这是一篇来自已证抗体库的有关大鼠 Camk2a的综述,是根据91篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Camk2a 抗体。
Camk2a 同义词: PK2CDD; PKCCD

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab171095)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2b). elife (2020) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫印迹; 小鼠; 1:1000; 图 ev2a, 5b
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2a, 5b). EMBO Mol Med (2020) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1d
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab134041)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1d). Brain (2019) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, AB22609)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5a). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:500; 图 4b
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab134041)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 4b). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:250; 图 4b
  • 免疫印迹; 大鼠; 1:2000; 图 5c
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab32678)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5c). Stroke (2018) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫印迹; 大鼠; 1:5000; 图 5c
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 5c). Stroke (2018) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫细胞化学; 小鼠; 1:250; 图 6
  • 免疫印迹; 小鼠; 1:5000; 图 5
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 6) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s1h
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, AB52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s1h). Cell (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 图 st1
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1). elife (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 1). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 s1
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab32678)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1). PLoS ONE (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-自由浮动切片; African green monkey; 1:15,000; 图 6
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, AB22609)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:15,000 (图 6). J Neurosci (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 6
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1828)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 1
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab92332)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 1). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8
  • 免疫印迹; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab5683)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Brain (2016) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-自由浮动切片; 小鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:2000 (图 2). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab171095)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1d
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, 52476)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1d). Nat Commun (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 人类; 图 s7
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫印迹在人类样本上 (图 s7). Nat Neurosci (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50. J Clin Invest (2014) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 鼩鼱科; 1:1000
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫印迹在鼩鼱科样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(EP1829Y)
  • 免疫组化; 小鼠; 1:75
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab52476)被用于被用于免疫组化在小鼠样本上浓度为1:75. PLoS ONE (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 大鼠
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, AB22609)被用于被用于免疫组化在大鼠样本上. J Comp Neurol (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, 6G9)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2012) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-石蜡切片; Apteronotus leptorhynchus; 1:1,000
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于被用于免疫组化-石蜡切片在Apteronotus leptorhynchus样本上浓度为1:1,000. J Comp Neurol (2012) ncbi
小鼠 单克隆(6G9)
艾博抗(上海)贸易有限公司 Camk2a抗体(Abcam, ab22609)被用于. J Comp Neurol (2011) ncbi
赛默飞世尔
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4a
赛默飞世尔 Camk2a抗体(Invitrogen, MA1-048)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4a). Biol Open (2020) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 ev2a, 5b
赛默飞世尔 Camk2a抗体(Thermo Fisher, MA1-047)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2a, 5b). EMBO Mol Med (2020) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:5000; 图 2b
赛默飞世尔 Camk2a抗体(ThermoFisher, MA1-048)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2b). Mol Pharmacol (2018) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛默飞世尔 Camk2a抗体(ThermoFisher, 13-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 Camk2a抗体(Thermo Fischer Scientific, PA5-38239)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). Nat Commun (2017) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 人类; 1:5000; 图 2d
赛默飞世尔 Camk2a抗体(Thermo Fisher Scientific, MA1-048)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2d). J Neurosci (2017) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 大鼠; 1:500; 图 3c
赛默飞世尔 Camk2a抗体(Pierce, MA1-048)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3c). Brain Struct Funct (2017) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔 Camk2a抗体(Thermo Scientific, MA1-047)被用于被用于免疫印迹在大鼠样本上 (图 3a). Circ Res (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 大鼠; 图 7g
赛默飞世尔 Camk2a抗体(Thermo-Fischer, MA1-048)被用于被用于免疫印迹在大鼠样本上 (图 7g). ACS Nano (2016) ncbi
小鼠 单克隆(Cba-2)
  • 免疫组化; 小鼠; 1:1000; 图 4b
赛默飞世尔 Camk2a抗体(Invitrogen, 13-7300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4b). Neurobiol Learn Mem (2017) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
赛默飞世尔 Camk2a抗体(Affinity Bioreagents, 6G9)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 大鼠; 1:200; 图 5
  • 免疫印迹; 大鼠; 1:2000; 图 5
赛默飞世尔 Camk2a抗体(Thermo Fisher, MA1-048)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). Brain Behav Immun (2016) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 Camk2a抗体(Thermo Scientific, MA1-047)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Development (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 人类; 1:100; 图 3
赛默飞世尔 Camk2a抗体(Thermo Scientific, MA1-048)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3). J Gene Med (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫细胞化学; 大鼠; 5.8 ug/ml; 图 6
赛默飞世尔 Camk2a抗体(Affinity Bioreagents, MA1-048)被用于被用于免疫细胞化学在大鼠样本上浓度为5.8 ug/ml (图 6). Mol Neurobiol (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 8
赛默飞世尔 Camk2a抗体(Pierce Biotechnology, MA1?C048)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:2000; 图 8
赛默飞世尔 Camk2a抗体(Thermo Fisher Scientific, MA1-048)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8). Anesthesiology (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 5f
赛默飞世尔 Camk2a抗体(Thermo, MA1-047)被用于被用于免疫印迹在小鼠样本上 (图 5f). Cell Calcium (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 1:1000-4000
赛默飞世尔 Camk2a抗体(Thermo, MA1-0147)被用于被用于免疫印迹在小鼠样本上浓度为1:1000-4000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3
赛默飞世尔 Camk2a抗体(Invitrogen, 13-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3). Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4
赛默飞世尔 Camk2a抗体(生活技术, 13-7300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛默飞世尔 Camk2a抗体(Thermo Scientific, MA1-048)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Methods (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:4000-1:10,000; 图 2c
赛默飞世尔 Camk2a抗体(Thermo-Pierce, MA1-048)被用于被用于免疫印迹在小鼠样本上浓度为1:4000-1:10,000 (图 2c). ACS Chem Neurosci (2015) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 大鼠
赛默飞世尔 Camk2a抗体(Invitrogen, 13-7300)被用于被用于免疫印迹在大鼠样本上. Int J Mol Sci (2015) ncbi
小鼠 单克隆(6G9)
  • 免疫细胞化学; 大鼠; 1:500; 图 4
赛默飞世尔 Camk2a抗体(Thermo Scientific, 6G9)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(Cba-2)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠; 1:1000
  • 免疫细胞化学; 大鼠
赛默飞世尔 Camk2a抗体(Invitrogen, 13-7300)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫细胞化学在大鼠样本上. J Neurosci (2014) ncbi
小鼠 单克隆(6G9)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠
赛默飞世尔 Camk2a抗体(Pierce, MA1048)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200, 被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上. J Comp Neurol (2014) ncbi
小鼠 单克隆(22B1)
  • 免疫组化; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Camk2a抗体(Affinity BioReagents, MA1-047)被用于被用于免疫组化在小鼠样本上浓度为1:2000 和 被用于免疫印迹在小鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠
赛默飞世尔 Camk2a抗体(Pierce, MA1-047)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 人类; 1:3000; 图 2
赛默飞世尔 Camk2a抗体(Pierce, MA1-048)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2). Nat Neurosci (2013) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
  • 免疫组化; 大鼠; 1:1000
赛默飞世尔 Camk2a抗体(Pierce Biotechnology, MA1-048)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 和 被用于免疫组化在大鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Camk2a抗体(Zymed, 13-7300)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell (2012) ncbi
小鼠 单克隆(6G9)
  • 免疫组化-冰冻切片; 小鼠; 1:200
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Camk2a抗体(Affinity BioReagents, MA1-048)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200, 被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(22B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
  • 免疫组化; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Camk2a抗体(Affinity BioReagents, MA1-047)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100, 被用于免疫组化在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2011) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 Camk2a抗体(Zymed, 13-7300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuroscience (2011) ncbi
小鼠 单克隆(Cba-2)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Camk2a抗体(Zymed/Invitrogen, #137300)被用于被用于免疫印迹在人类样本上 (图 4). J Neurochem (2011) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠
赛默飞世尔 Camk2a抗体(Affinity Bioreagents/Thermo Fisher Scientific, MA1-048)被用于被用于免疫印迹在小鼠样本上. Mol Cell Proteomics (2010) ncbi
小鼠 单克隆(6G9)
  • 免疫细胞化学; 大鼠; 1:800-1:2000
赛默飞世尔 Camk2a抗体(Affinity BioReagents, MA1-048)被用于被用于免疫细胞化学在大鼠样本上浓度为1:800-1:2000. J Comp Neurol (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-1)
  • 免疫印迹; 大鼠; 图 10d
  • 免疫印迹; 小鼠; 图 11d
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在大鼠样本上 (图 10d) 和 被用于免疫印迹在小鼠样本上 (图 11d). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 3j
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 3j). Transl Psychiatry (2019) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(G-1)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-5306)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 大鼠; 1:200; 图 6
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-13141)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫组化; 小鼠; 1:1000; 图 1
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-32288)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(6G9)
  • 免疫印迹; 小鼠; 1:1000; 图 2,4
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc-32288)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2,4). Cell Death Dis (2015) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc13141)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫印迹; 小鼠; 图 1f
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc-32289)被用于被用于免疫印迹在小鼠样本上 (图 1f). Neuron (2015) ncbi
小鼠 单克隆(45)
  • 免疫印迹; 人类; 1:10000
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-136212)被用于被用于免疫印迹在人类样本上浓度为1:10000. F1000Res (2014) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; 小鼠; 图 10
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在小鼠样本上 (图 10). J Neurosci (2015) ncbi
小鼠 单克隆(22B1)
  • 免疫细胞化学; 鼩鼱科; 1:100
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz, sc-32289)被用于被用于免疫细胞化学在鼩鼱科样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(A-1)
  • 免疫印迹; pigs ; 图 5
圣克鲁斯生物技术 Camk2a抗体(Santa Cruz Biotechnology, sc-13141)被用于被用于免疫印迹在pigs 样本上 (图 5). Mol Cell Proteomics (2011) ncbi
LifeSpan Biosciences
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1a
LifeSpan Biosciences Camk2a抗体(LifeSpan Biosciences, LS-B3743)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1a). Vascul Pharmacol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(6G9)
  • 免疫细胞化学; 小鼠; 1:2000
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 Camk2a抗体(Sigma-Aldrich, C265)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D10C11)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 Camk2a抗体(CST, 11945)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 Camk2a抗体(CST, 4436 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling, 11945)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling, 11945)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 1c
  • 染色质免疫沉淀 ; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling, 3356S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 1c) 和 被用于染色质免疫沉淀 在人类样本上 (图 2a). MBio (2017) ncbi
domestic rabbit 单克隆(D10C11)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling, 11945)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling, 4436S)被用于被用于免疫印迹在小鼠样本上 (图 7). Cardiovasc Res (2015) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell signaling, 4436)被用于被用于免疫印迹在人类样本上 (图 5). Eur J Appl Physiol (2015) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling Technology, 4436)被用于被用于免疫印迹在大鼠样本上. FEBS Open Bio (2014) ncbi
domestic rabbit 单克隆(D11A10)
  • 免疫印迹; 非洲爪蛙
赛信通(上海)生物试剂有限公司 Camk2a抗体(Cell Signaling Technology, D11A10)被用于被用于免疫印迹在非洲爪蛙样本上. J Biol Chem (2013) ncbi
文章列表
  1. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  2. Bhattacharyya M, Lee Y, Muratcioglu S, Qiu B, Nyayapati P, Schulman H, et al. Flexible linkers in CaMKII control the balance between activating and inhibitory autophosphorylation. elife. 2020;9: pubmed 出版商
  3. Wu Y, Chen C, Chen M, Qian K, Lv X, Wang H, et al. The anterior insular cortex unilaterally controls feeding in response to aversive visceral stimuli in mice. Nat Commun. 2020;11:640 pubmed 出版商
  4. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  5. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  6. Nihonmatsu I, Ohkawa N, Saitoh Y, Okubo Suzuki R, Inokuchi K. Selective targeting of mRNA and the following protein synthesis of CaMKIIα at the long-term potentiation-induced site. Biol Open. 2020;9: pubmed 出版商
  7. Bella P, Farini A, Banfi S, Parolini D, Tonna N, Meregalli M, et al. Blockade of IGF2R improves muscle regeneration and ameliorates Duchenne muscular dystrophy. EMBO Mol Med. 2020;12:e11019 pubmed 出版商
  8. Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity-related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol. 2019;: pubmed 出版商
  9. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  10. Huang C, Muszynski K, Bolshakov V, Balu D. Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Transl Psychiatry. 2019;9:132 pubmed 出版商
  11. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  12. Amir A, Par J, Smith Y, Par D. Midline thalamic inputs to the amygdala: Ultrastructure and synaptic targets. J Comp Neurol. 2019;527:942-956 pubmed 出版商
  13. Marks C, Shonesy B, Wang X, Stephenson J, Niswender C, Colbran R. Activated CaMKIIα Binds to the mGlu5 Metabotropic Glutamate Receptor and Modulates Calcium Mobilization. Mol Pharmacol. 2018;94:1352-1362 pubmed 出版商
  14. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  15. Zhou K, Enkhjargal B, Xie Z, Sun C, Wu L, Malaguit J, et al. Dihydrolipoic Acid Inhibits Lysosomal Rupture and NLRP3 Through Lysosome-Associated Membrane Protein-1/Calcium/Calmodulin-Dependent Protein Kinase II/TAK1 Pathways After Subarachnoid Hemorrhage in Rat. Stroke. 2018;49:175-183 pubmed 出版商
  16. Pchitskaya E, Kraskovskaya N, Chernyuk D, Popugaeva E, Zhang H, Vlasova O, et al. Stim2-Eb3 Association and Morphology of Dendritic Spines in Hippocampal Neurons. Sci Rep. 2017;7:17625 pubmed 出版商
  17. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  18. Wilkinson B, Li J, Coba M. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling. Sci Rep. 2017;7:5272 pubmed 出版商
  19. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166-176 pubmed 出版商
  20. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  21. Nguyen K, Das B, Dobrowolski C, Karn J. Multiple Histone Lysine Methyltransferases Are Required for the Establishment and Maintenance of HIV-1 Latency. MBio. 2017;8: pubmed 出版商
  22. Bitzenhofer S, Ahlbeck J, Wolff A, Wiegert J, Gee C, Oertner T, et al. Layer-specific optogenetic activation of pyramidal neurons causes beta-gamma entrainment of neonatal networks. Nat Commun. 2017;8:14563 pubmed 出版商
  23. He X, Li Z, Rizak J, Wu S, Wang Z, He R, et al. Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Front Neurosci. 2016;10:598 pubmed 出版商
  24. Stephenson J, Wang X, Perfitt T, Parrish W, Shonesy B, Marks C, et al. A Novel Human CAMK2A Mutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors. J Neurosci. 2017;37:2216-2233 pubmed 出版商
  25. Raffeiner P, Schraffl A, Schwarz T, Röck R, Ledolter K, Hartl M, et al. Calcium-dependent binding of Myc to calmodulin. Oncotarget. 2017;8:3327-3343 pubmed 出版商
  26. Xu C, Krabbe S, Gründemann J, Botta P, Fadok J, Osakada F, et al. Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval. Cell. 2016;167:961-972.e16 pubmed 出版商
  27. Biró L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, et al. Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct. 2017;222:1861-1875 pubmed 出版商
  28. Prasad A, Ketsawatsomkron P, Nuno D, Koval O, Dibbern M, Venema A, et al. Role of CaMKII in Ang-II-dependent small artery remodeling. Vascul Pharmacol. 2016;87:172-179 pubmed 出版商
  29. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed 出版商
  30. Sanchez Alonso J, Bhargava A, O HARA T, Glukhov A, Schobesberger S, Bhogal N, et al. Microdomain-Specific Modulation of L-Type Calcium Channels Leads to Triggered Ventricular Arrhythmia in Heart Failure. Circ Res. 2016;119:944-55 pubmed 出版商
  31. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  32. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  33. Zagrebelsky M, Lonnemann N, Fricke S, Kellner Y, Preuß E, Michaelsen Preusse K, et al. Nogo-A regulates spatial learning as well as memory formation and modulates structural plasticity in the adult mouse hippocampus. Neurobiol Learn Mem. 2017;138:154-163 pubmed 出版商
  34. Meng X, Wang W, Lu H, He L, Chen W, Chao E, et al. Manipulations of MeCP2 in glutamatergic neurons highlight their contributions to Rett and other neurological disorders. elife. 2016;5: pubmed 出版商
  35. Ure K, Lu H, Wang W, Ito Ishida A, Wu Z, He L, et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. elife. 2016;5: pubmed 出版商
  36. Bosch C, Muhaisen A, Pujadas L, Soriano E, MARTINEZ A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci. 2016;10:138 pubmed 出版商
  37. Sadredini M, Danielsen T, Aronsen J, Manotheepan R, Hougen K, Sjaastad I, et al. Beta-Adrenoceptor Stimulation Reveals Ca2+ Waves and Sarcoplasmic Reticulum Ca2+ Depletion in Left Ventricular Cardiomyocytes from Post-Infarction Rats with and without Heart Failure. PLoS ONE. 2016;11:e0153887 pubmed 出版商
  38. Györffy B, Gulyassy P, Gellén B, Völgyi K, Madarasi D, Kis V, et al. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats. Brain Behav Immun. 2016;56:289-309 pubmed 出版商
  39. Galvan A, Hu X, Smith Y, Wichmann T. Effects of Optogenetic Activation of Corticothalamic Terminals in the Motor Thalamus of Awake Monkeys. J Neurosci. 2016;36:3519-30 pubmed 出版商
  40. McNally A, Poplawski S, Mayweather B, White K, Abel T. Characterization of a Novel Chromatin Sorting Tool Reveals Importance of Histone Variant H3.3 in Contextual Fear Memory and Motor Learning. Front Mol Neurosci. 2016;9:11 pubmed 出版商
  41. Farini A, Sitzia C, Cassinelli L, Colleoni F, Parolini D, Giovanella U, et al. Inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ signaling mediates delayed myogenesis in Duchenne muscular dystrophy fetal muscle. Development. 2016;143:658-69 pubmed 出版商
  42. Kinjo E, Higa G, Santos B, de Sousa E, Damico M, Walter L, et al. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons. Sci Rep. 2016;6:20969 pubmed 出版商
  43. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  44. Mantoan Ritter L, Macdonald D, Ritter G, Escors D, Chiara F, Cariboni A, et al. Lentiviral expression of GAD67 and CCK promoter-driven opsins to target interneurons in vitro and in vivo. J Gene Med. 2016;18:27-37 pubmed 出版商
  45. Sengupta A, Winters B, Bagley E, McNally G. Disrupted Prediction Error Links Excessive Amygdala Activation to Excessive Fear. J Neurosci. 2016;36:385-95 pubmed 出版商
  46. Cisternas P, Louveau A, Bueno S, Kalergis A, Boudin H, Riedel C. Gestational Hypothyroxinemia Affects Glutamatergic Synaptic Protein Distribution and Neuronal Plasticity Through Neuron-Astrocyte Interplay. Mol Neurobiol. 2016;53:7158-7169 pubmed
  47. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  48. Cook Snyder D, Jones A, Reijmers L. A retrograde adeno-associated virus for collecting ribosome-bound mRNA from anatomically defined projection neurons. Front Mol Neurosci. 2015;8:56 pubmed 出版商
  49. Giordano C, Vinet J, Curia G, Biagini G. Repeated 6-Hz Corneal Stimulation Progressively Increases FosB/ΔFosB Levels in the Lateral Amygdala and Induces Seizure Generalization to the Hippocampus. PLoS ONE. 2015;10:e0141221 pubmed 出版商
  50. Hao J, Sun N, Lei L, Li X, Yao B, Sun K, et al. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis. 2015;6:e1965 pubmed 出版商
  51. Tajerian M, Leu D, Yang P, Huang T, Kingery W, Clark J. Differential Efficacy of Ketamine in the Acute versus Chronic Stages of Complex Regional Pain Syndrome in Mice. Anesthesiology. 2015;123:1435-47 pubmed 出版商
  52. Davis R, Simon J, Utter M, Mungai P, Alvarez M, Chowdhury S, et al. Knockout of p21-activated kinase-1 attenuates exercise-induced cardiac remodelling through altered calcineurin signalling. Cardiovasc Res. 2015;108:335-47 pubmed 出版商
  53. Guilbert A, Lim H, Cheng J, Wang Y. CaMKII-dependent myofilament Ca2+ desensitization contributes to the frequency-dependent acceleration of relaxation. Cell Calcium. 2015;58:489-99 pubmed 出版商
  54. Popugaeva E, Pchitskaya E, Speshilova A, Alexandrov S, Zhang H, Vlasova O, et al. STIM2 protects hippocampal mushroom spines from amyloid synaptotoxicity. Mol Neurodegener. 2015;10:37 pubmed 出版商
  55. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  56. Cipolletta E, Rusciano M, Maione A, Santulli G, Sorriento D, Del Giudice C, et al. Targeting the CaMKII/ERK Interaction in the Heart Prevents Cardiac Hypertrophy. PLoS ONE. 2015;10:e0130477 pubmed 出版商
  57. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  58. Cohen S, Li B, Tsien R, Ma H. Evolutionary and functional perspectives on signaling from neuronal surface to nucleus. Biochem Biophys Res Commun. 2015;460:88-99 pubmed 出版商
  59. Telese F, Ma Q, Perez P, Notani D, Oh S, Li W, et al. LRP8-Reelin-Regulated Neuronal Enhancer Signature Underlying Learning and Memory Formation. Neuron. 2015;86:696-710 pubmed 出版商
  60. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  61. Wei P, Liu N, Zhang Z, Liu X, Tang Y, He X, et al. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat Commun. 2015;6:6756 pubmed 出版商
  62. Tom Dieck S, Kochen L, Hanus C, Heumüller M, Bartnik I, Nassim Assir B, et al. Direct visualization of newly synthesized target proteins in situ. Nat Methods. 2015;12:411-4 pubmed 出版商
  63. Xie Q, Wu Q, Horbinski C, Flavahan W, Yang K, Zhou W, et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci. 2015;18:501-10 pubmed 出版商
  64. Vallortigara J, Rangarajan S, Whitfield D, Alghamdi A, Howlett D, Hortobágyi T, et al. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000Res. 2014;3:108 pubmed 出版商
  65. Baucum A, Shonesy B, Rose K, Colbran R. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. ACS Chem Neurosci. 2015;6:615-31 pubmed 出版商
  66. Sheng L, Leshchyns ka I, Sytnyk V. Neural cell adhesion molecule 2 promotes the formation of filopodia and neurite branching by inducing submembrane increases in Ca2+ levels. J Neurosci. 2015;35:1739-52 pubmed 出版商
  67. Domínguez Alonso A, Valdés Tovar M, Solís Chagoyán H, Benítez King G. Melatonin stimulates dendrite formation and complexity in the hilar zone of the rat hippocampus: participation of the Ca++/Calmodulin complex. Int J Mol Sci. 2015;16:1907-27 pubmed 出版商
  68. D Hulst G, Sylow L, Hespel P, Deldicque L. Acute systemic insulin intolerance does not alter the response of the Akt/GSK-3 pathway to environmental hypoxia in human skeletal muscle. Eur J Appl Physiol. 2015;115:1219-31 pubmed 出版商
  69. Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss A, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS ONE. 2014;9:e115731 pubmed 出版商
  70. Soga M, Ohashi A, Taniguchi M, Matsui T, Tsuda T. The di-peptide Trp-His activates AMP-activated protein kinase and enhances glucose uptake independently of insulin in L6 myotubes. FEBS Open Bio. 2014;4:898-904 pubmed 出版商
  71. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  72. Kim E, Shekhar A, Lu J, Lin X, Liu F, Zhang J, et al. PCP4 regulates Purkinje cell excitability and cardiac rhythmicity. J Clin Invest. 2014;124:5027-36 pubmed 出版商
  73. Zhong W, Hutchinson T, Chebolu S, Darmani N. Serotonin 5-HT3 receptor-mediated vomiting occurs via the activation of Ca2+/CaMKII-dependent ERK1/2 signaling in the least shrew (Cryptotis parva). PLoS ONE. 2014;9:e104718 pubmed 出版商
  74. Cooper M, Koleske A. Ablation of ErbB4 from excitatory neurons leads to reduced dendritic spine density in mouse prefrontal cortex. J Comp Neurol. 2014;522:3351-62 pubmed 出版商
  75. Prévilon M, Pezet M, Vinet L, Mercadier J, Rouet Benzineb P. Gender-specific potential inhibitory role of Ca2+/calmodulin dependent protein kinase phosphatase (CaMKP) in pressure-overloaded mouse heart. PLoS ONE. 2014;9:e90822 pubmed 出版商
  76. Chang A, Huang J, Battiprolu P, Hill J, Kamm K, Stull J. The effects of neuregulin on cardiac Myosin light chain kinase gene-ablated hearts. PLoS ONE. 2013;8:e66720 pubmed 出版商
  77. Peter M, Bathellier B, Fontinha B, Pliota P, Haubensak W, Rumpel S. Transgenic mouse models enabling photolabeling of individual neurons in vivo. PLoS ONE. 2013;8:e62132 pubmed 出版商
  78. Shonesy B, Wang X, Rose K, Ramikie T, Cavener V, Rentz T, et al. CaMKII regulates diacylglycerol lipase-? and striatal endocannabinoid signaling. Nat Neurosci. 2013;16:456-63 pubmed 出版商
  79. McCoy F, Darbandi R, Chen S, Eckard L, Dodd K, Jones K, et al. Metabolic regulation of CaMKII protein and caspases in Xenopus laevis egg extracts. J Biol Chem. 2013;288:8838-48 pubmed 出版商
  80. Unal G, Pare J, Smith Y, PARE D. Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons. J Comp Neurol. 2013;521:2538-50 pubmed 出版商
  81. Calu D, Kawa A, Marchant N, Navarre B, Henderson M, Chen B, et al. Optogenetic inhibition of dorsal medial prefrontal cortex attenuates stress-induced reinstatement of palatable food seeking in female rats. J Neurosci. 2013;33:214-26 pubmed 出版商
  82. Djakovic S, Marquez Lona E, Jakawich S, Wright R, Chu C, Sutton M, et al. Phosphorylation of Rpt6 regulates synaptic strength in hippocampal neurons. J Neurosci. 2012;32:5126-31 pubmed 出版商
  83. Giassi A, Harvey Girard E, Valsamis B, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: I. Cytoarchitectonics and cellular morphology. J Comp Neurol. 2012;520:3314-37 pubmed 出版商
  84. Huang Y, Ruiz C, Eyler E, Lin K, Meffert M. Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell. 2012;148:933-46 pubmed 出版商
  85. Yun Hong Y, Chih Fan C, Chia Wei C, Yen Chung C. A study of the spatial protein organization of the postsynaptic density isolated from porcine cerebral cortex and cerebellum. Mol Cell Proteomics. 2011;10:M110.007138 pubmed 出版商
  86. Mouton Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-? activation in mouse models of Down syndrome. J Comp Neurol. 2011;519:2779-802 pubmed 出版商
  87. Giassi A, Maler L, Moreira J, Hoffmann A. Glomerular nucleus of the weakly electric fish, Gymnotus sp.: cytoarchitecture, histochemistry, and fiber connections--inisights from neuroanatomy to evolution and behavior. J Comp Neurol. 2011;519:1658-76 pubmed 出版商
  88. Huang K, Huang F, Shetty P. Stimulation-mediated translocation of calmodulin and neurogranin from soma to dendrites of mouse hippocampal CA1 pyramidal neurons. Neuroscience. 2011;178:1-12 pubmed 出版商
  89. Lapchak P, SCHUBERT D, Maher P. Delayed treatment with a novel neurotrophic compound reduces behavioral deficits in rabbit ischemic stroke. J Neurochem. 2011;116:122-31 pubmed 出版商
  90. Baucum A, Jalan Sakrikar N, Jiao Y, Gustin R, Carmody L, Tabb D, et al. Identification and validation of novel spinophilin-associated proteins in rodent striatum using an enhanced ex vivo shotgun proteomics approach. Mol Cell Proteomics. 2010;9:1243-59 pubmed 出版商
  91. Harms K, Craig A. Synapse composition and organization following chronic activity blockade in cultured hippocampal neurons. J Comp Neurol. 2005;490:72-84 pubmed