这是一篇来自已证抗体库的有关大鼠 Bcl2l1的综述,是根据187篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Bcl2l1 抗体。
Bcl2l1 同义词: Bcl-xl; Bcl2l; Bclx; bcl-X

圣克鲁斯生物技术
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 4a). Front Immunol (2021) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(7B2.5)
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 Bcl2l1抗体(Santa, 7B2.5)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogenesis (2020) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2k
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 2k). Oncogene (2020) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 4f
圣克鲁斯生物技术 Bcl2l1抗体(Santa, sc-8392)被用于被用于免疫印迹在人类样本上 (图 4f). J Clin Invest (2019) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:1000; 图 5a
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Biol Chem (2018) ncbi
小鼠 单克隆(7B2.5)
  • 免疫印迹; 人类; 1:100; 图 4f
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, Inc, SC56021)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 4f). Mol Med Rep (2018) ncbi
小鼠 单克隆(H-5)
  • 流式细胞仪; 小鼠; 图 s4b
圣克鲁斯生物技术 Bcl2l1抗体(Santa, H-5)被用于被用于流式细胞仪在小鼠样本上 (图 s4b). Front Immunol (2018) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 图 5b
圣克鲁斯生物技术 Bcl2l1抗体(SantaCruz, sc-8392)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Clin Invest (2017) ncbi
小鼠 单克隆(H-5)
  • 流式细胞仪; 人类; 图 1d
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, H-5)被用于被用于流式细胞仪在人类样本上 (图 1d). Cell Signal (2017) ncbi
小鼠 单克隆(2H12)
  • 免疫印迹; 人类; 1:250; 图 4
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-23958)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Discov (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Mol Med Rep (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 5e
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 5e). Oncotarget (2016) ncbi
小鼠 单克隆(4H33)
  • 流式细胞仪; 人类; 1:50; 图 4a
圣克鲁斯生物技术 Bcl2l1抗体(Santacruz, sc-70418)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 4a). Chem Biol Interact (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 s6
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:1000; 图 3a
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc8392)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). FEBS Lett (2016) ncbi
小鼠 单克隆(H-5)
  • 流式细胞仪; 小鼠; 图 5d
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl2l1抗体(santa cruz, sc-8392)被用于被用于流式细胞仪在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上. Stem Cells (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 图 5f
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在大鼠样本上 (图 5f). Apoptosis (2016) ncbi
小鼠 单克隆(H-5)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 1
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, 8392)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Adv (2015) ncbi
小鼠 单克隆(2H12)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-23958)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Endocr Relat Cancer (2016) ncbi
小鼠 单克隆(2H12)
  • 免疫印迹; 人类; 1:500; 图 7
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-23958)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Cell Int (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫组化-石蜡切片; 人类; 表 3
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, H-5)被用于被用于免疫组化-石蜡切片在人类样本上 (表 3). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 st2
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 st2). Oncotarget (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫组化-石蜡切片; domestic rabbit; 1:20; 图 3
圣克鲁斯生物技术 Bcl2l1抗体(santa Cruz, sc-8392)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:20 (图 3). Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2l1抗体(santa Cruz, sc8392)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Bcl2l1抗体(santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 图 7d
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, 8392)被用于被用于免疫印迹在小鼠样本上 (图 7d). Oncotarget (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, SC-8392)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫细胞化学在人类样本上. Toxicol Lett (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在大鼠样本上 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Oncotarget (2015) ncbi
小鼠 单克隆(44)
  • 免疫印迹; 人类; 1:100; 图 3
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-136207)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5A
圣克鲁斯生物技术 Bcl2l1抗体(Cell Signaling, sc-8392)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5A). Physiol Rep (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫印迹在人类样本上浓度为1:2000. Cell Death Dis (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, sc-8392)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). Oncol Rep (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上. Int J Biol Macromol (2015) ncbi
小鼠 单克隆(H-5)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz, H5)被用于被用于流式细胞仪在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotech, sc-8392)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫印迹在人类样本上浓度为1:100. Biomed Res Int (2014) ncbi
小鼠 单克隆(H-5)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Bcl2l1抗体(Santa Cruz Biotechnology, sc-8392)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR16642)
  • 免疫组化; 小鼠; 1:4000; 图 8g
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab178844)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 8g). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 8
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2020) ncbi
domestic rabbit 单克隆(EPR16642)
  • 免疫印迹; 大鼠; 1:10,000; 图 6d
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab178844)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6d). Behav Brain Res (2019) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Bcl2l1抗体(ABcam, ab32370)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 1:500; 图 2
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 大鼠; 图 5c
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在大鼠样本上 (图 5c). Evid Based Complement Alternat Med (2015) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Bcl2l1抗体(ABCAM, E18)被用于被用于免疫印迹在人类样本上 (图 1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上 (图 4d). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(E18)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Bcl2l1抗体(Abcam, ab32370)被用于被用于免疫印迹在人类样本上 (图 4). Mol Med Rep (2014) ncbi
赛默飞世尔
小鼠 单克隆(2H12)
  • 免疫组化; 人类; 1:200; 图 4d
赛默飞世尔 Bcl2l1抗体(Thermo Fisher, AHO0222)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(C.85.1)
  • 免疫印迹; 大鼠; 1:2000; 图 8
赛默飞世尔 Bcl2l1抗体(Thermo Scientific, MA-5-15142)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 8). BMC Cancer (2019) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:150; 图 5e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, CST-2762)被用于被用于免疫组化在小鼠样本上浓度为1:150 (图 5e). Cells (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 s4c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764S)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signalling, 2762)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 1:1000; 图 1l
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2764T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1l). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹基因敲除验证; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2764)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:1000 (图 3a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上 (图 2c). Genes (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在小鼠样本上 (图 4a). Cell Death Differ (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 1:2000; 图 6s1a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2764)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6s1a). elife (2021) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 5s1a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5s1a). elife (2020) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 3d). Theranostics (2020) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764S)被用于被用于免疫印迹在人类样本上 (图 8). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在人类样本上 (图 1b). Open Biol (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 s5l
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 s5l). Cell (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3s2e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 54H6)被用于被用于免疫印迹在人类样本上 (图 3s2e). elife (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764P)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(C78F1)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s1c
  • 免疫印迹; 小鼠; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, C78F1)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s1c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1c). Nat Commun (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 3a). Science (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764S)被用于被用于免疫印迹在人类样本上 (图 4c). Cancer Cell Int (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2764)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4e). BMC Cancer (2019) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). elife (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 3b). Oncoimmunology (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3a). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Med (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 6d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 6d). Oncotarget (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Nat Med (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 大鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7c). Neuropharmacology (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). Hepatology (2017) ncbi
domestic rabbit 单克隆(C78F1)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, C78F1)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). J Drug Target (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在小鼠样本上 (图 2c). Nat Med (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 4b). Anticancer Res (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:10,000; 图 8a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 8a). Int J Oncol (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, 2764)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 2762)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(C78F1)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 4237)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 6a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:3000; 图 1b
  • 免疫印迹; 小鼠; 1:3000; 图 1a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1b) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2762)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, 2762)被用于被用于免疫印迹在人类样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, 2764)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上 (图 2d). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 2b). Int J Biochem Cell Biol (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 3e). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 3a). FEBS Lett (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 2). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764S)被用于被用于免疫印迹在人类样本上 (图 3b). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 表 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在犬样本上 (表 1). Mol Reprod Dev (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; Spodoptera litura; 图 5j
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764S)被用于被用于免疫印迹在Spodoptera litura样本上 (图 5j). Sci Rep (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 10a). Nature (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫组化基因敲除验证; 小鼠; 图 1
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 1) 和 被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Mol Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 st1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 s4b). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2762S)被用于被用于免疫印迹在人类样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 7a). Autophagy (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2762)被用于被用于免疫印迹在人类样本上 (图 s2). Oncoimmunology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2762S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 流式细胞仪; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(cell signalling, 54H6)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 2). Cancer Cell Int (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫组化; 人类; 1:1000; 图 3
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2762)被用于被用于免疫印迹在人类样本上 (图 3). Oncogene (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 流式细胞仪; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2767)被用于被用于流式细胞仪在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Nature (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 1
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上 (图 4a). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2762)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764p)被用于被用于免疫沉淀在人类样本上 (图 5), 被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technolog, 2764)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(C78F1)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 4237)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Immunol (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 5a). J Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2762)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764S)被用于被用于免疫印迹在人类样本上 (图 7). Life Sci (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 6d). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 9
  • 免疫印迹; 小鼠; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 9) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764S)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 s11). Cell Mol Life Sci (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上 (图 1). Cancer Biol Ther (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:5000; 图 2h
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2h). Nat Commun (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在小鼠样本上 (图 5a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764 s)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Nat Med (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; African green monkey; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 54H6)被用于被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 5a). Antiviral Res (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 大鼠; 图 4e
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在大鼠样本上 (图 4e). Cell Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 1:200; 图 9
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 9). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 图 3c
  • 免疫印迹; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5c). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 3i). Nat Genet (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Lett (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell signaling, 2764)被用于被用于免疫印迹在人类样本上 (图 5). Cell Cycle (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 54H6)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neurochem Res (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 2764)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Methods Mol Biol (2015) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 大鼠; 1:500
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(CST, 54H6)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Exp Eye Res (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling, 54H6)被用于被用于免疫印迹在人类样本上浓度为1:500. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 2764)被用于被用于免疫印迹在人类样本上 (图 1). Cell Tissue Res (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technology, 54H6)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Tech, 2764)被用于被用于免疫印迹在小鼠样本上 (图 s2). Autophagy (2014) ncbi
domestic rabbit 单克隆(54H6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Bcl2l1抗体(Cell Signaling Technologies, 54H6)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Death Differ (2013) ncbi
碧迪BD
小鼠 单克隆(44/Bcl-x)
  • 免疫印迹; 人类; 1:1000; 图 2a
碧迪BD Bcl2l1抗体(BD, 610746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Cell Death Dis (2018) ncbi
小鼠 单克隆(44/Bcl-x)
  • 免疫印迹; 小鼠; 图 s5
碧迪BD Bcl2l1抗体(BD Bioscience, 44/BCL-X)被用于被用于免疫印迹在小鼠样本上 (图 s5). J Clin Invest (2017) ncbi
小鼠 单克隆(4/Bcl-x)
  • 免疫印迹; 人类; 图 s3f
碧迪BD Bcl2l1抗体(BD Biosciences, 610210)被用于被用于免疫印迹在人类样本上 (图 s3f). Autophagy (2017) ncbi
小鼠 单克隆(44/Bcl-x)
  • 免疫印迹; 人类; 图 4
碧迪BD Bcl2l1抗体(BD Biosciences, 610746)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
小鼠 单克隆(44/Bcl-x)
  • 免疫印迹; 人类; 1:1000; 图 8
碧迪BD Bcl2l1抗体(BD Bioscience, 610747)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(44/Bcl-x)
  • 免疫印迹; 小鼠; 1:100; 图 6d, 6e
碧迪BD Bcl2l1抗体(BD Transduction Laboratories, 610747)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6d, 6e). FEBS Open Bio (2015) ncbi
小鼠 单克隆(4/Bcl-x)
  • 免疫印迹; 人类; 图 3
碧迪BD Bcl2l1抗体(Transduction Lab, 610209)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(4/Bcl-x)
  • 免疫印迹; 小鼠
碧迪BD Bcl2l1抗体(BD Biosciences, 610210)被用于被用于免疫印迹在小鼠样本上. Methods Enzymol (2009) ncbi
文章列表
  1. Mangold N, Pippin J, Unnersjoe Jess D, Koehler S, Shankland S, Brähler S, et al. The Atypical Cyclin-Dependent Kinase 5 (Cdk5) Guards Podocytes from Apoptosis in Glomerular Disease While Being Dispensable for Podocyte Development. Cells. 2021;10: pubmed 出版商
  2. Bhattarai K, Kim H, Chaudhary M, Ur Rashid M, Kim J, Kim H, et al. TMBIM6 regulates redox-associated posttranslational modifications of IRE1α and ER stress response failure in aging mice and humans. Redox Biol. 2021;47:102128 pubmed 出版商
  3. Gyamfi J, Yeo J, Kwon D, Min B, Cha Y, Koo J, et al. Interaction between CD36 and FABP4 modulates adipocyte-induced fatty acid import and metabolism in breast cancer. NPJ Breast Cancer. 2021;7:129 pubmed 出版商
  4. Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, et al. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun. 2021;12:5325 pubmed 出版商
  5. Guo T, Gu C, Li B, Xu C. Dual inhibition of FGFR4 and BCL-xL inhibits multi-resistant ovarian cancer with BCL2L1 gain. Aging (Albany NY). 2021;13:19750-19759 pubmed 出版商
  6. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  7. Marquez Exposito L, Tejedor Santamaria L, Santos Sánchez L, Valentijn F, Cantero Navarro E, Rayego Mateos S, et al. Acute Kidney Injury is Aggravated in Aged Mice by the Exacerbation of Proinflammatory Processes. Front Pharmacol. 2021;12:662020 pubmed 出版商
  8. Li S, Jin H, Sun G, Zhang C, Wang J, Xu H, et al. Dietary Inorganic Nitrate Protects Hepatic Ischemia-Reperfusion Injury Through NRF2-Mediated Antioxidative Stress. Front Pharmacol. 2021;12:634115 pubmed 出版商
  9. Sanchez Rivera F, Ryan J, Soto Feliciano Y, Clare Beytagh M, Xuan L, Feldser D, et al. Mitochondrial apoptotic priming is a key determinant of cell fate upon p53 restoration. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  10. Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel). 2021;12: pubmed 出版商
  11. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  12. Campbell K, Mason S, Winder M, Willemsen R, Cloix C, Lawson H, et al. Breast cancer dependence on MCL-1 is due to its canonical anti-apoptotic function. Cell Death Differ. 2021;: pubmed 出版商
  13. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  14. Ruan H, Li X, Xu X, Leibowitz B, Tong J, Chen L, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. elife. 2020;9: pubmed 出版商
  15. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk S. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. elife. 2020;9: pubmed 出版商
  16. Han B, Meng X, Wu P, Li Z, Li S, Zhang Y, et al. ATRX/EZH2 complex epigenetically regulates FADD/PARP1 axis, contributing to TMZ resistance in glioma. Theranostics. 2020;10:3351-3365 pubmed 出版商
  17. Bajpai R, Sharma A, Achreja A, Edgar C, Wei C, Siddiqa A, et al. Electron transport chain activity is a predictor and target for venetoclax sensitivity in multiple myeloma. Nat Commun. 2020;11:1228 pubmed 出版商
  18. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  19. Lohard S, Bourgeois N, Maillet L, Gautier F, Fétiveau A, Lasla H, et al. STING-dependent paracriny shapes apoptotic priming of breast tumors in response to anti-mitotic treatment. Nat Commun. 2020;11:259 pubmed 出版商
  20. Sheng L, Zhang J, Li L, Xie X, Wen X, Cheng K. Design, Synthesis, and Evaluation of Novel 2-Methoxyestradiol Derivatives as Apoptotic Inducers Through an Intrinsic Apoptosis Pathway. Biomolecules. 2020;10: pubmed 出版商
  21. Singh M, Kasna S, Roy S, Aldosary S, Saeedan A, Ansari M, et al. Repurposing mechanistic insight of PDE-5 inhibitor in cancer chemoprevention through mitochondrial-oxidative stress intervention and blockade of DuCLOX signalling. BMC Cancer. 2019;19:996 pubmed 出版商
  22. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  23. Thangaraj K, Balasubramanian B, Park S, Natesan K, Liu W, Manju V. Orientin Induces G0/G1 Cell Cycle Arrest and Mitochondria Mediated Intrinsic Apoptosis in Human Colorectal Carcinoma HT29 Cells. Biomolecules. 2019;9: pubmed 出版商
  24. Littler S, Sloss O, Geary B, Pierce A, Whetton A, Taylor S. Oncogenic MYC amplifies mitotic perturbations. Open Biol. 2019;9:190136 pubmed 出版商
  25. Zierhut C, Yamaguchi N, Paredes M, Luo J, Carroll T, Funabiki H. The Cytoplasmic DNA Sensor cGAS Promotes Mitotic Cell Death. Cell. 2019;178:302-315.e23 pubmed 出版商
  26. Kabir S, Cidado J, Andersen C, Dick C, Lin P, Mitros T, et al. The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells. elife. 2019;8: pubmed 出版商
  27. Liu F, Fan D, Yang Z, Tang N, Guo Z, Ma S, et al. TLR9 is essential for HMGB1-mediated post-myocardial infarction tissue repair through affecting apoptosis, cardiac healing, and angiogenesis. Cell Death Dis. 2019;10:480 pubmed 出版商
  28. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352 pubmed 出版商
  29. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  30. He M, Chaurushiya M, Webster J, Kummerfeld S, Reja R, Chaudhuri S, et al. Intrinsic apoptosis shapes the tumor spectrum linked to inactivation of the deubiquitinase BAP1. Science. 2019;364:283-285 pubmed 出版商
  31. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  32. Liu Y, Wang X, Deng L, Ping L, Shi Y, Zheng W, et al. ITK inhibition induced in vitro and in vivo anti-tumor activity through downregulating TCR signaling pathway in malignant T cell lymphoma. Cancer Cell Int. 2019;19:32 pubmed 出版商
  33. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  34. Li Z, Mbah N, Overmeyer J, Sarver J, George S, Trabbic C, et al. The JNK signaling pathway plays a key role in methuosis (non-apoptotic cell death) induced by MOMIPP in glioblastoma. BMC Cancer. 2019;19:77 pubmed 出版商
  35. LeBlanc L, Lee B, Yu A, Kim M, Kambhampati A, Dupont S, et al. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. elife. 2018;7: pubmed 出版商
  36. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  37. De R, Sarkar S, Mazumder S, Debsharma S, Siddiqui A, Saha S, et al. Macrophage migration inhibitory factor regulates mitochondrial dynamics and cell growth of human cancer cell lines through CD74-NF-κB signaling. J Biol Chem. 2018;293:19740-19760 pubmed 出版商
  38. Wu R, Yang H, Wan J, Deng X, Chen L, Hao S, et al. Knockdown of the Hippo transducer YAP reduces proliferation and promotes apoptosis in the Jurkat leukemia cell. Mol Med Rep. 2018;18:5379-5388 pubmed 出版商
  39. Yue D, Sun X. Idelalisib promotes Bim-dependent apoptosis through AKT/FoxO3a in hepatocellular carcinoma. Cell Death Dis. 2018;9:935 pubmed 出版商
  40. Hobeika E, Dautzenberg M, Levit Zerdoun E, Pelanda R, Reth M. Conditional Selection of B Cells in Mice With an Inducible B Cell Development. Front Immunol. 2018;9:1806 pubmed 出版商
  41. Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, et al. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086 pubmed 出版商
  42. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  43. Zhang S, Zhang M, Jing Y, Yin X, Ma P, Zhang Z, et al. Deubiquitinase USP13 dictates MCL1 stability and sensitivity to BH3 mimetic inhibitors. Nat Commun. 2018;9:215 pubmed 出版商
  44. Bogenberger J, Whatcott C, Hansen N, Delman D, Shi C, Kim W, et al. Combined venetoclax and alvocidib in acute myeloid leukemia. Oncotarget. 2017;8:107206-107222 pubmed 出版商
  45. Hogstad B, Berres M, Chakraborty R, Tang J, Bigenwald C, Serasinghe M, et al. RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions. J Exp Med. 2018;215:319-336 pubmed 出版商
  46. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  47. Zhao L, Liu J, He C, Yan R, Zhou K, Cui Q, et al. Protein kinase A determines platelet life span and survival by regulating apoptosis. J Clin Invest. 2017;127:4338-4351 pubmed 出版商
  48. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  49. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  50. Moncsek A, Al Suraih M, Trussoni C, O Hara S, Splinter P, Zuber C, et al. Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2-/- ) mice. Hepatology. 2017;: pubmed 出版商
  51. Lan P, Fan Y, Zhao Y, Lou X, Monsour H, Zhang X, et al. TNF superfamily receptor OX40 triggers invariant NKT cell pyroptosis and liver injury. J Clin Invest. 2017;127:2222-2234 pubmed 出版商
  52. Yang X, Zhao Q, Yin H, Lei X, Gan R. MiR-33b-5p sensitizes gastric cancer cells to chemotherapy drugs via inhibiting HMGA2 expression. J Drug Target. 2017;25:653-660 pubmed 出版商
  53. Daley D, Mani V, Mohan N, Akkad N, Ochi A, Heindel D, et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat Med. 2017;23:556-567 pubmed 出版商
  54. Jelinek M, Kabelova A, Srámek J, Seitz J, Ojima I, Kovar J. Differing Mechanisms of Death Induction by Fluorinated Taxane SB-T-12854 in Breast Cancer Cells. Anticancer Res. 2017;37:1581-1590 pubmed
  55. Yokoyama T, Kohn E, Brill E, Lee J. Apoptosis is augmented in high-grade serous ovarian cancer by the combined inhibition of Bcl-2/Bcl-xL and PARP. Int J Oncol. 2017;: pubmed 出版商
  56. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  57. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  58. Mondello P, Derenzini E, Asgari Z, Philip J, Brea E, SESHAN V, et al. Dual inhibition of histone deacetylases and phosphoinositide 3-kinase enhances therapeutic activity against B cell lymphoma. Oncotarget. 2017;8:14017-14028 pubmed 出版商
  59. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  60. Adams C, Kim A, Mitra R, Choi J, Gong J, Eischen C. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J Clin Invest. 2017;127:635-650 pubmed 出版商
  61. Muranen T, Iwanicki M, Curry N, Hwang J, DuBois C, Coloff J, et al. Starved epithelial cells uptake extracellular matrix for survival. Nat Commun. 2017;8:13989 pubmed 出版商
  62. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  63. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  64. Ren Z, Aerts J, Vandenplas H, Wang J, Gorbenko O, Chen J, et al. Phosphorylated STAT5 regulates p53 expression via BRCA1/BARD1-NPM1 and MDM2. Cell Death Dis. 2016;7:e2560 pubmed 出版商
  65. Damas N, Marcatti M, Come C, Christensen L, Nielsen M, Baumgartner R, et al. SNHG5 promotes colorectal cancer cell survival by counteracting STAU1-mediated mRNA destabilization. Nat Commun. 2016;7:13875 pubmed 出版商
  66. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  67. Suzuki J, Nakajima W, Suzuki H, Asano Y, Tanaka N. Chaperone-mediated autophagy promotes lung cancer cell survival through selective stabilization of the pro-survival protein, MCL1. Biochem Biophys Res Commun. 2017;482:1334-1340 pubmed 出版商
  68. Park S, Jwa E, Shin S, Ju E, Park I, Pak J, et al. Ibulocydine sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis via calpain-mediated Bax cleavage. Int J Biochem Cell Biol. 2017;83:47-55 pubmed 出版商
  69. Jiang X, Zha B, Liu X, Liu R, Liu J, Huang E, et al. STAT6 deficiency ameliorates Graves' disease severity by suppressing thyroid epithelial cell hyperplasia. Cell Death Dis. 2016;7:e2506 pubmed 出版商
  70. Lee T, Bian Z, Zhao B, Hogdal L, Sensintaffar J, Goodwin C, et al. Discovery and biological characterization of potent myeloid cell leukemia-1 inhibitors. FEBS Lett. 2017;591:240-251 pubmed 出版商
  71. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  72. Schafer C, Göder A, Beyer M, Kiweler N, Mahendrarajah N, Rauch A, et al. Class I histone deacetylases regulate p53/NF-?B crosstalk in cancer cells. Cell Signal. 2017;29:218-225 pubmed 出版商
  73. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  74. Berthenet K, Bokhari A, Lagrange A, Marcion G, Boudesco C, Causse S, et al. HSP110 promotes colorectal cancer growth through STAT3 activation. Oncogene. 2017;36:2328-2336 pubmed 出版商
  75. Bulldan A, Shihan M, Goericke Pesch S, Scheiner Bobis G. Signaling events associated with gonadotropin releasing hormone-agonist-induced hormonal castration and its reversal in canines. Mol Reprod Dev. 2016;83:1092-1101 pubmed 出版商
  76. Shao X, Lai D, Zhang L, Xu H. Induction of Autophagy and Apoptosis via PI3K/AKT/TOR Pathways by Azadirachtin A in Spodoptera litura Cells. Sci Rep. 2016;6:35482 pubmed 出版商
  77. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  78. Fogarty L, Song B, Suppiah Y, Hasan S, Martin H, Hogan S, et al. Bcl-xL dependency coincides with the onset of neurogenesis in the developing mammalian spinal cord. Mol Cell Neurosci. 2016;77:34-46 pubmed 出版商
  79. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  80. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  81. Klingbeil O, Lesche R, Gelato K, Haendler B, Lejeune P. Inhibition of BET bromodomain-dependent XIAP and FLIP expression sensitizes KRAS-mutated NSCLC to pro-apoptotic agents. Cell Death Dis. 2016;7:e2365 pubmed 出版商
  82. Heulot M, Chevalier N, Puyal J, Margue C, Michel S, Kreis S, et al. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner. Oncotarget. 2016;7:64342-64359 pubmed 出版商
  83. Park S, Jo D, Jo S, Shin D, Shim S, Jo Y, et al. Inhibition of never in mitosis A (NIMA)-related kinase-4 reduces survivin expression and sensitizes cancer cells to TRAIL-induced cell death. Oncotarget. 2016;7:65957-65967 pubmed 出版商
  84. Phatak N, Stankowska D, Krishnamoorthy R. Bcl-2, Bcl-xL, and p-AKT are involved in neuroprotective effects of transcription factor Brn3b in an ocular hypertension rat model of glaucoma. Mol Vis. 2016;22:1048-61 pubmed
  85. Duggan S, Behan F, Kirca M, Zaheer A, McGarrigle S, Reynolds J, et al. The characterization of an intestine-like genomic signature maintained during Barrett's-associated adenocarcinogenesis reveals an NR5A2-mediated promotion of cancer cell survival. Sci Rep. 2016;6:32638 pubmed 出版商
  86. Peng Y, Miao H, Wu S, Yang W, Zhang Y, Xie G, et al. ABHD5 interacts with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy. 2016;12:2167-2182 pubmed
  87. Wu J, Wu H, Tsai D, Chiang M, Chen Y, Gao S, et al. Temporal regulation of Lsp1 O-GlcNAcylation and phosphorylation during apoptosis of activated B cells. Nat Commun. 2016;7:12526 pubmed 出版商
  88. Jinesh G, Molina J, Huang L, Laing N, Mills G, Bar Eli M, et al. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis. Cell Death Discov. 2016;2:16003 pubmed 出版商
  89. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  90. Weyhenmeyer B, Noonan J, Würstle M, Lincoln F, Johnston G, Rehm M, et al. Predicting the cell death responsiveness and sensitization of glioma cells to TRAIL and temozolomide. Oncotarget. 2016;7:61295-61311 pubmed 出版商
  91. Liu H, Li W, Yu X, Gao F, Duan Z, Ma X, et al. EZH2-mediated Puma gene repression regulates non-small cell lung cancer cell proliferation and cisplatin-induced apoptosis. Oncotarget. 2016;7:56338-56354 pubmed 出版商
  92. Franzese O, Palermo B, Di Donna C, Sperduti I, Ferraresi V, Stabile H, et al. Polyfunctional Melan-A-specific tumor-reactive CD8(+) T cells elicited by dacarbazine treatment before peptide-vaccination depends on AKT activation sustained by ICOS. Oncoimmunology. 2016;5:e1114203 pubmed 出版商
  93. Bao H, Liu P, Jiang K, Zhang X, Xie L, Wang Z, et al. Huaier polysaccharide induces apoptosis in hepatocellular carcinoma cells through p38 MAPK. Oncol Lett. 2016;12:1058-1066 pubmed
  94. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  95. Tagscherer K, Fassl A, Sinkovic T, Richter J, Schecher S, Macher Goeppinger S, et al. MicroRNA-210 induces apoptosis in colorectal cancer via induction of reactive oxygen. Cancer Cell Int. 2016;16:42 pubmed 出版商
  96. Dar A, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci U S A. 2016;113:6254-8 pubmed 出版商
  97. Hein A, Post C, Sheinin Y, Lakshmanan I, Natarajan A, Enke C, et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene. 2016;35:6319-6329 pubmed 出版商
  98. Zhao J, Niu X, Li X, Edwards H, Wang G, Wang Y, et al. Inhibition of CHK1 enhances cell death induced by the Bcl-2-selective inhibitor ABT-199 in acute myeloid leukemia cells. Oncotarget. 2016;7:34785-99 pubmed 出版商
  99. Wang W, Zhan M, Li Q, Chen W, Chu H, Huang Q, et al. FXR agonists enhance the sensitivity of biliary tract cancer cells to cisplatin via SHP dependent inhibition of Bcl-xL expression. Oncotarget. 2016;7:34617-29 pubmed 出版商
  100. Kim H, Oh J, Choi S, Nam Y, Jo A, Kwon A, et al. Down-regulation of p21-activated serine/threonine kinase 1 is involved in loss of mesencephalic dopamine neurons. Mol Brain. 2016;9:45 pubmed 出版商
  101. Pallis M, Burrows F, Ryan J, Grundy M, Seedhouse C, Abdul Aziz A, et al. Complementary dynamic BH3 profiles predict co-operativity between the multi-kinase inhibitor TG02 and the BH3 mimetic ABT-199 in acute myeloid leukaemia cells. Oncotarget. 2017;8:16220-16232 pubmed 出版商
  102. Venkatesan N, Kanwar J, Deepa P, Navaneethakrishnan S, Joseph C, Krishnakumar S. Targeting HSP90/Survivin using a cell permeable structure based peptido-mimetic shepherdin in retinoblastoma. Chem Biol Interact. 2016;252:141-9 pubmed 出版商
  103. O Neill K, Huang K, Zhang J, Chen Y, Luo X. Inactivation of prosurvival Bcl-2 proteins activates Bax/Bak through the outer mitochondrial membrane. Genes Dev. 2016;30:973-88 pubmed 出版商
  104. Seifert L, Werba G, Tiwari S, Giao Ly N, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245-9 pubmed 出版商
  105. Yosef R, Pilpel N, Tokarsky Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190 pubmed 出版商
  106. Matsumoto M, Nakajima W, Seike M, Gemma A, Tanaka N. Cisplatin-induced apoptosis in non-small-cell lung cancer cells is dependent on Bax- and Bak-induction pathway and synergistically activated by BH3-mimetic ABT-263 in p53 wild-type and mutant cells. Biochem Biophys Res Commun. 2016;473:490-6 pubmed 出版商
  107. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  108. Qiao C, Lu N, Zhou Y, Ni T, Dai Y, Li Z, et al. Oroxylin A modulates mitochondrial function and apoptosis in human colon cancer cells by inducing mitochondrial translocation of wild-type p53. Oncotarget. 2016;7:17009-20 pubmed 出版商
  109. Barroso González J, Auclair S, Luan S, Thomas L, Atkins K, Aslan J, et al. PACS-2 mediates the ATM and NF-κB-dependent induction of anti-apoptotic Bcl-xL in response to DNA damage. Cell Death Differ. 2016;23:1448-57 pubmed 出版商
  110. Naik E, Dixit V. Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCβ Kinase Activity. J Immunol. 2016;196:3438-51 pubmed 出版商
  111. Gilormini M, Malesys C, Armandy E, Manas P, Guy J, Magne N, et al. Preferential targeting of cancer stem cells in the radiosensitizing effect of ABT-737 on HNSCC. Oncotarget. 2016;7:16731-44 pubmed 出版商
  112. Yu L, Wu W, Gu C, Zhong D, Zhao X, Kong Y, et al. Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget. 2016;7:14693-707 pubmed 出版商
  113. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  114. Stojcheva N, Schechtmann G, Sass S, Roth P, Florea A, Stefanski A, et al. MicroRNA-138 promotes acquired alkylator resistance in glioblastoma by targeting the Bcl-2-interacting mediator BIM. Oncotarget. 2016;7:12937-50 pubmed 出版商
  115. Zámbó V, Tóth M, Schlachter K, Szelényi P, Sarnyai F, Lotz G, et al. Cytosolic localization of NADH cytochrome bâ‚… oxidoreductase (Ncb5or). FEBS Lett. 2016;590:661-71 pubmed 出版商
  116. Park J, Park J, Park D, Kim D, Kim H. Stem Cells Antigen-1 Enriches for a Cancer Stem Cell-Like Subpopulation in Mouse Gastric Cancer. Stem Cells. 2016;34:1177-87 pubmed 出版商
  117. Zhang J, Liu J, Li H, Wang J. β-Catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep. 2016;13:2543-51 pubmed 出版商
  118. Preet R, Siddharth S, Satapathy S, Das S, Nayak A, Das D, et al. Chk1 inhibitor synergizes quinacrine mediated apoptosis in breast cancer cells by compromising the base excision repair cascade. Biochem Pharmacol. 2016;105:23-33 pubmed 出版商
  119. De Toni E, Ziesch A, Rizzani A, Török H, Hocke S, Lü S, et al. Inactivation of BRCA2 in human cancer cells identifies a subset of tumors with enhanced sensitivity towards death receptor-mediated apoptosis. Oncotarget. 2016;7:9477-90 pubmed 出版商
  120. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  121. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  122. Crowder R, Dicker D, El Deiry W. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death. J Biol Chem. 2016;291:5960-70 pubmed 出版商
  123. Lub S, Maes A, Maes K, De Veirman K, De Bruyne E, Menu E, et al. Inhibiting the anaphase promoting complex/cyclosome induces a metaphase arrest and cell death in multiple myeloma cells. Oncotarget. 2016;7:4062-76 pubmed 出版商
  124. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  125. Jia Z, Wang J, Shi Q, Liu S, Wang W, Tian Y, et al. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition. Apoptosis. 2016;21:174-83 pubmed 出版商
  126. Dupont T, Yang S, Patel J, Hatzi K, Malik A, Tam W, et al. Selective targeting of BCL6 induces oncogene addiction switching to BCL2 in B-cell lymphoma. Oncotarget. 2016;7:3520-32 pubmed 出版商
  127. Shishkina G, Kalinina T, Bulygina V, Lanshakov D, Babluk E, Dygalo N. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids. PLoS ONE. 2015;10:e0143978 pubmed 出版商
  128. Green A, Maciel T, Hospital M, Yin C, Mazed F, Townsend E, et al. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. Sci Adv. 2015;1:e1500221 pubmed 出版商
  129. Messner B, Türkcan A, Ploner C, Laufer G, Bernhard D. Cadmium overkill: autophagy, apoptosis and necrosis signalling in endothelial cells exposed to cadmium. Cell Mol Life Sci. 2016;73:1699-713 pubmed 出版商
  130. Nakajima W, Sharma K, Hicks M, Le N, Brown R, Krystal G, et al. Combination with vorinostat overcomes ABT-263 (navitoclax) resistance of small cell lung cancer. Cancer Biol Ther. 2016;17:27-35 pubmed 出版商
  131. Maxfield K, Taus P, Corcoran K, Wooten J, Macion J, Zhou Y, et al. Comprehensive functional characterization of cancer-testis antigens defines obligate participation in multiple hallmarks of cancer. Nat Commun. 2015;6:8840 pubmed 出版商
  132. Wang J, De Veirman K, De Beule N, Maes K, De Bruyne E, Van Valckenborgh E, et al. The bone marrow microenvironment enhances multiple myeloma progression by exosome-mediated activation of myeloid-derived suppressor cells. Oncotarget. 2015;6:43992-4004 pubmed 出版商
  133. Antonucci L, Fagman J, Kim J, Todoric J, Gukovsky I, Mackey M, et al. Basal autophagy maintains pancreatic acinar cell homeostasis and protein synthesis and prevents ER stress. Proc Natl Acad Sci U S A. 2015;112:E6166-74 pubmed 出版商
  134. Vétillard A, Jonchère B, Moreau M, Toutain B, Henry C, Fontanel S, et al. Akt inhibition improves irinotecan treatment and prevents cell emergence by switching the senescence response to apoptosis. Oncotarget. 2015;6:43342-62 pubmed 出版商
  135. Kroon J, Puhr M, Buijs J, van der Horst G, Hemmer D, Marijt K, et al. Glucocorticoid receptor antagonism reverts docetaxel resistance in human prostate cancer. Endocr Relat Cancer. 2016;23:35-45 pubmed 出版商
  136. Esber N, Le Billan F, Resche Rigon M, Loosfelt H, Lombès M, Chabbert Buffet N. Ulipristal Acetate Inhibits Progesterone Receptor Isoform A-Mediated Human Breast Cancer Proliferation and BCl2-L1 Expression. PLoS ONE. 2015;10:e0140795 pubmed 出版商
  137. Montes M, Coiras M, Becerra S, Moreno Castro C, Mateos E, Majuelos J, et al. Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing. PLoS ONE. 2015;10:e0139812 pubmed 出版商
  138. Sochalska M, Ottina E, Tuzlak S, Herzog S, Herold M, Villunger A. Conditional knockdown of BCL2A1 reveals rate-limiting roles in BCR-dependent B-cell survival. Cell Death Differ. 2016;23:628-39 pubmed 出版商
  139. Mazur P, Herner A, Mello S, Wirth M, Hausmann S, Sánchez Rivera F, et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21:1163-71 pubmed 出版商
  140. Anderson K, Russell A, Foletta V. NDRG2 promotes myoblast proliferation and caspase 3/7 activities during differentiation, and attenuates hydrogen peroxide - But not palmitate-induced toxicity. FEBS Open Bio. 2015;5:668-81 pubmed 出版商
  141. Weiss R, Laengle J, Sachet M, Shurygina A, Kiselev O, Egorov A, et al. Interleukin-24 inhibits influenza A virus replication in vitro through induction of toll-like receptor 3 dependent apoptosis. Antiviral Res. 2015;123:93-104 pubmed 出版商
  142. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  143. Yao K, Wu J, Zhang J, Bo J, Hong Z, Zu H. Protective Effect of DHT on Apoptosis Induced by U18666A via PI3K/Akt Signaling Pathway in C6 Glial Cell Lines. Cell Mol Neurobiol. 2016;36:801-9 pubmed 出版商
  144. Schmidt L, Kümmel A, Görlich D, Mohr M, Bröckling S, Mikesch J, et al. PD-1 and PD-L1 Expression in NSCLC Indicate a Favorable Prognosis in Defined Subgroups. PLoS ONE. 2015;10:e0136023 pubmed 出版商
  145. Tiffen J, Gunatilake D, Gallagher S, Gowrishankar K, Heinemann A, Cullinane C, et al. Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget. 2015;6:27023-36 pubmed 出版商
  146. Zhang Y, He Y, Yu H, Ma F, Wu J, Zhang X. Liquiritigenin Protects Rats from Carbon Tetrachloride Induced Hepatic Injury through PGC-1α Pathway. Evid Based Complement Alternat Med. 2015;2015:649568 pubmed 出版商
  147. Liu B, Huang W, Xiao X, Xu Y, Ma S, Xia Z. Neuroprotective Effect of Ulinastatin on Spinal Cord Ischemia-Reperfusion Injury in Rabbits. Oxid Med Cell Longev. 2015;2015:624819 pubmed 出版商
  148. Patergnani S, Giorgi C, Maniero S, Missiroli S, Maniscalco P, Bononi I, et al. The endoplasmic reticulum mitochondrial calcium cross talk is downregulated in malignant pleural mesothelioma cells and plays a critical role in apoptosis inhibition. Oncotarget. 2015;6:23427-44 pubmed
  149. Tattikota S, Rathjen T, Hausser J, Khedkar A, Kabra U, Pandey V, et al. miR-184 Regulates Pancreatic β-Cell Function According to Glucose Metabolism. J Biol Chem. 2015;290:20284-94 pubmed 出版商
  150. Heinemann A, Cullinane C, De Paoli Iseppi R, Wilmott J, Gunatilake D, Madore J, et al. Combining BET and HDAC inhibitors synergistically induces apoptosis of melanoma and suppresses AKT and YAP signaling. Oncotarget. 2015;6:21507-21 pubmed
  151. Kotipatruni R, Ren X, Thotala D, Jaboin J. NDRG4 is a novel oncogenic protein and p53 associated regulator of apoptosis in malignant meningioma cells. Oncotarget. 2015;6:17594-604 pubmed
  152. Nagata T, Yasukawa H, Kyogoku S, Oba T, Takahashi J, Nohara S, et al. Cardiac-Specific SOCS3 Deletion Prevents In Vivo Myocardial Ischemia Reperfusion Injury through Sustained Activation of Cardioprotective Signaling Molecules. PLoS ONE. 2015;10:e0127942 pubmed 出版商
  153. Raimondi L, De Luca A, Amodio N, Manno M, Raccosta S, Taverna S, et al. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation. Oncotarget. 2015;6:13772-89 pubmed
  154. Zhang L, Wang H, Ding K, Xu J. FTY720 induces autophagy-related apoptosis and necroptosis in human glioblastoma cells. Toxicol Lett. 2015;236:43-59 pubmed 出版商
  155. Haschka M, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S, et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun. 2015;6:6891 pubmed 出版商
  156. McMillan E, Paré M, Baechler B, Graham D, Rush J, Quadrilatero J. Autophagic signaling and proteolytic enzyme activity in cardiac and skeletal muscle of spontaneously hypertensive rats following chronic aerobic exercise. PLoS ONE. 2015;10:e0119382 pubmed 出版商
  157. Ma W, Na M, Tang C, Wang H, Lin Z. Overexpression of N-myc downstream-regulated gene 1 inhibits human glioma proliferation and invasion via phosphoinositide 3-kinase/AKT pathways. Mol Med Rep. 2015;12:1050-8 pubmed 出版商
  158. Yang M, Zhao H, Guo L, Zhang Q, Zhao L, Bai S, et al. Autophagy-based survival prognosis in human colorectal carcinoma. Oncotarget. 2015;6:7084-103 pubmed
  159. Morlé A, Garrido C, Micheau O. Hyperthermia restores apoptosis induced by death receptors through aggregation-induced c-FLIP cytosolic depletion. Cell Death Dis. 2015;6:e1633 pubmed 出版商
  160. Lin L, Sabnis A, Chan E, Olivas V, Cade L, Pazarentzos E, et al. The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nat Genet. 2015;47:250-6 pubmed 出版商
  161. Lu K, Fang X, Feng L, Jiang Y, Zhou X, Liu X, et al. The STAT3 inhibitor WP1066 reverses the resistance of chronic lymphocytic leukemia cells to histone deacetylase inhibitors induced by interleukin-6. Cancer Lett. 2015;359:250-8 pubmed 出版商
  162. Suo H, Song J, Zhou Y, Liu Z, Yi R, Zhu K, et al. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett. 2015;9:972-978 pubmed
  163. Xiao Y, Ma C, Yi J, Wu S, Luo G, Xu X, et al. Suppressed autophagy flux in skeletal muscle of an amyotrophic lateral sclerosis mouse model during disease progression. Physiol Rep. 2015;3: pubmed 出版商
  164. Valianou M, Cox A, Pichette B, Hartley S, Paladhi U, Astrinidis A. Pharmacological inhibition of Polo-like kinase 1 (PLK1) by BI-2536 decreases the viability and survival of hamartin and tuberin deficient cells via induction of apoptosis and attenuation of autophagy. Cell Cycle. 2015;14:399-407 pubmed 出版商
  165. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  166. Gomez Bougie P, Halliez M, Maïga S, Godon C, Kervoëlen C, Pellat Deceunynck C, et al. Curcumin induces cell death of the main molecular myeloma subtypes, particularly the poor prognosis subgroups. Cancer Biol Ther. 2015;16:60-5 pubmed 出版商
  167. Huang C, Sheng S, Li R, Sun X, Liu J, Huang G. Lactate promotes resistance to glucose starvation via upregulation of Bcl-2 mediated by mTOR activation. Oncol Rep. 2015;33:875-84 pubmed 出版商
  168. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  169. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  170. Nie C, Luo Y, Zhao X, Luo N, Tong A, Liu X, et al. Caspase-9 mediates Puma activation in UCN-01-induced apoptosis. Cell Death Dis. 2014;5:e1495 pubmed 出版商
  171. Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H. DHT inhibits the Aβ25-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res. 2015;40:41-8 pubmed 出版商
  172. Vega Naredo I, Cunha Oliveira T, Serafim T, Sardao V, Oliveira P. Analysis of pro-apoptotic protein trafficking to and from mitochondria. Methods Mol Biol. 2015;1241:163-80 pubmed 出版商
  173. Zheng R, Hu W, Sui C, Ma N, Jiang Y. Effects of doxorubicin and gemcitabine on the induction of apoptosis in breast cancer cells. Oncol Rep. 2014;32:2719-25 pubmed 出版商
  174. Gibot L, Chabaud S, Bouhout S, Bolduc S, Auger F, Moulin V. Anticancer properties of chitosan on human melanoma are cell line dependent. Int J Biol Macromol. 2015;72:370-9 pubmed 出版商
  175. Kivisakk P, Francois K, Mbianda J, Gandhi R, Weiner H, Khoury S. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis. PLoS ONE. 2014;9:e103716 pubmed 出版商
  176. Shibeeb O, Wood J, Casson R, Chidlow G. Effects of a conventional photocoagulator and a 3-ns pulse laser on preconditioning responses and retinal ganglion cell survival after optic nerve crush. Exp Eye Res. 2014;127:77-90 pubmed 出版商
  177. Li C, Chen J, Lu B, Shi Z, Wang H, Zhang B, et al. Molecular switch role of Akt in Polygonatum odoratum lectin-induced apoptosis and autophagy in human non-small cell lung cancer A549 cells. PLoS ONE. 2014;9:e101526 pubmed 出版商
  178. Chondrogiannis G, Kastamoulas M, Kanavaros P, Vartholomatos G, Bai M, Baltogiannis D, et al. Cytokine effects on cell viability and death of prostate carcinoma cells. Biomed Res Int. 2014;2014:536049 pubmed 出版商
  179. Rizvi S, Mertens J, Bronk S, Hirsova P, Dai H, Roberts L, et al. Platelet-derived growth factor primes cancer-associated fibroblasts for apoptosis. J Biol Chem. 2014;289:22835-49 pubmed 出版商
  180. Bai L, Chen J, McEachern D, Liu L, Zhou H, Aguilar A, et al. BM-1197: a novel and specific Bcl-2/Bcl-xL inhibitor inducing complete and long-lasting tumor regression in vivo. PLoS ONE. 2014;9:e99404 pubmed 出版商
  181. Klaus C, Kaemmerer E, Reinartz A, Schneider U, Plum P, Jeon M, et al. TP53 status regulates ACSL5-induced expression of mitochondrial mortalin in enterocytes and colorectal adenocarcinomas. Cell Tissue Res. 2014;357:267-78 pubmed 出版商
  182. Nakajima W, Hicks M, Tanaka N, Krystal G, Harada H. Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis. 2014;5:e1052 pubmed 出版商
  183. Furuya N, Ikeda S, Sato S, Soma S, Ezaki J, Oliva Trejo J, et al. PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation. Autophagy. 2014;10:631-41 pubmed 出版商
  184. Redmond E, Liu W, Hamm K, Hatch E, Cahill P, Morrow D. Perivascular delivery of Notch 1 siRNA inhibits injury-induced arterial remodeling. PLoS ONE. 2014;9:e84122 pubmed 出版商
  185. Tao L, Zhou X, Shen C, Liang C, Liu B, Tao Y, et al. Tetrandrine induces apoptosis and triggers a caspase cascade in U2-OS and MG-63 cells through the intrinsic and extrinsic pathways. Mol Med Rep. 2014;9:345-9 pubmed 出版商
  186. Geissler A, Haun F, Frank D, Wieland K, Simon M, Idzko M, et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ. 2013;20:1317-29 pubmed 出版商
  187. Zhang J, Kundu M, Ney P. Mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol. 2009;452:227-45 pubmed 出版商