这是一篇来自已证抗体库的有关大鼠 Bcl2的综述,是根据215篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bcl2 抗体。
Bcl2 同义词: Bcl-2

圣克鲁斯生物技术
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1g
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1g). Front Oncol (2022) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 大鼠; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 4a). Oxid Med Cell Longev (2022) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000. Bioeng Transl Med (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5g
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 6b). Redox Biol (2021) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6a). Neural Regen Res (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 4b). Med Sci Monit (2020) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Cancer Lett (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 1:1000; 图 2c
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-509)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2c). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2k
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 1e
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(100)
  • 免疫细胞化学; 人类; 图 s6a
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, 100)被用于被用于免疫细胞化学在人类样本上 (图 s6a) 和 被用于免疫印迹在人类样本上 (图 7a). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cells (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Biosci Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, C-2)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Dis (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:2000; 图 2c
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 2c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Oncol Rep (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4e
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 7a). Biomolecules (2019) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4b). Cardiovasc Res (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). J Biol Chem (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:100; 图 4f
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, Inc, SC7382)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4f). Mol Med Rep (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 4c
  • 免疫印迹; 人类; 图 4h
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4h). Cell Death Differ (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3a
圣克鲁斯生物技术 Bcl2抗体(SantaCruz, SC-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3a). EMBO Mol Med (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 6a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
圣克鲁斯生物技术 Bcl2抗体(SantaCruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Biomed Pharmacother (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2d). Cell (2018) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 5a
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Bcl2抗体(SantaCruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4c
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 4c). Nat Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 小鼠; 图 1b
  • 免疫印迹; 小鼠; 1:500; 图 1b
圣克鲁斯生物技术 Bcl2抗体(SantaCruz, 7382)被用于被用于免疫沉淀在小鼠样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1b). PLoS Genet (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Bcl2抗体(SantaCruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5d). Cell Physiol Biochem (2017) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:2000; 图 2C
圣克鲁斯生物技术 Bcl2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2C). Mol Med Rep (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:1000; 图 3b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Apoptosis (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl2抗体(SC Biotech, C-2)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Anticancer Res (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:500; 图 6f
  • 免疫印迹; 小鼠; 1:500; 图 5d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6f) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5d). PLoS ONE (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc7382)被用于被用于免疫印迹在人类样本上 (图 1d). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Int J Mol Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 4G
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 4G). Oncotarget (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; gerbils; 1:1000; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在gerbils样本上浓度为1:1000 (图 5). Exp Ther Med (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:500; 图 7a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC7382)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-56015)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3e). Exp Cell Res (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3a, b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 3a, b). PLoS ONE (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, C-2)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
小鼠 单克隆(100/D5)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-56015)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, Sc-509)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-7382)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc509)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Cell Biochem Biophys (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Autophagy (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Biomed Rep (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4g). Oncotarget (2017) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于流式细胞仪在人类样本上 (图 4a). Eur J Cell Biol (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Genes Dev (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Bcl2抗体(SantaCruz Biotechnology, Sc-509)被用于被用于免疫印迹在人类样本上 (图 5c). Urol Oncol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). PLoS ONE (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4). BMC Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Oncol Lett (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 流式细胞仪; 人类; 图 3a, 3b, 3c, 3d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509 FITC)被用于被用于流式细胞仪在人类样本上 (图 3a, 3b, 3c, 3d). Nutr Cancer (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:300; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 2). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(C-2)
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆
  • 其他; 人类; 图 st1
圣克鲁斯生物技术 Bcl2抗体(SCBT, C-2)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 1d). Int J Mol Med (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Med (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, SC-377576)被用于被用于免疫印迹在小鼠样本上 (图 5). Aging Cell (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫组化在大鼠样本上 (图 2). Nutr Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Carcinog (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 3). BMC Cancer (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 仓鼠; 图 6
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在仓鼠样本上 (图 6). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 图 2h
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上 (图 2h). J Biol Chem (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 4). Am J Physiol Heart Circ Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 3d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl2抗体(Santa, sc-509)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 3
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, 100)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上 (图 6c). BMC Cancer (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 st2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 7d). J Interferon Cytokine Res (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc509)被用于被用于免疫印迹在人类样本上 (图 5). BMC Genomics (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 6A). Int J Oncol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2抗体(santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 流式细胞仪; 小鼠; 2 ug/ml
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于流式细胞仪在小鼠样本上浓度为2 ug/ml 和 被用于免疫印迹在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 7). Biomed Res Int (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotech, sc-7382)被用于被用于免疫印迹在人类样本上. Ecancermedicalscience (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, SC-7382)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 f4, f3
圣克鲁斯生物技术 Bcl2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 f4, f3). Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnologies, sc-7382)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 图 6c
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上 (图 6c). PLoS ONE (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:200. FASEB J (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在大鼠样本上 (图 5). Int J Mol Sci (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:250; 图 2
  • 免疫印迹; 人类; 1:250; 图 1
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382HRP)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:250 (图 1). Autophagy (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:50
  • 免疫印迹; 小鼠; 1:50
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:50. Reprod Toxicol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 2). Cell Death Dis (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 1:200; 图 3
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:250; 图 1A
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1A). Mol Med Rep (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 犬; 图 2
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, SC-7382)被用于被用于免疫组化-石蜡切片在犬样本上 (图 2). J Vet Sci (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Cell Oncol (Dordr) (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫沉淀; 人类; 2 ug/time
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫沉淀在人类样本上浓度为2 ug/time 和 被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Death Dis (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Bcl2抗体(Santa cruz, SC-7382)被用于被用于免疫组化-石蜡切片在小鼠样本上. Oncotarget (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa-Cruz, sc-509)被用于被用于免疫印迹在人类样本上. Biochimie (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. CNS Neurosci Ther (2014) ncbi
小鼠 单克隆
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫细胞化学; 人类; 1:200; 图 7
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, C-2)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). J Cell Physiol (2015) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; kangaroo rats; 1:200; 图 3
圣克鲁斯生物技术 Bcl2抗体(santa cruz, sc-7382)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 3). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(100)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Int J Ophthalmol (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:500
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Technology, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Age (Dordr) (2014) ncbi
小鼠 单克隆(100)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-509)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 小鼠; 1:300-1:600; 图 6
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, Sc-7382)被用于被用于免疫印迹在小鼠样本上浓度为1:300-1:600 (图 6). J Neuroinflammation (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 6d
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 6d). Oncotarget (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫组化; 大鼠; 1:10
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫组化在大鼠样本上浓度为1:10. Arthritis Res Ther (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在人类样本上. Carcinogenesis (2014) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 大鼠; 1:1,000
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-7382)被用于被用于免疫印迹在大鼠样本上浓度为1:1,000. Am J Physiol Endocrinol Metab (2013) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, 100)被用于被用于免疫印迹在人类样本上. Clin Cancer Res (2011) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 人类; 图 s7c
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc 509)被用于被用于免疫印迹在人类样本上 (图 s7c). J Neurochem (2008) ncbi
小鼠 单克隆(100)
  • 免疫印迹; 猕猴
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz, sc-509)被用于被用于免疫印迹在猕猴样本上. J Virol (2007) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2抗体(Santa Cruz Biotechnology, sc-7382)被用于被用于免疫印迹在人类样本上. Int J Cancer (2001) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Bcl2抗体(abcam, Ab196495)被用于被用于免疫印迹在小鼠样本上浓度为1:100. Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, Ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:100 (图 5c). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 5e
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 5e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab194583)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2e, 7e
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab194583)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2e, 7e). Life Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2j
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2j). Cell Prolif (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 5f
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5f). J Am Heart Assoc (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b, 4d
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b, 4d). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 2e). EBioMedicine (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6e
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1e, 2c, 5g
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e, 2c, 5g). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1200; 图 5b
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:1200 (图 5b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
艾博抗(上海)贸易有限公司 Bcl2抗体(Cell Signaling, ab196495)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9a
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在人类样本上 (图 1c). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 3b
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 5a). J Mol Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 7c
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2e
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). J Mol Neurosci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:750; 图 3a
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab196495)被用于被用于免疫印迹在大鼠样本上浓度为1:750 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Bcl2抗体(Abcam, ab59348)被用于被用于免疫印迹在人类样本上 (图 7). BMC Complement Altern Med (2016) ncbi
BioLegend
小鼠 单克隆(BCL/10C4)
  • 免疫印迹; 小鼠; 图 1c
BioLegend Bcl2抗体(BioLegend, BCL/10C4)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Rep Methods (2022) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 1:1000; 图 1g
BioLegend Bcl2抗体(Biolegend, 633508)被用于被用于流式细胞仪在小鼠样本上浓度为1:1000 (图 1g). PLoS Biol (2021) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 s3o, 2j
BioLegend Bcl2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 s3o, 2j). Science (2019) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 1:100; 图 2d
BioLegend Bcl2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2d). Nat Commun (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5
BioLegend Bcl2抗体(Biolegend, 633510)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Bcl2抗体(BioLegend, BCL10C4)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Arthritis Rheumatol (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠; 图 6c
BioLegend Bcl2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Sci Rep (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 免疫印迹; 小鼠; 图 6
BioLegend Bcl2抗体(BioLegend, 633502)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl2抗体(Biolegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(BCL/10C4)
  • 流式细胞仪; 小鼠
BioLegend Bcl2抗体(BioLegend, BCL/10C4)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(10C4)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Bcl2抗体(eBioscience, 48-6992-42)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Cell (2019) ncbi
小鼠 单克隆(10C4)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Bcl2抗体(eBioscience, 10C4)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2019) ncbi
小鼠 单克隆(10C4)
  • 流式细胞仪; 小鼠; 1:200; 图 5e
赛默飞世尔 Bcl2抗体(eBioscience, 10C4)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5e). Nat Commun (2018) ncbi
小鼠 单克隆(10C4)
  • 免疫印迹; 大鼠; 图 3b
赛默飞世尔 Bcl2抗体(Thermo Fisher, 33-6100)被用于被用于免疫印迹在大鼠样本上 (图 3b). Clin Exp Pharmacol Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:250; 图 1d
赛默飞世尔 Bcl2抗体(ThermoFisher Scientific, PA5-27094)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:250 (图 1d). Ultrastruct Pathol (2017) ncbi
家羊 多克隆
  • 免疫印迹; 人类; 1:200; 图 5b
赛默飞世尔 Bcl2抗体(Thermo Fisher Scientific, PA1-28275)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5b). Mol Med Rep (2017) ncbi
小鼠 单克隆(10C4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Bcl2抗体(eBioscience, 10C4)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2016) ncbi
小鼠 单克隆(10C4)
  • 免疫印迹; 小鼠
赛默飞世尔 Bcl2抗体(Zymed Laboratories, 10C4)被用于被用于免疫印迹在小鼠样本上. Exp Cell Res (2008) ncbi
小鼠 单克隆(10C4)
  • 免疫组化-冰冻切片; 大鼠; 2.5 ug/ml; 图 7
赛默飞世尔 Bcl2抗体(Zymed, 10C4)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为2.5 ug/ml (图 7). J Immunol (2003) ncbi
小鼠 单克隆(10C4)
  • 免疫细胞化学; 大鼠; 1:100; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Bcl2抗体(Zymed, 10C4)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). J Cell Biol (2003) ncbi
武汉博士德生物工程有限公司
小鼠 单克隆(Bcl-2-100)
  • 免疫印迹; 大鼠; 1:2500; 图 7
武汉博士德生物工程有限公司 Bcl2抗体(Boster, Bcl-2-100)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (图 7). Brain Behav (2020) ncbi
碧迪BD
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:1000; 图 4c, 4d, 4g
碧迪BD Bcl2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c, 4d, 4g). Cell Death Dis (2020) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 4b
碧迪BD Bcl2抗体(BD Pharmingen, 610539)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Mol Med Rep (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 图 1b
碧迪BD Bcl2抗体(BD Biosciences, 7)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Death Differ (2017) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫组化-石蜡切片; 人类; 图 6b
碧迪BD Bcl2抗体(BD Biosciences, 610538)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4a
碧迪BD Bcl2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上 (图 4a). Stem Cells Int (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Bcl2抗体(BD, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Cell Rep (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 4
碧迪BD Bcl2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 小鼠; 1:100; 图 6d, 6e
碧迪BD Bcl2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6d, 6e). FEBS Open Bio (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BD Bcl2抗体(BD Biosciences, 610539)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5a,5c
碧迪BD Bcl2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5a,5c). Cell Death Dis (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 图 5
碧迪BD Bcl2抗体(BD Biosciences, 610538)被用于被用于免疫印迹在人类样本上 (图 5). Biomed Res Int (2015) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫沉淀; 人类
碧迪BD Bcl2抗体(BD Transduction Laboratories, 7/Bcl-2)被用于被用于免疫沉淀在人类样本上. Biochem Biophys Res Commun (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类
碧迪BD Bcl2抗体(BD Transduction Laboratories, 610539)被用于被用于免疫印迹在人类样本上. J Immunother (2014) ncbi
小鼠 单克隆(7/Bcl-2)
  • 免疫印迹; 人类; 1:500
碧迪BD Bcl2抗体(BD Transduction Laboratories, 610538)被用于被用于免疫印迹在人类样本上浓度为1:500. PLoS ONE (2013) ncbi
文章列表
  1. Tao M, Ma H, Fu X, Wang C, Li Y, Hu X, et al. Semaphorin 3F induces colorectal cancer cell chemosensitivity by promoting P27 nuclear export. Front Oncol. 2022;12:899927 pubmed 出版商
  2. Gao H, Sun H, Yan N, Zhao P, Xu H, Zheng W, et al. ATP13A2 Declines Zinc-Induced Accumulation of α-Synuclein in a Parkinson's Disease Model. Int J Mol Sci. 2022;23: pubmed 出版商
  3. Amen A, Loughran R, Huang C, Lew R, Ravi A, Guan Y, et al. Endogenous spacing enables co-processing of microRNAs and efficient combinatorial RNAi. Cell Rep Methods. 2022;2:100239 pubmed 出版商
  4. Muhammad A, Hao L, Al Kury L, Rehman N, Alvi A, Badshah H, et al. Carveol Promotes Nrf2 Contribution in Depressive Disorders through an Anti-inflammatory Mechanism. Oxid Med Cell Longev. 2022;2022:4509204 pubmed 出版商
  5. Ali A, Kuo W, Kuo C, Lo J, Chen M, Daddam J, et al. E3 ligase activity of Carboxyl terminus of Hsc70 interacting protein (CHIP) in Wharton's jelly derived mesenchymal stem cells improves their persistence under hyperglycemic stress and promotes the prophylactic effects against diabetic cardiac damages. Bioeng Transl Med. 2021;6:e10234 pubmed 出版商
  6. Chiang C, Hong Y. In situ delivery of biobutyrate by probiotic Escherichia coli for cancer therapy. Sci Rep. 2021;11:18172 pubmed 出版商
  7. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  8. Zhou F, Zou X, Zhang J, Wang Z, Yang Y, Wang D. Jian-Pi-Yi-Shen Formula Ameliorates Oxidative Stress, Inflammation, and Apoptosis by Activating the Nrf2 Signaling in 5/6 Nephrectomized Rats. Front Pharmacol. 2021;12:630210 pubmed 出版商
  9. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  10. Jiang X, Shao M, Liu X, Liu X, Zhang X, Wang Y, et al. Reversible Treatment of Pressure Overload-Induced Left Ventricular Hypertrophy through Drd5 Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. Adv Sci (Weinh). 2021;8:2003706 pubmed 出版商
  11. Sripada A, Sirohi K, Michalec L, Guo L, McKay J, Yadav S, et al. Sprouty2 positively regulates T cell function and airway inflammation through regulation of CSK and LCK kinases. PLoS Biol. 2021;19:e3001063 pubmed 出版商
  12. Cheng Y, Liu M, Tang H, Chen B, Yang G, Zhao W, et al. iTRAQ-Based Quantitative Proteomics Indicated Nrf2/OPTN-Mediated Mitophagy Inhibits NLRP3 Inflammasome Activation after Intracerebral Hemorrhage. Oxid Med Cell Longev. 2021;2021:6630281 pubmed 出版商
  13. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  14. Ao H, Li H, Zhao X, Liu B, Lu L. TXNIP positively regulates the autophagy and apoptosis in the rat müller cell of diabetic retinopathy. Life Sci. 2021;267:118988 pubmed 出版商
  15. Li Z, Meng Y, Liu C, Liu H, Cao W, Tong C, et al. Kcnh2 mediates FAK/AKT-FOXO3A pathway to attenuate sepsis-induced cardiac dysfunction. Cell Prolif. 2021;54:e12962 pubmed 出版商
  16. Tang S, Wu W, Wan H, Wu X, Chen H. Knockdown of NHP2 inhibits hepatitis B virus X protein-induced hepatocarcinogenesis via repressing TERT expression and disrupting the stability of telomerase complex. Aging (Albany NY). 2020;12:19365-19374 pubmed 出版商
  17. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  18. Meng L, Teng X, Liu Y, Yang C, Wang S, Yuan W, et al. Vital Roles of Gremlin-1 in Pulmonary Arterial Hypertension Induced by Systemic-to-Pulmonary Shunts. J Am Heart Assoc. 2020;9:e016586 pubmed 出版商
  19. Mamriev D, Abbas R, Klingler F, Kagan J, Kfir N, Donald A, et al. A small-molecule ARTS mimetic promotes apoptosis through degradation of both XIAP and Bcl-2. Cell Death Dis. 2020;11:483 pubmed 出版商
  20. Wang X, Tong J, Han X, Qi X, Zhang J, Wu E, et al. Acute effects of human protein S administration after traumatic brain injury in mice. Neural Regen Res. 2020;15:2073-2081 pubmed 出版商
  21. Feng C, Zhang H, Zeng A, Bai M, Wang X. Tumor-Suppressive MicroRNA-216b Binds to TPX2, Activating the p53 Signaling in Human Cutaneous Squamous Cell Carcinoma. Mol Ther Nucleic Acids. 2020;20:186-195 pubmed 出版商
  22. Xiang Q, Kang L, Wang J, Liao Z, Song Y, Zhao K, et al. CircRNA-CIDN mitigated compression loading-induced damage in human nucleus pulposus cells via miR-34a-5p/SIRT1 axis. EBioMedicine. 2020;53:102679 pubmed 出版商
  23. Zhuang K, Zuo Y, Sherchan P, Wang J, Yan X, Liu F. Hydrogen Inhalation Attenuates Oxidative Stress Related Endothelial Cells Injury After Subarachnoid Hemorrhage in Rats. Front Neurosci. 2019;13:1441 pubmed 出版商
  24. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  25. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  26. Chen X, Zhao Y, Xu J, Bao J, Zhao J, Chen J, et al. The Nephroprotective Effect of TNF Receptor-Associated Factor 6 (TRAF6) Blockade on LPS-Induced Acute Renal Injury Through the Inhibition if Inflammation and Oxidative Stress. Med Sci Monit. 2020;26:e919698 pubmed 出版商
  27. Zhou Z, Zhou Q, Wu X, Xu S, Hu X, Tao X, et al. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling. Cancer Lett. 2020;473:62-73 pubmed 出版商
  28. Leone R, Zhao L, Englert J, Sun I, Oh M, Sun I, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science. 2019;366:1013-1021 pubmed 出版商
  29. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  30. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  31. Garc a Arroyo F, Monroy S nchez F, Mu oz Jim nez I, Gonzaga G, Andr s Hernando A, Zazueta C, et al. Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules. 2019;9: pubmed 出版商
  32. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  33. Shan L, Liu W, Zhan Y. Sulfated polysaccharide of Sepiella maindroni ink targets Akt and overcomes resistance to the FGFR inhibitor AZD4547 in bladder cancer. Aging (Albany NY). 2019;11:7780-7795 pubmed 出版商
  34. Chollat Namy M, Ben Safta Saadoun T, Haferssas D, Meurice G, Chouaib S, Thiery J. The pharmalogical reactivation of p53 function improves breast tumor cell lysis by granzyme B and NK cells through induction of autophagy. Cell Death Dis. 2019;10:695 pubmed 出版商
  35. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  36. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  37. Zhang L, Feng Q, Wang Z, Liu P, Cui S. Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Biosci Rep. 2019;39: pubmed 出版商
  38. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  39. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  40. Wu K, Zou J, Lin C, Jie Z. MicroRNA-140-5p inhibits cell proliferation, migration and promotes cell apoptosis in gastric cancer through the negative regulation of THY1-mediated Notch signaling. Biosci Rep. 2019;: pubmed 出版商
  41. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  42. You Y, Qin Z, Zhang H, Yuan Z, Yu X. MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. 2019;: pubmed 出版商
  43. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  44. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  45. Wang Y, Qi Z, Zhou M, Yang W, Hu R, Li G, et al. Stanniocalcin‑1 promotes cell proliferation, chemoresistance and metastasis in hypoxic gastric cancer cells via Bcl‑2. Oncol Rep. 2019;41:1998-2008 pubmed 出版商
  46. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  47. Wysokińska E, Cichos J, Kowalczyk A, Karbowiak M, Strzadała L, Bednarkiewicz A, et al. Toxicity Mechanism of Low Doses of NaGdF₄:Yb3+,Er3+ Upconverting Nanoparticles in Activated Macrophage Cell Lines. Biomolecules. 2019;9: pubmed 出版商
  48. Zhang J, Sheng J, Dong L, Xu Y, Yu L, Liu Y, et al. Cardiomyocyte-specific loss of RMP causes myocardial dysfunction and heart failure. Cardiovasc Res. 2018;: pubmed 出版商
  49. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  50. Wu R, Yang H, Wan J, Deng X, Chen L, Hao S, et al. Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell. Mol Med Rep. 2018;18:5379-5388 pubmed 出版商
  51. Li W, Yue F, Dai Y, Shi B, Xu G, Jiang X, et al. Suppressor of hepatocellular carcinoma RASSF1A activates autophagy initiation and maturation. Cell Death Differ. 2018;: pubmed 出版商
  52. Greenhough A, Bagley C, Heesom K, Gurevich D, Gay D, Bond M, et al. Cancer cell adaptation to hypoxia involves a HIF-GPRC5A-YAP axis. EMBO Mol Med. 2018;10: pubmed 出版商
  53. Zhu L, Xie X, Zhang L, Wang H, Jie Z, Zhou X, et al. TBK-binding protein 1 regulates IL-15-induced autophagy and NKT cell survival. Nat Commun. 2018;9:2812 pubmed 出版商
  54. Pearce M, Gamble J, Kopparapu P, O Donnell E, Mueller M, Jang H, et al. Induction of apoptosis and suppression of tumor growth by Nur77-derived Bcl-2 converting peptide in chemoresistant lung cancer cells. Oncotarget. 2018;9:26072-26085 pubmed 出版商
  55. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  56. Wang J, Wang F, Zhu J, Song M, An J, Li W. Transcriptome Profiling Reveals PHLDA1 as a Novel Molecular Marker for Ischemic Cardiomyopathy. J Mol Neurosci. 2018;65:102-109 pubmed 出版商
  57. Han F, Xia X, Dou M, Wang Y, Xue W, Ding X, et al. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury. Biomed Pharmacother. 2018;103:1127-1136 pubmed 出版商
  58. Xiao G, Chan L, Klemm L, Braas D, Chen Z, Geng H, et al. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173:470-484.e18 pubmed 出版商
  59. Hou Y, Lautrup S, Cordonnier S, Wang Y, Croteau D, Zavala E, et al. NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A. 2018;115:E1876-E1885 pubmed 出版商
  60. Zhao X, Huang L, Xu W, Chen X, Shen Y, Zeng W, et al. Physapubescin B inhibits tumorgenesis and circumvents taxol resistance of ovarian cancer cells through STAT3 signaling. Oncotarget. 2017;8:70130-70141 pubmed 出版商
  61. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  62. Vu L, Pickering B, Cheng Y, Zaccara S, Nguyen D, Minuesa G, et al. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017;23:1369-1376 pubmed 出版商
  63. Rocchi A, Yamamoto S, Ting T, Fan Y, SADLEIR K, Wang Y, et al. A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet. 2017;13:e1006962 pubmed 出版商
  64. Zhang Y, Chen P, Hong H, Wang L, Zhou Y, Lang Y. JNK pathway mediates curcumin-induced apoptosis and autophagy in osteosarcoma MG63 cells. Exp Ther Med. 2017;14:593-599 pubmed 出版商
  65. Angori S, Capanni C, Faulkner G, Bean C, Boriani G, Lattanzi G, et al. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress. Cell Physiol Biochem. 2017;42:169-184 pubmed 出版商
  66. Xie Y, Ma W, Meng J, Ren X. Knockdown of ZFPL1 results in increased autophagy and autophagy‑related cell death in NCI‑N87 and BGC‑823 human gastric carcinoma cell lines. Mol Med Rep. 2017;15:2633-2642 pubmed 出版商
  67. Liu Y, Chen X, Li J. Resveratrol protects against oxidized low‑density lipoprotein‑induced human umbilical vein endothelial cell apoptosis via inhibition of mitochondrial‑derived oxidative stress. Mol Med Rep. 2017;15:2457-2464 pubmed 出版商
  68. Lian W, Zhang L, Yang L, Chen W. AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis. 2017;22:933-941 pubmed 出版商
  69. Lee T, Pelletier J. Dependence of p53-deficient cells on the DHX9 DExH-box helicase. Oncotarget. 2017;8:30908-30921 pubmed 出版商
  70. Jiang P, Zhang D, Qiu H, Yi X, Zhang Y, Cao Y, et al. Tiron ameliorates high glucose-induced cardiac myocyte apoptosis by PKCδ-dependent inhibition of osteopontin. Clin Exp Pharmacol Physiol. 2017;44:760-770 pubmed 出版商
  71. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  72. Paterniti I, Campolo M, Siracusa R, Cordaro M, Di Paola R, Calabrese V, et al. Liver X receptors activation, through TO901317 binding, reduces neuroinflammation in Parkinson's disease. PLoS ONE. 2017;12:e0174470 pubmed 出版商
  73. Mytych J, Romerowicz Misielak M, Koziorowski M. Long-term culture with lipopolysaccharide induces dose-dependent cytostatic and cytotoxic effects in THP-1 monocytes. Toxicol In Vitro. 2017;42:1-9 pubmed 出版商
  74. Tian Y, Wu X, Guo S, Ma L, Huang W, Zhao X. Minocycline attenuates sevoflurane-induced cell injury via activation of Nrf2. Int J Mol Med. 2017;39:869-878 pubmed 出版商
  75. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  76. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  77. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  78. Choi I, Hwang L, Jin J, Ko I, Kim S, Shin M, et al. Dexmedetomidine alleviates cerebral ischemia-induced short-term memory impairment by inhibiting the expression of apoptosis-related molecules in the hippocampus of gerbils. Exp Ther Med. 2017;13:107-116 pubmed 出版商
  79. Huang Y, Chen N, Miao D. Radioprotective effects of pyrroloquinoline quinone on parotid glands in C57BL/6J mice. Exp Ther Med. 2016;12:3685-3693 pubmed 出版商
  80. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  81. Schenk R, Tuzlak S, Carrington E, Zhan Y, Heinzel S, Teh C, et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 2017;24:534-545 pubmed 出版商
  82. Mytych J, Wos I, Solek P, Koziorowski M. Protective role of klotho protein on epithelial cells upon co-culture with activated or senescent monocytes. Exp Cell Res. 2017;350:358-367 pubmed 出版商
  83. Ohs I, Van Den Broek M, Nussbaum K, MUNZ C, Arnold S, Quezada S, et al. Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis. Nat Commun. 2016;7:13708 pubmed 出版商
  84. Sasaki C, Toman J, Vageli D. The In Vitro Effect of Acidic-Pepsin on Nuclear Factor KappaB Activation and Its Related Oncogenic Effect on Normal Human Hypopharyngeal Cells. PLoS ONE. 2016;11:e0168269 pubmed 出版商
  85. Kattaia A, Abd El Baset S, Mohamed E, Abdul Maksou R, Elfakharany Y. Molecular mechanisms underlying histological and biochemical changes induced by nitrate in rat liver and the efficacy of S-Allylcysteine. Ultrastruct Pathol. 2017;41:10-22 pubmed 出版商
  86. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  87. Yu G, Dou Z, Jia Z. 5?bromo?3?(3?hydroxyprop?1?ynyl)?2H?pyran?2?one induces apoptosis in T24 human bladder cancer cells through mitochondria-dependent signaling pathways. Mol Med Rep. 2017;15:153-159 pubmed 出版商
  88. Singh A, Agrahari A, Singh R, Yadav S, Srivastava V, Parmar D. Imprinting of cerebral cytochrome P450s in offsprings prenatally exposed to cypermethrin augments toxicity on rechallenge. Sci Rep. 2016;6:37426 pubmed 出版商
  89. Huang M, Garcia J, Thomas D, Zhu L, Nguyen L, Chan S, et al. Autophagy mediates proteolysis of NPM1 and HEXIM1 and sensitivity to BET inhibition in AML cells. Oncotarget. 2016;7:74917-74930 pubmed 出版商
  90. Alexander Savino C, Hayden M, Richardson C, Zhao J, Poligone B. Doxycycline is an NF-κB inhibitor that induces apoptotic cell death in malignant T-cells. Oncotarget. 2016;7:75954-75967 pubmed 出版商
  91. Xu Y, Ding G, Huang J, Xiong Y. Tanshinone IIA pretreatment attenuates ischemia/reperfusion-induced renal injury. Exp Ther Med. 2016;12:2741-2746 pubmed
  92. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  93. Lee J, Jung H, Han Y, Yoon Y, Yun C, Sun H, et al. Antioxidant effects of Cirsium setidens extract on oxidative stress in human mesenchymal stem cells. Mol Med Rep. 2016;14:3777-84 pubmed 出版商
  94. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  95. Wang H, Li M, Hung C, Sinha M, Lee L, Wiesner D, et al. MyD88 Shapes Vaccine Immunity by Extrinsically Regulating Survival of CD4+ T Cells during the Contraction Phase. PLoS Pathog. 2016;12:e1005787 pubmed 出版商
  96. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  97. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  98. Wang Y, Wang Y, Li G. TRPC1/TRPC3 channels mediate lysophosphatidylcholine-induced apoptosis in cultured human coronary artery smooth muscles cells. Oncotarget. 2016;7:50937-50951 pubmed 出版商
  99. Jeong H, Cho Y, Kim K, Kim Y, Kim K, Na Y, et al. Anti-lipoapoptotic effects of Alisma orientalis extract on non-esterified fatty acid-induced HepG2 cells. BMC Complement Altern Med. 2016;16:239 pubmed 出版商
  100. Yu X, Sun K, Tang X, Zhou C, Sun H, Yan Z, et al. Harmine combined with paclitaxel inhibits tumor proliferation and induces apoptosis through down-regulation of cyclooxygenase-2 expression in gastric cancer. Oncol Lett. 2016;12:983-988 pubmed
  101. Ahmed N, Murakami M, Hirose Y, Nakashima M. Therapeutic Potential of Dental Pulp Stem Cell Secretome for Alzheimer's Disease Treatment: An In Vitro Study. Stem Cells Int. 2016;2016:8102478 pubmed 出版商
  102. Peng H, Cheng Y, Hsu Y, Wu G, Kuo C, Liou J, et al. MPT0B098, a Microtubule Inhibitor, Suppresses JAK2/STAT3 Signaling Pathway through Modulation of SOCS3 Stability in Oral Squamous Cell Carcinoma. PLoS ONE. 2016;11:e0158440 pubmed 出版商
  103. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  104. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  105. Amara S, Zheng M, Tiriveedhi V. Oleanolic Acid Inhibits High Salt-Induced Exaggeration of Warburg-like Metabolism in Breast Cancer Cells. Cell Biochem Biophys. 2016;74:427-34 pubmed 出版商
  106. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  107. Strappazzon F, Di Rita A, Cianfanelli V, D Orazio M, Nazio F, Fimia G, et al. Prosurvival AMBRA1 turns into a proapoptotic BH3-like protein during mitochondrial apoptosis. Autophagy. 2016;12:963-75 pubmed 出版商
  108. Yao J, Wang Y, Fang B, Zhang S, Cheng B. piR-651 and its function in 95-D lung cancer cells. Biomed Rep. 2016;4:546-550 pubmed
  109. Pallis M, Burrows F, Ryan J, Grundy M, Seedhouse C, Abdul Aziz A, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017;8:16220-16232 pubmed 出版商
  110. Pires A, Marques C, Encarnação J, Abrantes A, Mamede A, Laranjo M, et al. Ascorbic acid and colon cancer: an oxidative stimulus to cell death depending on cell profile. Eur J Cell Biol. 2016;95:208-18 pubmed 出版商
  111. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  112. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  113. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  114. Takeuchi H, Taoka R, Mmeje C, Jinesh G, Safe S, Kamat A. CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urol Oncol. 2016;34:337.e11-8 pubmed 出版商
  115. Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, et al. The decreased expression of electron transfer flavoprotein ? is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med. 2016;37:1290-8 pubmed 出版商
  116. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  117. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  118. Li B, Chen D, Li W, Xiao D. 20(S)-Protopanaxadiol saponins inhibit SKOV3 cell migration. Oncol Lett. 2016;11:1693-1698 pubmed
  119. Qiao C, Lu N, Zhou Y, Ni T, Dai Y, Li Z, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016;7:17009-20 pubmed 出版商
  120. Brito A, Ribeiro M, Abrantes A, Mamede A, Laranjo M, Casalta Lopes J, et al. New Approach for Treatment of Primary Liver Tumors: The Role of Quercetin. Nutr Cancer. 2016;68:250-66 pubmed 出版商
  121. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  122. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  123. Klumpp D, Misovic M, Szteyn K, Shumilina E, Rudner J, Huber S. Targeting TRPM2 Channels Impairs Radiation-Induced Cell Cycle Arrest and Fosters Cell Death of T Cell Leukemia Cells in a Bcl-2-Dependent Manner. Oxid Med Cell Longev. 2016;2016:8026702 pubmed 出版商
  124. Chandrasekaran U, Yi W, Gupta S, Weng C, Giannopoulou E, Chinenov Y, et al. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol. 2016;68:1454-66 pubmed 出版商
  125. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  126. Wu M, Ai W, Chen L, Zhao S, Liu E. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyperglycemia-induced bone deterioration in mice. Int J Mol Med. 2016;37:565-74 pubmed 出版商
  127. Metz P, Lopez J, Kim S, Akimoto K, Ohno S, Chang J. Regulation of Asymmetric Division by Atypical Protein Kinase C Influences Early Specification of CD8(+) T Lymphocyte Fates. Sci Rep. 2016;6:19182 pubmed 出版商
  128. Cloonan S, Glass K, Laucho Contreras M, Bhashyam A, Cervo M, Pabón M, et al. Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med. 2016;22:163-74 pubmed 出版商
  129. Li W, Zou J, Yue F, Song K, Chen Q, McKeehan W, et al. Defects in MAP1S-mediated autophagy cause reduction in mouse lifespans especially when fibronectin is overexpressed. Aging Cell. 2016;15:370-9 pubmed 出版商
  130. Bishayee A, Mandal A, Bhattacharyya P, Bhatia D. Pomegranate exerts chemoprevention of experimentally induced mammary tumorigenesis by suppression of cell proliferation and induction of apoptosis. Nutr Cancer. 2016;68:120-30 pubmed 出版商
  131. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  132. De Luca T, Pelosi A, Trisciuoglio D, D Aguanno S, Desideri M, Farini V, et al. miR-211 and MITF modulation by Bcl-2 protein in melanoma cells. Mol Carcinog. 2016;55:2304-2312 pubmed 出版商
  133. Wang S, Song T, Leng C, Lan K, Ning J, Chu H. Propofol protects against the neurotoxicity of 1‑methyl‑4‑phenylpyridinium. Mol Med Rep. 2016;13:309-14 pubmed 出版商
  134. Zucal C, D Agostino V, Casini A, Mantelli B, Thongon N, Soncini D, et al. EIF2A-dependent translational arrest protects leukemia cells from the energetic stress induced by NAMPT inhibition. BMC Cancer. 2015;15:855 pubmed 出版商
  135. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  136. Herriott A, Tudhope S, Junge G, Rodrigues N, Patterson M, Woodhouse L, et al. PARP1 expression, activity and ex vivo sensitivity to the PARP inhibitor, talazoparib (BMN 673), in chronic lymphocytic leukaemia. Oncotarget. 2015;6:43978-91 pubmed 出版商
  137. Ting W, Kuo W, Hsieh D, Yeh Y, Day C, Chen Y, et al. Heat Killed Lactobacillus reuteri GMNL-263 Reduces Fibrosis Effects on the Liver and Heart in High Fat Diet-Hamsters via TGF-β Suppression. Int J Mol Sci. 2015;16:25881-96 pubmed 出版商
  138. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  139. Nichols C, Shepherd D, Knuckles T, Thapa D, Stricker J, Stapleton P, et al. Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol. 2015;309:H2017-30 pubmed 出版商
  140. Kroon J, Puhr M, Buijs J, van der Horst G, Hemmer D, Marijt K, et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer. 2016;23:35-45 pubmed 出版商
  141. Guo W, Zhang Y, Ling Z, Liu X, Zhao X, Yuan Z, et al. Caspase-3 feedback loop enhances Bid-induced AIF/endoG and Bak activation in Bax and p53-independent manner. Cell Death Dis. 2015;6:e1919 pubmed 出版商
  142. Sochalska M, Ottina E, Tuzlak S, Herzog S, Herold M, Villunger A. Conditional knockdown of BCL2A1 reveals rate-limiting roles in BCR-dependent B-cell survival. Cell Death Differ. 2016;23:628-39 pubmed 出版商
  143. Ambroise G, Portier A, Roders N, Arnoult D, Vazquez A. Subcellular localization of PUMA regulates its pro-apoptotic activity in Burkitt's lymphoma B cells. Oncotarget. 2015;6:38181-94 pubmed 出版商
  144. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  145. Ray A, Vasudevan S, Sengupta S. 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death. PLoS ONE. 2015;10:e0137614 pubmed 出版商
  146. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  147. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  148. Lavik A, Zhong F, Chang M, Greenberg E, Choudhary Y, Smith M, et al. A synthetic peptide targeting the BH4 domain of Bcl-2 induces apoptosis in multiple myeloma and follicular lymphoma cells alone or in combination with agents targeting the BH3-binding pocket of Bcl-2. Oncotarget. 2015;6:27388-402 pubmed 出版商
  149. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  150. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  151. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  152. Lorkova L, Scigelova M, Arrey T, Vit O, Pospisilova J, Doktorova E, et al. Detailed Functional and Proteomic Characterization of Fludarabine Resistance in Mantle Cell Lymphoma Cells. PLoS ONE. 2015;10:e0135314 pubmed 出版商
  153. Oteiza A, Mechti N. Control of FoxO4 Activity and Cell Survival by TRIM22 Directs TLR3-Stimulated Cells Toward IFN Type I Gene Induction or Apoptosis. J Interferon Cytokine Res. 2015;35:859-74 pubmed 出版商
  154. Zhang X, Wang X, Wu T, Li B, Liu T, Wang R, et al. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation. Sci Rep. 2015;5:12579 pubmed 出版商
  155. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  156. Wu C, Huang K, Yang T, Li Y, Wen C, Hsu S, et al. The Topoisomerase 1 Inhibitor Austrobailignan-1 Isolated from Koelreuteria henryi Induces a G2/M-Phase Arrest and Cell Death Independently of p53 in Non-Small Cell Lung Cancer Cells. PLoS ONE. 2015;10:e0132052 pubmed 出版商
  157. Masotti A, Donninelli G, Da Sacco L, Varano B, Del Cornò M, Gessani S. HIV-1 gp120 influences the expression of microRNAs in human monocyte-derived dendritic cells via STAT3 activation. BMC Genomics. 2015;16:480 pubmed 出版商
  158. Mavroeidis L, Sheldon H, Briasoulis E, Marselos M, Pappas P, Harris A. Metronomic vinorelbine: Anti-angiogenic activity in vitro in normoxic and severe hypoxic conditions, and severe hypoxia-induced resistance to its anti-proliferative effect with reversal by Akt inhibition. Int J Oncol. 2015;47:455-64 pubmed 出版商
  159. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  160. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  161. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  162. Wang Z, Ma B, Ji X, Deng Y, Zhang T, Zhang X, et al. MicroRNA-378-5p suppresses cell proliferation and induces apoptosis in colorectal cancer cells by targeting BRAF. Cancer Cell Int. 2015;15:40 pubmed 出版商
  163. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  164. Mishra A, Kumar R, Tyagi A, Kohaar I, Hedau S, Bharti A, et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. Ecancermedicalscience. 2015;9:525 pubmed 出版商
  165. Vuillefroy de Silly R, Ducimetière L, Yacoub Maroun C, Dietrich P, Derouazi M, Walker P. Phenotypic switch of CD8(+) T cells reactivated under hypoxia toward IL-10 secreting, poorly proliferative effector cells. Eur J Immunol. 2015;45:2263-75 pubmed 出版商
  166. Zou Z, Cai Y, Chen Y, Chen S, Liu L, Shen Z, et al. Bone marrow-derived mesenchymal stem cells attenuate acute liver injury and regulate the expression of fibrinogen-like-protein 1 and signal transducer and activator of transcription 3. Mol Med Rep. 2015;12:2089-97 pubmed 出版商
  167. Chen Y, Li X, Guo L, Wu X, He C, Zhang S, et al. Combining radiation with autophagy inhibition enhances suppression of tumor growth and angiogenesis in esophageal cancer. Mol Med Rep. 2015;12:1645-52 pubmed 出版商
  168. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  169. Yang L, Zhang S, George S, Teng R, You X, Xu M, et al. Targeting Notch1 and proteasome as an effective strategy to suppress T-cell lymphoproliferative neoplasms. Oncotarget. 2015;6:14953-69 pubmed
  170. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  171. McMillan E, Paré M, Baechler B, Graham D, Rush J, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE. 2015;10:e0119382 pubmed 出版商
  172. Farrugia M, Sharma S, Lin C, McLaughlin S, Vanderbilt D, Ammer A, et al. Regulation of anti-apoptotic signaling by Kruppel-like factors 4 and 5 mediates lapatinib resistance in breast cancer. Cell Death Dis. 2015;6:e1699 pubmed 出版商
  173. Freeman J, Feng Y, Demehri F, Dempsey P, Teitelbaum D. TPN-associated intestinal epithelial cell atrophy is modulated by TLR4/EGF signaling pathways. FASEB J. 2015;29:2943-58 pubmed 出版商
  174. Giunta S, Castorina A, Marzagalli R, Szychlinska M, Pichler K, Mobasheri A, et al. Ameliorative effects of PACAP against cartilage degeneration. Morphological, immunohistochemical and biochemical evidence from in vivo and in vitro models of rat osteoarthritis. Int J Mol Sci. 2015;16:5922-44 pubmed 出版商
  175. Pedro J, Wei Y, Sica V, Maiuri M, Zou Z, Kroemer G, et al. BAX and BAK1 are dispensable for ABT-737-induced dissociation of the BCL2-BECN1 complex and autophagy. Autophagy. 2015;11:452-9 pubmed 出版商
  176. Shi S, Wang Q, Xu J, Jang J, Padilla M, Nyunoya T, et al. Synergistic anticancer effect of cisplatin and Chal-24 combination through IAP and c-FLIPL degradation, Ripoptosome formation and autophagy-mediated apoptosis. Oncotarget. 2015;6:1640-51 pubmed
  177. Long J, Schoonen P, Graczyk D, O Prey J, Ryan K. p73 engages A2B receptor signalling to prime cancer cells to chemotherapy-induced death. Oncogene. 2015;34:5152-62 pubmed 出版商
  178. Huang S, Cui Y, Guo X, Wang L, Li S, Lu Y, et al. 2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis, impairs mitochondrial function and induces apoptosis of early leptotene spermatocytes in rats. Reprod Toxicol. 2015;51:114-24 pubmed 出版商
  179. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:e1624 pubmed 出版商
  180. Huang P, Hung S, Pao C, Wang T. N-(1-pyrenyl) maleimide induces bak oligomerization and mitochondrial dysfunction in Jurkat Cells. Biomed Res Int. 2015;2015:798489 pubmed 出版商
  181. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  182. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  183. Xia J, Chen S, Lv Y, Lu L, Hu W, Zhou Y. ZGDHu-1 induces Gâ‚‚/M phase arrest and apoptosis in Kasumi-1 cells. Mol Med Rep. 2015;11:3398-404 pubmed 出版商
  184. Gültiken N, Guvenc T, Kaya D, Agaoglu A, Ay S, Kücükaslan I, et al. Tarantula cubensis extract alters the degree of apoptosis and mitosis in canine mammary adenocarcinomas. J Vet Sci. 2015;16:213-9 pubmed
  185. Papanikolaou V, Stefanou N, Dubos S, Papathanasiou I, Palianopoulou M, Valiakou V, et al. Synergy of leptin/STAT3 with HER2 receptor induces tamoxifen resistance in breast cancer cells through regulation of apoptosis-related genes. Cell Oncol (Dordr). 2015;38:155-64 pubmed 出版商
  186. Kim T, Kim H, Kang Y, Yoon S, Lee J, Choi W, et al. Psammaplin A induces Sirtuin 1-dependent autophagic cell death in doxorubicin-resistant MCF-7/adr human breast cancer cells and xenografts. Biochim Biophys Acta. 2015;1850:401-10 pubmed 出版商
  187. Cho S, Cho M, Kim J, Kaeberlein M, Lee S, Suh Y. Syringaresinol protects against hypoxia/reoxygenation-induced cardiomyocytes injury and death by destabilization of HIF-1α in a FOXO3-dependent mechanism. Oncotarget. 2015;6:43-55 pubmed
  188. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  189. Wang T, Guo S, Liu Z, Wu L, Li M, Yang J, et al. CAMK2N1 inhibits prostate cancer progression through androgen receptor-dependent signaling. Oncotarget. 2014;5:10293-306 pubmed
  190. Zebboudj A, Maroui M, Dutrieux J, Touil Boukoffa C, Bourouba M, Chelbi Alix M, et al. Sodium arsenite induces apoptosis and Epstein-Barr virus reactivation in lymphoblastoid cells. Biochimie. 2014;107 Pt B:247-56 pubmed 出版商
  191. Shi R, Zhu S, Li V, Gibson S, Xu X, Kong J. BNIP3 interacting with LC3 triggers excessive mitophagy in delayed neuronal death in stroke. CNS Neurosci Ther. 2014;20:1045-55 pubmed 出版商
  192. Merabova N, Sariyer I, Saribas A, Knezevic T, Gordon J, Turco M, et al. WW domain of BAG3 is required for the induction of autophagy in glioma cells. J Cell Physiol. 2015;230:831-41 pubmed 出版商
  193. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  194. Liu Y, Wan S, Zhang P, Zhang W, Zheng J, Lin J, et al. Expression levels of autophagy related proteins and their prognostic significance in retinocytoma and retinoblastoma. Int J Ophthalmol. 2014;7:594-601 pubmed 出版商
  195. Park S, Park J, Kim Y, Song S, Kwon H, Lee Y. Suberoylanilide hydroxamic acid induces ROS-mediated cleavage of HSP90 in leukemia cells. Cell Stress Chaperones. 2015;20:149-57 pubmed 出版商
  196. Morita A, Ariyasu S, Wang B, Asanuma T, Onoda T, Sawa A, et al. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation. Biochem Biophys Res Commun. 2014;450:1498-504 pubmed 出版商
  197. Su C, Sun F, Cunningham R, Rybalchenko N, Singh M. ERK5/KLF4 signaling as a common mediator of the neuroprotective effects of both nerve growth factor and hydrogen peroxide preconditioning. Age (Dordr). 2014;36:9685 pubmed 出版商
  198. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  199. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  200. Raimondi L, Amodio N, Di Martino M, Altomare E, Leotta M, Caracciolo D, et al. Targeting of multiple myeloma-related angiogenesis by miR-199a-5p mimics: in vitro and in vivo anti-tumor activity. Oncotarget. 2014;5:3039-54 pubmed
  201. Cen B, Xiong Y, Song J, Mahajan S, DuPont R, McEachern K, et al. The Pim-1 protein kinase is an important regulator of MET receptor tyrosine kinase levels and signaling. Mol Cell Biol. 2014;34:2517-32 pubmed 出版商
  202. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  203. Ding K, Banerjee A, Tan S, Zhao J, Zhuang Q, Li R, et al. Artemin, a member of the glial cell line-derived neurotrophic factor family of ligands, is HER2-regulated and mediates acquired trastuzumab resistance by promoting cancer stem cell-like behavior in mammary carcinoma cells. J Biol Chem. 2014;289:16057-71 pubmed 出版商
  204. Yurube T, Hirata H, Kakutani K, Maeno K, Takada T, Zhang Z, et al. Notochordal cell disappearance and modes of apoptotic cell death in a rat tail static compression-induced disc degeneration model. Arthritis Res Ther. 2014;16:R31 pubmed 出版商
  205. Wang C, Wang J, Liu Z, Ma X, Wang X, Jin H, et al. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis. 2014;35:1500-9 pubmed 出版商
  206. Hollevoet K, Antignani A, FitzGerald D, Pastan I. Combining the antimesothelin immunotoxin SS1P with the BH3-mimetic ABT-737 induces cell death in SS1P-resistant pancreatic cancer cells. J Immunother. 2014;37:8-15 pubmed 出版商
  207. Thompson R, Vardinogiannis I, Gilmore T. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity. PLoS ONE. 2013;8:e62822 pubmed 出版商
  208. Hernandez A, Colvin E, Chen Y, Geiss S, Eller L, Fueger P. Upregulation of p21 activates the intrinsic apoptotic pathway in ?-cells. Am J Physiol Endocrinol Metab. 2013;304:E1281-90 pubmed 出版商
  209. Xargay Torrent S, Lopez Guerra M, Saborit Villarroya I, Rosich L, Campo E, Roué G, et al. Vorinostat-induced apoptosis in mantle cell lymphoma is mediated by acetylation of proapoptotic BH3-only gene promoters. Clin Cancer Res. 2011;17:3956-68 pubmed 出版商
  210. Rieger J, Lemke D, Maurer G, Weiler M, Frank B, Tabatabai G, et al. Enzastaurin-induced apoptosis in glioma cells is caspase-dependent and inhibited by BCL-XL. J Neurochem. 2008;106:2436-48 pubmed 出版商
  211. Götschel F, Kern C, Lang S, Sparna T, Markmann C, Schwager J, et al. Inhibition of GSK3 differentially modulates NF-kappaB, CREB, AP-1 and beta-catenin signaling in hepatocytes, but fails to promote TNF-alpha-induced apoptosis. Exp Cell Res. 2008;314:1351-66 pubmed 出版商
  212. Martin Latil S, Mousson L, Autret A, Colbere Garapin F, Blondel B. Bax is activated during rotavirus-induced apoptosis through the mitochondrial pathway. J Virol. 2007;81:4457-64 pubmed
  213. Yamanaka T, Helgeland L, Farstad I, Fukushima H, Midtvedt T, Brandtzaeg P. Microbial colonization drives lymphocyte accumulation and differentiation in the follicle-associated epithelium of Peyer's patches. J Immunol. 2003;170:816-22 pubmed
  214. Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol. 2003;160:53-64 pubmed
  215. Shinoura N, Sakurai S, Asai A, Kirino T, Hamada H. Over-expression of APAF-1 and caspase-9 augments radiation-induced apoptosis in U-373MG glioma cells. Int J Cancer. 2001;93:252-61 pubmed