这是一篇来自已证抗体库的有关大鼠 B细胞淋巴瘤2相关的X蛋白 (Bax) 的综述,是根据249篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合B细胞淋巴瘤2相关的X蛋白 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 6f). J Cancer (2021) ncbi
domestic rabbit 单克隆(EPR18283)
  • 免疫印迹; 小鼠; 图 6a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182733)被用于被用于免疫印迹在小鼠样本上 (图 6a). Theranostics (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Int J Oncol (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 1e, 3f
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e, 3f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR18283)
  • 免疫印迹; 小鼠; 图 7c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182733)被用于被用于免疫印迹在小鼠样本上 (图 7c). Int J Biol Sci (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 4e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Int J Oncol (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 7). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上 (图 4h). Redox Biol (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Front Oncol (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:2000; 图 3g
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3g). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫组化在小鼠样本上浓度为1:200. Oncol Rep (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:5000; 图 6
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 6). Mol Med Rep (2021) ncbi
domestic rabbit 单克隆(EPR18283)
  • 免疫印迹; 小鼠; 图 2g
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182733)被用于被用于免疫印迹在小鼠样本上 (图 2g). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 图 6d
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上 (图 6d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:2000; 图 5b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5b). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化; 小鼠; 1:1000; 图 9d
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:500; 图 2d
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2d). Int J Med Sci (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 7a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Asian Pac J Cancer Prev (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 6a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Oncol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 2b, 4d
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab53154)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b, 4d). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫细胞化学; 人类; 1:100; 图 1d
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1d). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Transl Med (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Neurosci (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:2000; 图 1e, 2c, 5g
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 1e, 2c, 5g). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 1f). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 3c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 2d, 2e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2d, 2e). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 s3
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 s3). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(EPR18283)
  • 免疫印迹; 人类; 1:2000; 图 5b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182733)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5b). Biol Res (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 9a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab53154)被用于被用于免疫印迹在大鼠样本上 (图 2b). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EPR18284)
  • 免疫印迹; 人类; 1:1000; 图 8a, 8h
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182734)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a, 8h). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab53154)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 2c). Redox Biol (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 4b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Am J Transl Res (2017) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Int J Cancer (2017) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 图 6g
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上 (图 6g). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(EPR18283)
  • 免疫印迹; 大鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab182733)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab111391)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Onco Targets Ther (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s5
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, 32503)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 7a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 s2
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Front Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 图 2e
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上 (图 2e). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫沉淀; 大鼠; 图 4
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫沉淀在大鼠样本上 (图 4) 和 被用于免疫印迹在大鼠样本上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 6a). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠; 1:1000; 图 8a
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a). J Proteomics (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹基因敲除验证; 仓鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹基因敲除验证在仓鼠样本上浓度为1:2000 (图 2). Biotechnol J (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在大鼠样本上. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, Ab32503)被用于被用于免疫印迹在大鼠样本上. Apoptosis (2015) ncbi
domestic rabbit 单克隆(E63)
  • 免疫组化-石蜡切片; 人类; 1:5000
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Epitomics, ab32503)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000. J Am Coll Surg (2014) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2014) ncbi
domestic rabbit 单克隆(E63)
  • 免疫印迹; 人类; 1:1000
艾博抗(上海)贸易有限公司B细胞淋巴瘤2相关的X蛋白抗体(Abcam, ab32503)被用于被用于免疫印迹在人类样本上浓度为1:1000. FEBS Lett (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上 (图 4a). Front Immunol (2021) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 8d, 8e
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 8d, 8e). Cancer Cell Int (2021) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 小鼠; 1:500; 图 8d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, 6A7)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 8d). Cell Death Dis (2020) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上 (图 3a). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 1:300; 图 4b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4b). Med Sci Monit (2020) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:1500; 图 2c
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa, sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:1500 (图 2c). Biomolecules (2019) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 1:2000; 图 3c
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3c). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(4H32)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa, sc-70,407)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 1:200; 图 4b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4b). Cardiovasc Res (2018) ncbi
小鼠 单克隆(B-9)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 1:400; 图 5a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5a). J Biol Chem (2018) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology Inc, sc-7480)被用于被用于免疫印迹在人类样本上 (图 3d). PLoS ONE (2018) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类; 1:200; 图 3b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, 6A7)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3b). Hepatology (2017) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 犬; 图 s5b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology Inc, sc-23959)被用于被用于免疫印迹在犬样本上 (图 s5b). Oncogene (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Physiol Biochem (2017) ncbi
小鼠 单克隆(4H32)
  • 免疫印迹; 人类; 1:2000; 图 2C
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa cruz, sc-70407)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2C). Mol Med Rep (2017) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Apoptosis (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上 (图 4a). Anticancer Res (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). PLoS ONE (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Mol Med (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4G
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4G). Oncotarget (2017) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 10a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在人类样本上 (图 10a). Onco Targets Ther (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; gerbils; 1:1000; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, SC-7480)被用于被用于免疫印迹在gerbils样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-23959)被用于被用于免疫印迹在小鼠样本上 (图 2b). Lab Invest (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:250; 图 3a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, Sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 3a). Alcohol (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Mol Med Rep (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, 20067)被用于被用于免疫印迹在人类样本上 (图 2). BMC Cancer (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc20067)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(2D2)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于流式细胞仪在人类样本上 (图 4a). Eur J Cell Biol (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
小鼠 单克隆(6D149)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-70405)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(2D2)
  • 流式细胞仪; 人类; 图 3a, 3b, 3c, 3d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067PE)被用于被用于流式细胞仪在人类样本上 (图 3a, 3b, 3c, 3d). Nutr Cancer (2016) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; pigs ; 图 3
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(santa Cruz, sc-23959)被用于被用于免疫印迹在pigs 样本上 (图 3). Peerj (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncol Lett (2015) ncbi
小鼠 单克隆(B-9)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(SCBT, B-9)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在小鼠样本上 (图 1d). Int J Mol Med (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 6g
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(SantaCruz, sc7480)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 6g). Cancer Cell (2016) ncbi
小鼠 单克隆(4H32)
  • 免疫组化; 大鼠; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-70407)被用于被用于免疫组化在大鼠样本上 (图 2). Nutr Cancer (2016) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Neuroscience (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:500; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Mol Brain (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上 (图 5). Cancer Sci (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, B-9)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(santa Cruz, sc-7480)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 2). Acta Pharmacol Sin (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 3
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(santa Cruz, sc-7480)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 3). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, B-9)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, SC-7480)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在小鼠样本上浓度为1:200. FASEB J (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Med Rep (2015) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫印迹在小鼠样本上 (图 5). Int J Biol Sci (2015) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa cruz, SC-7480)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-7480)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Rep (2014) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-20067)被用于被用于免疫印迹在人类样本上 (图 1). Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Technology, sc-23959)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Age (Dordr) (2014) ncbi
小鼠 单克隆(2D2)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-20067)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫组化; 小鼠; 1:100
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2014) ncbi
小鼠 单克隆(6D149)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-70405)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-23959)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(YTH6A7)
  • 免疫印迹; 小鼠; 1:300-1:600; 图 6
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, Sc-80658)被用于被用于免疫印迹在小鼠样本上浓度为1:300-1:600 (图 6). J Neuroinflammation (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-23959)被用于被用于免疫印迹在小鼠样本上 (图 4). J Am Soc Nephrol (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, 6A7)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫沉淀; 人类
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-23959)被用于被用于免疫沉淀在人类样本上. Apoptosis (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫细胞化学; 小鼠; 1:200
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-23959)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Cell Death Differ (2013) ncbi
小鼠 单克隆(6A7)
  • 免疫细胞化学; 人类; 1:500
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa, 6A7)被用于被用于免疫细胞化学在人类样本上浓度为1:500. J Biol Chem (2011) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz Biotechnology, sc-7480)被用于被用于免疫印迹在人类样本上浓度为1:200. Gut (2007) ncbi
小鼠 单克隆(6A7)
  • 免疫沉淀; 猕猴
  • 免疫印迹; 猕猴
圣克鲁斯生物技术B细胞淋巴瘤2相关的X蛋白抗体(Santa Cruz, sc-23959)被用于被用于免疫沉淀在猕猴样本上 和 被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
赛默飞世尔
小鼠 单克隆(6A7)
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Fishers, MA5-14003)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Antioxidants (Basel) (2021) ncbi
小鼠 单克隆(6A7)
  • 免疫组化; 人类; 1:500; 图 8e
  • 免疫印迹; 人类; 图 2d
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Scientific, MA5-14003)被用于被用于免疫组化在人类样本上浓度为1:500 (图 8e) 和 被用于免疫印迹在人类样本上 (图 2d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(6A7)
  • 免疫细胞化学; 人类; 图 5c
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Fisher, 14-6997-81)被用于被用于免疫细胞化学在人类样本上 (图 5c). Cell (2019) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Fisher, 33-6600)被用于被用于免疫印迹在大鼠样本上 (图 3b). Clin Exp Pharmacol Physiol (2017) ncbi
小鼠 单克隆(6A7)
  • 流式细胞仪; 人类
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Scientific, MA5-14003)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(6A7)
  • 免疫组化-石蜡切片; 大鼠; 1:50
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Thermo Scientific, MA5-14003)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50. Diabetol Metab Syndr (2014) ncbi
小鼠 单克隆(6A7)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2A
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Biosource, 6A7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2A). Neuropathology (2008) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Neomarkers, 6A7)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2007) ncbi
小鼠 单克隆(6A7)
  • 免疫组化; 大鼠; 1:100; 表 1
赛默飞世尔B细胞淋巴瘤2相关的X蛋白抗体(Zymed, 33-6600)被用于被用于免疫组化在大鼠样本上浓度为1:100 (表 1). Brain Res (2002) ncbi
Novus Biologicals
小鼠 单克隆(6A7)
  • 免疫印迹; 人类; 图 4c
Novus BiologicalsB细胞淋巴瘤2相关的X蛋白抗体(Novus, NBP1-28566)被用于被用于免疫印迹在人类样本上 (图 4c). J Pathol (2019) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 大鼠; 1:500; 图 7c
Novus BiologicalsB细胞淋巴瘤2相关的X蛋白抗体(Novus Biologicals, NBP1-28566)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7c). Neuropharmacology (2018) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
Enzo Life SciencesB细胞淋巴瘤2相关的X蛋白抗体(Enzo Life Sciences, ADI-AAS-040)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Metabolism (2020) ncbi
武汉博士德生物工程有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2500; 图 7
武汉博士德生物工程有限公司B细胞淋巴瘤2相关的X蛋白抗体(Boster, A00183)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 7). Brain Behav (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上 (图 4a). Front Cardiovasc Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signalling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell signaling, 2772 s)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 7a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 7a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5b). J Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在大鼠样本上 (图 7b). Peerj (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772)被用于被用于免疫印迹在小鼠样本上 (图 4f). Mol Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6h
  • 免疫印迹; 大鼠; 图 7f
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上 (图 6h) 和 被用于免疫印迹在大鼠样本上 (图 7f). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c, 4e
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell signaling technology, 2772)被用于被用于免疫印迹在人类样本上 (图 4c, 4e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signalling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2,772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 5a) 和 被用于免疫印迹在小鼠样本上 (图 5b). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Oncol Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上 (图 1d). Drug Des Devel Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上 (图 2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). J Biomed Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772S)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(cell signaling technologies, 2772)被用于被用于免疫印迹在人类样本上 (图 4a). Front Genet (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Aging Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上 (图 5a). Toxicology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signalling Technology, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Redox Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 2d). Gene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(cell signalling, 2772)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Oxid Med Cell Longev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7d). Theranostics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(cell signalling, 2772)被用于被用于免疫印迹在小鼠样本上 (图 5e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 5). Reprod Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Appl Physiol Nutr Metab (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在大鼠样本上浓度为1:500. J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(CST, 2772)被用于被用于免疫印迹在小鼠样本上 (图 5e). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Biochem Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). EMBO Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Nanomedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 图 4c
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫沉淀在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5e
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2722)被用于被用于免疫印迹在大鼠样本上 (图 5e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 s3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Tech, 2772S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 2g). Antioxid Redox Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 4). Cell Death Discov (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(ell Signaling Technology, 2772)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 s6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Arch Toxicol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 9
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell signaling, 2772S)被用于被用于免疫印迹在人类样本上 (图 9). Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在人类样本上 (图 6d). Biochem Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technologies, CST2772)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling Technology, 2772)被用于被用于免疫印迹在小鼠样本上 (图 3d). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4f
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, 2772)被用于被用于免疫印迹在大鼠样本上 (图 4f). Cell Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司B细胞淋巴瘤2相关的X蛋白抗体(Cell Signaling, CS2772)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Death Differ (2016) ncbi
碧迪BD
小鼠 单克隆(6A7)
  • 免疫印迹; 人类
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Pharmingen, 556467)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2020) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Pharmingen, 556467)被用于被用于免疫印迹在人类样本上. Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(6A7)
  • 流式细胞仪; 人类; 1:100
  • 免疫印迹; 人类; 图 4e
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Biosciences, 556467)被用于被用于流式细胞仪在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上 (图 4e). Cell Death Differ (2017) ncbi
小鼠 单克隆(6A7)
  • 免疫沉淀; 人类; 图 4c
  • 免疫印迹; 人类; 图 4c
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Biosciences, 556467)被用于被用于免疫沉淀在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4c). Oncogene (2017) ncbi
小鼠 单克隆(6A7)
  • 免疫细胞化学; 人类; 图 3a
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Pharmingen, 6A7)被用于被用于免疫细胞化学在人类样本上 (图 3a). Oncotarget (2015) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 大鼠; 图 10
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(Pharmingen, 556467)被用于被用于免疫印迹在大鼠样本上 (图 10). PLoS ONE (2015) ncbi
小鼠 单克隆(6A7)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类; 图 4b
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD, 6A7)被用于被用于免疫沉淀在人类样本上 和 被用于免疫细胞化学在人类样本上 (图 4b). Cell Death Dis (2015) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类; 1:500
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Biosciences, 556467)被用于被用于免疫印迹在人类样本上浓度为1:500. Chem Biol Interact (2015) ncbi
小鼠 单克隆(6A7)
  • 免疫印迹; 人类
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Pharmingen, 6A7)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2014) ncbi
小鼠 单克隆(6A7)
  • 流式细胞仪; 人类
碧迪BDB细胞淋巴瘤2相关的X蛋白抗体(BD Pharmingen, 6A7)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2011) ncbi
文章列表
  1. Liu W, Feng Q, Liao W, Li E, Wu L. TUG1 promotes the expression of IFITM3 in hepatocellular carcinoma by competitively binding to miR-29a. J Cancer. 2021;12:6905-6920 pubmed 出版商
  2. Fang S, Sun S, Cai H, Zou X, Wang S, Hao X, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1 +/- mice display increases atherosclerotic plaque stability. Theranostics. 2021;11:9358-9375 pubmed 出版商
  3. Cao Y, Li Q, Yang Y, Ke Z, Chen S, Li M, et al. Cardioprotective Effect of Stem-Leaf Saponins From Panax notoginseng on Mice With Sleep Derivation by Inhibiting Abnormal Autophagy Through PI3K/Akt/mTOR Pathway. Front Cardiovasc Med. 2021;8:694219 pubmed 出版商
  4. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  5. Tian N, Hu L, Lu Y, Tong L, Feng M, Liu Q, et al. TKT maintains intestinal ATP production and inhibits apoptosis-induced colitis. Cell Death Dis. 2021;12:853 pubmed 出版商
  6. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  7. Huang J, Xiao R, Wang X, Khadka B, Fang Z, Yu M, et al. MicroRNA‑93 knockdown inhibits acute myeloid leukemia cell growth via inactivating the PI3K/AKT pathway by upregulating DAB2. Int J Oncol. 2021;59: pubmed 出版商
  8. Zuo Y, Xie J, Li X, Li Y, Thirupathi A, Zhang J, et al. Ferritinophagy-Mediated Ferroptosis Involved in Paraquat-Induced Neurotoxicity of Dopaminergic Neurons: Implication for Neurotoxicity in PD. Oxid Med Cell Longev. 2021;2021:9961628 pubmed 出版商
  9. Liu W, Long Q, Zhang W, Zeng D, Hu B, Liu S, et al. miRNA-221-3p derived from M2-polarized tumor-associated macrophage exosomes aggravates the growth and metastasis of osteosarcoma through SOCS3/JAK2/STAT3 axis. Aging (Albany NY). 2021;13:19760-19775 pubmed 出版商
  10. Zheleznyak A, Mixdorf M, Marsala L, Prior J, Yang X, Cui G, et al. Orthogonal targeting of osteoclasts and myeloma cells for radionuclide stimulated dynamic therapy induces multidimensional cell death pathways. Theranostics. 2021;11:7735-7754 pubmed 出版商
  11. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  12. Gao L, Meng J, Yue C, Wu X, Su Q, Wu H, et al. Integrative analysis the characterization of peroxiredoxins in pan-cancer. Cancer Cell Int. 2021;21:366 pubmed 出版商
  13. Yue Z, Jiang Z, Ruan B, Duan J, Song P, Liu J, et al. Disruption of myofibroblastic Notch signaling attenuates liver fibrosis by modulating fibrosis progression and regression. Int J Biol Sci. 2021;17:2135-2146 pubmed 出版商
  14. Cho J, Lee J, Kim H, Lee H, Fang Z, Kwon H, et al. Ethyl Acetate Fraction of Amomum villosum var. xanthioides Attenuates Hepatic Endoplasmic Reticulum Stress-Induced Non-Alcoholic Steatohepatitis via Improvement of Antioxidant Capacities. Antioxidants (Basel). 2021;10: pubmed 出版商
  15. Zou S, Gao Y, Zhang S. lncRNA HCP5 acts as a ceRNA to regulate EZH2 by sponging miR‑138‑5p in cutaneous squamous cell carcinoma. Int J Oncol. 2021;59: pubmed 出版商
  16. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  17. Bai Y, Pei W, Zhang X, Zheng H, Hua C, Min J, et al. ApoM is an important potential protective factor in the pathogenesis of primary liver cancer. J Cancer. 2021;12:4661-4671 pubmed 出版商
  18. Chen F, Han J, Wang D. Identification of key microRNAs and the underlying molecular mechanism in spinal cord ischemia-reperfusion injury in rats. Peerj. 2021;9:e11454 pubmed 出版商
  19. Basse A, Agerholm M, Farup J, Dalbram E, Nielsen J, Ørtenblad N, et al. Nampt controls skeletal muscle development by maintaining Ca2+ homeostasis and mitochondrial integrity. Mol Metab. 2021;53:101271 pubmed 出版商
  20. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  21. Hong H, Jin Z, Qian T, Xu X, Zhu X, Fei Q, et al. Falcarindiol Enhances Cisplatin Chemosensitivity of Hepatocellular Carcinoma via Down-Regulating the STAT3-Modulated PTTG1 Pathway. Front Pharmacol. 2021;12:656697 pubmed 出版商
  22. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  23. Liu Y, Xu S, Zhang H, Qian K, Huang J, Gu X, et al. Stimulation of α7-nAChRs coordinates autophagy and apoptosis signaling in experimental knee osteoarthritis. Cell Death Dis. 2021;12:448 pubmed 出版商
  24. Yu F, Ma R, Liu C, Zhang L, Feng K, Wang M, et al. SQSTM1/p62 Promotes Cell Growth and Triggers Autophagy in Papillary Thyroid Cancer by Regulating the AKT/AMPK/mTOR Signaling Pathway. Front Oncol. 2021;11:638701 pubmed 出版商
  25. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  26. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  27. Guo J, Zhu H, Li Q, Dong J, Xiong W, Yu K. SPRY4 suppresses proliferation and induces apoptosis of colorectal cancer cells by repressing oncogene EZH2. Aging (Albany NY). 2021;13:11665-11677 pubmed 出版商
  28. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  29. Tian Y, Zhang M, Zhao A, Kong L, Wang J, Shen W, et al. Single-cell transcriptomic profiling provides insights into the toxic effects of Zearalenone exposure on primordial follicle assembly. Theranostics. 2021;11:5197-5213 pubmed 出版商
  30. Cao X, Ma Q, Wang B, Qian Q, Liu N, Liu T, et al. Silencing long non-coding RNA MIAT ameliorates myocardial dysfunction induced by myocardial infarction via MIAT/miR-10a-5p/EGR2 axis. Aging (Albany NY). 2021;13:11188-11206 pubmed 出版商
  31. Liu X, Zhang H, Zhou P, Yu Y, Zhang H, Chen L, et al. CREB1 acts via the miR‑922/ARID2 axis to enhance malignant behavior of liver cancer cells. Oncol Rep. 2021;45: pubmed 出版商
  32. Yin S, Li L, Tao Y, Yu J, Wei S, Liu M, et al. The Inhibitory Effect of Artesunate on Excessive Endoplasmic Reticulum Stress Alleviates Experimental Colitis in Mice. Front Pharmacol. 2021;12:629798 pubmed 出版商
  33. Kim D, Park J, Choi H, Kim C, Bae E, Ma S, et al. The critical role of FXR is associated with the regulation of autophagy and apoptosis in the progression of AKI to CKD. Cell Death Dis. 2021;12:320 pubmed 出版商
  34. Jin X, Zhu L, Xiao S, Cui Z, Tang J, Yu J, et al. MST1 inhibits the progression of breast cancer by regulating the Hippo signaling pathway and may serve as a prognostic biomarker. Mol Med Rep. 2021;23: pubmed 出版商
  35. Shen Z, Ji K, Cai Z, Huang C, He X, Xu H, et al. Inhibition of HDAC6 by Tubastatin A reduces chondrocyte oxidative stress in chondrocytes and ameliorates mouse osteoarthritis by activating autophagy. Aging (Albany NY). 2021;13:9820-9837 pubmed 出版商
  36. Liu M, Li W, Song F, Zhang L, Sun X. Silencing of lncRNA MIAT alleviates LPS-induced pneumonia via regulating miR-147a/NKAP/NF-κB axis. Aging (Albany NY). 2020;13:2506-2518 pubmed 出版商
  37. Liang X, Yan Z, Ma W, Qian Y, Zou X, Cui Y, et al. Peroxiredoxin 4 protects against ovarian ageing by ameliorating D-galactose-induced oxidative damage in mice. Cell Death Dis. 2020;11:1053 pubmed 出版商
  38. Xiao L, Zhong M, Huang Y, Zhu J, Tang W, Li D, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging (Albany NY). 2020;12:21706-21729 pubmed 出版商
  39. Chen Z, Zhou Q, Liu C, Zeng Y, Yuan S. Klotho deficiency aggravates diabetes-induced podocyte injury due to DNA damage caused by mitochondrial dysfunction. Int J Med Sci. 2020;17:2763-2772 pubmed 出版商
  40. Omairi I, Kobeissy F, Nasreddine S. Anti-Oxidant, Anti-Hemolytic Effects of Crataegus aronia Leaves and Its Anti- Proliferative Effect Enhance Cisplatin Cytotoxicity in A549 Human Lung Cancer Cell Line. Asian Pac J Cancer Prev. 2020;21:2993-3003 pubmed 出版商
  41. Tang S, Wu W, Wan H, Wu X, Chen H. Knockdown of NHP2 inhibits hepatitis B virus X protein-induced hepatocarcinogenesis via repressing TERT expression and disrupting the stability of telomerase complex. Aging (Albany NY). 2020;12:19365-19374 pubmed 出版商
  42. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  43. He S, Fang X, Xia X, Hou T, Zhang T. Targeting CDK9: A novel biomarker in the treatment of endometrial cancer. Oncol Rep. 2020;44:1929-1938 pubmed 出版商
  44. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  45. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  46. Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, et al. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep. 2020;22:948-956 pubmed 出版商
  47. Vu M, Kassouf N, Ofili R, Lund T, Bell C, Appiah S. Doxorubicin selectively induces apoptosis through the inhibition of a novel isoform of Bcl‑2 in acute myeloid leukaemia MOLM‑13 cells with reduced Beclin 1 expression. Int J Oncol. 2020;57:113-121 pubmed 出版商
  48. Simula L, Corrado M, Accordi B, Di Rita A, Nazio F, Antonucci Y, et al. JNK1 and ERK1/2 modulate lymphocyte homeostasis via BIM and DRP1 upon AICD induction. Cell Death Differ. 2020;: pubmed 出版商
  49. Tibaldi E, Federti E, Matte A, Iatcenko I, Wilson A, Riccardi V, et al. Oxidation Impacts the Intracellular Signaling Machinery in Hematological Disorders. Antioxidants (Basel). 2020;9: pubmed 出版商
  50. Edwards G, Perkins G, Kim K, Kong Y, Lee Y, Choi S, et al. Loss of AKAP1 triggers Drp1 dephosphorylation-mediated mitochondrial fission and loss in retinal ganglion cells. Cell Death Dis. 2020;11:254 pubmed 出版商
  51. Zhao J, Li G, Zhao X, Lin X, Gao Y, Raimundo N, et al. Down-regulation of AMPK signaling pathway rescues hearing loss in TFB1 transgenic mice and delays age-related hearing loss. Aging (Albany NY). 2020;12:5590-5611 pubmed 出版商
  52. Sozen E, Yazgan B, Tok O, Demirel T, Ercan F, Proto J, et al. Cholesterol induced autophagy via IRE1/JNK pathway promotes autophagic cell death in heart tissue. Metabolism. 2020;106:154205 pubmed 出版商
  53. Feng C, Zhang H, Zeng A, Bai M, Wang X. Tumor-Suppressive MicroRNA-216b Binds to TPX2, Activating the p53 Signaling in Human Cutaneous Squamous Cell Carcinoma. Mol Ther Nucleic Acids. 2020;20:186-195 pubmed 出版商
  54. Guo Y, Zhang Z, Wang Z, Liu G, Liu Y, Wang H. Astragalus polysaccharides inhibit ovarian cancer cell growth via microRNA-27a/FBXW7 signaling pathway. Biosci Rep. 2020;40: pubmed 出版商
  55. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  56. Gao Y, Dai X, Li Y, Li G, Lin X, Ai C, et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J Transl Med. 2020;18:114 pubmed 出版商
  57. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  58. Zhuang K, Zuo Y, Sherchan P, Wang J, Yan X, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci. 2019;13:1441 pubmed 出版商
  59. Xiang S, Chen K, Xu L, Wang T, Guo C. Bergenin Exerts Hepatoprotective Effects by Inhibiting the Release of Inflammatory Factors, Apoptosis and Autophagy via the PPAR-γ Pathway. Drug Des Devel Ther. 2020;14:129-143 pubmed 出版商
  60. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  61. Jiang L, Xu K, Li J, Zhou X, Xu L, Wu Z, et al. Nesfatin-1 suppresses interleukin-1β-induced inflammation, apoptosis, and cartilage matrix destruction in chondrocytes and ameliorates osteoarthritis in rats. Aging (Albany NY). 2020;12:1760-1777 pubmed 出版商
  62. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  63. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  64. Molagoda I, Lee K, Choi Y, Kim G. Anthocyanins from Hibiscus syriacus L. Inhibit Oxidative Stress-Mediated Apoptosis by Activating the Nrf2/HO-1 Signaling Pathway. Antioxidants (Basel). 2020;9: pubmed 出版商
  65. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  66. Chen X, Zhao Y, Xu J, Bao J, Zhao J, Chen J, et al. The Nephroprotective Effect of TNF Receptor-Associated Factor 6 (TRAF6) Blockade on LPS-Induced Acute Renal Injury Through the Inhibition if Inflammation and Oxidative Stress. Med Sci Monit. 2020;26:e919698 pubmed 出版商
  67. Modi J, Menzie Suderam J, Xu H, Trujillo P, Medley K, Marshall M, et al. Mode of action of granulocyte-colony stimulating factor (G-CSF) as a novel therapy for stroke in a mouse model. J Biomed Sci. 2020;27:19 pubmed 出版商
  68. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  69. Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer. 2019;19:1157 pubmed 出版商
  70. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  71. Liu J, Yao L, Zhang M, Jiang J, Yang M, Wang Y. Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY). 2019;11:7830-7846 pubmed 出版商
  72. Yan P, Su Z, Zhang Z, Gao T. LncRNA NEAT1 enhances the resistance of anaplastic thyroid carcinoma cells to cisplatin by sponging miR‑9‑5p and regulating SPAG9 expression. Int J Oncol. 2019;55:988-1002 pubmed 出版商
  73. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  74. Gao L, Wang Z, Lu D, Huang J, Liu J, Hong L. Paeonol induces cytoprotective autophagy via blocking the Akt/mTOR pathway in ovarian cancer cells. Cell Death Dis. 2019;10:609 pubmed 出版商
  75. Zhang X, Du K, Lou Z, Ding K, Zhang F, Zhu J, et al. The CtBP1-HDAC1/2-IRF1 transcriptional complex represses the expression of the long noncoding RNA GAS5 in human osteosarcoma cells. Int J Biol Sci. 2019;15:1460-1471 pubmed 出版商
  76. Zierhut C, Yamaguchi N, Paredes M, Luo J, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell. 2019;178:302-315.e23 pubmed 出版商
  77. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  78. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  79. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  80. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  81. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  82. Li Z, Zhang S, Li J, Zeng H, Wang Y, Huang Y. Nerve regeneration in rat peripheral nerve allografts: Evaluation of cold-inducible RNA-binding protein in nerve storage and regeneration. J Comp Neurol. 2019;527:2885-2895 pubmed 出版商
  83. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  84. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  85. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  86. Yu C, Li C, Chen I, Lai M, Lin Z, Korla P, et al. YWHAZ amplification/overexpression defines aggressive bladder cancer and contributes to chemo-/radio-resistance by suppressing caspase-mediated apoptosis. J Pathol. 2019;248:476-487 pubmed 出版商
  87. Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol. 2019;22:101157 pubmed 出版商
  88. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  89. Yan M, Wang J, Ren Y, Li L, He W, Zhang Y, et al. Over-expression of FSIP1 promotes breast cancer progression and confers resistance to docetaxel via MRP1 stabilization. Cell Death Dis. 2019;10:204 pubmed 出版商
  90. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  91. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  92. Yuan Z, Zhang H, Hasnat M, Ding J, Chen X, Liang P, et al. A new perspective of triptolide-associated hepatotoxicity: Liver hypersensitivity upon LPS stimulation. Toxicology. 2019;414:45-56 pubmed 出版商
  93. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  94. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  95. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  96. Luff S, Kao C, Papoutsakis E. Role of p53 and transcription-independent p53-induced apoptosis in shear-stimulated megakaryocytic maturation, particle generation, and platelet biogenesis. PLoS ONE. 2018;13:e0203991 pubmed 出版商
  97. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  98. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  99. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  100. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  101. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  102. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  103. Moncsek A, Al Suraih M, Trussoni C, O Hara S, Splinter P, Zuber C, et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology. 2017;: pubmed 出版商
  104. Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med. 2017;14:593-599 pubmed 出版商
  105. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  106. Zhang F, Zhu J, Li J, Zhu F, Zhang P. IRF2-INPP4B axis participates in the development of acute myeloid leukemia by regulating cell growth and survival. Gene. 2017;627:9-14 pubmed 出版商
  107. Angori S, Capanni C, Faulkner G, Bean C, Boriani G, Lattanzi G, et al. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress. Cell Physiol Biochem. 2017;42:169-184 pubmed 出版商
  108. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  109. Lian W, Zhang L, Yang L, Chen W. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis. 2017;22:933-941 pubmed 出版商
  110. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  111. Gao Y, Zhuang Z, Gao S, Li X, Zhang Z, Ye Z, et al. Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. Am J Transl Res. 2017;9:887-899 pubmed
  112. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  113. Paterniti I, Campolo M, Siracusa R, Cordaro M, Di Paola R, Calabrese V, et al. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE. 2017;12:e0174470 pubmed 出版商
  114. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  115. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  116. Hong Y, Hong Y, Choi Y, Yeo S, Jin S, Lee S, et al. The Short Isoform of DNAJB6 Protects against 1-Methyl-4-phenylpridinium Ion-Induced Apoptosis in LN18 Cells via Inhibiting Both ROS Formation and Mitochondrial Membrane Potential Loss. Oxid Med Cell Longev. 2017;2017:7982389 pubmed 出版商
  117. Tian Y, Wu X, Guo S, Ma L, Huang W, Zhao X. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2. Int J Mol Med. 2017;39:869-878 pubmed 出版商
  118. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  119. Dong Q, Li J, Wu Q, Zhao N, Qian C, Ding D, et al. Blockage of transient receptor potential vanilloid 4 alleviates myocardial ischemia/reperfusion injury in mice. Sci Rep. 2017;7:42678 pubmed 出版商
  120. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  121. Yuan H, Tan B, Gao S. Tenovin-6 impairs autophagy by inhibiting autophagic flux. Cell Death Dis. 2017;8:e2608 pubmed 出版商
  122. Abbaspour Babaei M, Zaman Huri H, Kamalidehghan B, Yeap S, Ahmadipour F. Apoptotic induction and inhibition of NF-?B signaling pathway in human prostatic cancer PC3 cells by natural compound 2,2'-oxybis (4-allyl-1-methoxybenzene), biseugenol B, from Litsea costalis: an in vitro study. Onco Targets Ther. 2017;10:277-294 pubmed 出版商
  123. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  124. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  125. Choi I, Hwang L, Jin J, Ko I, Kim S, Shin M, et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp Ther Med. 2017;13:107-116 pubmed 出版商
  126. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  127. Alcoba D, Schneider J, Arruda L, Martiny P, Capp E, von Eye Corleta H, et al. Brilliant cresyl blue staining does not present cytotoxic effects on human luteinized follicular cells, according to gene/protein expression, as well as to cytotoxicity tests. Reprod Biol. 2017;17:60-68 pubmed 出版商
  128. Brasacchio D, Alsop A, Noori T, Lufti M, Iyer S, Simpson K, et al. Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death Differ. 2017;24:961-970 pubmed 出版商
  129. Hu N, Chang H, Du B, Zhang Q, Arfat Y, Dang K, et al. Tetramethylpyrazine ameliorated disuse-induced gastrocnemius muscle atrophy in hindlimb unloading rats through suppression of Ca2+/ROS-mediated apoptosis. Appl Physiol Nutr Metab. 2017;42:117-127 pubmed 出版商
  130. Grossi M, Bhattachariya A, Nordström I, Turczynska K, Svensson D, Albinsson S, et al. Pyk2 inhibition promotes contractile differentiation in arterial smooth muscle. J Cell Physiol. 2017;232:3088-3102 pubmed 出版商
  131. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  132. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  133. Xiao F, Zhang J, Zhang C, An W. Hepatic stimulator substance inhibits calcium overflow through the mitochondria-associated membrane compartment during nonalcoholic steatohepatitis. Lab Invest. 2017;97:289-301 pubmed 出版商
  134. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  135. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  136. Liu Z, Gan L, Wu T, Feng F, Luo D, Gu H, et al. Adiponectin reduces ER stress-induced apoptosis through PPARα transcriptional regulation of ATF2 in mouse adipose. Cell Death Dis. 2016;7:e2487 pubmed 出版商
  137. Yang S, Lee D, Shin J, Lee S, Baek S, Kim J, et al. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med. 2017;9:61-77 pubmed 出版商
  138. Shi D, Liu Y, Xi R, Zou W, Wu L, Zhang Z, et al. Caveolin-1 contributes to realgar nanoparticle therapy in human chronic myelogenous leukemia K562 cells. Int J Nanomedicine. 2016;11:5823-5835 pubmed
  139. Singh A, Agrahari A, Singh R, Yadav S, Srivastava V, Parmar D. Imprinting of cerebral cytochrome P450s in offsprings prenatally exposed to cypermethrin augments toxicity on rechallenge. Sci Rep. 2016;6:37426 pubmed 出版商
  140. Tu S, Lin Y, Huang C, Yang P, Chang H, Chang C, et al. Protein phosphatase Mg2+/Mn2+ dependent 1F promotes smoking-induced breast cancer by inactivating phosphorylated-p53-induced signals. Oncotarget. 2016;7:77516-77531 pubmed 出版商
  141. Dey K, Bharti R, Dey G, Pal I, Rajesh Y, Chavan S, et al. S100A7 has an oncogenic role in oral squamous cell carcinoma by activating p38/MAPK and RAB2A signaling pathway. Cancer Gene Ther. 2016;23:382-391 pubmed 出版商
  142. Ulbrich F, Kaufmann K, Meske A, Lagrèze W, Augustynik M, Buerkle H, et al. The CORM ALF-186 Mediates Anti-Apoptotic Signaling via an Activation of the p38 MAPK after Ischemia and Reperfusion Injury in Retinal Ganglion Cells. PLoS ONE. 2016;11:e0165182 pubmed 出版商
  143. Matsuura K, Huang N, Cocce K, Zhang L, Kornbluth S. Downregulation of the proapoptotic protein MOAP-1 by the UBR5 ubiquitin ligase and its role in ovarian cancer resistance to cisplatin. Oncogene. 2017;36:1698-1706 pubmed 出版商
  144. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  145. Park S, Jo D, Jo S, Shin D, Shim S, Jo Y, et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget. 2016;7:65957-65967 pubmed 出版商
  146. Suman S, Kumar S, N GOUEMO P, Datta K. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 2016;54:45-50 pubmed 出版商
  147. Li H, Yang X, Wang G, Li X, Tao D, Hu J, et al. KDM4B plays an important role in mitochondrial apoptosis by upregulating HAX1 expression in colorectal cancer. Oncotarget. 2016;7:57866-57877 pubmed 出版商
  148. Liu Y, Wang Y, Ding G, Yang T, Yao L, Hua J, et al. JAK2 inhibitor combined with DC-activated AFP-specific T-cells enhances antitumor function in a Fas/FasL signal-independent pathway. Onco Targets Ther. 2016;9:4425-33 pubmed 出版商
  149. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  150. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  151. Martinez L, Thames E, Kim J, Chaudhuri G, Singh R, Pervin S. Increased sensitivity of African American triple negative breast cancer cells to nitric oxide-induced mitochondria-mediated apoptosis. BMC Cancer. 2016;16:559 pubmed 出版商
  152. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  153. Yu X, Sun K, Tang X, Zhou C, Sun H, Yan Z, et al. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett. 2016;12:983-988 pubmed
  154. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork Geleta A, Blecha J, Endaya B, et al. Selective Disruption of Respiratory Supercomplexes as a New Strategy to Suppress Her2high Breast Cancer. Antioxid Redox Signal. 2017;26:84-103 pubmed 出版商
  155. Qi L, Lv X, Zhang T, Jia P, Yan R, Li S, et al. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. Sci Rep. 2016;6:26961 pubmed 出版商
  156. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  157. Megyesi J, Tarcsafalvi A, Seng N, Hodeify R, Price P. Cdk2 phosphorylation of Bcl-xL after stress converts it to a pro-apoptotic protein mimicking Bax/Bak. Cell Death Discov. 2016;2: pubmed
  158. Wang J, Hu K, Guo J, Cheng F, Lv J, Jiang W, et al. Suppression of KRas-mutant cancer through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun. 2016;7:11363 pubmed 出版商
  159. Liu B, Shi Y, Peng W, Zhang Q, Liu J, Chen N, et al. Diosmetin induces apoptosis by upregulating p53 via the TGF-? signal pathway in HepG2 hepatoma cells. Mol Med Rep. 2016;14:159-64 pubmed 出版商
  160. Keilhoff G, Lucas B, Uhde K, Fansa H. Selected gene profiles of stressed NSC-34 cells and rat spinal cord following peripheral nerve reconstruction and minocycline treatment. Exp Ther Med. 2016;11:1685-1699 pubmed
  161. Wang W, Zhan M, Li Q, Chen W, Chu H, Huang Q, et al. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget. 2016;7:34617-29 pubmed 出版商
  162. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  163. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  164. Swiader A, Nahapetyan H, Faccini J, D Angelo R, Mucher E, Elbaz M, et al. Mitophagy acts as a safeguard mechanism against human vascular smooth muscle cell apoptosis induced by atherogenic lipids. Oncotarget. 2016;7:28821-35 pubmed 出版商
  165. Song J, Wang Y, Teng M, Zhang S, Yin M, Lu J, et al. Cordyceps militaris induces tumor cell death via the caspase?dependent mitochondrial pathway in HepG2 and MCF?7 cells. Mol Med Rep. 2016;13:5132-40 pubmed 出版商
  166. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  167. Jeong J, Noh M, Choi J, Lee H, Kim S. Neuroprotective and antioxidant activities of bamboo salt soy sauce against H2O2-induced oxidative stress in rat cortical neurons. Exp Ther Med. 2016;11:1201-1210 pubmed
  168. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  169. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  170. Du K, Farhood A, Jaeschke H. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity. Arch Toxicol. 2017;91:761-773 pubmed 出版商
  171. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  172. Li J, Su Y, Wang H, Zhao Y, Liao X, Wang X, et al. Repeated Blockade of NMDA Receptors During Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex. Front Mol Neurosci. 2016;9:17 pubmed 出版商
  173. Brito A, Ribeiro M, Abrantes A, Mamede A, Laranjo M, Casalta Lopes J, et al. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer. 2016;68:250-66 pubmed 出版商
  174. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  175. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  176. Zhao X, Song X, Bai X, Fei N, Huang Y, Zhao Z, et al. miR-27b attenuates apoptosis induced by transmissible gastroenteritis virus (TGEV) infection via targeting runt-related transcription factor 1 (RUNX1). Peerj. 2016;4:e1635 pubmed 出版商
  177. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  178. Chen B, Song G, Liu M, Qian L, Wang L, Gu H, et al. Inhibition of miR-29c promotes proliferation, and inhibits apoptosis and differentiation in P19 embryonic carcinoma cells. Mol Med Rep. 2016;13:2527-35 pubmed 出版商
  179. Esfandiari A, Hawthorne T, Nakjang S, Lunec J. Chemical Inhibition of Wild-Type p53-Induced Phosphatase 1 (WIP1/PPM1D) by GSK2830371 Potentiates the Sensitivity to MDM2 Inhibitors in a p53-Dependent Manner. Mol Cancer Ther. 2016;15:379-91 pubmed 出版商
  180. Kato R, Hasegawa K, Torii Y, Udagawa Y, Fukasawa I. Factors affecting platinum sensitivity in cervical cancer. Oncol Lett. 2015;10:3591-3598 pubmed
  181. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  182. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  183. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  184. Soragni A, Janzen D, Johnson L, Lindgren A, Thai Quynh Nguyen A, Tiourin E, et al. A Designed Inhibitor of p53 Aggregation Rescues p53 Tumor Suppression in Ovarian Carcinomas. Cancer Cell. 2016;29:90-103 pubmed 出版商
  185. Zhang H, Xiong Z, Wang J, Zhang S, Lei L, Yang L, et al. Glucagon-like peptide-1 protects cardiomyocytes from advanced oxidation protein product-induced apoptosis via the PI3K/Akt/Bad signaling pathway. Mol Med Rep. 2016;13:1593-601 pubmed 出版商
  186. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  187. Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep. 2016;13:309-14 pubmed 出版商
  188. Stanojlović M, GuÅ¡evac I, Grković I, Zlatković J, Mitrović N, Zarić M, et al. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience. 2015;311:308-21 pubmed 出版商
  189. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  190. Gu Y, Zhang Y, Bi Y, Liu J, Tan B, Gong M, et al. Mesenchymal stem cells suppress neuronal apoptosis and decrease IL-10 release via the TLR2/NFκB pathway in rats with hypoxic-ischemic brain damage. Mol Brain. 2015;8:65 pubmed 出版商
  191. Campo Verde Arboccó F, Sasso C, Actis E, Carón R, Hapon M, Jahn G. Hypothyroidism advances mammary involution in lactating rats through inhibition of PRL signaling and induction of LIF/STAT3 mRNAs. Mol Cell Endocrinol. 2016;419:18-28 pubmed 出版商
  192. Jiang Y, Du M, Wu M, Zhu Y, Zhao X, Cao X, et al. Phosphatidic Acid Improves Reprogramming to Pluripotency by Reducing Apoptosis. Stem Cells Dev. 2016;25:43-54 pubmed 出版商
  193. Xu Z, Chen X, Jin X, Meng X, Zhou X, Fan F, et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics. 2016;130:211-20 pubmed 出版商
  194. Kramer H, Lai C, Patel H, Periyasamy M, Lin M, Feller S, et al. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res. 2016;44:582-94 pubmed 出版商
  195. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  196. Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol. 2016;36:801-9 pubmed 出版商
  197. Jung S, Li C, Duan J, Lee S, Kim K, Park Y, et al. TRIP-Br1 oncoprotein inhibits autophagy, apoptosis, and necroptosis under nutrient/serum-deprived condition. Oncotarget. 2015;6:29060-75 pubmed 出版商
  198. Lavik A, Zhong F, Chang M, Greenberg E, Choudhary Y, Smith M, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388-402 pubmed 出版商
  199. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  200. Lee S, Kim J, Hong S, Lee A, Park E, Seo H, et al. High Inorganic Phosphate Intake Promotes Tumorigenesis at Early Stages in a Mouse Model of Lung Cancer. PLoS ONE. 2015;10:e0135582 pubmed 出版商
  201. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  202. Zhang L, Dai F, Sheng P, Chen Z, Xu Q, Guo Y. Resveratrol analogue 3,4,4'-trihydroxy-trans-stilbene induces apoptosis and autophagy in human non-small-cell lung cancer cells in vitro. Acta Pharmacol Sin. 2015;36:1256-65 pubmed 出版商
  203. Liu B, Huang W, Xiao X, Xu Y, Ma S, Xia Z. Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Oxid Med Cell Longev. 2015;2015:624819 pubmed 出版商
  204. Deben C, Wouters A, Op de Beeck K, Van den Bossche J, Jacobs J, Zwaenepoel K, et al. The MDM2-inhibitor Nutlin-3 synergizes with cisplatin to induce p53 dependent tumor cell apoptosis in non-small cell lung cancer. Oncotarget. 2015;6:22666-79 pubmed
  205. Romano S, Xiao Y, Nakaya M, D Angelillo A, Chang M, Jin J, et al. FKBP51 employs both scaffold and isomerase functions to promote NF-κB activation in melanoma. Nucleic Acids Res. 2015;43:6983-93 pubmed 出版商
  206. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  207. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller Holzner E, Watson C, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41-51 pubmed 出版商
  208. Matsumoto T, Urushido M, Ide H, Ishihara M, Hamada Ode K, Shimamura Y, et al. Small Heat Shock Protein Beta-1 (HSPB1) Is Upregulated and Regulates Autophagy and Apoptosis of Renal Tubular Cells in Acute Kidney Injury. PLoS ONE. 2015;10:e0126229 pubmed 出版商
  209. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  210. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  211. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  212. Grav L, Lee J, Gerling S, Kallehauge T, Hansen A, Kol S, et al. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Biotechnol J. 2015;10:1446-56 pubmed 出版商
  213. Wang Y, Lv J, Cheng Y, DU J, Chen D, Li C, et al. Apoptosis induced by Ginkgo biloba (EGb761) in melanoma cells is Mcl-1-dependent. PLoS ONE. 2015;10:e0124812 pubmed 出版商
  214. Freeman J, Feng Y, Demehri F, Dempsey P, Teitelbaum D. TPN-associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015;29:2943-58 pubmed 出版商
  215. Seo H, Woo J, Shin Y, Ko S. Identification of biomarkers regulated by rexinoids (LGD1069, LG100268 and Ro25-7386) in human breast cells using Affymetrix microarray. Mol Med Rep. 2015;12:800-18 pubmed 出版商
  216. Schüll S, Günther S, Brodesser S, Seeger J, Tosetti B, Wiegmann K, et al. Cytochrome c oxidase deficiency accelerates mitochondrial apoptosis by activating ceramide synthase 6. Cell Death Dis. 2015;6:e1691 pubmed 出版商
  217. Li B, Li H, Wang Z, Wang Y, Gao A, Cui Y, et al. Evidence for the role of phosphatidylcholine-specific phospholipase in experimental subarachnoid hemorrhage in rats. Exp Neurol. 2015;272:145-51 pubmed 出版商
  218. Li C, Jung S, Lee S, Jeong D, Yang Y, Kim K, et al. Nutrient/serum starvation derived TRIP-Br3 down-regulation accelerates apoptosis by destabilizing XIAP. Oncotarget. 2015;6:7522-35 pubmed
  219. Han M, Woo S, Min K, Kim S, Park J, Kim D, et al. 6-Shogaol enhances renal carcinoma Caki cells to TRAIL-induced apoptosis through reactive oxygen species-mediated cytochrome c release and down-regulation of c-FLIP(L) expression. Chem Biol Interact. 2015;228:69-78 pubmed 出版商
  220. Gao F, Chen S, Sun M, Mitchel R, Li B, Chu Z, et al. MiR-467a is upregulated in radiation-induced mouse thymic lymphomas and regulates apoptosis by targeting Fas and Bax. Int J Biol Sci. 2015;11:109-21 pubmed 出版商
  221. Bharti S, Rani N, Bhatia J, Arya D. 5-HT2B receptor blockade attenuates β-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs. Apoptosis. 2015;20:455-65 pubmed 出版商
  222. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  223. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  224. Cho S, Cho M, Kim J, Kaeberlein M, Lee S, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism. Oncotarget. 2015;6:43-55 pubmed
  225. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  226. Zheng R, Hu W, Sui C, Ma N, Jiang Y. Effects of doxorubicin and gemcitabine on the induction of apoptosis in breast cancer cells. Oncol Rep. 2014;32:2719-25 pubmed 出版商
  227. Patwardhan G, Hosain S, Liu D, Khiste S, Zhao Y, Bielawski J, et al. Ceramide modulates pre-mRNA splicing to restore the expression of wild-type tumor suppressor p53 in deletion-mutant cancer cells. Biochim Biophys Acta. 2014;1841:1571-80 pubmed 出版商
  228. Mohamed H, el Swefy S, Hasan R, HASAN A. Neuroprotective effect of resveratrol in diabetic cerebral ischemic-reperfused rats through regulation of inflammatory and apoptotic events. Diabetol Metab Syndr. 2014;6:88 pubmed 出版商
  229. Nicholson A, Guo X, Sullivan C, Cha C. Automated quantitative analysis of tissue microarray of 443 patients with colorectal adenocarcinoma: low expression of Bcl-2 predicts poor survival. J Am Coll Surg. 2014;219:977-87 pubmed 出版商
  230. Su C, Sun F, Cunningham R, Rybalchenko N, Singh M. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr). 2014;36:9685 pubmed 出版商
  231. Charan R, Johnson B, Zaganelli S, Nardozzi J, LaVoie M. Inhibition of apoptotic Bax translocation to the mitochondria is a central function of parkin. Cell Death Dis. 2014;5:e1313 pubmed 出版商
  232. Liu X, Gu Q, Duan K, Li Z. NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory. J Neurosci. 2014;34:8741-8 pubmed 出版商
  233. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  234. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  235. Ying Y, Kim J, Westphal S, Long K, Padanilam B. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury. J Am Soc Nephrol. 2014;25:2707-16 pubmed 出版商
  236. Bhattacharyya S, Ghosh S, Sil P. Amelioration of aspirin induced oxidative impairment and apoptotic cell death by a novel antioxidant protein molecule isolated from the herb Phyllanthus niruri. PLoS ONE. 2014;9:e89026 pubmed 出版商
  237. Guerzoni C, Amatori S, Giorgi L, Manara M, Landuzzi L, Lollini P, et al. An aza-macrocycle containing maltolic side-arms (maltonis) as potential drug against human pediatric sarcomas. BMC Cancer. 2014;14:137 pubmed 出版商
  238. Annibaldi A, Heulot M, Martinou J, Widmann C. TAT-RasGAP317-326-mediated tumor cell death sensitization can occur independently of Bax and Bak. Apoptosis. 2014;19:719-33 pubmed 出版商
  239. Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, et al. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. 2014;9:345-9 pubmed 出版商
  240. Zhang Y, Lu Q, Cai X. MicroRNA-106a induces multidrug resistance in gastric cancer by targeting RUNX3. FEBS Lett. 2013;587:3069-75 pubmed 出版商
  241. Brinkmann K, Hombach A, Seeger J, Wagner Stippich D, Klubertz D, Kronke M, et al. Second mitochondria-derived activator of caspase (SMAC) mimetic potentiates tumor susceptibility toward natural killer cell-mediated killing. Leuk Lymphoma. 2014;55:645-51 pubmed 出版商
  242. Faccenda D, Tan C, Seraphim A, Duchen M, Campanella M. IF1 limits the apoptotic-signalling cascade by preventing mitochondrial remodelling. Cell Death Differ. 2013;20:686-97 pubmed 出版商
  243. Cazanave S, Mott J, Bronk S, Werneburg N, Fingas C, Meng X, et al. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem. 2011;286:39336-48 pubmed 出版商
  244. Xargay Torrent S, Lopez Guerra M, Saborit Villarroya I, Rosich L, Campo E, Roué G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17:3956-68 pubmed 出版商
  245. Takei H, Buckleair L, Powell S. Immunohistochemical expression of apoptosis regulating proteins and sex hormone receptors in meningiomas. Neuropathology. 2008;28:62-8 pubmed
  246. Kim B, Chung H. Hypoxia/reoxygenation induces apoptosis through a ROS-mediated caspase-8/Bid/Bax pathway in human lymphocytes. Biochem Biophys Res Commun. 2007;363:745-50 pubmed
  247. Malhi H, Barreyro F, Isomoto H, Bronk S, Gores G. Free fatty acids sensitise hepatocytes to TRAIL mediated cytotoxicity. Gut. 2007;56:1124-31 pubmed
  248. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  249. Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain C, et al. Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res. 2002;929:129-38 pubmed