Peroxide Stress. J Cell Biochem. 2017;118:1678-1688 pubmed 出版商
  771. Tanouchi A, Taniuchi K, Furihata M, Naganuma S, Dabanaka K, Kimura M, et al. CCDC88A, a prognostic factor for human pancreatic cancers, promotes the motility and invasiveness of pancreatic cancer cells. J Exp Clin Cancer Res. 2016;35:190 pubmed
  772. Cao J, Tyburczy M, Moss J, Darling T, Widlund H, Kwiatkowski D. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest. 2017;127:349-364 pubmed 出版商
  773. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017;19:496-508 pubmed 出版商
  774. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, et al. Artemisinins Target GABAA Receptor Signaling and Impair ? Cell Identity. Cell. 2017;168:86-100.e15 pubmed 出版商
  775. Naeem A, Tommasi C, Cole C, Brown S, Zhu Y, Way B, et al. A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic d. J Allergy Clin Immunol. 2017;139:1228-1241 pubmed 出版商
  776. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  777. Yan H, Gao Y, Zhang Y. Inhibition of JNK suppresses autophagy and attenuates insulin resistance in a rat model of nonalcoholic fatty liver disease. Mol Med Rep. 2017;15:180-186 pubmed 出版商
  778. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  779. Battram A, Durrant T, Agbani E, Heesom K, Paul D, Piatt R, et al. The Phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) Binder Rasa3 Regulates Phosphoinositide 3-kinase (PI3K)-dependent Integrin αIIbβ3 Outside-in Signaling. J Biol Chem. 2017;292:1691-1704 pubmed 出版商
  780. He X, Liu Z, Xia Y, Xu J, Lv G, Wang L, et al. HOXB7 overexpression promotes cell proliferation and correlates with poor prognosis in gastric cancer patients by inducing expression of both AKT and MARKs. Oncotarget. 2017;8:1247-1261 pubmed 出版商
  781. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  782. Mueller A, van Velthoven C, Fukumoto K, Cheung T, Rando T. Intronic polyadenylation of PDGFR? in resident stem cells attenuates muscle fibrosis. Nature. 2016;540:276-279 pubmed 出版商
  783. Torgersen M, Klokk T, Kavaliauskiene S, Klose C, Simons K, Skotland T, et al. The anti-tumor drug 2-hydroxyoleic acid (Minerval) stimulates signaling and retrograde transport. Oncotarget. 2016;7:86871-86888 pubmed 出版商
  784. Liu W, Huang K, Lu M, Huang H, Chen C, Cheng Y, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017;36:2715-2723 pubmed 出版商
  785. Kariolis M, Miao Y, Diep A, Nash S, Olcina M, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127:183-198 pubmed 出版商
  786. Langhi C, Arias N, Rajamoorthi A, Basta J, Lee R, Baldán A. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance. J Lipid Res. 2017;58:81-91 pubmed 出版商
  787. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  788. Wang X, Cao Q, Yu L, Shi H, Xue B, Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight. 2016;1:e87748 pubmed 出版商
  789. Duan W, Chen J, Wu Y, Zhang Y, Xu Y. Protective effect of higenamine ameliorates collagen-induced arthritis through heme oxygenase-1 and PI3K/Akt/Nrf-2 signaling pathways. Exp Ther Med. 2016;12:3107-3112 pubmed
  790. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  791. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  792. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  793. Yang S, Ji Q, Chang B, Wang Y, Zhu Y, Li D, et al. STC2 promotes head and neck squamous cell carcinoma metastasis through modulating the PI3K/AKT/Snail signaling. Oncotarget. 2017;8:5976-5991 pubmed 出版商
  794. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  795. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  796. Vidimar V, Gius D, Chakravarti D, Bulun S, Wei J, Kim J. Dysfunctional MnSOD leads to redox dysregulation and activation of prosurvival AKT signaling in uterine leiomyomas. Sci Adv. 2016;2:e1601132 pubmed
  797. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  798. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  799. Kong Q, Zhang H, Zhao T, Zhang W, Yan M, Dong X, et al. Tangshen formula attenuates hepatic steatosis by inhibiting hepatic lipogenesis and augmenting fatty acid oxidation in db/db mice. Int J Mol Med. 2016;38:1715-1726 pubmed 出版商
  800. Park J, Lee C, Kim H, Kim D, Son J, Ko E, et al. Suppression of the metastatic spread of breast cancer by DN10764 (AZD7762)-mediated inhibition of AXL signaling. Oncotarget. 2016;7:83308-83318 pubmed 出版商
  801. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  802. Sikander M, Hafeez B, Malik S, Alsayari A, Halaweish F, Yallapu M, et al. Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep. 2016;6:36594 pubmed 出版商
  803. Chruvattil R, Banerjee S, Nath S, Machhi J, Kharkwal G, Yadav M, et al. Dexamethasone Alters the Appetite Regulation via Induction of Hypothalamic Insulin Resistance in Rat Brain. Mol Neurobiol. 2017;54:7483-7496 pubmed 出版商
  804. Han C, Juncadella I, Kinchen J, Buckley M, Klibanov A, Dryden K, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nature. 2016;539:570-574 pubmed 出版商
  805. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  806. Chu Q, Huang H, Huang T, Cao L, Peng L, Shi S, et al. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis. 2016;7:e2456 pubmed 出版商
  807. Cieniewicz A, Kirchner T, Hinke S, Nanjunda R, D AQUINO K, Boayke K, et al. Novel Monoclonal Antibody Is an Allosteric Insulin Receptor Antagonist That Induces Insulin Resistance. Diabetes. 2017;66:206-217 pubmed 出版商
  808. Sheen M, Marotti J, Allegrezza M, Rutkowski M, Conejo Garcia J, Fiering S. Constitutively activated PI3K accelerates tumor initiation and modifies histopathology of breast cancer. Oncogenesis. 2016;5:e267 pubmed 出版商
  809. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527-4536 pubmed 出版商
  810. Cardoso R, Burns A, Moeller J, Skinner D, Padmanabhan V. Developmental Programming: Insulin Sensitizer Prevents the GnRH-Stimulated LH Hypersecretion in a Sheep Model of PCOS. Endocrinology. 2016;157:4641-4653 pubmed
  811. Fan Y, Wang N, Rocchi A, Zhang W, Vassar R, Zhou Y, et al. Identification of natural products with neuronal and metabolic benefits through autophagy induction. Autophagy. 2017;13:41-56 pubmed 出版商
  812. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  813. Li R, Xu J, Fu C, Zhang J, Zheng Y, Jia H, et al. Regulation of mTORC1 by lysosomal calcium and calmodulin. elife. 2016;5: pubmed 出版商
  814. Hau A, Leivo M, Gilder A, Hu J, Gonias S, Hansel D. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer. Cell Signal. 2017;29:96-106 pubmed 出版商
  815. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  816. Zhao J, Chen C, Guo M, Tao Y, Cui P, Zhou Y, et al. MicroRNA-7 Deficiency Ameliorates the Pathologies of Acute Lung Injury through Elevating KLF4. Front Immunol. 2016;7:389 pubmed
  817. Di Cataldo V, Geloen A, Langlois J, Chauveau F, Thézé B, Hubert V, et al. Exercise Does Not Protect against Peripheral and Central Effects of a High Cholesterol Diet Given Ad libitum in Old ApoE-/- Mice. Front Physiol. 2016;7:453 pubmed
  818. Wu C, Luo J. Long Non-Coding RNA (lncRNA) Urothelial Carcinoma-Associated 1 (UCA1) Enhances Tamoxifen Resistance in Breast Cancer Cells via Inhibiting mTOR Signaling Pathway. Med Sci Monit. 2016;22:3860-3867 pubmed
  819. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  820. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  821. Gómez Salinero J, López Olañeta M, Ortiz Sánchez P, Larrasa Alonso J, Gatto A, Felkin L, et al. The Calcineurin Variant CnA?1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol. 2016;23:1372-1382 pubmed 出版商
  822. Sanchez T, Zhang G, Li J, Dai L, Mirshahidi S, Wall N, et al. Immunoseroproteomic Profiling in African American Men with Prostate Cancer: Evidence for an Autoantibody Response to Glycolysis and Plasminogen-Associated Proteins. Mol Cell Proteomics. 2016;15:3564-3580 pubmed
  823. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  824. Takeuchi S, Iwama S, Takagi H, Kiyota A, Nakashima K, Izumida H, et al. Tomosyn Negatively Regulates Arginine Vasopressin Secretion in Embryonic Stem Cell-Derived Neurons. PLoS ONE. 2016;11:e0164544 pubmed 出版商
  825. Kimura T, Nada S, Takegahara N, Okuno T, Nojima S, Kang S, et al. Polarization of M2 macrophages requires Lamtor1 that integrates cytokine and amino-acid signals. Nat Commun. 2016;7:13130 pubmed 出版商
  826. Dandanell S, Skovborg C, Præst C, Kristensen K, Nielsen M, Lionett S, et al. Maintaining a clinical weight loss after intensive lifestyle intervention is the key to cardiometabolic health. Obes Res Clin Pract. 2017;11:489-498 pubmed 出版商
  827. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS ONE. 2016;11:e0164063 pubmed 出版商
  828. Southworth T, Plumb J, Gupta V, Pearson J, Ramis I, Lehner M, et al. Anti-inflammatory potential of PI3K? and JAK inhibitors in asthma patients. Respir Res. 2016;17:124 pubmed
  829. Kubota N, Kubota T, Kajiwara E, Iwamura T, Kumagai H, Watanabe T, et al. Differential hepatic distribution of insulin receptor substrates causes selective insulin resistance in diabetes and obesity. Nat Commun. 2016;7:12977 pubmed 出版商
  830. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  831. Beauvais G, Bode N, Watson J, Wen H, Glenn K, Kawano H, et al. Disruption of Protein Processing in the Endoplasmic Reticulum of DYT1 Knock-in Mice Implicates Novel Pathways in Dystonia Pathogenesis. J Neurosci. 2016;36:10245-10256 pubmed
  832. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  833. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  834. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  835. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  836. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  837. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  838. Broix L, Jagline H, Ivanova E, Schmucker S, Drouot N, Clayton Smith J, et al. Mutations in the HECT domain of NEDD4L lead to AKT-mTOR pathway deregulation and cause periventricular nodular heterotopia. Nat Genet. 2016;48:1349-1358 pubmed 出版商
  839. Little A, Sham D, Hristova M, Danyal K, Heppner D, Bauer R, et al. DUOX1 silencing in lung cancer promotes EMT, cancer stem cell characteristics and invasive properties. Oncogenesis. 2016;5:e261 pubmed 出版商
  840. Zavorka M, Connelly C, Grosely R, MacDonald R. Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor. Oncotarget. 2016;7:62386-62410 pubmed 出版商
  841. Patel S, Trivedi G, Darie C, Clarkson B. The possible roles of B-cell novel protein-1 (BCNP1) in cellular signalling pathways and in cancer. J Cell Mol Med. 2017;21:456-466 pubmed 出版商
  842. Wei R, Lin S, Wu W, Chen L, Li C, Chen H, et al. A microtubule inhibitor, ABT-751, induces autophagy and delays apoptosis in Huh-7 cells. Toxicol Appl Pharmacol. 2016;311:88-98 pubmed 出版商
  843. Vallo S, Michaelis M, Gust K, Black P, Rothweiler F, Kvasnicka H, et al. Dasatinib enhances tumor growth in gemcitabine-resistant orthotopic bladder cancer xenografts. BMC Res Notes. 2016;9:454 pubmed
  844. Yuzugullu H, Von T, Thorpe L, Walker S, Roberts T, Frank D, et al. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov. 2016;2:16030 pubmed 出版商
  845. Ang Z, Er J, Tan N, Lu J, Liou Y, Grosse J, et al. Human and mouse monocytes display distinct signalling and cytokine profiles upon stimulation with FFAR2/FFAR3 short-chain fatty acid receptor agonists. Sci Rep. 2016;6:34145 pubmed 出版商
  846. Boo H, Min H, Jang H, Yun H, Smith J, Jin Q, et al. The tobacco-specific carcinogen-operated calcium channel promotes lung tumorigenesis via IGF2 exocytosis in lung epithelial cells. Nat Commun. 2016;7:12961 pubmed 出版商
  847. Yang Z, Tsuchiya H, Zhang Y, Lee S, Liu C, Huang Y, et al. REV-ERB? Activates C/EBP Homologous Protein to Control Small Heterodimer Partner-Mediated Oscillation of Alcoholic Fatty Liver. Am J Pathol. 2016;186:2909-2920 pubmed 出版商
  848. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  849. Wang A, Cui M, Qu H, Di J, Wang Z, Xing J, et al. Induction of anti-EGFR immune response with mimotopes identified from a phage display peptide library by panitumumab. Oncotarget. 2016;7:75293-75306 pubmed 出版商
  850. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  851. Shamblott M, O Driscoll M, Gomez D, McGuire D. Neurogenin 3 is regulated by neurotrophic tyrosine kinase receptor type 2 (TRKB) signaling in the adult human exocrine pancreas. Cell Commun Signal. 2016;14:23 pubmed
  852. Tai Y, Tung L, Lin Y, Lu P, Chu P, Wang M, et al. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS ONE. 2016;11:e0163617 pubmed 出版商
  853. Krepler C, Xiao M, Samanta M, Vultur A, Chen H, Brafford P, et al. Targeting Notch enhances the efficacy of ERK inhibitors in BRAF-V600E melanoma. Oncotarget. 2016;7:71211-71222 pubmed 出版商
  854. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  855. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  856. Kaneda M, Messer K, Ralainirina N, Li H, Leem C, Gorjestani S, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539:437-442 pubmed 出版商
  857. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  858. Hang Q, Isaji T, Hou S, Zhou Y, Fukuda T, Gu J. N-Glycosylation of integrin ?5 acts as a switch for EGFR-mediated complex formation of integrin ?5?1 to ?6?4. Sci Rep. 2016;6:33507 pubmed 出版商
  859. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  860. Nip H, Dar A, Saini S, Colden M, Varahram S, Chowdhary H, et al. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget. 2016;7:68371-68384 pubmed 出版商
  861. Rittig N, Bach E, Thomsen H, Pedersen S, Nielsen T, Jørgensen J, et al. Regulation of Lipolysis and Adipose Tissue Signaling during Acute Endotoxin-Induced Inflammation: A Human Randomized Crossover Trial. PLoS ONE. 2016;11:e0162167 pubmed 出版商
  862. Carbonneau M, M Gagné L, Lalonde M, Germain M, Motorina A, Guiot M, et al. The oncometabolite 2-hydroxyglutarate activates the mTOR signalling pathway. Nat Commun. 2016;7:12700 pubmed 出版商
  863. Shin M, Male I, Beane T, Villefranc J, Kok F, Zhu L, et al. Vegfc acts through ERK to induce sprouting and differentiation of trunk lymphatic progenitors. Development. 2016;143:3785-3795 pubmed
  864. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  865. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  866. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  867. Wang S, Jiang L, Han Y, Chew S, Ohara Y, Akatsuka S, et al. Urokinase-type plasminogen activator receptor promotes proliferation and invasion with reduced cisplatin sensitivity in malignant mesothelioma. Oncotarget. 2016;7:69565-69578 pubmed 出版商
  868. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  869. Fan L, Liu M, Guo M, Hu C, Yan Z, Chen J, et al. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget. 2016;7:63887-63900 pubmed 出版商
  870. Phatak N, Stankowska D, Krishnamoorthy R. Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 2016;22:1048-61 pubmed
  871. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  872. Josowitz R, Mulero Navarro S, Rodriguez N, Falce C, Cohen N, Ullian E, et al. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes. Stem Cell Reports. 2016;7:355-369 pubmed 出版商
  873. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  874. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  875. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  876. Suman S, Kumar S, Fornace A, Datta K. Space radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine. Sci Rep. 2016;6:31853 pubmed 出版商
  877. Sun M, Cai J, Anderson R, Sun Y. Type I ? Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6. J Biol Chem. 2016;291:21461-21473 pubmed
  878. Cunningham C, Li S, Vizeacoumar F, Bhanumathy K, Lee J, Parameswaran S, et al. Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget. 2016;7:61544-61561 pubmed 出版商
  879. Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan Gomez C, Bombardieri C, et al. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature. 2016;537:427-431 pubmed 出版商
  880. Lee J, Lee W, Seol M, Lee S, Kim D, Kim H, et al. Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation. Oncotarget. 2016;7:66728-66739 pubmed 出版商
  881. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  882. Hedl M, Yan J, Abraham C. IRF5 and IRF5 Disease-Risk Variants Increase Glycolysis and Human M1 Macrophage Polarization by Regulating Proximal Signaling and Akt2 Activation. Cell Rep. 2016;16:2442-55 pubmed 出版商
  883. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  884. Subramanian P, An Z, Yu J, Park W. Silencing of fused toes homolog enhances cisplatin sensitivity in cervical cancer cells by inhibiting epidermal growth factor receptor-mediated repair of DNA damage. Cancer Chemother Pharmacol. 2016;78:753-62 pubmed 出版商
  885. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  886. Szewczyk L, Brozko N, Nagalski A, Röckle I, Werneburg S, Hildebrandt H, et al. ST8SIA2 promotes oligodendrocyte differentiation and the integrity of myelin and axons. Glia. 2017;65:34-49 pubmed 出版商
  887. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  888. Gusscott S, Jenkins C, Lam S, Giambra V, Pollak M, Weng A. IGF1R Derived PI3K/AKT Signaling Maintains Growth in a Subset of Human T-Cell Acute Lymphoblastic Leukemias. PLoS ONE. 2016;11:e0161158 pubmed 出版商
  889. Beale G, Haagensen E, Thomas H, Wang L, Revill C, Payne S, et al. Combined PI3K and CDK2 inhibition induces cell death and enhances in vivo antitumour activity in colorectal cancer. Br J Cancer. 2016;115:682-90 pubmed 出版商
  890. Chen R, Duan J, Li L, Ma Q, Sun Q, Ma J, et al. mTOR promotes pituitary tumor development through activation of PTTG1. Oncogene. 2017;36:979-988 pubmed 出版商
  891. Ratsimandresy R, Indramohan M, Dorfleutner A, Stehlik C. The AIM2 inflammasome is a central regulator of intestinal homeostasis through the IL-18/IL-22/STAT3 pathway. Cell Mol Immunol. 2017;14:127-142 pubmed 出版商
  892. Wang D, Mitchell E. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides. PLoS ONE. 2016;11:e0160159 pubmed 出版商
  893. Maynard J, Emmas S, Blé F, Barjat H, Lawrie E, Hancox U, et al. The use of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) as a pathway-specific biomarker with AZD8186, a PI3K?/? inhibitor. EJNMMI Res. 2016;6:62 pubmed 出版商
  894. Yang J, Song T, Jo C, Park J, Lee H, Song I, et al. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch. Exp Mol Med. 2016;48:e252 pubmed 出版商
  895. Buta C, Benabou E, Lequoy M, Régnault H, Wendum D, Meratbene F, et al. Heregulin-1ß and HER3 in hepatocellular carcinoma: status and regulation by insulin. J Exp Clin Cancer Res. 2016;35:126 pubmed 出版商
  896. Khanom R, Nguyen C, Kayamori K, Zhao X, Morita K, Miki Y, et al. Keratin 17 Is Induced in Oral Cancer and Facilitates Tumor Growth. PLoS ONE. 2016;11:e0161163 pubmed 出版商
  897. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  898. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  899. Tsai S, Rodriguez A, Dastidar S, Del Greco E, Carr K, Sitzmann J, et al. Increased 4E-BP1 Expression Protects against Diet-Induced Obesity and Insulin Resistance in Male Mice. Cell Rep. 2016;16:1903-14 pubmed 出版商
  900. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  901. Di Franco S, Turdo A, Benfante A, Colorito M, Gaggianesi M, Apuzzo T, et al. ?Np63 drives metastasis in breast cancer cells via PI3K/CD44v6 axis. Oncotarget. 2016;7:54157-54173 pubmed 出版商
  902. Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, et al. HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 2016;7:57050-57065 pubmed 出版商
  903. Hauck L, Grothe D, Billia F. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling. Peptides. 2016;83:38-48 pubmed 出版商
  904. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  905. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  906. Lai M, Gonzalez Martin A, Cooper A, Oda H, Jin H, Shepherd J, et al. Regulation of B-cell development and tolerance by different members of the miR-17∼92 family microRNAs. Nat Commun. 2016;7:12207 pubmed 出版商
  907. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  908. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  909. Ladd B, Mazzola A, Bihani T, Lai Z, BRADFORD J, Collins M, et al. Effective combination therapies in preclinical endocrine resistant breast cancer models harboring ER mutations. Oncotarget. 2016;7:54120-54136 pubmed 出版商
  910. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  911. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  912. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  913. Coppo M, Chinenov Y, Sacta M, Rogatsky I. The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis. Nat Commun. 2016;7:12254 pubmed 出版商
  914. Liu J, Wan L, Liu J, Yuan Z, Zhang J, Guo J, et al. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov. 2016;2:15044 pubmed 出版商
  915. Qin Y, Roszik J, Chattopadhyay C, Hashimoto Y, Liu C, Cooper Z, et al. Hypoxia-Driven Mechanism of Vemurafenib Resistance in Melanoma. Mol Cancer Ther. 2016;15:2442-2454 pubmed
  916. Bai Y, Dong Z, Shang Q, Zhao H, Wang L, Guo C, et al. Pdcd4 Is Involved in the Formation of Stress Granule in Response to Oxidized Low-Density Lipoprotein or High-Fat Diet. PLoS ONE. 2016;11:e0159568 pubmed 出版商
  917. Jiao K, Zeng G, Niu L, Yang H, Ren G, Xu X, et al. Activation of ?2A-adrenergic signal transduction in chondrocytes promotes degenerative remodelling of temporomandibular joint. Sci Rep. 2016;6:30085 pubmed 出版商
  918. Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3?/?-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016;12:1124-1128 pubmed
  919. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  920. Jin Z, Yan W, Jin H, Ge C, Xu Y. Psoralidin inhibits proliferation and enhances apoptosis of human esophageal carcinoma cells via NF-?B and PI3K/Akt signaling pathways. Oncol Lett. 2016;12:971-976 pubmed
  921. Lazzarini E, Balbi C, Altieri P, Pfeffer U, Gambini E, Canepa M, et al. The human amniotic fluid stem cell secretome effectively counteracts doxorubicin-induced cardiotoxicity. Sci Rep. 2016;6:29994 pubmed 出版商
  922. Kreger B, Dougherty A, Greene K, Cerione R, Antonyak M. Microvesicle Cargo and Function Changes upon Induction of Cellular Transformation. J Biol Chem. 2016;291:19774-85 pubmed 出版商
  923. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  924. Saisana M, Griffin S, May F. Importance of the type I insulin-like growth factor receptor in HER2, FGFR2 and MET-unamplified gastric cancer with and without Ras pathway activation. Oncotarget. 2016;7:54445-54462 pubmed 出版商
  925. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  926. Fernando R, Cotter L, Perrin Tricaud C, Berthelot J, Bartolami S, Pereira J, et al. Optimal myelin elongation relies on YAP activation by axonal growth and inhibition by Crb3/Hippo pathway. Nat Commun. 2016;7:12186 pubmed 出版商
  927. Zhang Z, Yan J, Shi H. Role of Hypoxia Inducible Factor 1 in Hyperglycemia-Exacerbated Blood-Brain Barrier Disruption in Ischemic Stroke. Neurobiol Dis. 2016;95:82-92 pubmed 出版商
  928. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  929. Ge X, Huang S, Gao H, Han Z, Chen F, Zhang S, et al. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res. 2016;1650:31-40 pubmed 出版商
  930. Song M, Wang Y, Shang Z, Liu X, Xie D, Wang Q, et al. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells. Sci Rep. 2016;6:30165 pubmed 出版商
  931. Ma T, Fan B, Zhang C, Zhao H, Han C, Gao C, et al. Metabonomics applied in exploring the antitumour mechanism of physapubenolide on hepatocellular carcinoma cells by targeting glycolysis through the Akt-p53 pathway. Sci Rep. 2016;6:29926 pubmed 出版商
  932. Jang H, Lee G, Selby C, Lee G, Jeon Y, Lee J, et al. SREBP1c-CRY1 signalling represses hepatic glucose production by promoting FOXO1 degradation during refeeding. Nat Commun. 2016;7:12180 pubmed 出版商
  933. McClelland Descalzo D, Satoorian T, Walker L, Sparks N, Pulyanina P, zur Nieden N. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/?-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7:55-68 pubmed 出版商
  934. Warner M, Bridge K, Hewitson J, Hodgkinson M, Heyam A, Massa B, et al. S6K2-mediated regulation of TRBP as a determinant of miRNA expression in human primary lymphatic endothelial cells. Nucleic Acids Res. 2016;44:9942-9955 pubmed
  935. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  936. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  937. Kumari M, Wang X, Lantier L, Lyubetskaya A, Eguchi J, Kang S, et al. IRF3 promotes adipose inflammation and insulin resistance and represses browning. J Clin Invest. 2016;126:2839-54 pubmed 出版商
  938. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  939. Eid S, Boutary S, Braych K, Sabra R, Massaad C, Hamdy A, et al. mTORC2 Signaling Regulates Nox4-Induced Podocyte Depletion in Diabetes. Antioxid Redox Signal. 2016;25:703-719 pubmed
  940. Zhou Y, Wu Y, Qin Y, Liu L, Wan J, Zou L, et al. Ampelopsin Improves Insulin Resistance by Activating PPAR? and Subsequently Up-Regulating FGF21-AMPK Signaling Pathway. PLoS ONE. 2016;11:e0159191 pubmed 出版商
  941. Monica V, Lo Iacono M, Bracco E, Busso S, di Blasio L, Primo L, et al. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget. 2016;7:76577-76589 pubmed 出版商
  942. Alver T, Lavelle T, Longva A, Øy G, Hovig E, Bøe S. MITF depletion elevates expression levels of ERBB3 receptor and its cognate ligand NRG1-beta in melanoma. Oncotarget. 2016;7:55128-55140 pubmed 出版商
  943. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  944. Oliveira A, Gomes Marcondes M. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats. BMC Cancer. 2016;16:418 pubmed 出版商
  945. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  946. Barquilla A, Lamberto I, Noberini R, Heynen Genel S, Brill L, Pasquale E. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell. 2016;27:2757-70 pubmed 出版商
  947. Shen P, Chen M, He M, Chen L, Song Y, Xiao P, et al. Inhibition of ER?/ERK/P62 cascades induces "autophagic switch" in the estrogen receptor-positive breast cancer cells exposed to gemcitabine. Oncotarget. 2016;7:48501-48516 pubmed 出版商
  948. Li X, Chen Y, Wang L, Shang G, Zhang C, Zhao Z, et al. Quercetin alleviates pulmonary angiogenesis in a rat model of hepatopulmonary syndrome. Braz J Med Biol Res. 2016;49: pubmed 出版商
  949. Rozo M, Li L, Fan C. Targeting ?1-integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med. 2016;22:889-96 pubmed 出版商
  950. Hatem R, El Botty R, Chateau Joubert S, Servely J, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. 2016;7:48206-48219 pubmed 出版商
  951. Xiao B, Chen D, Luo S, Hao W, Jing F, Liu T, et al. Extracellular translationally controlled tumor protein promotes colorectal cancer invasion and metastasis through Cdc42/JNK/ MMP9 signaling. Oncotarget. 2016;7:50057-50073 pubmed 出版商
  952. Petrova L, Gran C, Bjoras M, Doetsch P. Efficient and Reliable Production of Vectors for the Study of the Repair, Mutagenesis, and Phenotypic Consequences of Defined DNA Damage Lesions in Mammalian Cells. PLoS ONE. 2016;11:e0158581 pubmed 出版商
  953. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  954. Zhang H, Li H. miR-137 inhibits renal cell carcinoma growth in vitro and in vivo. Oncol Lett. 2016;12:715-720 pubmed
  955. Su Q, Zhang B, Zhang L, Dang T, Rowley D, Ittmann M, et al. Jagged1 upregulation in prostate epithelial cells promotes formation of reactive stroma in the Pten null mouse model for prostate cancer. Oncogene. 2017;36:618-627 pubmed 出版商
  956. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  957. Zhao W, Li A, Feng X, Hou T, Liu K, Liu B, et al. Metformin and resveratrol ameliorate muscle insulin resistance through preventing lipolysis and inflammation in hypoxic adipose tissue. Cell Signal. 2016;28:1401-11 pubmed 出版商
  958. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  959. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  960. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  961. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  962. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  963. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  964. Wang Y, Hersheson J, López D, Hammer M, Liu Y, Lee K, et al. Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans. Cell Rep. 2016;16:79-91 pubmed 出版商
  965. Meinhardt G, Saleh L, Otti G, Haider S, Velicky P, Fiala C, et al. Wingless ligand 5a is a critical regulator of placental growth and survival. Sci Rep. 2016;6:28127 pubmed 出版商
  966. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  967. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  968. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  969. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  970. Cui Y, Zhao J, Yi L, Jiang Y. microRNA-153 Targets mTORC2 Component Rictor to Inhibit Glioma Cells. PLoS ONE. 2016;11:e0156915 pubmed 出版商
  971. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  972. Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, et al. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol. 2016;311:H313-25 pubmed 出版商
  973. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  974. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  975. Krag T, Pinós T, Nielsen T, Duran J, García Rocha M, Andreu A, et al. Differential glucose metabolism in mice and humans affected by McArdle disease. Am J Physiol Regul Integr Comp Physiol. 2016;311:R307-14 pubmed 出版商
  976. Kobayashi K, Araya J, Minagawa S, Hara H, Saito N, Kadota T, et al. Involvement of PARK2-Mediated Mitophagy in Idiopathic Pulmonary Fibrosis Pathogenesis. J Immunol. 2016;197:504-16 pubmed 出版商
  977. Tejada T, Tan L, Torres R, Calvert J, Lambert J, Zaidi M, et al. IGF-1 degradation by mouse mast cell protease 4 promotes cell death and adverse cardiac remodeling days after a myocardial infarction. Proc Natl Acad Sci U S A. 2016;113:6949-54 pubmed 出版商
  978. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  979. Jeong A, Han S, Lee S, Su Park J, Lu Y, Yu S, et al. Patient derived mutation W257G of PPP2R1A enhances cancer cell migration through SRC-JNK-c-Jun pathway. Sci Rep. 2016;6:27391 pubmed 出版商
  980. Foltz S, Luan J, Call J, Patel A, Peissig K, Fortunato M, et al. Four-week rapamycin treatment improves muscular dystrophy in a fukutin-deficient mouse model of dystroglycanopathy. Skelet Muscle. 2016;6:20 pubmed 出版商
  981. Fernandez Monreal M, Sánchez Castillo C, Esteban J. APPL1 gates long-term potentiation through its plekstrin homology domain. J Cell Sci. 2016;129:2793-803 pubmed 出版商
  982. Tzani I, Ivanov I, Andreev D, Dmitriev R, Dean K, Baranov P, et al. Systematic analysis of the PTEN 5' leader identifies a major AUU initiated proteoform. Open Biol. 2016;6: pubmed 出版商
  983. Hendrayani S, Al Harbi B, Al Ansari M, Silva G, Aboussekhra A. The inflammatory/cancer-related IL-6/STAT3/NF-?B positive feedback loop includes AUF1 and maintains the active state of breast myofibroblasts. Oncotarget. 2016;7:41974-41985 pubmed 出版商
  984. Leonard S, Kinsella G, Benetti E, Findlay J. Regulating the effects of GPR21, a novel target for type 2 diabetes. Sci Rep. 2016;6:27002 pubmed 出版商
  985. van Ree J, Nam H, Jeganathan K, Kanakkanthara A, van Deursen J. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18:814-21 pubmed 出版商
  986. Michael J, Wurtzel J, Goldfinger L. Regulation of H-Ras-driven MAPK signaling, transformation and tumorigenesis, but not PI3K signaling and tumor progression, by plasma membrane microdomains. Oncogenesis. 2016;5:e228 pubmed 出版商
  987. Puchert M, Adams V, Linke A, Engele J. Evidence for the involvement of the CXCL12 system in the adaptation of skeletal muscles to physical exercise. Cell Signal. 2016;28:1205-15 pubmed 出版商
  988. Nwadozi E, Roudier E, Rullman E, Tharmalingam S, Liu H, Gustafsson T, et al. Endothelial FoxO proteins impair insulin sensitivity and restrain muscle angiogenesis in response to a high-fat diet. FASEB J. 2016;30:3039-52 pubmed 出版商
  989. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  990. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  991. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  992. Sun F, Zhang Z, Tan E, Lim Z, Li Y, Wang X, et al. Icaritin suppresses development of neuroendocrine differentiation of prostate cancer through inhibition of IL-6/STAT3 and Aurora kinase A pathways in TRAMP mice. Carcinogenesis. 2016;37:701-711 pubmed 出版商
  993. Vazirani R, Verma A, Sadacca L, Buckman M, Picatoste B, Beg M, et al. Disruption of Adipose Rab10-Dependent Insulin Signaling Causes Hepatic Insulin Resistance. Diabetes. 2016;65:1577-89 pubmed 出版商
  994. Zhang W, Wu M, Kim T, Jariwala R, Garvey W, Luo N, et al. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet-Induced Insulin Resistance. Diabetes. 2016;65:2380-91 pubmed 出版商
  995. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  996. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  997. Kessler S, Laggai S, Van Wonterg E, Gemperlein K, Muller R, Haybaeck J, et al. Transient Hepatic Overexpression of Insulin-Like Growth Factor 2 Induces Free Cholesterol and Lipid Droplet Formation. Front Physiol. 2016;7:147 pubmed 出版商
  998. Gharib M, Tao H, Fungwe T, Hajri T. Cluster Differentiating 36 (CD36) Deficiency Attenuates Obesity-Associated Oxidative Stress in the Heart. PLoS ONE. 2016;11:e0155611 pubmed 出版商
  999. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  1000. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  1001. Chan E, Shetty M, Sajikumar S, Chen C, Soong T, Wong B. ApoE4 expression accelerates hippocampus-dependent cognitive deficits by enhancing Aβ impairment of insulin signaling in an Alzheimer's disease mouse model. Sci Rep. 2016;6:26119 pubmed 出版商
  1002. Huang D, Zhao C, Ju R, Kumar A, Tian G, Huang L, et al. VEGF-B inhibits hyperglycemia- and Macugen-induced retinal apoptosis. Sci Rep. 2016;6:26059 pubmed 出版商
  1003. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  1004. Zhu Y, Ramos da Silva S, He M, Liang Q, Lu C, Feng P, et al. An Oncogenic Virus Promotes Cell Survival and Cellular Transformation by Suppressing Glycolysis. PLoS Pathog. 2016;12:e1005648 pubmed 出版商
  1005. Barry W, Thummel C. The Drosophila HNF4 nuclear receptor promotes glucose-stimulated insulin secretion and mitochondrial function in adults. elife. 2016;5: pubmed 出版商
  1006. Song X, Yao Z, Yang J, Zhang Z, Deng Y, Li M, et al. HCV core protein binds to gC1qR to induce A20 expression and inhibit cytokine production through MAPKs and NF-κB signaling pathways. Oncotarget. 2016;7:33796-808 pubmed 出版商
  1007. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  1008. Rao E, Zhang Y, Li Q, Hao J, Egilmez N, Suttles J, et al. AMPK-dependent and independent effects of AICAR and compound C on T-cell responses. Oncotarget. 2016;7:33783-95 pubmed 出版商
  1009. Fabbri R, Macciocca M, Vicenti R, Paradisi R, Klinger F, Pasquinelli G, et al. Doxorubicin and cisplatin induce apoptosis in ovarian stromal cells obtained from cryopreserved human ovarian tissue. Future Oncol. 2016;12:1699-711 pubmed 出版商
  1010. Hsieh M, Yang P, Wong L, Lee J. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget. 2016;7:36956-36970 pubmed 出版商
  1011. Pastore N, Brady O, Diab H, Martina J, Sun L, Huynh T, et al. TFEB and TFE3 cooperate in the regulation of the innate immune response in activated macrophages. Autophagy. 2016;12:1240-58 pubmed 出版商
  1012. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  1013. Ting W, Yang J, Kuo C, Xiao Z, Lu X, Yeh Y, et al. Environmental tobacco smoke increases autophagic effects but decreases longevity associated with Sirt-1 protein expression in young C57BL mice hearts. Oncotarget. 2016;7:39017-39025 pubmed 出版商
  1014. Wang N, Dong B, Quan Y, Chen Q, Chu M, Xu J, et al. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status. Stem Cell Reports. 2016;6:668-678 pubmed 出版商
  1015. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  1016. Cieniewicz A, Cooper P, MCGEHEE J, Lingham R, Kihm A. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation. Cell Signal. 2016;28:1037-47 pubmed 出版商
  1017. Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY). 2016;8:958-76 pubmed 出版商
  1018. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  1019. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  1020. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  1021. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  1022. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  1023. Hoefig C, Harder L, Oelkrug R, Meusel M, Vennstrom B, Brabant G, et al. Thermoregulatory and Cardiovascular Consequences of a Transient Thyrotoxicosis and Recovery in Male Mice. Endocrinology. 2016;157:2957-67 pubmed 出版商
  1024. PluciÅ„ska K, Dekeryte R, Koss D, Shearer K, Mody N, Whitfield P, et al. Neuronal human BACE1 knockin induces systemic diabetes in mice. Diabetologia. 2016;59:1513-1523 pubmed 出版商
  1025. He S, Mansour M, Zimmerman M, Ki D, Layden H, Akahane K, et al. Synergy between loss of NF1 and overexpression of MYCN in neuroblastoma is mediated by the GAP-related domain. elife. 2016;5: pubmed 出版商
  1026. Huang Q, Zhan L, Cao H, Li J, Lyu Y, Guo X, et al. Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy. 2016;12:999-1014 pubmed 出版商
  1027. Lee K, Lee H, Lin H, Tsay H, Tsai F, Shyue S, et al. Role of transient receptor potential ankyrin 1 channels in Alzheimer's disease. J Neuroinflammation. 2016;13:92 pubmed 出版商
  1028. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  1029. Du R, Liu Z, Hou X, Fu G, An N, Wang L. Trichostatin A potentiates genistein-induced apoptosis and reverses EMT in HEp2 cells. Mol Med Rep. 2016;13:5045-52 pubmed 出版商
  1030. Qiu X, Wei R, Li Y, Zhu Q, Xiong C, Chen Y, et al. NEDL2 regulates enteric nervous system and kidney development in its Nedd8 ligase activity-dependent manner. Oncotarget. 2016;7:31440-53 pubmed 出版商
  1031. Noda K, Kitami M, Kitami K, Kaku M, Komatsu Y. Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A. 2016;113:E2589-97 pubmed 出版商
  1032. Stephenson E, Ragauskas A, Jaligama S, Redd J, Parvathareddy J, Peloquin M, et al. Exposure to environmentally persistent free radicals during gestation lowers energy expenditure and impairs skeletal muscle mitochondrial function in adult mice. Am J Physiol Endocrinol Metab. 2016;310:E1003-15 pubmed 出版商
  1033. Seo J, Singh N, Ottesen E, Sivanesan S, Shishimorova M, Singh R. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. PLoS ONE. 2016;11:e0154390 pubmed 出版商
  1034. Boothe T, Lim G, Cen H, Skovsø S, Piske M, Li S, et al. Inter-domain tagging implicates caveolin-1 in insulin receptor trafficking and Erk signaling bias in pancreatic beta-cells. Mol Metab. 2016;5:366-378 pubmed 出版商
  1035. Yard B, Adams D, Chie E, Tamayo P, Battaglia J, Gopal P, et al. A genetic basis for the variation in the vulnerability of cancer to DNA damage. Nat Commun. 2016;7:11428 pubmed 出版商
  1036. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  1037. Chowdhury B, Porter E, Stewart J, Ferreira C, Schipma M, Dykhuizen E. PBRM1 Regulates the Expression of Genes Involved in Metabolism and Cell Adhesion in Renal Clear Cell Carcinoma. PLoS ONE. 2016;11:e0153718 pubmed 出版商
  1038. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  1039. Liang Q, Wang B, Pang L, Wang Y, Zheng M, Wang Q, et al. Application of citrate as a tricarboxylic acid (TCA) cycle intermediate, prevents diabetic-induced heart damages in mice. Iran J Basic Med Sci. 2016;19:43-8 pubmed
  1040. Thomas A, Belaidi E, Aron Wisnewsky J, van der Zon G, Levy P, Clement K, et al. Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep. 2016;6:24618 pubmed 出版商
  1041. Monyak R, Emerson D, Schoenfeld B, Zheng X, Chambers D, Rosenfelt C, et al. Insulin signaling misregulation underlies circadian and cognitive deficits in a Drosophila fragile X model. Mol Psychiatry. 2017;22:1140-1148 pubmed 出版商
  1042. Dokas J, Chadt A, Joost H, Al Hasani H. Tbc1d1 deletion suppresses obesity in leptin-deficient mice. Int J Obes (Lond). 2016;40:1242-9 pubmed 出版商
  1043. von Mässenhausen A, SANDERS C, Thewes B, Deng M, Queisser A, Vogel W, et al. MERTK as a novel therapeutic target in head and neck cancer. Oncotarget. 2016;7:32678-94 pubmed 出版商
  1044. Zeng W, Liu Q, Chen Z, Wu X, Zhong Y, Wu J. Silencing of hERG1 Gene Inhibits Proliferation and Invasion, and Induces Apoptosis in Human Osteosarcoma Cells by Targeting the NF-?B Pathway. J Cancer. 2016;7:746-57 pubmed 出版商
  1045. Kumar A, Abbas W, Colin L, Khan K, Bouchat S, Varin A, et al. Tuning of AKT-pathway by Nef and its blockade by protease inhibitors results in limited recovery in latently HIV infected T-cell line. Sci Rep. 2016;6:24090 pubmed 出版商
  1046. Yu Z, Zhao G, Li P, Li Y, Zhou G, Chen Y, et al. Temozolomide in combination with metformin act synergistically to inhibit proliferation and expansion of glioma stem-like cells. Oncol Lett. 2016;11:2792-2800 pubmed
  1047. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  1048. Yang E, Ahn S, Lee K, Mahmood U, Kim H. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice. PLoS ONE. 2016;11:e0153298 pubmed 出版商
  1049. Xu K, Wang L, Feng W, Feng Y, Shu H. Phosphatidylinositol-3 kinase-dependent translational regulation of Id1 involves the PPM1G phosphatase. Oncogene. 2016;35:5807-5816 pubmed 出版商
  1050. Gao Y, Bai X, Zhang D, Han C, Yuan J, Liu W, et al. Mammalian elongation factor 4 regulates mitochondrial translation essential for spermatogenesis. Nat Struct Mol Biol. 2016;23:441-9 pubmed 出版商
  1051. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  1052. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  1053. Wen M, Wang J, Chiu Y, Wang M, Lee S, Tai C. N-Cadherin Regulates Cell Migration Through a Rab5-Dependent Temporal Control of Macropinocytosis. Traffic. 2016;17:769-85 pubmed 出版商
  1054. Palu R, Thummel C. Sir2 Acts through Hepatocyte Nuclear Factor 4 to maintain insulin Signaling and Metabolic Homeostasis in Drosophila. PLoS Genet. 2016;12:e1005978 pubmed 出版商
  1055. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  1056. Hakim S, Dyson J, Feeney S, Davies E, Sriratana A, Koenig M, et al. Inpp5e suppresses polycystic kidney disease via inhibition of PI3K/Akt-dependent mTORC1 signaling. Hum Mol Genet. 2016;25:2295-2313 pubmed
  1057. Katlinskaya Y, Katlinski K, Yu Q, Ortiz A, Beiting D, Brice A, et al. Suppression of Type I Interferon Signaling Overcomes Oncogene-Induced Senescence and Mediates Melanoma Development and Progression. Cell Rep. 2016;15:171-180 pubmed 出版商
  1058. Schlam D, Canton J, Carreño M, Kopinski H, Freeman S, Grinstein S, et al. Gliotoxin Suppresses Macrophage Immune Function by Subverting Phosphatidylinositol 3,4,5-Trisphosphate Homeostasis. MBio. 2016;7:e02242 pubmed 出版商
  1059. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  1060. Balasooriya G, Johnson J, Basson M, Rawlins E. An FGFR1-SPRY2 Signaling Axis Limits Basal Cell Proliferation in the Steady-State Airway Epithelium. Dev Cell. 2016;37:85-97 pubmed 出版商
  1061. Park J, Jung C, Seo M, Otto N, Grunwald D, Kim K, et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. Autophagy. 2016;12:547-64 pubmed 出版商
  1062. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  1063. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  1064. Fearnley G, Smith G, Abdul Zani I, Yuldasheva N, Mughal N, Homer Vanniasinkam S, et al. VEGF-A isoforms program differential VEGFR2 signal transduction, trafficking and proteolysis. Biol Open. 2016;5:571-83 pubmed 出版商
  1065. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  1066. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  1067. Gandin V, Masvidal L, Cargnello M, Gyenis L, McLaughlan S, Cai Y, et al. mTORC1 and CK2 coordinate ternary and eIF4F complex assembly. Nat Commun. 2016;7:11127 pubmed 出版商
  1068. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  1069. Li X, Dai X, Wan L, Inuzuka H, Sun L, North B. Smurf1 regulation of DAB2IP controls cell proliferation and migration. Oncotarget. 2016;7:26057-69 pubmed 出版商
  1070. Cui J, Zhang F, Wang Y, Liu J, Ming X, Hou J, et al. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int J Mol Med. 2016;37:1299-309 pubmed 出版商
  1071. Jia W, Jian Z, Li J, Luo L, Zhao L, Zhou Y, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury. Int J Mol Med. 2016;37:1199-208 pubmed 出版商
  1072. Strickland S, Vande Pol S. The Human Papillomavirus 16 E7 Oncoprotein Attenuates AKT Signaling To Promote Internal Ribosome Entry Site-Dependent Translation and Expression of c-MYC. J Virol. 2016;90:5611-5621 pubmed 出版商
  1073. Braley A, Kwak T, Jules J, Harja E, Landgraf R, Hudson B. Regulation of Receptor for Advanced Glycation End Products (RAGE) Ectodomain Shedding and Its Role in Cell Function. J Biol Chem. 2016;291:12057-73 pubmed 出版商
  1074. Xing Y, Sun W, Wang Y, Gao F, Ma H. Mutual inhibition of insulin signaling and PHLPP-1 determines cardioprotective efficiency of Akt in aged heart. Aging (Albany NY). 2016;8:873-88 pubmed 出版商
  1075. Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li J, et al. Activation of mTORC1 is essential for ?-adrenergic stimulation of adipose browning. J Clin Invest. 2016;126:1704-16 pubmed 出版商
  1076. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  1077. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  1078. Kimball S, Gordon B, Moyer J, Dennis M, Jefferson L. Leucine induced dephosphorylation of Sestrin2 promotes mTORC1 activation. Cell Signal. 2016;28:896-906 pubmed 出版商
  1079. Domínguez Calderón A, Ávila Flores A, Ponce A, López Bayghen E, Calderón Salinas J, Luis Reyes J, et al. ZO-2 silencing induces renal hypertrophy through a cell cycle mechanism and the activation of YAP and the mTOR pathway. Mol Biol Cell. 2016;27:1581-95 pubmed 出版商
  1080. Gao Z, Zhang H, Hu F, Yang L, Yang X, Zhu Y, et al. Glycan-deficient PrP stimulates VEGFR2 signaling via glycosaminoglycan. Cell Signal. 2016;28:652-62 pubmed 出版商
  1081. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  1082. Hansen N, Hjort L, Broholm C, Gillberg L, Schrölkamp M, Schultz H, et al. Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. J Clin Endocrinol Metab. 2016;101:2254-64 pubmed 出版商
  1083. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  1084. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  1085. Lee I, Maniar K, Lydon J, Kim J. Akt regulates progesterone receptor B-dependent transcription and angiogenesis in endometrial cancer cells. Oncogene. 2016;35:5191-201 pubmed 出版商
  1086. Agarwal S, Ghosh R, Chen Z, Lakoma A, Gunaratne P, Kim E, et al. Transmembrane adaptor protein PAG1 is a novel tumor suppressor in neuroblastoma. Oncotarget. 2016;7:24018-26 pubmed 出版商
  1087. Lynch J, McEwen R, Crafter C, McDermott U, Garnett M, Barry S, et al. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Oncotarget. 2016;7:22128-39 pubmed 出版商
  1088. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  1089. Hayashi K, Michiue H, Yamada H, Takata K, Nakayama H, Wei F, et al. Fluvoxamine, an anti-depressant, inhibits human glioblastoma invasion by disrupting actin polymerization. Sci Rep. 2016;6:23372 pubmed 出版商
  1090. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  1091. Giannogonas P, Apostolou A, Manousopoulou A, Theocharis S, Macari S, Psarras S, et al. Identification of a novel interaction between corticotropin releasing hormone (Crh) and macroautophagy. Sci Rep. 2016;6:23342 pubmed 出版商
  1092. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  1093. Scott D, Tolbert C, Burridge K. Tension on JAM-A activates RhoA via GEF-H1 and p115 RhoGEF. Mol Biol Cell. 2016;27:1420-30 pubmed 出版商
  1094. Lisewski U, Koehncke C, Wilck N, Buschmeyer B, Pieske B, Roepke T. Increased aldosterone-dependent Kv1.5 recycling predisposes to pacing-induced atrial fibrillation in Kcne3-/- mice. FASEB J. 2016;30:2476-89 pubmed 出版商
  1095. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  1096. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  1097. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  1098. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  1099. Kral J, Kuttke M, Schrottmaier W, Birnecker B, Warszawska J, Wernig C, et al. Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep. 2016;6:23034 pubmed 出版商
  1100. Joo M, Park J, Yoo H, Lee B, Chun H, Lee S, et al. The roles of HOXB7 in promoting migration, invasion, and anti-apoptosis in gastric cancer. J Gastroenterol Hepatol. 2016;31:1717-1726 pubmed 出版商
  1101. Chen S, FORRESTER W, Lahav G. Schedule-dependent interaction between anticancer treatments. Science. 2016;351:1204-8 pubmed 出版商
  1102. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  1103. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  1104. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  1105. Takabatake Y, Oxvig C, Nagi C, Adelson K, Jaffer S, Schmidt H, et al. Lactation opposes pappalysin-1-driven pregnancy-associated breast cancer. EMBO Mol Med. 2016;8:388-406 pubmed 出版商
  1106. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  1107. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  1108. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  1109. Dhar S, Kumar A, Zhang L, Rimando A, Lage J, Lewin J, et al. Dietary pterostilbene is a novel MTA1-targeted chemopreventive and therapeutic agent in prostate cancer. Oncotarget. 2016;7:18469-84 pubmed 出版商
  1110. Du Z, Li L, Huang X, Jin J, Huang S, Zhang Q, et al. The epigenetic modifier CHD5 functions as a novel tumor suppressor for renal cell carcinoma and is predominantly inactivated by promoter CpG methylation. Oncotarget. 2016;7:21618-30 pubmed 出版商
  1111. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  1112. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  1113. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  1114. Li Y, Wei Z, Dong B, Lian Z, Xu Y. Silencing of phosphoglucose isomerase/autocrine motility factor decreases U87 human glioblastoma cell migration. Int J Mol Med. 2016;37:998-1004 pubmed 出版商
  1115. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  1116. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  1117. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  1118. Gurnik S, Devraj K, Macas J, Yamaji M, Starke J, Scholz A, et al. Angiopoietin-2-induced blood-brain barrier compromise and increased stroke size are rescued by VE-PTP-dependent restoration of Tie2 signaling. Acta Neuropathol. 2016;131:753-73 pubmed 出版商
  1119. Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep. 2016;6:22597 pubmed 出版商
  1120. Lyabin D, Ovchinnikov L. Selective regulation of YB-1 mRNA translation by the mTOR signaling pathway is not mediated by 4E-binding protein. Sci Rep. 2016;6:22502 pubmed 出版商
  1121. Lee D, Wang Y, Kalaitzidis D, Ramachandran J, Eda H, Sykes D, et al. Endogenous transmembrane protein UT2 inhibits pSTAT3 and suppresses hematological malignancy. J Clin Invest. 2016;126:1300-10 pubmed 出版商
  1122. Wong H, Jin G, Cao R, Zhang S, Cao Y, Zhou Z. MT1-MMP sheds LYVE-1 on lymphatic endothelial cells and suppresses VEGF-C production to inhibit lymphangiogenesis. Nat Commun. 2016;7:10824 pubmed 出版商
  1123. Gong Q, Hu Z, Zhang F, Cui A, Chen X, Jiang H, et al. Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology. 2016;64:425-38 pubmed 出版商
  1124. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  1125. Chang T, Chen C, Wu Y, Liu J, Kuo Y, Lee K, et al. Inflammation Promotes Expression of Stemness-Related Properties in HBV-Related Hepatocellular Carcinoma. PLoS ONE. 2016;11:e0149897 pubmed 出版商
  1126. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  1127. Seip K, Fleten K, Barkovskaya A, Nygaard V, Haugen M, Engesæter B, et al. Fibroblast-induced switching to the mesenchymal-like phenotype and PI3K/mTOR signaling protects melanoma cells from BRAF inhibitors. Oncotarget. 2016;7:19997-20015 pubmed 出版商
  1128. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  1129. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  1130. Schwarzer M, Makki K, Storelli G, Machuca Gayet I, Srůtková D, Hermanova P, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351:854-7 pubmed 出版商
  1131. Oswald F, Rodriguez P, Giaimo B, Antonello Z, Mira L, Mittler G, et al. A phospho-dependent mechanism involving NCoR and KMT2D controls a permissive chromatin state at Notch target genes. Nucleic Acids Res. 2016;44:4703-20 pubmed 出版商
  1132. Viana Huete V, Guillen C, García Aguilar A, García G, Fernandez S, Kahn C, et al. Essential Role of IGFIR in the Onset of Male Brown Fat Thermogenic Function: Regulation of Glucose Homeostasis by Differential Organ-Specific Insulin Sensitivity. Endocrinology. 2016;157:1495-511 pubmed 出版商
  1133. Bai D, Zhang Y, Shen M, Sun Y, Xia Q, Zhang Y, et al. Hyperglycemia and hyperlipidemia blunts the Insulin-Inpp5f negative feedback loop in the diabetic heart. Sci Rep. 2016;6:22068 pubmed 出版商
  1134. Wu G, Zeng G. METCAM/MUC18 is a novel tumor and metastasis suppressor for the human ovarian cancer SKOV3 cells. BMC Cancer. 2016;16:136 pubmed 出版商
  1135. Li M, Lu G, Hu J, Shen X, Ju J, Gao Y, et al. EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports. 2016;6:396-410 pubmed 出版商
  1136. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  1137. Nim S, Jeon J, Corbi Verge C, Seo M, Ivarsson Y, Moffat J, et al. Pooled screening for antiproliferative inhibitors of protein-protein interactions. Nat Chem Biol. 2016;12:275-81 pubmed 出版商
  1138. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  1139. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  1140. Tobita T, Guzman Lepe J, Takeishi K, Nakao T, Wang Y, Meng F, et al. SIRT1 Disruption in Human Fetal Hepatocytes Leads to Increased Accumulation of Glucose and Lipids. PLoS ONE. 2016;11:e0149344 pubmed 出版商
  1141. Liao B, McManus S, Hughes W, Schmitz Peiffer C. Flavin-Containing Monooxygenase 3 Reduces Endoplasmic Reticulum Stress in Lipid-Treated Hepatocytes. Mol Endocrinol. 2016;30:417-28 pubmed 出版商
  1142. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  1143. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  1144. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  1145. Senol Cosar O, Flach R, DiStefano M, Chawla A, Nicoloro S, Straubhaar J, et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat Commun. 2016;7:10686 pubmed 出版商
  1146. Cui J, Xia T, Xie D, Gao Y, Jia Z, Wei D, et al. HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene. 2016;35:4708-18 pubmed 出版商
  1147. Du L, Chen X, Cao Y, Lu L, Zhang F, Bornstein S, et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGFβ signaling. Oncogene. 2016;35:4641-52 pubmed 出版商
  1148. Hung M, Chen Y, Chu P, Shih C, Yu H, Tai W, et al. Upregulation of the oncoprotein SET determines poor clinical outcomes in hepatocellular carcinoma and shows therapeutic potential. Oncogene. 2016;35:4891-902 pubmed 出版商
  1149. Minna E, Romeo P, Dugo M, De Cecco L, Todoerti K, Pilotti S, et al. miR-451a is underexpressed and targets AKT/mTOR pathway in papillary thyroid carcinoma. Oncotarget. 2016;7:12731-47 pubmed 出版商
  1150. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  1151. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  1152. Demetriades C, Plescher M, Teleman A. Lysosomal recruitment of TSC2 is a universal response to cellular stress. Nat Commun. 2016;7:10662 pubmed 出版商
  1153. Lakshmipathi J, Alvarez Perez J, Rosselot C, Casinelli G, Stamateris R, Rausell Palamos F, et al. PKCζ Is Essential for Pancreatic β-Cell Replication During Insulin Resistance by Regulating mTOR and Cyclin-D2. Diabetes. 2016;65:1283-96 pubmed 出版商
  1154. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  1155. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  1156. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  1157. Malanga D, Belmonte S, Colelli F, Scarfò M, De Marco C, Oliveira D, et al. AKT1E¹⁷K Is Oncogenic in Mouse Lung and Cooperates with Chemical Carcinogens in Inducing Lung Cancer. PLoS ONE. 2016;11:e0147334 pubmed 出版商
  1158. Liu Y, Takahashi Y, Desai N, Zhang J, Serfass J, Shi Y, et al. Bif-1 deficiency impairs lipid homeostasis and causes obesity accompanied by insulin resistance. Sci Rep. 2016;6:20453 pubmed 出版商
  1159. Ding M, Bruick R, Yu Y. Secreted IGFBP5 mediates mTORC1-dependent feedback inhibition of IGF-1 signalling. Nat Cell Biol. 2016;18:319-27 pubmed 出版商
  1160. White Y, Bagchi A, Van Ziffle J, Inguva A, Bollag G, Zhang C, et al. KRAS insertion mutations are oncogenic and exhibit distinct functional properties. Nat Commun. 2016;7:10647 pubmed 出版商
  1161. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  1162. Egawa H, Jingushi K, Hirono T, Ueda Y, Kitae K, Nakata W, et al. The miR-130 family promotes cell migration and invasion in bladder cancer through FAK and Akt phosphorylation by regulating PTEN. Sci Rep. 2016;6:20574 pubmed 出版商
  1163. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  1164. Ying W, Tseng A, Chang R, Wang H, Lin Y, Kanameni S, et al. miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Sci Rep. 2016;6:20176 pubmed 出版商
  1165. Llanos S, García Pedrero J, Morgado Palacin L, Rodrigo J, Serrano M. Stabilization of p21 by mTORC1/4E-BP1 predicts clinical outcome of head and neck cancers. Nat Commun. 2016;7:10438 pubmed 出版商
  1166. Iyer S, Chou F, Wang R, Chiu H, Raju V, Little M, et al. Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 2016;6:19832 pubmed 出版商
  1167. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  1168. Button R, Vincent J, Strang C, Luo S. Dual PI-3 kinase/mTOR inhibition impairs autophagy flux and induces cell death independent of apoptosis and necroptosis. Oncotarget. 2016;7:5157-75 pubmed 出版商
  1169. Grego Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson K. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. elife. 2016;5:e12034 pubmed 出版商
  1170. Iorga A, Li J, Sharma S, Umar S, Bopassa J, Nadadur R, et al. Rescue of Pressure Overload-Induced Heart Failure by Estrogen Therapy. J Am Heart Assoc. 2016;5: pubmed 出版商
  1171. Goulielmaki M, Koustas E, Moysidou E, Vlassi M, Sasazuki T, Shirasawa S, et al. BRAF associated autophagy exploitation: BRAF and autophagy inhibitors synergise to efficiently overcome resistance of BRAF mutant colorectal cancer cells. Oncotarget. 2016;7:9188-221 pubmed 出版商
  1172. Koyani C, Kitz K, Rossmann C, Bernhart E, Huber E, Trummer C, et al. Activation of the MAPK/Akt/Nrf2-Egr1/HO-1-GCLc axis protects MG-63 osteosarcoma cells against 15d-PGJ2-mediated cell death. Biochem Pharmacol. 2016;104:29-41 pubmed 出版商
  1173. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  1174. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  1175. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  1176. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  1177. Heynen G, Nevedomskaya E, Palit S, Jagalur Basheer N, Lieftink C, Schlicker A, et al. Mastermind-Like 3 Controls Proliferation and Differentiation in Neuroblastoma. Mol Cancer Res. 2016;14:411-22 pubmed 出版商
  1178. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  1179. Chen X, Yang Q, Zheng T, Bian J, Sun X, Shi Y, et al. Neurotrophic Effect of Adipose Tissue-Derived Stem Cells on Erectile Function Recovery by Pigment Epithelium-Derived Factor Secretion in a Rat Model of Cavernous Nerve Injury. Stem Cells Int. 2016;2016:5161248 pubmed 出版商
  1180. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed 出版商
  1181. Watari K, Shibata T, Nabeshima H, Shinoda A, Fukunaga Y, Kawahara A, et al. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice. Sci Rep. 2016;6:19470 pubmed 出版商
  1182. Cherepkova M, Sineva G, Pospelov V. Leukemia inhibitory factor (LIF) withdrawal activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2 pathway. Cell Death Dis. 2016;7:e2050 pubmed 出版商
  1183. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  1184. Cipriani G, Gibbons S, Verhulst P, Choi K, Eisenman S, Hein S, et al. Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying. Cell Mol Gastroenterol Hepatol. 2016;2:40-47 pubmed
  1185. Zhang Q, Wan M, Shi J, Horita D, Miller L, Kute T, et al. Yin Yang 1 promotes mTORC2-mediated AKT phosphorylation. J Mol Cell Biol. 2016;8:232-43 pubmed 出版商
  1186. Ito T, Itakura J, Takahashi S, Sato M, Mino M, Fushimi S, et al. Sprouty-Related Ena/Vasodilator-Stimulated Phosphoprotein Homology 1-Domain-Containing Protein-2 Critically Regulates Influenza A Virus-Induced Pneumonia. Crit Care Med. 2016;44:e530-43 pubmed 出版商
  1187. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  1188. Wandinger S, Lahortiga I, Jacobs K, Klammer M, Jordan N, Elschenbroich S, et al. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling. PLoS ONE. 2016;11:e0146100 pubmed 出版商
  1189. Amato K, Wang S, Tan L, Hastings A, Song W, Lovly C, et al. EPHA2 Blockade Overcomes Acquired Resistance to EGFR Kinase Inhibitors in Lung Cancer. Cancer Res. 2016;76:305-18 pubmed 出版商
  1190. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  1191. Gu K, Zhang Q, Yan Y, Li T, Duan F, Hao J, et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 2016;26:350-66 pubmed 出版商
  1192. Carroll B, Maetzel D, Maddocks O, Otten G, Ratcliff M, Smith G, et al. Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity. elife. 2016;5: pubmed 出版商
  1193. Wang X, Tang Z, Yu D, Cui S, Jiang Y, Zhang Q, et al. Epithelial but not stromal expression of collagen alpha-1(III) is a diagnostic and prognostic indicator of colorectal carcinoma. Oncotarget. 2016;7:8823-38 pubmed 出版商
  1194. Ho N, Morrison J, Silva A, Coomber B. The effect of 3-bromopyruvate on human colorectal cancer cells is dependent on glucose concentration but not hexokinase II expression. Biosci Rep. 2016;36:e00299 pubmed 出版商
  1195. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  1196. Jeong J, VanHouten J, Dann P, Kim W, Sullivan C, Yu H, et al. PMCA2 regulates HER2 protein kinase localization and signaling and promotes HER2-mediated breast cancer. Proc Natl Acad Sci U S A. 2016;113:E282-90 pubmed 出版商
  1197. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  1198. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  1199. Creedon H, Balderstone L, Muir M, Balla J, Gómez Cuadrado L, Tracey N, et al. Use of a genetically engineered mouse model as a preclinical tool for HER2 breast cancer. Dis Model Mech. 2016;9:131-40 pubmed 出版商
  1200. Maria Z, Campolo A, Lacombe V. Diabetes Alters the Expression and Translocation of the Insulin-Sensitive Glucose Transporters 4 and 8 in the Atria. PLoS ONE. 2015;10:e0146033 pubmed 出版商
  1201. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  1202. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  1203. Hamada D, Maynard R, Schott E, Drinkwater C, Ketz J, Kates S, et al. Suppressive Effects of Insulin on Tumor Necrosis Factor-Dependent Early Osteoarthritic Changes Associated With Obesity and Type 2 Diabetes Mellitus. Arthritis Rheumatol. 2016;68:1392-402 pubmed 出版商
  1204. Lai Y, Yu X, Lin X, He S. Inhibition of mTOR sensitizes breast cancer stem cells to radiation-induced repression of self-renewal through the regulation of MnSOD and Akt. Int J Mol Med. 2016;37:369-77 pubmed 出版商
  1205. Benedykcinska A, Ferreira A, Lau J, Broni J, Richard Loendt A, Henriquez N, et al. Generation of brain tumours in mice by Cre-mediated recombination of neural progenitors in situ with the tamoxifen metabolite endoxifen. Dis Model Mech. 2016;9:211-20 pubmed 出版商
  1206. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  1207. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  1208. Gomez Villafuertes R, García Huerta P, Díaz Hernández J, Miras Portugal M. PI3K/Akt signaling pathway triggers P2X7 receptor expression as a pro-survival factor of neuroblastoma cells under limiting growth conditions. Sci Rep. 2015;5:18417 pubmed 出版商
  1209. Schmieg N, Rocchi C, Romeo S, Maggio R, Millan M, Mannoury La Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and Dâ‚‚ receptors. J Neurochem. 2016;136:1037-51 pubmed 出版商
  1210. Vergani E, Di Guardo L, Dugo M, Rigoletto S, Tragni G, Ruggeri R, et al. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b. Oncotarget. 2016;7:4428-41 pubmed 出版商
  1211. Lin H, Masaki H, Yamaguchi T, Wada T, Yachie A, Nishimura K, et al. An assessment of the effects of ectopic gp91phox expression in XCGD iPSC-derived neutrophils. Mol Ther Methods Clin Dev. 2015;2:15046 pubmed 出版商
  1212. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  1213. Yan L, Liu Y, Xiang J, Wu Q, Xu L, Luo X, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48:471-84 pubmed 出版商
  1214. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  1215. Hu Y, Guo R, Wei J, Zhou Y, Ji W, Liu J, et al. Effects of PI3K inhibitor NVP-BKM120 on overcoming drug resistance and eliminating cancer stem cells in human breast cancer cells. Cell Death Dis. 2015;6:e2020 pubmed 出版商
  1216. Vural A, Al Khodor S, Cheung G, Shi C, Srinivasan L, McQuiston T, et al. Activator of G-Protein Signaling 3-Induced Lysosomal Biogenesis Limits Macrophage Intracellular Bacterial Infection. J Immunol. 2016;196:846-56 pubmed 出版商
  1217. Lagarrigue S, Lopez Mejia I, Denechaud P, Escoté X, Castillo Armengol J, Jimenez V, et al. CDK4 is an essential insulin effector in adipocytes. J Clin Invest. 2016;126:335-48 pubmed 出版商
  1218. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed 出版商
  1219. Kiermaier E, Moussion C, Veldkamp C, Gerardy Schahn R, de Vries I, Williams L, et al. Polysialylation controls dendritic cell trafficking by regulating chemokine recognition. Science. 2016;351:186-90 pubmed 出版商
  1220. Ceccon M, Merlo M, Mologni L, Poggio T, Varesio L, Menotti M, et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854-3865 pubmed 出版商
  1221. Adam M, Matt S, Christian S, Hess Stumpp H, Haegebarth A, Hofmann T, et al. SIAH ubiquitin ligases regulate breast cancer cell migration and invasion independent of the oxygen status. Cell Cycle. 2015;14:3734-47 pubmed 出版商
  1222. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  1223. Yamagishi M, Katano H, Hishima T, Shimoyama T, Ota Y, Nakano K, et al. Coordinated loss of microRNA group causes defenseless signaling in malignant lymphoma. Sci Rep. 2015;5:17868 pubmed 出版商
  1224. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  1225. Bo Q, Sun X, Liu J, Sui X, Li G. Antitumor action of the peroxisome proliferator-activated receptor-γ agonist rosiglitazone in hepatocellular carcinoma. Oncol Lett. 2015;10:1979-1984 pubmed
  1226. Oudart J, Doué M, Vautrin A, Brassart B, Sellier C, Dupont Deshorgue A, et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2016;7:1516-28 pubmed 出版商
  1227. Messaoudi S, He Y, Gutsol A, Wight A, Hébert R, Vilmundarson R, et al. Endothelial Gata5 transcription factor regulates blood pressure. Nat Commun. 2015;6:8835 pubmed 出版商
  1228. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  1229. O Hayre M, Inoue A, Kufareva I, Wang Z, Mikelis C, Drummond R, et al. Inactivating mutations in GNA13 and RHOA in Burkitt's lymphoma and diffuse large B-cell lymphoma: a tumor suppressor function for the Gα13/RhoA axis in B cells. Oncogene. 2016;35:3771-80 pubmed 出版商
  1230. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  1231. Yasuda K, Takahashi M, Mori N. Mdm20 Modulates Actin Remodeling through the mTORC2 Pathway via Its Effect on Rictor Expression. PLoS ONE. 2015;10:e0142943 pubmed 出版商
  1232. Ittig S, Schmutz C, Kasper C, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015;211:913-31 pubmed 出版商
  1233. Ye Z, Al Aidaroos A, Park J, Yuen H, Zhang S, Gupta A, et al. PRL-3 activates mTORC1 in Cancer Progression. Sci Rep. 2015;5:17046 pubmed 出版商
  1234. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  1235. McIlroy G, Tammireddy S, Maskrey B, Grant L, Doherty M, Watson D, et al. Fenretinide mediated retinoic acid receptor signalling and inhibition of ceramide biosynthesis regulates adipogenesis, lipid accumulation, mitochondrial function and nutrient stress signalling in adipocytes and adipose tissue. Biochem Pharmacol. 2016;100:86-97 pubmed 出版商
  1236. E L, Swerdlow R. Lactate's effect on human neuroblastoma cell bioenergetic fluxes. Biochem Pharmacol. 2016;99:88-100 pubmed 出版商
  1237. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  1238. Hunt L, Xu B, Finkelstein D, Fan Y, Carroll P, Cheng P, et al. The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling. Genes Dev. 2015;29:2475-89 pubmed 出版商
  1239. Skeldon A, Morizot A, Douglas T, Santoro N, Kursawe R, Kozlitina J, et al. Caspase-12, but Not Caspase-11, Inhibits Obesity and Insulin Resistance. J Immunol. 2016;196:437-47 pubmed 出版商
  1240. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  1241. Alsafadi S, Tourpin S, Bessoltane N, Salomé Desnoulez S, Vassal G, André F, et al. Nuclear localization of the caspase-3-cleaved form of p73 in anoikis. Oncotarget. 2016;7:12331-43 pubmed 出版商
  1242. Momcilovic M, McMickle R, Abt E, Seki A, Simko S, Magyar C, et al. Heightening Energetic Stress Selectively Targets LKB1-Deficient Non-Small Cell Lung Cancers. Cancer Res. 2015;75:4910-22 pubmed 出版商
  1243. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  1244. Hu X, Garcia C, Fazli L, Gleave M, Vitek M, Jansen M, et al. Inhibition of Pten deficient Castration Resistant Prostate Cancer by Targeting of the SET - PP2A Signaling axis. Sci Rep. 2015;5:15182 pubmed 出版商
  1245. Miura S, Sato K, Kato Negishi M, Teshima T, Takeuchi S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat Commun. 2015;6:8871 pubmed 出版商
  1246. Clemente Vicario F, Alvarez C, ROWELL J, Roy S, London C, Kisseberth W, et al. Human Genetic Relevance and Potent Antitumor Activity of Heat Shock Protein 90 Inhibition in Canine Lung Adenocarcinoma Cell Lines. PLoS ONE. 2015;10:e0142007 pubmed 出版商
  1247. Hukelmann J, Anderson K, Sinclair L, Grzes K, Murillo A, Hawkins P, et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol. 2016;17:104-12 pubmed 出版商
  1248. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  1249. Askoxylakis V, Ferraro G, Kodack D, Badeaux M, Shankaraiah R, Seano G, et al. Preclinical Efficacy of Ado-trastuzumab Emtansine in the Brain Microenvironment. J Natl Cancer Inst. 2016;108: pubmed 出版商
  1250. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  1251. Jackson E, Rendina Ruedy E, Smith B, Lacombe V. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet. PLoS ONE. 2015;10:e0142077 pubmed 出版商
  1252. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  1253. Xu D, Shan B, Lee B, Zhu K, Zhang T, Sun H, et al. Phosphorylation and activation of ubiquitin-specific protease-14 by Akt regulates the ubiquitin-proteasome system. elife. 2015;4:e10510 pubmed 出版商
  1254. Lin C, Chen Y, Lin C, Chen Y, Lo G, Lee P, et al. Amiodarone as an autophagy promoter reduces liver injury and enhances liver regeneration and survival in mice after partial hepatectomy. Sci Rep. 2015;5:15807 pubmed 出版商
  1255. Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K, et al. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget. 2015;6:38789-803 pubmed 出版商
  1256. Lee D, Goldberg A. Muscle Wasting in Fasting Requires Activation of NF-κB and Inhibition of AKT/Mechanistic Target of Rapamycin (mTOR) by the Protein Acetylase, GCN5. J Biol Chem. 2015;290:30269-79 pubmed 出版商
  1257. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  1258. Kurozumi A, Goto Y, Matsushita R, Fukumoto I, Kato M, Nishikawa R, et al. Tumor-suppressive microRNA-223 inhibits cancer cell migration and invasion by targeting ITGA3/ITGB1 signaling in prostate cancer. Cancer Sci. 2016;107:84-94 pubmed 出版商
  1259. Jovasevic V, Naghavi M, Walsh D. Microtubule plus end-associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. J Cell Biol. 2015;211:323-37 pubmed 出版商
  1260. Webber P, Park C, Qui M, Ramalingam S, Khuri F, Fu H, et al. Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience. 2015;2:765-776 pubmed
  1261. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  1262. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  1263. Pasini L, Re A, Tebaldi T, Ricci G, Boi S, Adami V, et al. TrkA is amplified in malignant melanoma patients and induces an anti-proliferative response in cell lines. BMC Cancer. 2015;15:777 pubmed 出版商
  1264. Verbrugge S, Al M, Assaraf Y, Kammerer S, Chandrupatla D, Honeywell R, et al. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget. 2016;7:5240-57 pubmed 出版商
  1265. Asano S, Arvapalli R, Manne N, Maheshwari M, Ma B, Rice K, et al. Cerium oxide nanoparticle treatment ameliorates peritonitis-induced diaphragm dysfunction. Int J Nanomedicine. 2015;10:6215-25 pubmed 出版商
  1266. Zhang L, Zhang S, Yao J, Lowery F, Zhang Q, Huang W, et al. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature. 2015;527:100-104 pubmed 出版商
  1267. Pinel A, Rigaudière J, Laillet B, Pouyet C, Malpuech Brugère C, Prip Buus C, et al. N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells. Biochim Biophys Acta. 2016;1861:12-20 pubmed 出版商
  1268. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  1269. Manda K, Tripathi P, Hsi A, Ning J, Ruzinova M, Liapis H, et al. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene. 2016;35:3282-92 pubmed 出版商
  1270. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  1271. Vajravelu B, Hong K, Al Maqtari T, Cao P, Keith M, Wysoczynski M, et al. C-Kit Promotes Growth and Migration of Human Cardiac Progenitor Cells via the PI3K-AKT and MEK-ERK Pathways. PLoS ONE. 2015;10:e0140798 pubmed 出版商
  1272. Lu R, Herrera B, Eshleman H, Fu Y, Bloom A, Li Z, et al. Shigella Effector OspB Activates mTORC1 in a Manner That Depends on IQGAP1 and Promotes Cell Proliferation. PLoS Pathog. 2015;11:e1005200 pubmed 出版商
  1273. Sabirzhanov B, Stoica B, Zhao Z, Loane D, Wu J, Dorsey S, et al. miR-711 upregulation induces neuronal cell death after traumatic brain injury. Cell Death Differ. 2016;23:654-68 pubmed 出版商
  1274. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  1275. Arriola Apelo S, Neuman J, Baar E, Syed F, Cummings N, Brar H, et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell. 2016;15:28-38 pubmed 出版商
  1276. Sugiyama S, Yoshino Y, Kuriyama S, Inoue M, Komine K, Otsuka K, et al. A Curcumin Analog, GO-Y078, Effectively Inhibits Angiogenesis through Actin Disorganization. Anticancer Agents Med Chem. 2016;16:633-47 pubmed
  1277. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  1278. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  1279. Vigelso A, Prats C, Ploug T, Dela F, Helge J. Higher muscle content of perilipin 5 and endothelial lipase protein in trained than untrained middle-aged men. Physiol Res. 2016;65:293-302 pubmed
  1280. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  1281. Luehders K, Sasai N, Davaapil H, Kurosawa Yoshida M, Hiura H, Brah T, et al. The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway. Development. 2015;142:3351-61 pubmed 出版商
  1282. Payne S, Maher M, Tran N, Van De Hey D, Foley T, Yueh A, et al. PIK3CA mutations can initiate pancreatic tumorigenesis and are targetable with PI3K inhibitors. Oncogenesis. 2015;4:e169 pubmed 出版商
  1283. Fan S, Snell C, Turley H, Li J, McCormick R, Perera S, et al. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene. 2016;35:3004-15 pubmed 出版商
  1284. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  1285. Shu X, Wu J, Sun H, Chi L, Wang J. PAK4 confers the malignance of cervical cancers and contributes to the cisplatin-resistance in cervical cancer cells via PI3K/AKT pathway. Diagn Pathol. 2015;10:177 pubmed 出版商
  1286. Bugajev V, Hálová I, Dráberová L, Bambousková M, Potůčková L, Draberova H, et al. Negative regulatory roles of ORMDL3 in the FcεRI-triggered expression of proinflammatory mediators and chemotactic response in murine mast cells. Cell Mol Life Sci. 2016;73:1265-85 pubmed 出版商
  1287. Kimball S, Ravi S, Gordon B, Dennis M, Jefferson L. Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet. J Nutr. 2015;145:2496-502 pubmed 出版商
  1288. Shnitsar I, Bashkurov M, Masson G, Ogunjimi A, Mosessian S, Cabeza E, et al. PTEN regulates cilia through Dishevelled. Nat Commun. 2015;6:8388 pubmed 出版商
  1289. Leyme A, Marivin A, Perez Gutierrez L, Nguyen L, Garcia Marcos M. Integrins activate trimeric G proteins via the nonreceptor protein GIV/Girdin. J Cell Biol. 2015;210:1165-84 pubmed 出版商
  1290. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  1291. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  1292. Brina D, Miluzio A, Ricciardi S, Clarke K, Davidsen P, Viero G, et al. eIF6 coordinates insulin sensitivity and lipid metabolism by coupling translation to transcription. Nat Commun. 2015;6:8261 pubmed 出版商
  1293. Liu R, Yang Y, Shen J, Chen H, Zhang Q, Ba R, et al. Fstl1 is involved in the regulation of radial glial scaffold development. Mol Brain. 2015;8:53 pubmed 出版商
  1294. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  1295. Joly A, Deepti A, Seignez A, Goloudina A, Hebrard S, Schmitt E, et al. The HSP90 inhibitor, 17AAG, protects the intestinal stem cell niche and inhibits graft versus host disease development. Oncogene. 2016;35:2842-51 pubmed 出版商
  1296. Kitatani K, Usui T, Sriraman S, Toyoshima M, Ishibashi M, Shigeta S, et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. 2016;35:2801-12 pubmed 出版商
  1297. Singh S, Chand H, Gundavarapu S, Saeed A, Langley R, Tesfaigzi Y, et al. HIF-1α Plays a Critical Role in the Gestational Sidestream Smoke-Induced Bronchopulmonary Dysplasia in Mice. PLoS ONE. 2015;10:e0137757 pubmed 出版商
  1298. Pavon M, Arroyo Solera I, Tellez Gabriel M, Leon X, Virós D, Lopez M, et al. Enhanced cell migration and apoptosis resistance may underlie the association between high SERPINE1 expression and poor outcome in head and neck carcinoma patients. Oncotarget. 2015;6:29016-33 pubmed 出版商
  1299. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  1300. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  1301. Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol. 2016;36:801-9 pubmed 出版商
  1302. Sasaki N, Itakura Y, Toyoda M. Ganglioside GM1 Contributes to the State of Insulin Resistance in Senescent Human Arterial Endothelial Cells. J Biol Chem. 2015;290:25475-86 pubmed 出版商
  1303. Ebert S, Dyle M, Bullard S, Dierdorff J, Murry D, Fox D, et al. Identification and Small Molecule Inhibition of an Activating Transcription Factor 4 (ATF4)-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. J Biol Chem. 2015;290:25497-511 pubmed 出版商
  1304. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  1305. Thijssen R, Ter Burg J, van Bochove G, de Rooij M, Kuil A, Jansen M, et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia. 2016;30:337-45 pubmed 出版商
  1306. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  1307. Lee Y, Yun M, Kim H, Jeon B, Park B, Lee B, et al. Exogenous administration of DLK1 ameliorates hepatic steatosis and regulates gluconeogenesis via activation of AMPK. Int J Obes (Lond). 2016;40:356-65 pubmed 出版商
  1308. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  1309. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  1310. Conde Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun. 2015;6:8093 pubmed 出版商
  1311. Feng R, Ye J, Zhou C, Qi L, Fu Z, Yan B, et al. Calreticulin down-regulation inhibits the cell growth, invasion and cell cycle progression of human hepatocellular carcinoma cells. Diagn Pathol. 2015;10:149 pubmed 出版商
  1312. Tuncay H, Brinkmann B, Steinbacher T, Schürmann A, Gerke V, Iden S, et al. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis. Nat Commun. 2015;6:8128 pubmed 出版商
  1313. Chang C, Lin W, Pai L, Lee H, Wu S, Ding S, et al. Cytoophidium assembly reflects upregulation of IMPDH activity. J Cell Sci. 2015;128:3550-5 pubmed 出版商
  1314. Nishimoto S, Tanaka H, Okamoto M, Okada K, Murase T, Yoshikawa H. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve. Front Cell Neurosci. 2015;9:298 pubmed 出版商
  1315. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  1316. Chang L, Zhao D, Liu H, Wang Q, Zhang P, Li C, et al. Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phosphoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 2015;12:6702-10 pubmed 出版商
  1317. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  1318. Zhang Y, Wei X, Liang Y, Chen W, Zhang F, Bai J, et al. Over-Expressed Twist Associates with Markers of Epithelial Mesenchymal Transition and Predicts Poor Prognosis in Breast Cancers via ERK and Akt Activation. PLoS ONE. 2015;10:e0135851 pubmed 出版商
  1319. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  1320. Barbone D, Follo C, Echeverry N, Gerbaudo V, Klabatsa A, Bueno R, et al. Autophagy Correlates with the Therapeutic Responsiveness of Malignant Pleural Mesothelioma in 3D Models. PLoS ONE. 2015;10:e0134825 pubmed 出版商
  1321. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  1322. Saeed M, Andreo U, Chung H, Espiritu C, Branch A, Silva J, et al. SEC14L2 enables pan-genotype HCV replication in cell culture. Nature. 2015;524:471-5 pubmed 出版商
  1323. Hu X, Tang Z, Li Y, Liu W, Zhang S, Wang B, et al. Deletion of the tyrosine phosphatase Shp2 in Sertoli cells causes infertility in mice. Sci Rep. 2015;5:12982 pubmed 出版商
  1324. Zeng Z, Jing D, Zhang X, Duan Y, Xue F. Cyclic mechanical stretch promotes energy metabolism in osteoblast-like cells through an mTOR signaling-associated mechanism. Int J Mol Med. 2015;36:947-56 pubmed 出版商
  1325. Morley T, Xia J, Scherer P. Selective enhancement of insulin sensitivity in the mature adipocyte is sufficient for systemic metabolic improvements. Nat Commun. 2015;6:7906 pubmed 出版商
  1326. Ahn J, Li J, Chen E, Kent D, Park H, Green A. JAK2V617F mediates resistance to DNA damage-induced apoptosis by modulating FOXO3A localization and Bcl-xL deamidation. Oncogene. 2016;35:2235-46 pubmed 出版商
  1327. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  1328. Krishnan N, Krishnan K, Connors C, Choy M, Page R, Peti W, et al. PTP1B inhibition suggests a therapeutic strategy for Rett syndrome. J Clin Invest. 2015;125:3163-77 pubmed 出版商
  1329. Pencik J, Schlederer M, Gruber W, Unger C, Walker S, Chalaris A, et al. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun. 2015;6:7736 pubmed 出版商
  1330. Dahlhoff M, Schäfer M, Muzumdar S, Rose C, Schneider M. ERBB3 is required for tumor promotion in a mouse model of skin carcinogenesis. Mol Oncol. 2015;9:1825-33 pubmed 出版商
  1331. Luo J, Wu N, Jiang B, Wang L, Wang S, Li X, et al. Marine Bromophenol Derivative 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-isopropoxymethyl benzyl)benzene-1,2-diol Protects Hepatocytes from Lipid-Induced Cell Damage and Insulin Resistance via PTP1B Inhibition. Mar Drugs. 2015;13:4452-69 pubmed 出版商
  1332. Sarma P, Bag I, Ramaiah M, Kamal A, Bhadra U, Pal Bhadra M. Bisindole-PBD regulates breast cancer cell proliferation via SIRT-p53 axis. Cancer Biol Ther. 2015;16:1486-501 pubmed 出版商
  1333. Geletu M, Guy S, Greer S, Raptis L. Differential effects of polyoma virus middle tumor antigen mutants upon gap junctional, intercellular communication. Exp Cell Res. 2015;336:223-31 pubmed 出版商
  1334. Lee M, Jeong M, Lee H, Han H, Ko A, Hewitt S, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun. 2015;6:7769 pubmed 出版商
  1335. Zhou J, Joshi B, Duan X, Pant A, Qiu Z, Kuick R, et al. EGFR Overexpressed in Colonic Neoplasia Can be Detected on Wide-Field Endoscopic Imaging. Clin Transl Gastroenterol. 2015;6:e101 pubmed 出版商
  1336. Jiang S, Zou Z, Nie P, Wen R, Xiao Y, Tang J. Synergistic Effects between mTOR Complex 1/2 and Glycolysis Inhibitors in Non-Small-Cell Lung Carcinoma Cells. PLoS ONE. 2015;10:e0132880 pubmed 出版商
  1337. Artero Castro A, Perez Alea M, Feliciano A, Leal J, Genestar M, Castellvi J, et al. Disruption of the ribosomal P complex leads to stress-induced autophagy. Autophagy. 2015;11:1499-519 pubmed 出版商
  1338. Schipany K, Rosner M, Ionce L, Hengstschläger M, Kovacic B. eIF3 controls cell size independently of S6K1-activity. Oncotarget. 2015;6:24361-75 pubmed
  1339. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  1340. Li Y, Shen C, Zhu B, Shi F, Eisen H, Chen J. Persistent Antigen and Prolonged AKT-mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. J Immunol. 2015;195:1591-8 pubmed 出版商
  1341. Azzi S, Gallerne C, Romei C, Le Coz V, Gangemi R, Khawam K, et al. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions. Neoplasia. 2015;17:509-17 pubmed 出版商
  1342. Choi E, Byeon S, Kim S, Lee H, Kwon H, Ahn H, et al. Implication of Leptin-Signaling Proteins and Epstein-Barr Virus in Gastric Carcinomas. PLoS ONE. 2015;10:e0130839 pubmed 出版商
  1343. Su X, Yu Y, Zhong Y, Giannopoulou E, Hu X, Liu H, et al. Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol. 2015;16:838-849 pubmed 出版商
  1344. Laberge R, Sun Y, Orjalo A, Patil C, Freund A, Zhou L, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015;17:1049-61 pubmed 出版商
  1345. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  1346. Kim A, Park Y, Pan X, Shin K, Kwak S, Bassas A, et al. Obesity-induced DNA hypermethylation of the adiponectin gene mediates insulin resistance. Nat Commun. 2015;6:7585 pubmed 出版商
  1347. McGowan S, McCoy D. Fibroblast growth factor signaling in myofibroblasts differs from lipofibroblasts during alveolar septation in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309:L463-74 pubmed 出版商
  1348. Mundim F, Pasini F, Brentani M, Soares F, Nonogaki S, Waitzberg A. MYC is expressed in the stromal and epithelial cells of primary breast carcinoma and paired nodal metastases. Mol Clin Oncol. 2015;3:506-514 pubmed
  1349. Jing L, Li S, Li Q. Akt/hypoxia-inducible factor-1α signaling deficiency compromises skin wound healing in a type 1 diabetes mouse model. Exp Ther Med. 2015;9:2141-2146 pubmed
  1350. Andersson L, Scharin Täng M, Lundqvist A, Lindbom M, Mardani I, Fogelstrand P, et al. Rip2 modifies VEGF-induced signalling and vascular permeability in myocardial ischaemia. Cardiovasc Res. 2015;107:478-86 pubmed 出版商
  1351. Ding B, Gomi K, Rafii S, Crystal R, Walters M. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci. 2015;128:2983-8 pubmed 出版商
  1352. Yi M, Zhang E, Baek H, Kim S, Shin N, Kang J, et al. Growth Differentiation Factor 15 Expression in Astrocytes After Excitotoxic Lesion in the Mouse Hippocampus. Exp Neurobiol. 2015;24:133-8 pubmed 出版商
  1353. Zidek L, Ackermann T, Hartleben G, Eichwald S, Kortman G, Kiehntopf M, et al. Deficiency in mTORC1-controlled C/EBPβ-mRNA translation improves metabolic health in mice. EMBO Rep. 2015;16:1022-36 pubmed 出版商
  1354. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  1355. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  1356. Chang C, Lin C, Lu C, Martel J, Ko Y, Ojcius D, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota. Nat Commun. 2015;6:7489 pubmed 出版商
  1357. Braccini L, Ciraolo E, Campa C, Perino A, Longo D, Tibolla G, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6:7400 pubmed 出版商
  1358. Santos J, Mesquita D, Barros Silva J, Jerónimo C, Henrique R, Morais A, et al. Uncovering potential downstream targets of oncogenic GRPR overexpression in prostate carcinomas harboring ETS rearrangements. Oncoscience. 2015;2:497-507 pubmed
  1359. Castillo Lluva S, Hontecillas Prieto L, Blanco Gómez A, Del Mar Sáez Freire M, García Cenador B, García Criado J, et al. A new role of SNAI2 in postlactational involution of the mammary gland links it to luminal breast cancer development. Oncogene. 2015;34:4777-90 pubmed 出版商
  1360. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  1361. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  1362. Lokody I, Francis J, Gardiner J, Erler J, Swain A. Pten Regulates Epithelial Cytodifferentiation during Prostate Development. PLoS ONE. 2015;10:e0129470 pubmed 出版商
  1363. Shen Y, Zeng L, Novosyadlyy R, Forest A, Zhu A, Korytko A, et al. A bi-functional antibody-receptor domain fusion protein simultaneously targeting IGF-IR and VEGF for degradation. MAbs. 2015;7:931-45 pubmed 出版商
  1364. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  1365. Ronchi G, Haastert Talini K, Fornasari B, Perroteau I, Geuna S, Gambarotta G. The Neuregulin1/ErbB system is selectively regulated during peripheral nerve degeneration and regeneration. Eur J Neurosci. 2016;43:351-64 pubmed 出版商
  1366. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  1367. Li X, Cui P, Jiang H, Guo Y, Pishdari B, Hu M, et al. Reversing the reduced level of endometrial GLUT4 expression in polycystic ovary syndrome: a mechanistic study of metformin action. Am J Transl Res. 2015;7:574-86 pubmed
  1368. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  1369. Subathra M, Korrapati M, Howell L, Arthur J, Shayman J, Schnellmann R, et al. Kidney glycosphingolipids are elevated early in diabetic nephropathy and mediate hypertrophy of mesangial cells. Am J Physiol Renal Physiol. 2015;309:F204-15 pubmed 出版商
  1370. Gross S, Rotwein P. Akt signaling dynamics in individual cells. J Cell Sci. 2015;128:2509-19 pubmed 出版商
  1371. Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 2015;1853:2392-403 pubmed 出版商
  1372. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  1373. Urban B, Collard T, Eagle C, Southern S, Greenhough A, Hamdollah Zadeh M, et al. BCL-3 expression promotes colorectal tumorigenesis through activation of AKT signalling. Gut. 2016;65:1151-64 pubmed 出版商
  1374. Barber A, Castillo Martin M, Bonal D, Jia A, Rybicki B, Christiano A, et al. PI3K/AKT pathway regulates E-cadherin and Desmoglein 2 in aggressive prostate cancer. Cancer Med. 2015;4:1258-71 pubmed 出版商
  1375. DiPilato L, Ahmad F, Harms M, Seale P, Manganiello V, Birnbaum M. The Role of PDE3B Phosphorylation in the Inhibition of Lipolysis by Insulin. Mol Cell Biol. 2015;35:2752-60 pubmed 出版商
  1376. Liu D, Xiong H, Ellis A, Northrup N, Dobbin K, Shin D, et al. Canine spontaneous head and neck squamous cell carcinomas represent their human counterparts at the molecular level. PLoS Genet. 2015;11:e1005277 pubmed 出版商
  1377. Hsueh Y, Chen H, Wu S, Wang T, Chen J, Ma D. Lysophosphatidic acid induces YAP-promoted proliferation of human corneal endothelial cells via PI3K and ROCK pathways. Mol Ther Methods Clin Dev. 2015;2:15014 pubmed 出版商
  1378. Sawada T, Arai D, Jing X, Furushima K, Chen Q, Kawakami K, et al. Trans-Activation between EphA and FGFR Regulates Self-Renewal and Differentiation of Mouse Embryonic Neural Stem/Progenitor Cells via Differential Activation of FRS2α. PLoS ONE. 2015;10:e0128826 pubmed 出版商
  1379. Hellesøy M, Lorens J. Cellular context-mediated Akt dynamics regulates MAP kinase signaling thresholds during angiogenesis. Mol Biol Cell. 2015;26:2698-711 pubmed 出版商
  1380. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  1381. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  1382. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694-702 pubmed 出版商
  1383. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  1384. Yu J, Ramasamy T, Murphy N, Holt M, Czapiewski R, Wei S, et al. PI3K/mTORC2 regulates TGF-β/Activin signalling by modulating Smad2/3 activity via linker phosphorylation. Nat Commun. 2015;6:7212 pubmed 出版商
  1385. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  1386. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  1387. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  1388. Li J, Ren J, Liu X, Jiang L, He W, Yuan W, et al. Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney Int. 2015;88:515-27 pubmed 出版商
  1389. Revuelta López E, Cal R, Herraiz Martínez A, De Gonzalo Calvo D, Nasarre L, Roura S, et al. Hypoxia-driven sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2) downregulation depends on low-density lipoprotein receptor-related protein 1 (LRP1)-signalling in cardiomyocytes. J Mol Cell Cardiol. 2015;85:25-36 pubmed 出版商
  1390. Choi H, Zhang H, Park H, Choi K, Lee H, Agrawal V, et al. Yes-associated protein regulates endothelial cell contact-mediated expression of angiopoietin-2. Nat Commun. 2015;6:6943 pubmed 出版商
  1391. Heinen A, Beyer F, Tzekova N, Hartung H, Küry P. Fingolimod induces the transition to a nerve regeneration promoting Schwann cell phenotype. Exp Neurol. 2015;271:25-35 pubmed 出版商
  1392. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  1393. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  1394. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  1395. Major J, Salih M, Tuana B. Interplay between the E2F pathway and β-adrenergic signaling in the pathological hypertrophic response of myocardium. J Mol Cell Cardiol. 2015;84:179-90 pubmed 出版商
  1396. Liu X, Wang J, Li S, Li L, Huang M, Zhang Y, et al. Histone deacetylase 3 expression correlates with vasculogenic mimicry through the phosphoinositide3-kinase / ERK-MMP-laminin5γ2 signaling pathway. Cancer Sci. 2015;106:857-66 pubmed 出版商
  1397. Fonseca B, Zakaria C, Jia J, Graber T, Svitkin Y, Tahmasebi S, et al. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J Biol Chem. 2015;290:15996-6020 pubmed 出版商
  1398. Buonora J, Mousseau M, Jacobowitz D, Lazarus R, Yarnell A, Olsen C, et al. Autoimmune Profiling Reveals Peroxiredoxin 6 as a Candidate Traumatic Brain Injury Biomarker. J Neurotrauma. 2015;32:1805-14 pubmed 出版商
  1399. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  1400. Dungan C, Li Z, Wright D, Williamson D. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve. 2016;53:107-17 pubmed 出版商
  1401. Mendonsa A, Chalfant M, Gorden L, VanSaun M. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells. PLoS ONE. 2015;10:e0126686 pubmed 出版商
  1402. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  1403. Liu H, Du L, Wang R, Wei C, Liu B, Zhu L, et al. High frequency of loss of PTEN expression in human solid salivary adenoid cystic carcinoma and its implication for targeted therapy. Oncotarget. 2015;6:11477-91 pubmed
  1404. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  1405. Chen H, Huang W, Yang L, Lin C. The PTEN-AKT-mTOR/RICTOR Pathway in Nasal Natural Killer Cell Lymphoma Is Activated by miR-494-3p via PTEN But Inhibited by miR-142-3p via RICTOR. Am J Pathol. 2015;185:1487-99 pubmed 出版商
  1406. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  1407. Bugaj L, Spelke D, Mesuda C, Varedi M, Kane R, Schaffer D. Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun. 2015;6:6898 pubmed 出版商
  1408. Sharon C, Baranwal S, Patel N, Rodriguez Agudo D, Pandak W, Majumdar A, et al. Inhibition of insulin-like growth factor receptor/AKT/mammalian target of rapamycin axis targets colorectal cancer stem cells by attenuating mevalonate-isoprenoid pathway in vitro and in vivo. Oncotarget. 2015;6:15332-47 pubmed
  1409. Roffé M, Lupinacci F, Soares L, Hajj G, Martins V. Two widely used RSK inhibitors, BI-D1870 and SL0101, alter mTORC1 signaling in a RSK-independent manner. Cell Signal. 2015;27:1630-42 pubmed 出版商
  1410. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  1411. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  1412. Pasiliao C, Chang C, Sutherland B, Valdez S, Schaeffer D, Yapp D, et al. The involvement of insulin-like growth factor 2 binding protein 3 (IMP3) in pancreatic cancer cell migration, invasion, and adhesion. BMC Cancer. 2015;15:266 pubmed 出版商
  1413. Cookman C, Belcher S. Estrogen Receptor-β Up-Regulates IGF1R Expression and Activity to Inhibit Apoptosis and Increase Growth of Medulloblastoma. Endocrinology. 2015;156:2395-408 pubmed 出版商
  1414. Vishwamitra D, Curry C, Alkan S, Song Y, Gallick G, Kaseb A, et al. The transcription factors Ik-1 and MZF1 downregulate IGF-IR expression in NPM-ALK⁺ T-cell lymphoma. Mol Cancer. 2015;14:53 pubmed 出版商
  1415. Tancioni I, Miller N, Uryu S, Lawson C, Jean C, Chen X, et al. FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth. Breast Cancer Res. 2015;17:47 pubmed 出版商
  1416. Ip L, Poulogiannis G, Viciano F, Sasaki J, Kofuji S, Spanswick V, et al. Loss of INPP4B causes a DNA repair defect through loss of BRCA1, ATM and ATR and can be targeted with PARP inhibitor treatment. Oncotarget. 2015;6:10548-62 pubmed
  1417. Hatfield I, Harvey I, Yates E, Redd J, Reiter L, Bridges D. The role of TORC1 in muscle development in Drosophila. Sci Rep. 2015;5:9676 pubmed 出版商
  1418. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  1419. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  1420. Salvatierra C, Reis S, Pessoa A, De Souza L, Stoppiglia L, Veloso R, et al. Short-term low-protein diet during pregnancy alters islet area and protein content of phosphatidylinositol 3-kinase pathway in rats. An Acad Bras Cienc. 2015;87:1007-18 pubmed 出版商
  1421. Milan G, Romanello V, Pescatore F, Armani A, Paik J, Frasson L, et al. Regulation of autophagy and the ubiquitin-proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun. 2015;6:6670 pubmed 出版商
  1422. Ohashi M, Holthaus A, Calderwood M, Lai C, Krastins B, Sarracino D, et al. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015;11:e1004822 pubmed 出版商
  1423. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  1424. Gassen N, Hartmann J, Zannas A, Kretzschmar A, Zschocke J, Maccarrone G, et al. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry. 2016;21:277-89 pubmed 出版商
  1425. Ota A, Kovary K, Wu O, Ahrends R, Shen W, Costa M, et al. Using SRM-MS to quantify nuclear protein abundance differences between adipose tissue depots of insulin-resistant mice. J Lipid Res. 2015;56:1068-78 pubmed 出版商
  1426. Sadok A, McCarthy A, Caldwell J, Collins I, Garrett M, Yeo M, et al. Rho kinase inhibitors block melanoma cell migration and inhibit metastasis. Cancer Res. 2015;75:2272-84 pubmed 出版商
  1427. Hausmann S, Brandt E, Köchel C, Einsele H, Bargou R, Seggewiss Bernhardt R, et al. Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines. PLoS ONE. 2015;10:e0122689 pubmed 出版商
  1428. Yamakoshi K, Katano S, Iida M, Kimura H, Okuma A, Ikemoto Uezumi M, et al. Dysregulation of the Bmi-1/p16(Ink⁴a) pathway provokes an aging-associated decline of submandibular gland function. Aging Cell. 2015;14:616-24 pubmed 出版商
  1429. Cerqueira O, Truesdell P, Baldassarre T, Vilella Arias S, Watt K, Meens J, et al. CIP4 promotes metastasis in triple-negative breast cancer and is associated with poor patient prognosis. Oncotarget. 2015;6:9397-408 pubmed
  1430. Jia D, Duan F, Peng P, Sun L, Ruan Y, Gu J. Pyrroloquinoline-quinone suppresses liver fibrogenesis in mice. PLoS ONE. 2015;10:e0121939 pubmed 出版商
  1431. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  1432. Ye R, Wang M, Wang Q, Scherer P. Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology. 2015;156:2019-28 pubmed 出版商
  1433. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  1434. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  1435. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  1436. Venkatesh A, Ma S, Le Y, Hall M, Rüegg M, Punzo C. Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice. J Clin Invest. 2015;125:1446-58 pubmed 出版商
  1437. Philippou A, Minozzo F, Spinazzola J, Smith L, Lei H, Rassier D, et al. Masticatory muscles of mouse do not undergo atrophy in space. FASEB J. 2015;29:2769-79 pubmed 出版商
  1438. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  1439. Tapia O, Fong L, Huber M, Young S, Gerace L. Nuclear envelope protein Lem2 is required for mouse development and regulates MAP and AKT kinases. PLoS ONE. 2015;10:e0116196 pubmed 出版商
  1440. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  1441. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  1442. Panneerselvam J, Jin J, Shanker M, Lauderdale J, BATES J, Wang Q, et al. IL-24 inhibits lung cancer cell migration and invasion by disrupting the SDF-1/CXCR4 signaling axis. PLoS ONE. 2015;10:e0122439 pubmed 出版商
  1443. Desantis A, Bruno T, Catena V, De Nicola F, Goeman F, Iezzi S, et al. Che-1-induced inhibition of mTOR pathway enables stress-induced autophagy. EMBO J. 2015;34:1214-30 pubmed 出版商
  1444. Tassinari V, Campolo F, Cesarini V, Todaro F, Dolci S, Rossi P. Fgf9 inhibition of meiotic differentiation in spermatogonia is mediated by Erk-dependent activation of Nodal-Smad2/3 signaling and is antagonized by Kit Ligand. Cell Death Dis. 2015;6:e1688 pubmed 出版商
  1445. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商
  1446. Maione F, Oliaro Bosso S, Meda C, Di Nicolantonio F, Bussolino F, Balliano G, et al. The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination. Sci Rep. 2015;5:9054 pubmed 出版商
  1447. Chen W, Xu B, Xiao A, Liu L, Fang X, Liu R, et al. TRPM7 inhibitor carvacrol protects brain from neonatal hypoxic-ischemic injury. Mol Brain. 2015;8:11 pubmed 出版商
  1448. Rao E, Zhang Y, Zhu G, Hao J, Persson X, Egilmez N, et al. Deficiency of AMPK in CD8+ T cells suppresses their anti-tumor function by inducing protein phosphatase-mediated cell death. Oncotarget. 2015;6:7944-58 pubmed
  1449. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K. Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep. 2015;33:2176-82 pubmed 出版商
  1450. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  1451. Geurts L, Everard A, Van Hul M, Essaghir A, Duparc T, Matamoros S, et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat Commun. 2015;6:6495 pubmed 出版商
  1452. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  1453. Wu J, Pipathsouk A, Keizer Gunnink A, Fusetti F, Alkema W, Liu S, et al. Homer3 regulates the establishment of neutrophil polarity. Mol Biol Cell. 2015;26:1629-39 pubmed 出版商
  1454. Jeffery E, Church C, Holtrup B, Colman L, Rodeheffer M. Rapid depot-specific activation of adipocyte precursor cells at the onset of obesity. Nat Cell Biol. 2015;17:376-85 pubmed 出版商
  1455. Lee J, Chung L, Chen Y, Feng T, Chen W, Juang H. Upregulation of B-cell translocation gene 2 by epigallocatechin-3-gallate via p38 and ERK signaling blocks cell proliferation in human oral squamous cell carcinoma cells. Cancer Lett. 2015;360:310-8 pubmed 出版商
  1456. Bawadekar M, de Andrea M, Lo Cigno I, Baldanzi G, Caneparo V, Graziani A, et al. The Extracellular IFI16 Protein Propagates Inflammation in Endothelial Cells Via p38 MAPK and NF-κB p65 Activation. J Interferon Cytokine Res. 2015;35:441-53 pubmed 出版商
  1457. Sanjurjo L, Amézaga N, Aran G, Naranjo Gómez M, Arias L, Armengol C, et al. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses. Autophagy. 2015;11:487-502 pubmed 出版商
  1458. Wu C, Niu L, Yan Z, Wang C, Liu N, Dai Y, et al. Pcdh11x Negatively Regulates Dendritic Branching. J Mol Neurosci. 2015;56:822-8 pubmed 出版商
  1459. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  1460. Suman S, Kallakury B, Fornace A, Datta K. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int J Biol Sci. 2015;11:274-83 pubmed 出版商
  1461. Fumagalli I, Dugue D, Bibault J, Clémenson C, Vozenin M, Mondini M, et al. Cytotoxic effect of lapatinib is restricted to human papillomavirus-positive head and neck squamous cell carcinoma cell lines. Onco Targets Ther. 2015;8:335-45 pubmed 出版商
  1462. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  1463. Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, et al. Supplementation of strontium to a chondrogenic medium promotes chondrogenic differentiation of human dedifferentiated fat cells. Tissue Eng Part A. 2015;21:1695-704 pubmed 出版商
  1464. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  1465. Jeffery J, Neyt C, Moore W, Paterson S, Bower N, Chenevix Trench G, et al. Cep55 regulates embryonic growth and development by promoting Akt stability in zebrafish. FASEB J. 2015;29:1999-2009 pubmed 出版商
  1466. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  1467. Kodigepalli K, Nanjundan M. Induction of PLSCR1 in a STING/IRF3-dependent manner upon vector transfection in ovarian epithelial cells. PLoS ONE. 2015;10:e0117464 pubmed 出版商
  1468. Dametto P, Lakkaraju A, Bridel C, Villiger L, O CONNOR T, Herrmann U, et al. Neurodegeneration and unfolded-protein response in mice expressing a membrane-tethered flexible tail of PrP. PLoS ONE. 2015;10:e0117412 pubmed 出版商
  1469. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  1470. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  1471. Schreiber K, Ortiz D, Academia E, Anies A, Liao C, Kennedy B. Rapamycin-mediated mTORC2 inhibition is determined by the relative expression of FK506-binding proteins. Aging Cell. 2015;14:265-73 pubmed 出版商
  1472. Liu K, Zhao E, Ilyas G, Lalazar G, Lin Y, Haseeb M, et al. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy. 2015;11:271-84 pubmed 出版商
  1473. Dongiovanni P, Lanti C, Gatti S, Rametta R, Recalcati S, Maggioni M, et al. High fat diet subverts hepatocellular iron uptake determining dysmetabolic iron overload. PLoS ONE. 2015;10:e0116855 pubmed 出版商
  1474. Ju B, Chen W, Orr B, Spitsbergen J, Jia S, Eden C, et al. Oncogenic KRAS promotes malignant brain tumors in zebrafish. Mol Cancer. 2015;14:18 pubmed 出版商
  1475. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  1476. Li S, Bhave D, Chow J, Riera T, Schlee S, Rauch S, et al. Quantitative analysis of receptor tyrosine kinase-effector coupling at functionally relevant stimulus levels. J Biol Chem. 2015;290:10018-36 pubmed 出版商
  1477. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, et al. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 2015;33:1745-52 pubmed 出版商
  1478. Chen Z, Shen H, Sun C, Yin L, Tang F, Zheng P, et al. Myeloid cell TRAF3 promotes metabolic inflammation, insulin resistance, and hepatic steatosis in obesity. Am J Physiol Endocrinol Metab. 2015;308:E460-9 pubmed 出版商
  1479. Chandler R, Damrauer J, Raab J, Schisler J, Wilkerson M, Didion J, et al. Coexistent ARID1A-PIK3CA mutations promote ovarian clear-cell tumorigenesis through pro-tumorigenic inflammatory cytokine signalling. Nat Commun. 2015;6:6118 pubmed 出版商
  1480. Ammar A, Esmat A, Hassona M, Tadros M, Abdel Naim A, Guns E. The effect of pomegranate fruit extract on testosterone-induced BPH in rats. Prostate. 2015;75:679-92 pubmed 出版商
  1481. Xu T, Su B, Wang C, Wang S, Huang H, Pan Y, et al. Molecular markers to assess short-term disease local recurrence in nasopharyngeal carcinoma. Oncol Rep. 2015;33:1418-26 pubmed 出版商
  1482. López de Figueroa P, Lotz M, Blanco F, Caramés B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 2015;67:966-76 pubmed 出版商
  1483. Seeßle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W. Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta. 2015;1851:549-65 pubmed 出版商
  1484. Niemeyer B, Parrish J, Spoelstra N, Joyal T, Richer J, Jedlicka P. Variable expression of PIK3R3 and PTEN in Ewing Sarcoma impacts oncogenic phenotypes. PLoS ONE. 2015;10:e0116895 pubmed 出版商
  1485. Peres J, Mowla S, Prince S. The T-box transcription factor, TBX3, is a key substrate of AKT3 in melanomagenesis. Oncotarget. 2015;6:1821-33 pubmed
  1486. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  1487. Nakazawa H, Yamada M, Tanaka T, Kramer J, Yu Y, Fischman A, et al. Role of protein farnesylation in burn-induced metabolic derangements and insulin resistance in mouse skeletal muscle. PLoS ONE. 2015;10:e0116633 pubmed 出版商
  1488. Ninio Many L, Grossman H, Levi M, Zilber S, Tsarfaty I, Shomron N, et al. MicroRNA miR-125a-3p modulates molecular pathway of motility and migration in prostate cancer cells. Oncoscience. 2014;1:250-261 pubmed
  1489. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  1490. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  1491. Wang S, Amato K, Song W, Youngblood V, Lee K, Boothby M, et al. Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways. Mol Cell Biol. 2015;35:1299-313 pubmed 出版商
  1492. Shen Y, Gao M, Ma Y, Yu H, Cui F, Gregersen H, et al. Effect of surface chemistry on the integrin induced pathway in regulating vascular endothelial cells migration. Colloids Surf B Biointerfaces. 2015;126:188-97 pubmed 出版商
  1493. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  1494. Kang E, Cho J. Effects of treadmill exercise on brain insulin signaling and β-amyloid in intracerebroventricular streptozotocin induced-memory impairment in rats. J Exerc Nutrition Biochem. 2014;18:89-96 pubmed 出版商
  1495. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  1496. Loeuillard E, Bertrand J, Herranen A, Melchior C, Guérin C, Coëffier M, et al. 2,4,6-trinitrobenzene sulfonic acid-induced chronic colitis with fibrosis and modulation of TGF-β1 signaling. World J Gastroenterol. 2014;20:18207-15 pubmed 出版商
  1497. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  1498. Boj S, Hwang C, Baker L, Chio I, Engle D, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324-38 pubmed 出版商
  1499. Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, et al. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal. 2015;22:819-31 pubmed 出版商
  1500. Chen C, Hung T, Lee C, Wang L, Wu C, Ke C, et al. Berberine protects against neuronal damage via suppression of glia-mediated inflammation in traumatic brain injury. PLoS ONE. 2014;9:e115694 pubmed 出版商
  1501. Lee S, Lee K, Lee J, Kang S, Kim H, Asahara T, et al. Selective Interference Targeting of Lnk in Umbilical Cord-Derived Late Endothelial Progenitor Cells Improves Vascular Repair, Following Hind Limb Ischemic Injury, via Regulation of JAK2/STAT3 Signaling. Stem Cells. 2015;33:1490-500 pubmed 出版商
  1502. Zhang X, Cheng S, Bian K, Wang L, Zhang X, Yan B, et al. MicroRNA-26a promotes anoikis in human hepatocellular carcinoma cells by targeting alpha5 integrin. Oncotarget. 2015;6:2277-89 pubmed
  1503. Ni H, Bhakta A, Wang S, Li Z, Manley S, Huang H, et al. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice. PLoS ONE. 2014;9:e115849 pubmed 出版商
  1504. Cebulla J, Huuse E, Pettersen K, van der Veen A, Kim E, Andersen S, et al. MRI reveals the in vivo cellular and vascular response to BEZ235 in ovarian cancer xenografts with different PI3-kinase pathway activity. Br J Cancer. 2015;112:504-13 pubmed 出版商
  1505. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  1506. Fiorini C, Cordani M, Gotte G, Picone D, Donadelli M. Onconase induces autophagy sensitizing pancreatic cancer cells to gemcitabine and activates Akt/mTOR pathway in a ROS-dependent manner. Biochim Biophys Acta. 2015;1853:549-60 pubmed 出版商
  1507. Inaba J, McConnell E, Davis K. Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci. 2014;15:23705-24 pubmed 出版商
  1508. Shao C, Ahmad N, Hodges K, Kuang S, Ratliff T, Liu X. Inhibition of polo-like kinase 1 (Plk1) enhances the antineoplastic activity of metformin in prostate cancer. J Biol Chem. 2015;290:2024-33 pubmed 出版商
  1509. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  1510. Chen Y, Wei M, Wang C, Lee H, Pan S, Gao M, et al. Dual phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor is an effective radiosensitizer for colorectal cancer. Cancer Lett. 2015;357:582-90 pubmed 出版商
  1511. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  1512. Isoyama S, Kajiwara G, Tamaki N, Okamura M, Yoshimi H, Nakamura N, et al. Basal expression of insulin-like growth factor 1 receptor determines intrinsic resistance of cancer cells to a phosphatidylinositol 3-kinase inhibitor ZSTK474. Cancer Sci. 2015;106:171-8 pubmed 出版商
  1513. Bisson J, Mills B, Paul Helt J, Zwaka T, Cohen E. Wnt5a and Wnt11 inhibit the canonical Wnt pathway and promote cardiac progenitor development via the Caspase-dependent degradation of AKT. Dev Biol. 2015;398:80-96 pubmed 出版商
  1514. Ozmen A, Unek G, Kipmen Korgun D, Cetinkaya B, Avcil Z, Korgun E. Glucocorticoid exposure altered angiogenic factor expression via Akt/mTOR pathway in rat placenta. Ann Anat. 2015;198:34-40 pubmed 出版商
  1515. Yang R, Chen Y, Tang C, Li H, Wang B, Yan Q, et al. MicroRNA-144 suppresses cholangiocarcinoma cell proliferation and invasion through targeting platelet activating factor acetylhydrolase isoform 1b. BMC Cancer. 2014;14:917 pubmed 出版商
  1516. Smithline Z, Nikonova A, Hensley H, Cai K, Egleston B, Proia D, et al. Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice. PLoS ONE. 2014;9:e114403 pubmed 出版商
  1517. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  1518. O Connell K, Guo W, Serra C, Beck M, Wachtman L, Hoggatt A, et al. The effects of an ActRIIb receptor Fc fusion protein ligand trap in juvenile simian immunodeficiency virus-infected rhesus macaques. FASEB J. 2015;29:1165-75 pubmed 出版商
  1519. Galinato M, Orio L, Mandyam C. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus. Neuroscience. 2015;286:97-108 pubmed 出版商
  1520. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  1521. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  1522. Kapodistria K, Tsilibary E, Politis P, Moustardas P, Charonis A, Kitsiou P. Nephrin, a transmembrane protein, is involved in pancreatic beta-cell survival signaling. Mol Cell Endocrinol. 2015;400:112-28 pubmed 出版商
  1523. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  1524. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  1525. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  1526. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  1527. Kim T, Jo S, Choi H, Park J, Kim M, Nojima H, et al. Identification of Creb3l4 as an essential negative regulator of adipogenesis. Cell Death Dis. 2014;5:e1527 pubmed 出版商
  1528. Douglas R, Mester T, Ginter A, Kim D. Thyrotropin receptor and CD40 mediate interleukin-8 expression in fibrocytes: implications for thyroid-associated ophthalmopathy (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc. 2014;112:26-37 pubmed
  1529. Sun J, Lu F, He H, Shen J, Messina J, Mathew R, et al. STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion. J Cell Biol. 2014;207:535-48 pubmed 出版商
  1530. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  1531. Umberger N, Caspary T. Ciliary transport regulates PDGF-AA/αα signaling via elevated mammalian target of rapamycin signaling and diminished PP2A activity. Mol Biol Cell. 2015;26:350-8 pubmed 出版商
  1532. Ito Y, Hart J, Ueno L, Vogt P. Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Proc Natl Acad Sci U S A. 2014;111:16826-9 pubmed 出版商
  1533. Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T. The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio. 2014;4:898-904 pubmed 出版商
  1534. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  1535. Chavali P, Saini R, Zhai Q, Vizlin Hodzic D, Venkatabalasubramanian S, Hayashi A, et al. TLX activates MMP-2, promotes self-renewal of tumor spheres in neuroblastoma and correlates with poor patient survival. Cell Death Dis. 2014;5:e1502 pubmed 出版商
  1536. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  1537. Qin J, Rajaratnam R, Feng L, Salami J, Barber Rotenberg J, Domsic J, et al. Development of organometallic S6K1 inhibitors. J Med Chem. 2015;58:305-14 pubmed 出版商
  1538. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  1539. Tan L, Wang J, Tanizaki J, Huang Z, Aref A, Rusan M, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111:E4869-77 pubmed 出版商
  1540. Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res. 2015;40:41-8 pubmed 出版商
  1541. Alayev A, Berger S, Kramer M, Schwartz N, Holz M. The combination of rapamycin and resveratrol blocks autophagy and induces apoptosis in breast cancer cells. J Cell Biochem. 2015;116:450-7 pubmed 出版商
  1542. Badolia R, Manne B, Dangelmaier C, Chernoff J, Kunapuli S. Gq-mediated Akt translocation to the membrane: a novel PIP3-independent mechanism in platelets. Blood. 2015;125:175-84 pubmed 出版商
  1543. Souza R, Piedade W, Soares L, Souza P, Aguiar A, Vechetti Júnior I, et al. Aerobic exercise training prevents heart failure-induced skeletal muscle atrophy by anti-catabolic, but not anabolic actions. PLoS ONE. 2014;9:e110020 pubmed 出版商
  1544. Holland W, Chinn D, Lara P, Gandara D, Mack P. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 2015;141:615-26 pubmed 出版商
  1545. Guerrouahen B, Pasquier J, Kaoud N, Maleki M, Beauchamp M, Yasmeen A, et al. Akt-activated endothelium constitutes the niche for residual disease and resistance to bevacizumab in ovarian cancer. Mol Cancer Ther. 2014;13:3123-36 pubmed 出版商
  1546. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  1547. Pereira L, Pinto R, Silva D, Moreira A, Beitzinger C, Oliveira P, et al. Intracellular trafficking of AIP56, an NF-κB-cleaving toxin from Photobacterium damselae subsp. piscicida. Infect Immun. 2014;82:5270-85 pubmed 出版商
  1548. Puig M, Lugo R, Gabasa M, Giménez A, Velásquez A, Galgoczy R, et al. Matrix stiffening and β1 integrin drive subtype-specific fibroblast accumulation in lung cancer. Mol Cancer Res. 2015;13:161-73 pubmed 出版商
  1549. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  1550. Gray A, Stephens C, Bigelow R, Coleman D, Cardelli J. The polyphenols (-)-epigallocatechin-3-gallate and luteolin synergistically inhibit TGF-β-induced myofibroblast phenotypes through RhoA and ERK inhibition. PLoS ONE. 2014;9:e109208 pubmed 出版商
  1551. Modi H, Cornu M, Thorens B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem. 2014;289:31972-82 pubmed 出版商
  1552. Ledonne A, Nobili A, Latagliata E, Cavallucci V, Guatteo E, Puglisi Allegra S, et al. Neuregulin 1 signalling modulates mGluR1 function in mesencephalic dopaminergic neurons. Mol Psychiatry. 2015;20:959-73 pubmed 出版商
  1553. Portella A, Silveira P, Laureano D, Cardoso S, Bittencourt V, Noschang C, et al. Litter size reduction alters insulin signaling in the ventral tegmental area and influences dopamine-related behaviors in adult rats. Behav Brain Res. 2015;278:66-73 pubmed 出版商
  1554. Morioka T, Sakabe M, Ioka T, Iguchi T, Mizuta K, Hattammaru M, et al. An important role of endothelial hairy-related transcription factors in mouse vascular development. Genesis. 2014;52:897-906 pubmed 出版商
  1555. Peng M, Yin N, Li M. Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell. 2014;159:122-133 pubmed 出版商
  1556. Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, et al. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 2014;5:11986-97 pubmed
  1557. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200 pubmed 出版商
  1558. Ritchie I, Wright D, Dyck D. Adiponectin is not required for exercise training-induced improvements in glucose and insulin tolerance in mice. Physiol Rep. 2014;2: pubmed 出版商
  1559. Liu J, Zheng L, Ma L, Wang B, Zhao Y, Wu N, et al. Oleanolic acid inhibits proliferation and invasiveness of Kras-transformed cells via autophagy. J Nutr Biochem. 2014;25:1154-1160 pubmed 出版商
  1560. Niu H, Nie L, Liu M, Chi Y, Zhang T, Li Y. Benazepril affects integrin-linked kinase and smooth muscle α-actin expression in diabetic rat glomerulus and cultured mesangial cells. BMC Nephrol. 2014;15:135 pubmed 出版商
  1561. Jung Y, Wang J, Lee E, McGee S, Berry J, Yumoto K, et al. Annexin 2-CXCL12 interactions regulate metastatic cell targeting and growth in the bone marrow. Mol Cancer Res. 2015;13:197-207 pubmed 出版商
  1562. Tang S, Chen T, Yu Z, Zhu X, Yang M, Xie B, et al. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase. Nat Commun. 2014;5:4657 pubmed 出版商
  1563. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  1564. Selfridge J, Wilkins H, E L, Carl S, Koppel S, Funk E, et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr. 2015;47:1-11 pubmed 出版商
  1565. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  1566. Wang F, Cai M, Mai S, Chen J, Bai H, Li Y, et al. Ablation of EIF5A2 induces tumor vasculature remodeling and improves tumor response to chemotherapy via regulation of matrix metalloproteinase 2 expression. Oncotarget. 2014;5:6716-33 pubmed
  1567. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  1568. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  1569. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  1570. George S, Vishwamitra D, Manshouri R, Shi P, Amin H. The ALK inhibitor ASP3026 eradicates NPM-ALK? T-cell anaplastic large-cell lymphoma in vitro and in a systemic xenograft lymphoma model. Oncotarget. 2014;5:5750-63 pubmed
  1571. Patel A, Burton D, Halvorsen K, Balkan W, Reiner T, Perez Stable C, et al. MutT Homolog 1 (MTH1) maintains multiple KRAS-driven pro-malignant pathways. Oncogene. 2015;34:2586-96 pubmed 出版商
  1572. Martin V, Corso S, Comoglio P, Giordano S. Increase of MET gene copy number confers resistance to a monovalent MET antibody and establishes drug dependence. Mol Oncol. 2014;8:1561-74 pubmed 出版商
  1573. Zaganjor E, Weil L, Gonzales J, Minna J, Cobb M. Ras transformation uncouples the kinesin-coordinated cellular nutrient response. Proc Natl Acad Sci U S A. 2014;111:10568-73 pubmed 出版商
  1574. E L, Burns J, Swerdlow R. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35:2574-2583 pubmed 出版商
  1575. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  1576. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  1577. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  1578. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  1579. Majumder M, Xin X, Liu L, Girish G, Lala P. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions. Cancer Sci. 2014;105:1142-51 pubmed 出版商
  1580. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  1581. Liang W, Hao Z, Han J, Zhu D, Jin Z, Xie W. CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol. 2014;32:855-63 pubmed 出版商
  1582. Choi Y, Kim Y, Jeong H, Jin Y, Yeo C, Lee K. Akt enhances Runx2 protein stability by regulating Smurf2 function during osteoblast differentiation. FEBS J. 2014;281:3656-66 pubmed 出版商
  1583. Hellesøy M, Blois A, Tiron C, Mannelqvist M, Akslen L, Lorens J. Akt1 activity regulates vessel maturation in a tissue engineering model of angiogenesis. Tissue Eng Part A. 2014;20:2590-603 pubmed 出版商
  1584. Tanaka T, Iino M. Sec6 regulated cytoplasmic translocation and degradation of p27 via interactions with Jab1 and Siah1. Cell Signal. 2014;26:2071-85 pubmed 出版商
  1585. Cheshenko N, Trepanier J, González P, Eugenin E, Jacobs W, Herold B. Herpes simplex virus type 2 glycoprotein H interacts with integrin ?v?3 to facilitate viral entry and calcium signaling in human genital tract epithelial cells. J Virol. 2014;88:10026-38 pubmed 出版商
  1586. Etnyre D, Stone A, Fong J, Jacobs R, Uppada S, Botting G, et al. Targeting c-Met in melanoma: mechanism of resistance and efficacy of novel combinatorial inhibitor therapy. Cancer Biol Ther. 2014;15:1129-41 pubmed 出版商
  1587. Dai X, North B, Inuzuka H. Negative regulation of DAB2IP by Akt and SCFFbw7 pathways. Oncotarget. 2014;5:3307-15 pubmed
  1588. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  1589. Johnston Cox H, Eisenstein A, Koupenova M, Carroll S, Ravid K. The macrophage A2B adenosine receptor regulates tissue insulin sensitivity. PLoS ONE. 2014;9:e98775 pubmed 出版商
  1590. Wan Y, Yang Y, Leng Q, Lan B, Jia H, Liu Y, et al. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell Signal. 2014;26:2202-9 pubmed 出版商
  1591. Godde N, Sheridan J, Smith L, Pearson H, Britt K, Galea R, et al. Scribble modulates the MAPK/Fra1 pathway to disrupt luminal and ductal integrity and suppress tumour formation in the mammary gland. PLoS Genet. 2014;10:e1004323 pubmed 出版商
  1592. Chen K, Yang T, Wu C, Cheng C, Hsu S, Hung H, et al. Pemetrexed induces S-phase arrest and apoptosis via a deregulated activation of Akt signaling pathway. PLoS ONE. 2014;9:e97888 pubmed 出版商
  1593. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  1594. Chin R, Fu X, Pai M, Vergnes L, Hwang H, Deng G, et al. The metabolite ?-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature. 2014;510:397-401 pubmed 出版商
  1595. Stevenson C, de la Rosa G, Anderson C, Murphy P, Capece T, Kim M, et al. Essential role of Elmo1 in Dock2-dependent lymphocyte migration. J Immunol. 2014;192:6062-70 pubmed 出版商
  1596. Subramani R, Lopez Valdez R, Arumugam A, Nandy S, Boopalan T, Lakshmanaswamy R. Targeting insulin-like growth factor 1 receptor inhibits pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e97016 pubmed 出版商
  1597. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  1598. Peng W, Hu X, Yao L, Jiang Y, Shao Z. Elevated expression of Girdin in the nucleus indicates worse prognosis for patients with estrogen receptor-positive breast cancer. Ann Surg Oncol. 2014;21 Suppl 4:S648-56 pubmed 出版商
  1599. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  1600. Kim K, Lee S, Ryu S, Han D. Efficient isolation and elution of cellular proteins using aptamer-mediated protein precipitation assay. Biochem Biophys Res Commun. 2014;448:114-9 pubmed 出版商
  1601. Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, et al. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS ONE. 2014;9:e96095 pubmed 出版商
  1602. Bao Y, Cao X, Luo D, Sun R, Peng L, Wang L, et al. Urokinase-type plasminogen activator receptor signaling is critical in nasopharyngeal carcinoma cell growth and metastasis. Cell Cycle. 2014;13:1958-69 pubmed 出版商
  1603. Sahlberg S, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE. 2014;9:e94621 pubmed 出版商
  1604. Bai X, Li X, Tian J, Zhou Z. Antiangiogenic treatment diminishes renal injury and dysfunction via regulation of local AKT in early experimental diabetes. PLoS ONE. 2014;9:e96117 pubmed 出版商
  1605. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  1606. Hardman S, Hall D, Cabrera A, Hancock C, Thomson D. The effects of age and muscle contraction on AMPK activity and heterotrimer composition. Exp Gerontol. 2014;55:120-8 pubmed 出版商
  1607. Garimella S, Gehlhaus K, Dine J, Pitt J, Grandin M, Chakka S, et al. Identification of novel molecular regulators of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in breast cancer cells by RNAi screening. Breast Cancer Res. 2014;16:R41 pubmed 出版商
  1608. Liu B, Cao Y, Huizinga T, Hafler D, Toes R. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol. 2014;44:2121-9 pubmed 出版商
  1609. Cekanaviciute E, Fathali N, Doyle K, Williams A, Han J, Buckwalter M. Astrocytic transforming growth factor-beta signaling reduces subacute neuroinflammation after stroke in mice. Glia. 2014;62:1227-40 pubmed 出版商
  1610. Ng Y, Lee J, Supko K, Khan A, Torres S, Berwick M, et al. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res. 2014;24:207-18 pubmed 出版商
  1611. Tobin G, Zhang J, Goodwin D, Stewart S, Xu L, Knapton A, et al. The role of eNOS phosphorylation in causing drug-induced vascular injury. Toxicol Pathol. 2014;42:709-24 pubmed 出版商
  1612. Flavin R, Pettersson A, Hendrickson W, Fiorentino M, Finn S, Kunz L, et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res. 2014;20:4904-11 pubmed 出版商
  1613. Wahl S, McLane L, Bercury K, Macklin W, Wood T. Mammalian target of rapamycin promotes oligodendrocyte differentiation, initiation and extent of CNS myelination. J Neurosci. 2014;34:4453-65 pubmed 出版商
  1614. Chen W, Ho C, Chang Y, Chen H, Lin C, Ling T, et al. Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun. 2014;5:3472 pubmed 出版商
  1615. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  1616. Knubel K, Pernu B, Sufit A, Nelson S, Pierce A, Keating A. MerTK inhibition is a novel therapeutic approach for glioblastoma multiforme. Oncotarget. 2014;5:1338-51 pubmed
  1617. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  1618. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/?-catenin pathway. PLoS ONE. 2014;9:e91730 pubmed 出版商
  1619. Bouchekioua Bouzaghou K, Poulard C, Rambaud J, Lavergne E, Hussein N, Billaud M, et al. LKB1 when associated with methylatedER? is a marker of bad prognosis in breast cancer. Int J Cancer. 2014;135:1307-18 pubmed 出版商
  1620. Sun X, Fang B, Zhao X, Zhang G, Ma H. Preconditioning of mesenchymal stem cells by sevoflurane to improve their therapeutic potential. PLoS ONE. 2014;9:e90667 pubmed 出版商
  1621. Boin A, Couvelard A, Couderc C, Brito I, Filipescu D, Kalamarides M, et al. Proteomic screening identifies a YAP-driven signaling network linked to tumor cell proliferation in human schwannomas. Neuro Oncol. 2014;16:1196-209 pubmed 出版商
  1622. Hu J, Lu J, Lian G, Zhang J, Hecht J, Sheen V. Filamin B regulates chondrocyte proliferation and differentiation through Cdk1 signaling. PLoS ONE. 2014;9:e89352 pubmed 出版商
  1623. Yoon H, Choi Y, Song J, Do I, Kang S, Ko Y, et al. Targeted inhibition of FAK, PYK2 and BCL-XL synergistically enhances apoptosis in ovarian clear cell carcinoma cell lines. PLoS ONE. 2014;9:e88587 pubmed 出版商
  1624. Foth M, Ahmad I, van Rhijn B, van der Kwast T, Bergman A, King L, et al. Fibroblast growth factor receptor 3 activation plays a causative role in urothelial cancer pathogenesis in cooperation with Pten loss in mice. J Pathol. 2014;233:148-58 pubmed 出版商
  1625. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  1626. Solan J, Lampe P. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014;588:1423-9 pubmed 出版商
  1627. Xiao W, Feng Y, Holst J, Hartmann B, Yang H, Teitelbaum D. Glutamate prevents intestinal atrophy via luminal nutrient sensing in a mouse model of total parenteral nutrition. FASEB J. 2014;28:2073-87 pubmed 出版商
  1628. Tchetchelnitski V, Van Den Eijnden M, Schmidt F, Stoker A. Developmental co-expression and functional redundancy of tyrosine phosphatases with neurotrophin receptors in developing sensory neurons. Int J Dev Neurosci. 2014;34:48-59 pubmed 出版商
  1629. Zhang Q, Pan Y, Wang R, Kang L, Xue Q, Wang X, et al. Quercetin inhibits AMPK/TXNIP activation and reduces inflammatory lesions to improve insulin signaling defect in the hypothalamus of high fructose-fed rats. J Nutr Biochem. 2014;25:420-8 pubmed 出版商
  1630. Longman M, Ranieri A, Avkiran M, Snabaitis A. Regulation of PP2AC carboxylmethylation and cellular localisation by inhibitory class G-protein coupled receptors in cardiomyocytes. PLoS ONE. 2014;9:e86234 pubmed 出版商
  1631. Naudin C, Sirvent A, Leroy C, Larive R, Simon V, Pannequin J, et al. SLAP displays tumour suppressor functions in colorectal cancer via destabilization of the SRC substrate EPHA2. Nat Commun. 2014;5:3159 pubmed 出版商
  1632. Li J, Xu Z, Jiang L, Mao J, Zeng Z, Fang L, et al. Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney Int. 2014;86:86-102 pubmed 出版商
  1633. Jespersen J, Mikkelsen U, Nedergaard A, Thorlund J, Schjerling P, Suetta C, et al. Alterations in molecular muscle mass regulators after 8 days immobilizing Special Forces mission. Scand J Med Sci Sports. 2015;25:175-83 pubmed 出版商
  1634. Gorman J, Liu S, Slopack D, Shariati K, Hasanee A, Olenich S, et al. Angiotensin II evokes angiogenic signals within skeletal muscle through co-ordinated effects on skeletal myocytes and endothelial cells. PLoS ONE. 2014;9:e85537 pubmed 出版商
  1635. Zemljic Harpf A, Godoy J, Platoshyn O, Asfaw E, Busija A, Domenighetti A, et al. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci. 2014;127:1104-16 pubmed 出版商
  1636. Morgan K, Black L. Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs. Tissue Eng Part A. 2014;20:1654-67 pubmed 出版商
  1637. Ziegler A, Chidambaram S, Forbes B, Wood T, Levison S. Insulin-like growth factor-II (IGF-II) and IGF-II analogs with enhanced insulin receptor-a binding affinity promote neural stem cell expansion. J Biol Chem. 2014;289:4626-33 pubmed 出版商
  1638. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  1639. Wheeler S, Hammond C, Jornayvaz F, Samuel V, Shulman G, Soroka C, et al. Ost?-/- mice exhibit altered expression of intestinal lipid absorption genes, resistance to age-related weight gain, and modestly improved insulin sensitivity. Am J Physiol Gastrointest Liver Physiol. 2014;306:G425-38 pubmed 出版商
  1640. Wang Y, Xu W, Zhou D, Neckers L, Chen S. Coordinated regulation of serum- and glucocorticoid-inducible kinase 3 by a C-terminal hydrophobic motif and Hsp90-Cdc37 chaperone complex. J Biol Chem. 2014;289:4815-26 pubmed 出版商
  1641. Xia Q, Cai Y, Peng R, Wu G, Shi Y, Jiang W. The CDK1 inhibitor RO3306 improves the response of BRCA-pro?cient breast cancer cells to PARP inhibition. Int J Oncol. 2014;44:735-44 pubmed 出版商
  1642. Borghgraef P, Menuet C, Theunis C, Louis J, Devijver H, Maurin H, et al. Increasing brain protein O-GlcNAc-ylation mitigates breathing defects and mortality of Tau.P301L mice. PLoS ONE. 2013;8:e84442 pubmed 出版商
  1643. Liu X, Chen L, Feng B, Liu G. Reversing effect of sorcin in the drug resistance of human nasopharyngeal carcinoma. Anat Rec (Hoboken). 2014;297:215-21 pubmed 出版商
  1644. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  1645. Wang W, Chen Y, Wang S, Hu N, Cao Z, Wang W, et al. PIASx? ligase enhances SUMO1 modification of PTEN protein as a SUMO E3 ligase. J Biol Chem. 2014;289:3217-30 pubmed 出版商
  1646. Sahlberg S, Gustafsson A, Pendekanti P, Glimelius B, Stenerlow B. The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol. 2014;35:3525-34 pubmed 出版商
  1647. Shi L, Wang J, Ren J, Cheng Y, Ying R, Wu X, et al. KLRG1 impairs CD4+ T cell responses via p16ink4a and p27kip1 pathways: role in hepatitis B vaccine failure in individuals with hepatitis C virus infection. J Immunol. 2014;192:649-57 pubmed 出版商
  1648. Domingues N, Pelletier J, Ostenson C, Castro M. Therapeutic properties of VO(dmpp)2 as assessed by in vitro and in vivo studies in type 2 diabetic GK rats. J Inorg Biochem. 2014;131:115-22 pubmed 出版商
  1649. Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J. 2014;281:1068-84 pubmed 出版商
  1650. Niehoff A, Lechner P, Ratiu O, Reuter S, Hamann N, Bruggemann G, et al. Effect of whole-body vibration and insulin-like growth factor-I on muscle paralysis-induced bone degeneration after botulinum toxin injection in mice. Calcif Tissue Int. 2014;94:373-83 pubmed 出版商
  1651. Yue X, Hariri D, Caballero B, Zhang S, Bartlett M, Kaut O, et al. Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease. Neuroscience. 2014;258:385-400 pubmed 出版商
  1652. Wang Y, Briz V, Chishti A, Bi X, Baudry M. Distinct roles for ?-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 2013;33:18880-92 pubmed 出版商
  1653. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  1654. Haws M, JARAMILLO T, Espinosa F, Widman A, Stuber G, Sparta D, et al. PTEN knockdown alters dendritic spine/protrusion morphology, not density. J Comp Neurol. 2014;522:1171-90 pubmed 出版商
  1655. Qi L, Zhang Y. Truncation of inhibitor of growth family protein 5 effectively induces senescence, but not apoptosis in human tongue squamous cell carcinoma cell line. Tumour Biol. 2014;35:3139-44 pubmed 出版商
  1656. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  1657. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  1658. Dunn C, Lampe P. Injury-triggered Akt phosphorylation of Cx43: a ZO-1-driven molecular switch that regulates gap junction size. J Cell Sci. 2014;127:455-64 pubmed 出版商
  1659. Gong F, Peng X, Sang Y, Qiu M, Luo C, He Z, et al. Dichloroacetate induces protective autophagy in LoVo cells: involvement of cathepsin D/thioredoxin-like protein 1 and Akt-mTOR-mediated signaling. Cell Death Dis. 2013;4:e913 pubmed 出版商
  1660. Bijian K, Lougheed C, Su J, Xu B, Yu H, Wu J, et al. Targeting focal adhesion turnover in invasive breast cancer cells by the purine derivative reversine. Br J Cancer. 2013;109:2810-8 pubmed 出版商
  1661. Chen Z, Morris D, Jiang L, Liu Y, Rui L. SH2B1 in ?-cells regulates glucose metabolism by promoting ?-cell survival and islet expansion. Diabetes. 2014;63:585-95 pubmed 出版商
  1662. Ni H, Du K, You M, Ding W. Critical role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am J Pathol. 2013;183:1815-1825 pubmed 出版商
  1663. Trotter J, Lee G, Kazdoba T, Crowell B, Domogauer J, Mahoney H, et al. Dab1 is required for synaptic plasticity and associative learning. J Neurosci. 2013;33:15652-68 pubmed 出版商
  1664. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R, et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J. 2014;28:131-42 pubmed 出版商
  1665. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  1666. Sáinz Jaspeado M, Huertas Martínez J, Lagares Tena L, Martín Liberal J, Mateo Lozano S, de Alava E, et al. EphA2-induced angiogenesis in ewing sarcoma cells works through bFGF production and is dependent on caveolin-1. PLoS ONE. 2013;8:e71449 pubmed 出版商
  1667. Yoshida R, Nagata M, Nakayama H, Niimori Kita K, Hassan W, Tanaka T, et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab Invest. 2013;93:1068-81 pubmed 出版商
  1668. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  1669. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  1670. Iacovides D, Johnson A, Wang N, Boddapati S, Korkola J, Gray J. Identification and quantification of AKT isoforms and phosphoforms in breast cancer using a novel nanofluidic immunoassay. Mol Cell Proteomics. 2013;12:3210-20 pubmed 出版商
  1671. Hauerslev S, Sveen M, Vissing J, Krag T. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I. PLoS ONE. 2013;8:e66929 pubmed 出版商
  1672. Chang A, Huang J, Battiprolu P, Hill J, Kamm K, Stull J. The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts. PLoS ONE. 2013;8:e66720 pubmed 出版商
  1673. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  1674. Garcia Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478-86 pubmed 出版商
  1675. Mietzsch U, McKenna J, Reith R, Way S, Gambello M. Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants. J Comp Neurol. 2013;521:3817-31 pubmed 出版商
  1676. Griffeth R, Carretero J, Burks D. Insulin receptor substrate 2 is required for testicular development. PLoS ONE. 2013;8:e62103 pubmed 出版商
  1677. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  1678. Zhou D, Tan R, Lin L, Zhou L, Liu Y. Activation of hepatocyte growth factor receptor, c-met, in renal tubules is required for renoprotection after acute kidney injury. Kidney Int. 2013;84:509-20 pubmed 出版商
  1679. Ma T, Galimberti F, Erkmen C, Memoli V, Chinyengetere F, SEMPERE L, et al. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545-55 pubmed 出版商
  1680. Wang Y, Zhao X, Shi D, Chen P, Yu Y, Yang L, et al. Overexpression of SIRT1 promotes high glucose-attenuated corneal epithelial wound healing via p53 regulation of the IGFBP3/IGF-1R/AKT pathway. Invest Ophthalmol Vis Sci. 2013;54:3806-14 pubmed 出版商
  1681. Tokami H, Ago T, Sugimori H, Kuroda J, Awano H, Suzuki K, et al. RANTES has a potential to play a neuroprotective role in an autocrine/paracrine manner after ischemic stroke. Brain Res. 2013;1517:122-32 pubmed 出版商
  1682. Bauckman K, Haller E, Flores I, Nanjundan M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013;4:e592 pubmed 出版商
  1683. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  1684. Benoit Y, Witherspoon M, Laursen K, Guezguez A, Beauséjour M, Beaulieu J, et al. Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells. Exp Cell Res. 2013;319:1463-70 pubmed 出版商
  1685. Busquets Garcia A, Gomis González M, Guegan T, Agustín Pavón C, Pastor A, Mato S, et al. Targeting the endocannabinoid system in the treatment of fragile X syndrome. Nat Med. 2013;19:603-7 pubmed 出版商
  1686. Ni M, Chen Y, Fei T, Li D, Lim E, Liu X, et al. Amplitude modulation of androgen signaling by c-MYC. Genes Dev. 2013;27:734-48 pubmed 出版商
  1687. BENTLEY C, Jurinka S, Kljavin N, Vartanian S, Ramani S, Gonzalez L, et al. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J. 2013;452:313-20 pubmed 出版商
  1688. Luo L, Lu A, Wang Y, Hong A, Chen Y, Hu J, et al. Chronic resistance training activates autophagy and reduces apoptosis of muscle cells by modulating IGF-1 and its receptors, Akt/mTOR and Akt/FOXO3a signaling in aged rats. Exp Gerontol. 2013;48:427-36 pubmed 出版商
  1689. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  1690. Dai J, Shen D, Bian Z, Zhou H, Gan H, Zong J, et al. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS ONE. 2013;8:e53412 pubmed 出版商
  1691. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  1692. Suetta C, Frandsen U, Jensen L, Jensen M, Jespersen J, Hvid L, et al. Aging affects the transcriptional regulation of human skeletal muscle disuse atrophy. PLoS ONE. 2012;7:e51238 pubmed 出版商
  1693. Wang I, Allen M, Goffin D, Zhu X, Fairless A, Brodkin E, et al. Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc Natl Acad Sci U S A. 2012;109:21516-21 pubmed 出版商
  1694. Fan C, Lum M, Xu C, Black J, Wang X. Ubiquitin-dependent regulation of phospho-AKT dynamics by the ubiquitin E3 ligase, NEDD4-1, in the insulin-like growth factor-1 response. J Biol Chem. 2013;288:1674-84 pubmed 出版商
  1695. Kodigepalli K, Dutta P, Bauckman K, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett. 2013;587:5-16 pubmed 出版商
  1696. Mathew J, Loranger A, Gilbert S, Faure R, Marceau N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp Cell Res. 2013;319:474-86 pubmed 出版商
  1697. Sha W, Thompson K, South J, Baron M, Leask A. Loss of PPAR? expression by fibroblasts enhances dermal wound closure. Fibrogenesis Tissue Repair. 2012;5:5 pubmed 出版商
  1698. O Brien T, Gorentla B, Xie D, Srivatsan S, McLeod I, He Y, et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur J Immunol. 2011;41:3361-70 pubmed 出版商
  1699. Li J, Swope D, Raess N, Cheng L, Muller E, Radice G. Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol. 2011;31:1134-44 pubmed 出版商
  1700. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  1701. Meng L, Kohn K, Pommier Y. Dose-response transition from cell cycle arrest to apoptosis with selective degradation of Mdm2 and p21WAF1/CIP1 in response to the novel anticancer agent, aminoflavone (NSC 686,288). Oncogene. 2007;26:4806-16 pubmed