这是一篇来自已证抗体库的有关大鼠 Ccnd1的综述,是根据379篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ccnd1 抗体。
圣克鲁斯生物技术
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500. Cancers (Basel) (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 5g
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 人类; 图 6g
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在人类样本上 (图 6g). BMC Cancer (2021) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 2e
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, SC-8396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). elife (2020) ncbi
小鼠 单克隆(A-12)
  • 流式细胞仪; 人类; 图 6b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, A-12)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). J Cancer (2020) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 1:200; 图 7b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7b). Front Oncol (2020) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 2i
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上 (图 2i). Mol Cancer (2020) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类; 1:1000; 图 4b
圣克鲁斯生物技术 Ccnd1抗体(Santa, sc-450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). BMC Gastroenterol (2019) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 6d
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotech, SC20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Science (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5g
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上 (图 5g). J Exp Clin Cancer Res (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 5d
圣克鲁斯生物技术 Ccnd1抗体(Santa, sc-8396)被用于被用于免疫印迹在人类样本上 (图 5d). Cells (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 4a
圣克鲁斯生物技术 Ccnd1抗体(Santa, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Biosci Rep (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 6d
圣克鲁斯生物技术 Ccnd1抗体(Santa, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6d). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, A-12)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2019) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 图 3d
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上 (图 3d). Front Immunol (2019) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类; 1:1000; 图 2f
圣克鲁斯生物技术 Ccnd1抗体(Santa cruz, SC-450)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Nat Commun (2019) ncbi
小鼠 单克隆(6D328)
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-70899)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Biomed Res Int (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Ccnd1抗体(Santa, sc-8396)被用于被用于免疫印迹在人类样本上 (图 4a). J Pathol (2019) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 2d
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, A-12)被用于被用于免疫印迹在人类样本上 (图 2d). PLoS Pathog (2018) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 2d
圣克鲁斯生物技术 Ccnd1抗体(SantaCruz, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2d). Sci Adv (2017) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Lett (2017) ncbi
小鼠 单克隆(72-13G)
  • 免疫细胞化学; 小鼠; 图 2l
  • 免疫印迹; 小鼠; 图 2m
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, 72-13G)被用于被用于免疫细胞化学在小鼠样本上 (图 2l) 和 被用于免疫印迹在小鼠样本上 (图 2m). J Biol Chem (2017) ncbi
小鼠 单克隆(DCS-6)
  • 免疫沉淀; 人类; 图 4b
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Ccnd1抗体(SantaCruz, sc-20044)被用于被用于免疫沉淀在人类样本上 (图 4b), 被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4b). Oncogene (2017) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-450)被用于被用于免疫印迹在人类样本上 (图 3b). Life Sci (2017) ncbi
小鼠 单克隆(A-12)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4f
圣克鲁斯生物技术 Ccnd1抗体(Santa-Cruz, 8396)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4f). Biol Open (2017) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上 (图 2b). PLoS ONE (2017) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类; 图 6c
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-450)被用于被用于免疫印迹在人类样本上 (图 6c). Peerj (2017) ncbi
小鼠 单克隆(6D328)
  • 免疫印迹; 人类; 1:1000; 图 4a
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-70899)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 表 2
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, SC-450)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (表 2). Mol Vis (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上 (图 2b). Eur J Cancer (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 s1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1). Sci Rep (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类; 1:100; 图 6
圣克鲁斯生物技术 Ccnd1抗体(santa Cruz, sc-450)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 6). Oncol Lett (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, A-12)被用于被用于免疫印迹在人类样本上 (图 2b). Oncol Rep (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:3000; 图 5a
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:1000; 图 1g
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1g). Mol Med Rep (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ccnd1抗体(santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Gene Ther (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 s1
圣克鲁斯生物技术 Ccnd1抗体(SantaCruz, sc20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Oncotarget (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:400; 图 1b
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 1b). J Orthop Res (2017) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Ccnd1抗体(santa Cruz, sc-450)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 s1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). EMBO Mol Med (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫细胞化学; 小鼠; 1:200; 图 5
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 表 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上 (表 1). Sci Rep (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上 (图 1). Onco Targets Ther (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫细胞化学; 人类; 1:100; 图 5
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 5). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, SC-8396)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫组化; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-450)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫组化; 大鼠; 1:50; 图 5c
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 5c). Mol Med Rep (2016) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(6D328)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-70899)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Biochem Cell Biol (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). BMC Biol (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Ccnd1抗体(santa Cruz, sc-246)被用于被用于免疫印迹在小鼠样本上 (图 2). Oncogene (2016) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫印迹在小鼠样本上 (图 s3). Sci Rep (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 s3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). PLoS ONE (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 8e
圣克鲁斯生物技术 Ccnd1抗体(santa cruz, sc-8396)被用于被用于免疫印迹在人类样本上 (图 8e). J Biol Chem (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:5000; 图 1
圣克鲁斯生物技术 Ccnd1抗体(santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). J Cancer (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 7
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Breast Cancer Res Treat (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Laboratories, SC246)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(DCS-6)
  • 流式细胞仪; 人类; 图 6
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于流式细胞仪在人类样本上 (图 6). Melanoma Res (2015) ncbi
大鼠 单克隆(34B1-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-452)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在人类样本上 (图 1). J Biomed Sci (2015) ncbi
小鼠 单克隆(HD11)
  • 染色质免疫沉淀 ; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 2
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 2). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(72-13G)
  • 免疫沉淀; 人类; 1:500; 图 7
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-450)被用于被用于免疫沉淀在人类样本上浓度为1:500 (图 7). Sci Rep (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 图 4
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). PLoS ONE (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotech, SC-246)被用于被用于免疫印迹在人类样本上浓度为1:200. Front Cell Dev Biol (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 1:800; 图 5
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 5). Exp Ther Med (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫细胞化学; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-246)被用于被用于免疫细胞化学在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1500
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotech, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). J Cell Mol Med (2015) ncbi
小鼠 单克隆(72-13G)
  • 免疫组化-冰冻切片; 小鼠; 1:600
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:600. Dev Genes Evol (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1). Mol Endocrinol (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:300
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:300. Mol Cancer (2015) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫印迹在人类样本上. Acta Biochim Biophys Sin (Shanghai) (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上 (图 3). Cell Cycle (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500; 图 5
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). Cancer Biol Ther (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 大鼠; 图 4
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上 (图 4). J Cell Mol Med (2015) ncbi
小鼠 单克隆(72-13G)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
  • 免疫印迹; 小鼠; 1:500; 图 6
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-450)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Cycle (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫印迹在人类样本上浓度为1:500. Oncotarget (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫印迹在小鼠样本上 (图 1d). Oncotarget (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 小鼠; 1:400; 图 2
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 2). Cell Physiol Biochem (2014) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotech, sc-450)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:200
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:200. Mol Carcinog (2015) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在小鼠样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, DCS-6)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫组化; 小鼠
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, DCS-6)被用于被用于免疫组化在小鼠样本上. Head Neck (2015) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-8396)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上. Br J Pharmacol (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, 72-13G)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(A-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫印迹在人类样本上. Cancer Lett (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在小鼠样本上. J Hepatol (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-20044)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(72-13G)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-450)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2013) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz Biotechnology, sc-20044)被用于被用于免疫印迹在人类样本上. Am J Physiol Endocrinol Metab (2011) ncbi
小鼠 单克隆(HD11)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-246)被用于被用于免疫印迹在人类样本上 (图 3). Clin Cancer Res (2010) ncbi
小鼠 单克隆(A-12)
  • 免疫组化-石蜡切片; 小鼠; 1:50
圣克鲁斯生物技术 Ccnd1抗体(Santa Cruz, sc-8396)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Oncogene (2008) ncbi
赛默飞世尔
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:400; 图 2c
赛默飞世尔 Ccnd1抗体(NeoMarkers (Thermo Scientific), RM-9104)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2c). Development (2021) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:100; 图 ev2d
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104-S0)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 ev2d). EMBO Mol Med (2020) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s17b
赛默飞世尔 Ccnd1抗体(Thermo Scientific, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s17b). Nat Med (2018) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 图 3d
赛默飞世尔 Ccnd1抗体(Thermo Scientific, SP4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Oncotarget (2017) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 图 4
赛默飞世尔 Ccnd1抗体(Thermo Scientific, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4). Mol Cancer Res (2017) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 小鼠; 1:250; 图 9a
赛默飞世尔 Ccnd1抗体(ThermoFisher Scientific, RM-9104)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 9a). J Neurosci (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 表 2
赛默飞世尔 Ccnd1抗体(Thermo Fisher, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 2). Ann Diagn Pathol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 9
赛默飞世尔 Ccnd1抗体(Thermo Fisher Scientific, MA5-14512)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 9). Front Cell Neurosci (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 大鼠; 1:250; 图 3
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 3). Nat Commun (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 图 1a
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). J Thorac Oncol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:20; 图 2e
赛默飞世尔 Ccnd1抗体(ThermoFisher Scientific, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:20 (图 2e). Mod Pathol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1g
赛默飞世尔 Ccnd1抗体(ThermoFisher, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1g). Virchows Arch (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:400; 图 4a
赛默飞世尔 Ccnd1抗体(ThermoScientific, RM-9104)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 4a). Science (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 Ccnd1抗体(Thermo Fisher, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Hum Pathol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104-S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫细胞化学; 人类; 1:10; 图 5
赛默飞世尔 Ccnd1抗体(Thermo Scientific, SP4)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 5). J Nephrol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 小鼠; 1:50; 图 2
赛默飞世尔 Ccnd1抗体(Thermo Scientific, MA1-39546)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 2). Nat Commun (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 1:25; 图 1
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM9104-R7)被用于被用于免疫组化在人类样本上浓度为1:25 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔 Ccnd1抗体(Thermo Scientific, SP4)被用于被用于免疫细胞化学在人类样本上 (图 2b). J Mol Histol (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 大鼠; 图 1
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104-S0)被用于被用于免疫组化在大鼠样本上 (图 1). Nat Neurosci (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3e
赛默飞世尔 Ccnd1抗体(Thermo Fisher, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3e). Oncotarget (2016) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Ccnd1抗体(Thermoscientific, RM-9104-S)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 1:1000; 图 4C
赛默飞世尔 Ccnd1抗体(Neomarkers, PM-9104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4C). Am J Pathol (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 9
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104-s1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 9) 和 被用于免疫印迹在小鼠样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:25
赛默飞世尔 Ccnd1抗体(Neomarker, RM-9104-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25. Oncotarget (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 图 s4
赛默飞世尔 Ccnd1抗体(Thermo Fisher, RM-914-S)被用于被用于免疫组化在人类样本上 (图 s4). Nat Genet (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫细胞化学; 人类; 1:200; 图 3
赛默飞世尔 Ccnd1抗体(Thermo, MA1-39546)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). PLoS Biol (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM9104-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2). Oncotarget (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Oncotarget (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:25; 图 6
赛默飞世尔 Ccnd1抗体(NeoMarkers, RM-9104-R7)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 6). BMC Surg (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔 Ccnd1抗体(Neomarkers, SP4)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). BMC Cancer (2015) ncbi
小鼠 单克隆(CD1.1)
  • 免疫组化; 小鼠; 1:250
赛默飞世尔 Ccnd1抗体(Thermo Fisher Scientific, MA1-10324)被用于被用于免疫组化在小鼠样本上浓度为1:250. Cell Death Differ (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Clin Epigenetics (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ccnd1抗体(Labvision/Neomarkers, SP4)被用于被用于免疫组化-石蜡切片在人类样本上. Mod Pathol (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:10
赛默飞世尔 Ccnd1抗体(Thermo Fisher Scientific, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10. Cytopathology (2016) ncbi
domestic rabbit 重组(SP4)
赛默飞世尔 Ccnd1抗体(Thermo, RM-9104)被用于. Cell Prolif (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:50
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104-S1)被用于被用于免疫组化在小鼠样本上浓度为1:50. Carcinogenesis (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:10
赛默飞世尔 Ccnd1抗体(LabVision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10. Int J Lab Hematol (2015) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104-R7)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; African green monkey; 1:80
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化在African green monkey样本上浓度为1:80. Endocrinology (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Ccnd1抗体(NeoMarker, Ab3)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2014) ncbi
domestic rabbit 重组(SP4)
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104-R7)被用于. Prostate (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 图 4
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104-S)被用于被用于免疫组化在人类样本上 (图 4). Oncotarget (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:50
赛默飞世尔 Ccnd1抗体(Thermo Scientific, RM-9104-S0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. Endocrinology (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛默飞世尔 Ccnd1抗体(Neomarkers, DCS-6)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Oncotarget (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 小鼠
赛默飞世尔 Ccnd1抗体(Neomarker, RM-9104-S1)被用于被用于免疫印迹在小鼠样本上. BMC Neurosci (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:500; 图 7b
赛默飞世尔 Ccnd1抗体(ThermoFisher, RM9104S0)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7b). Nat Commun (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:200
赛默飞世尔 Ccnd1抗体(Thermo Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Virchows Arch (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Ccnd1抗体(NeoMarkers, RM-9104-S1)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Clin Invest (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Ccnd1抗体(Thermo Fisher Scientific, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Chin J Cancer Res (2014) ncbi
domestic rabbit 重组(SP4)
赛默飞世尔 Ccnd1抗体(NeoMarkers, RM-9104)被用于. Glia (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ccnd1抗体(Thermo, SP4)被用于被用于免疫组化-石蜡切片在人类样本上. Lab Invest (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠
  • 免疫组化-石蜡切片; 人类; 图 3e
赛默飞世尔 Ccnd1抗体(Thermo, SP4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a), 被用于免疫印迹在小鼠样本上 和 被用于免疫组化-石蜡切片在人类样本上 (图 3e). PLoS ONE (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 小鼠
赛默飞世尔 Ccnd1抗体(NeoMarkers, SP4)被用于被用于免疫印迹在小鼠样本上. Nutr Cancer (2014) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 1:200; 图 7
  • 免疫印迹; 犬; 1:200; 图 7
赛默飞世尔 Ccnd1抗体(Thermo Fisher, RM-9104)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7) 和 被用于免疫印迹在犬样本上浓度为1:200 (图 7). PLoS ONE (2013) ncbi
domestic rabbit 重组(SP4)
赛默飞世尔 Ccnd1抗体(Thermo-Scientific, RM-9104-S1)被用于. PLoS ONE (2013) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:300
赛默飞世尔 Ccnd1抗体(NeoMarkers, RM-9104)被用于被用于免疫组化在小鼠样本上浓度为1:300. Glia (2013) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Laryngoscope (2014) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 s1e
赛默飞世尔 Ccnd1抗体(Neomarkers, AB3)被用于被用于免疫印迹在人类样本上 (图 s1e). Oncogene (2013) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠
赛默飞世尔 Ccnd1抗体(Thermofisher, DCS-6)被用于被用于免疫印迹在小鼠样本上. J Gerontol A Biol Sci Med Sci (2013) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:25; 表 1
赛默飞世尔 Ccnd1抗体(Thermo, RM-9104-S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (表 1). Gastroenterol Res Pract (2013) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:10; 表 2
赛默飞世尔 Ccnd1抗体(Neomarkers, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:10 (表 2). PLoS ONE (2012) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Ccnd1抗体(Thermo Fisher Scientific, DCS-6)被用于被用于免疫印迹在小鼠样本上 (图 1). Int J Endocrinol (2012) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Ccnd1抗体(Zymed Laboratories, clone AHF0082)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2012) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类
赛默飞世尔 Ccnd1抗体(Thermo, SP4)被用于被用于免疫组化-石蜡切片在人类样本上. Diagn Pathol (2011) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:50
赛默飞世尔 Ccnd1抗体(Lab Vision, RM-9104)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50. Int J Oncol (2012) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 Ccnd1抗体(LabVision/Thermo Scientific, RM-9104)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). PLoS ONE (2011) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Ccnd1抗体(Lab Vision, RM9104)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2011) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5
赛默飞世尔 Ccnd1抗体(NeoMarkers, 9104-S1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5). J Cell Sci (2011) ncbi
小鼠 单克隆(DCS-6)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛默飞世尔 Ccnd1抗体(Biosource, AHF0082)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Histochem Cell Biol (2011) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-冰冻切片; 小鼠; 图 2
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2). J Pathol (2011) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1, 2, 3
  • 免疫组化; 人类; 1:100
赛默飞世尔 Ccnd1抗体(Neomarkers, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1, 2, 3) 和 被用于免疫组化在人类样本上浓度为1:100. Am J Surg Pathol (2010) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 表 1
赛默飞世尔 Ccnd1抗体(Labvision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Pathology (2010) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 图 3
赛默飞世尔 Ccnd1抗体(Neomarkers, SP4)被用于被用于免疫组化在人类样本上 (图 3). Clin Cancer Res (2009) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:250; 图 2
赛默飞世尔 Ccnd1抗体(Biosource, DCS-6)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 2). Int J Cancer (2009) ncbi
domestic rabbit 重组(SP4)
  • 免疫印迹; 人类; 图 s4
赛默飞世尔 Ccnd1抗体(Neomarkers, RM-9104)被用于被用于免疫印迹在人类样本上 (图 s4). J Pathol (2009) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 图 1
  • 免疫组化; 人类
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1) 和 被用于免疫组化在人类样本上. Clin Cancer Res (2009) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
赛默飞世尔 Ccnd1抗体(BioSource, DCS-6)被用于被用于免疫印迹在人类样本上. Blood (2009) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
赛默飞世尔 Ccnd1抗体(Neomarkers, SP4)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). Dev Biol (2008) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类
赛默飞世尔 Ccnd1抗体(NeoMarkers, DCS6)被用于被用于免疫印迹在人类样本上. Pediatr Res (2007) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 大鼠; 1:150; 图 3
赛默飞世尔 Ccnd1抗体(Biosource, AHF0082)被用于被用于免疫印迹在大鼠样本上浓度为1:150 (图 3). J Neurochem (2007) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化; 人类; 1:50; 图 2
赛默飞世尔 Ccnd1抗体(LabVision, SP4)被用于被用于免疫组化在人类样本上浓度为1:50 (图 2). Clin Cancer Res (2006) ncbi
domestic rabbit 重组(SP4)
  • 免疫组化-石蜡切片; 人类; 1:40
  • 免疫组化; 人类; 1:15
赛默飞世尔 Ccnd1抗体(Lab Vision, SP4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:40 和 被用于免疫组化在人类样本上浓度为1:15. Am J Clin Pathol (2005) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 大鼠; 1:200; 图 1b
赛默飞世尔 Ccnd1抗体(Neo Markers, MS-215)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 1b). Mol Endocrinol (2003) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Ccnd1抗体(Neomarkers, DCS-6)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Biol (2002) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹基因敲除验证; 小鼠; 图 7m
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 7m) 和 被用于免疫印迹在大鼠样本上 (图 5a). J Cell Biol (2021) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 7b
艾博抗(上海)贸易有限公司 Ccnd1抗体(abcam, ab134175)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 7b). Oncoimmunology (2021) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 s6b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 s6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在小鼠样本上 (图 5c). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:10,000; 图 6a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫印迹; 人类; 1:1000; 图 s2d
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2d). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 1e). Thorac Cancer (2020) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 4h
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 4h). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫印迹; 人类; 1:1000; 图 3d
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:30,000; 图 4b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:30,000 (图 4b). Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Hypoxia (Auckl) (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Cell Rep (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:10,000; 图 5a, 5h
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a, 5h). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 6a). elife (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 大鼠; 图 2d
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在大鼠样本上 (图 2d). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 大鼠; 图 1b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在大鼠样本上 (图 1b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:2000; 图 5a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Physiol (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:2000; 图 6g
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 3g
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 3g). Cancer Res (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:10,000; 图 6b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6b). Cancer Sci (2019) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化; 小鼠; 1:100; 图 s11e
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s11e). Science (2018) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3e
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3e). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在小鼠样本上 (图 4b). Basic Res Cardiol (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在小鼠样本上 (图 2d). Genes Dev (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 小鼠; 图 7e
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在小鼠样本上 (图 7e) 和 被用于免疫印迹在人类样本上 (图 7a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Sci Rep (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在大鼠样本上 (图 4b). Am J Transl Res (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫细胞化学; 人类; 1:100; 图 3d
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d). Clin Sci (Lond) (2017) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 7g
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上 (图 7g). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:250; 图 4
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 小鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Ccnd1抗体(Epitomics, 2261-1)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:10,000; 图 6
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫印迹; 人类; 图 6e
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫印迹在人类样本上 (图 6e). Nat Genet (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 1
艾博抗(上海)贸易有限公司 Ccnd1抗体(Epitomics, 2261-1)被用于被用于免疫印迹在人类样本上 (图 1). FEBS Open Bio (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Ccnd1抗体(Epitomics, 2261)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Cell Mol Med (2016) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫细胞化学在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Biochem Biophys Res Commun (2015) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 1:10,000; 图 5
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab134175)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncol Rep (2015) ncbi
domestic rabbit 单克隆(EP272Y)
  • 免疫印迹; 人类; 1:200; 图 3f
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, ab40754)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-冰冻切片; 非洲爪蛙; 1:1000
  • 免疫印迹; 非洲爪蛙
艾博抗(上海)贸易有限公司 Ccnd1抗体(Abcam, EPR2241)被用于被用于免疫组化-冰冻切片在非洲爪蛙样本上浓度为1:1000 和 被用于免疫印迹在非洲爪蛙样本上. PLoS Pathog (2014) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司 Ccnd1抗体(Epitomics, 2261-1)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer Ther (2013) ncbi
domestic rabbit 单克隆(EPR2241)
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Ccnd1抗体(Epitomics, 2261-1)被用于被用于免疫组化-石蜡切片在人类样本上. Am J Pathol (2012) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在人类样本上 (图 2f). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 5a). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在人类样本上 (图 s3e). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化; 人类; 图 4f
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫组化在人类样本上 (图 4f) 和 被用于免疫印迹在人类样本上 (图 2d). iScience (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 6a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:700; 图 2
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 2). Int J Endocrinol (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 s5a, s5b
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5e
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a, s5b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 3g, 3h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g, 3h). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 92G2)被用于被用于免疫印迹在人类样本上 (图 5a). Breast Cancer Res (2021) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 92G2)被用于被用于免疫印迹在小鼠样本上 (图 4b). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 7g
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling Technology, 92G2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7g). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2922)被用于被用于免疫印迹在人类样本上 (图 4g). Diabetes (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2922)被用于被用于免疫印迹在人类样本上 (图 4). Dev Reprod (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上. J Clin Invest (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 s4c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978S)被用于被用于免疫印迹在人类样本上 (图 s4c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 2f
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 92G2)被用于被用于免疫印迹在小鼠样本上 (图 2f). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978T)被用于被用于免疫印迹在小鼠样本上 (图 4c). Drug Metab Dispos (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 6i
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6i). Cancer Cell Int (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在人类样本上 (图 4c). Front Cell Dev Biol (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978S)被用于被用于免疫组化在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). J Clin Invest (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, #2922)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3e). EBioMedicine (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 5c). Oncogenesis (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 大鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4f). Endocr Connect (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 2d). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g, h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在小鼠样本上 (图 3g, h). Cancer Med (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 9a
  • 免疫印迹; 大鼠; 图 7a
  • 免疫印迹; 人类; 图 10a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978T)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 9a), 被用于免疫印迹在大鼠样本上 (图 7a) 和 被用于免疫印迹在人类样本上 (图 10a). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在小鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 3d). J Cancer (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 4g). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 1a). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 7g, s7b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g, s7b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). elife (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 4h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上 (图 4h). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:2000; 图 7e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7e). Biomolecules (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 5b). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). elife (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:2000; 图 3d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5l
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在小鼠样本上 (图 5l). Aging Cell (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2922)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922S)被用于被用于免疫印迹在人类样本上 (图 1b). Oncogene (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Cancer Res (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 92G2)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8c, s8d
  • 免疫印迹; 小鼠; 图 s8b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 s8c, s8d) 和 被用于免疫印迹在小鼠样本上 (图 s8b). Hepatology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4m
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4m). Mol Psychiatry (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 s6e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 s6e). Cell (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 4e). Cancer Lett (2019) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Int J Biol Macromol (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 3b). Mol Cancer Res (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 5c). Cell Death Dis (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3f
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2922)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3f). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Am J Transl Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2922)被用于被用于免疫印迹在人类样本上 (图 4a). Oncogene (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 7b). Oncotarget (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 2c). Nature (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 2c). Clin Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5j, 5k, 5l
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5j, 5k, 5l). Gut (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 92G2)被用于被用于免疫印迹在人类样本上 (图 5c). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 5). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncol Rep (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Mol Med Rep (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:500; 图 3a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978 S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2922)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Am J Cancer Res (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 大鼠; 图 13a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(cell signalling, 2978)被用于被用于免疫印迹在大鼠样本上 (图 13a). Am J Pathol (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(cell signalling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化; 小鼠; 1:50; 图 7w
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signalling, 2978)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 7w). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3D
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3D). Int J Mol Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7f
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 s7f). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 4A
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 4A). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 s3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 s3b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ccnd1抗体(cell signalling, 2978P)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncoscience (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 s2). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 2d). FEBS Open Bio (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-冰冻切片; 小鼠; 1:700; 图 11f
  • 免疫印迹; 小鼠; 1:700; 图 11a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:700 (图 11f) 和 被用于免疫印迹在小鼠样本上浓度为1:700 (图 11a). J Neurosci (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ccnd1抗体(cell signalling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Oncotarget (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫细胞化学; 人类; 图 5d
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫细胞化学在人类样本上 (图 5d) 和 被用于免疫印迹在人类样本上 (图 7c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹基因敲除验证; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 3b). Mol Pharmacol (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1500; 图 4b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4b). Cell Cycle (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4g
  • 免疫印迹; 小鼠; 1:1000; 图 s2b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4g) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2b). Nature (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:2000; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 2g). Oncogene (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Biochem Pharmacol (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 5c). J Proteomics (2017) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在人类样本上 (图 2h). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2922)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 1). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Tech, 2922)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:500; 图 8e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8e). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在小鼠样本上 (图 7). Cardiovasc Res (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 8). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(CST, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 1e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; baboons; 图 5
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫组化-石蜡切片在baboons样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Tech, 2978S)被用于被用于免疫印迹在人类样本上 (图 4). Sci Signal (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2978)被用于被用于免疫印迹在大鼠样本上 (图 5). Cell Stress Chaperones (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell signaling, 2922)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s4). J Bone Miner Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 4). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Tech, 2978)被用于被用于免疫印迹在小鼠样本上 (图 4). Nucleic Acids Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上. Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2922)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 3b). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978s)被用于被用于免疫印迹在人类样本上 (图 6). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3a
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3a). Oncogene (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 6b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 小鼠; 1:1000; 图 5h
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5h). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Tech, 92G2)被用于被用于免疫印迹在人类样本上 (图 3). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫组化在小鼠样本上 (图 3). Cell Death Differ (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 1:500
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, #2978)被用于被用于免疫印迹在人类样本上浓度为1:500. Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫组化-石蜡切片; 小鼠; 1:50
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling, 2978)被用于被用于免疫印迹在人类样本上 (图 1). Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 其他; 人类; 图 5b
  • 免疫印迹; 人类; 图 5c,6d
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology Inc., 2978)被用于被用于其他在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5c,6d). Mol Carcinog (2015) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ccnd1抗体(细胞, 92G2)被用于被用于免疫印迹在人类样本上. BMC Cancer (2014) ncbi
domestic rabbit 单克隆(92G2)
  • 免疫印迹; 人类; 图 S7
赛信通(上海)生物试剂有限公司 Ccnd1抗体(Cell Signaling Technology, 2978)被用于被用于免疫印迹在人类样本上 (图 S7). PLoS ONE (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 图 6
西格玛奥德里奇 Ccnd1抗体(Sigma-Aldrich, C7464)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 人类; 1:200; 图 6
西格玛奥德里奇 Ccnd1抗体(Sigma, C 7464)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(DCS-6)
  • 免疫印迹; 大鼠; 图 3
西格玛奥德里奇 Ccnd1抗体(Sigma, C7464)被用于被用于免疫印迹在大鼠样本上 (图 3). Biomed Res Int (2014) ncbi
文章列表
  1. Liu X, Liu Y, Liu Z, Lin C, Meng F, Xu L, et al. CircMYH9 drives colorectal cancer growth by regulating serine metabolism and redox homeostasis in a p53-dependent manner. Mol Cancer. 2021;20:114 pubmed 出版商
  2. Giuliani V, Miller M, Liu C, Hartono S, Class C, Bristow C, et al. PRMT1-dependent regulation of RNA metabolism and DNA damage response sustains pancreatic ductal adenocarcinoma. Nat Commun. 2021;12:4626 pubmed 出版商
  3. Song L, Tian X, Schekman R. Extracellular vesicles from neurons promote neural induction of stem cells through cyclin D1. J Cell Biol. 2021;220: pubmed 出版商
  4. Chen H, Padia R, Li T, Li Y, Li B, Jin L, et al. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer. 2021;7:91 pubmed 出版商
  5. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  6. Luo C, Xu X, Liu C, He S, Chen J, Feng Y, et al. RBFOX2/GOLIM4 Splicing Axis Activates Vesicular Transport Pathway to Promote Nasopharyngeal Carcinogenesis. Adv Sci (Weinh). 2021;8:e2004852 pubmed 出版商
  7. Low J, Du W, Gocha T, Oguz G, Zhang X, Chen M, et al. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 2021;24:102544 pubmed 出版商
  8. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  9. Wang R, Yang D, Liu Y, Ding J, Guo Y, Ding W, et al. Cell cycle exit and neuronal differentiation 1-engineered embryonic neural stem cells enhance neuronal differentiation and neurobehavioral recovery after experimental traumatic brain injury. Neural Regen Res. 2022;17:130-136 pubmed 出版商
  10. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  11. Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, et al. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development. 2021;148: pubmed 出版商
  12. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  13. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  14. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  15. Hsieh M, Weng C, Lin Y, Wu C, Chen L, Cheng K. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  16. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  17. Cao X, Shu Y, Chen Y, Xu Q, Guo G, Wu Z, et al. Mettl14-Mediated m6A Modification Facilitates Liver Regeneration by Maintaining Endoplasmic Reticulum Homeostasis. Cell Mol Gastroenterol Hepatol. 2021;12:633-651 pubmed 出版商
  18. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  19. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  20. Kaminska K, Akrap N, Staaf J, Alves C, Ehinger A, Ebbesson A, et al. Distinct mechanisms of resistance to fulvestrant treatment dictate level of ER independence and selective response to CDK inhibitors in metastatic breast cancer. Breast Cancer Res. 2021;23:26 pubmed 出版商
  21. Chi R, van der Watt P, Wei W, Birrer M, Leaner V. Inhibition of Kpnβ1 mediated nuclear import enhances cisplatin chemosensitivity in cervical cancer. BMC Cancer. 2021;21:106 pubmed 出版商
  22. Roliński M, Montaldo N, Aksu M, Fordyce Martin S, Brambilla A, Kunath N, et al. Loss of Mediator complex subunit 13 (MED13) promotes resistance to alkylation through cyclin D1 upregulation. Nucleic Acids Res. 2021;: pubmed 出版商
  23. Chen A, Santana A, Doudican N, Roudiani N, Laursen K, Therrien J, et al. MAGE-A3 is a prognostic biomarker for poor clinical outcome in cutaneous squamous cell carcinoma with perineural invasion via modulation of cell proliferation. PLoS ONE. 2020;15:e0241551 pubmed 出版商
  24. Ruan H, Li X, Xu X, Leibowitz B, Tong J, Chen L, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. elife. 2020;9: pubmed 出版商
  25. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  26. Wang T, Gao X, Zhou K, Jiang T, Gao S, Liu P, et al. Role of ARID1A in epithelial‑mesenchymal transition in breast cancer and its effect on cell sensitivity to 5‑FU. Int J Mol Med. 2020;46:1683-1694 pubmed 出版商
  27. Liu C, Teo M, Pek S, Wu X, Leong M, Tay H, et al. A Multifunctional Role of Leucine-Rich α-2-Glycoprotein 1 in Cutaneous Wound Healing Under Normal and Diabetic Conditions. Diabetes. 2020;69:2467-2480 pubmed 出版商
  28. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  29. Chen J, Liu X, Ke K, Zou J, Gao Z, Habuchi T, et al. LINC00992 contributes to the oncogenic phenotypes in prostate cancer via targeting miR-3935 and augmenting GOLM1 expression. BMC Cancer. 2020;20:749 pubmed 出版商
  30. Lee S, Hong K, Seong Y, Kwak S. Ectopic Overexpression of Coiled-Coil Domain Containing 110 Delays G2/M Entry in U2-OS Cells. Dev Reprod. 2020;24:101-111 pubmed 出版商
  31. Muller A, Dickmanns A, Resch C, Schakel K, Hailfinger S, Dobbelstein M, et al. The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis. J Clin Invest. 2020;: pubmed 出版商
  32. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  33. Kuo I, Lee J, Wang Y, Chiang H, Huang C, Hsieh P, et al. Potential enhancement of host immunity and anti-tumor efficacy of nanoscale curcumin and resveratrol in colorectal cancers by modulated electro- hyperthermia. BMC Cancer. 2020;20:603 pubmed 出版商
  34. Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-Induced Liver Enlargement Is Related to PXR/YAP Activation and Lipid Accumulation but Not Hepatocyte Proliferation. Drug Metab Dispos. 2020;48:830-839 pubmed 出版商
  35. Lin Z, Lin X, Zhu L, Huang J, Huang Y. TRIM2 directly deubiquitinates and stabilizes Snail1 protein, mediating proliferation and metastasis of lung adenocarcinoma. Cancer Cell Int. 2020;20:228 pubmed 出版商
  36. Yin S, Song M, Zhao R, Liu X, Kang W, Lee J, et al. Xanthohumol Inhibits the Growth of Keratin 18-Overexpressed Esophageal Squamous Cell Carcinoma in vitro and in vivo. Front Cell Dev Biol. 2020;8:366 pubmed 出版商
  37. Du Z, Dong J, Li M, Zhang J, Bi J, Ren Y, et al. Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Regeneration and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. J Cancer. 2020;11:4614-4624 pubmed 出版商
  38. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419 pubmed 出版商
  39. Alajati A, D Ambrosio M, Troiani M, Mosole S, Pellegrini L, Chen J, et al. CDCP1 overexpression drives prostate cancer progression and can be targeted in vivo. J Clin Invest. 2020;130:2435-2450 pubmed 出版商
  40. Ceccarelli M, D Andrea G, Micheli L, Tirone F. Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency. Front Oncol. 2020;10:226 pubmed 出版商
  41. Zhang J, Huang J, Zhang Y, Zhang X, Zhao L, Li C, et al. Microtubule associated protein 9 inhibits liver tumorigenesis by suppressing ERCC3. EBioMedicine. 2020;53:102701 pubmed 出版商
  42. Zang M, Guo J, Liu L, Jin F, Feng X, An G, et al. Cdc37 suppression induces plasma cell immaturation and bortezomib resistance in multiple myeloma via Xbp1s. Oncogenesis. 2020;9:31 pubmed 出版商
  43. Hu J, Chen Q, Ding X, Zheng X, Tang X, Li S, et al. Glutamine metabolism in the proliferation of GS-expression pituitary tumor cells. Endocr Connect. 2020;: pubmed 出版商
  44. Hindupur S, Schmid S, Koch J, Youssef A, Baur E, Wang D, et al. STAT3/5 Inhibitors Suppress Proliferation in Bladder Cancer and Enhance Oncolytic Adenovirus Therapy. Int J Mol Sci. 2020;21: pubmed 出版商
  45. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  46. Zuo J, Zhao M, Fan Z, Liu B, Wang Y, Li Y, et al. MicroRNA-153-3p regulates cell proliferation and cisplatin resistance via Nrf-2 in esophageal squamous cell carcinoma. Thorac Cancer. 2020;11:738-747 pubmed 出版商
  47. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  48. Zhang Y, Mao X, Chen W, Guo X, Yu L, Jiang F, et al. A Discovery of Clinically Approved Formula FBRP for Repositioning to Treat HCC by Inhibiting PI3K/AKT/NF-κB Activation. Mol Ther Nucleic Acids. 2020;19:890-904 pubmed 出版商
  49. Cui J, Duan J, Chu J, Guo C, Xi M, Li Y, et al. Chikusetsu saponin IVa protects pancreatic β cell against intermittent high glucose-induced injury by activating Wnt/β-catenin/TCF7L2 pathway. Aging (Albany NY). 2020;12:1591-1609 pubmed 出版商
  50. Qiao H, Tan X, Lv D, Xing R, Shu F, Zhong C, et al. Phosphoribosyl pyrophosphate synthetases 2 knockdown inhibits prostate cancer progression by suppressing cell cycle and inducing cell apoptosis. J Cancer. 2020;11:1027-1037 pubmed 出版商
  51. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  52. Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol. 2019;19:230 pubmed 出版商
  53. Tang L, Li J, Fu W, Wu W, Xu J. Suppression of FADS1 induces ROS generation, cell cycle arrest, and apoptosis in melanocytes: implications for vitiligo. Aging (Albany NY). 2019;11:11829-11843 pubmed 出版商
  54. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  55. Patel H, Tao N, Lee K, Huerta M, Arlt H, Mullarkey T, et al. Elacestrant (RAD1901) exhibits anti-tumor activity in multiple ER+ breast cancer models resistant to CDK4/6 inhibitors. Breast Cancer Res. 2019;21:146 pubmed 出版商
  56. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  57. Guiley K, Stevenson J, Lou K, Barkovich K, Kumarasamy V, Wijeratne T, et al. p27 allosterically activates cyclin-dependent kinase 4 and antagonizes palbociclib inhibition. Science. 2019;366: pubmed 出版商
  58. Si J, Ma Y, Bi J, Xiong Y, Lv C, Li S, et al. Shisa3 brakes resistance to EGFR-TKIs in lung adenocarcinoma by suppressing cancer stem cell properties. J Exp Clin Cancer Res. 2019;38:481 pubmed 出版商
  59. Welk V, Meul T, Lukas C, Kammerl I, Mulay S, Schamberger A, et al. Proteasome activator PA200 regulates myofibroblast differentiation. Sci Rep. 2019;9:15224 pubmed 出版商
  60. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  61. Barbero G, Castro M, Villanueva M, Quezada M, Fernández N, Demorrow S, et al. An Autocrine Wnt5a Loop Promotes NF-κB Pathway Activation and Cytokine/Chemokine Secretion in Melanoma. Cells. 2019;8: pubmed 出版商
  62. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  63. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  64. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  65. He M, Shen P, Qiu C, Wang J. miR-627-3p inhibits osteosarcoma cell proliferation and metastasis by targeting PTN. Aging (Albany NY). 2019;11:5744-5756 pubmed 出版商
  66. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  67. Kim K, Rana A, Park C. Orai1 inhibitor STIM2β regulates myogenesis by controlling SOCE dependent transcriptional factors. Sci Rep. 2019;9:10794 pubmed 出版商
  68. Wang X, Peng P, Pan Z, Fang Z, Lu W, Liu X. Psoralen inhibits malignant proliferation and induces apoptosis through triggering endoplasmic reticulum stress in human SMMC7721 hepatoma cells. Biol Res. 2019;52:34 pubmed 出版商
  69. Lee Y, Yeo I, Kim K, Han S, Hong J. Inhibition of Lung Tumor Development in ApoE Knockout Mice via Enhancement of TREM-1 Dependent NK Cell Cytotoxicity. Front Immunol. 2019;10:1379 pubmed 出版商
  70. Roy N, Monisha J, Padmavathi G, Lalhruaitluanga H, Kumar N, Singh A, et al. Isoform-Specific Role of Akt in Oral Squamous Cell Carcinoma. Biomolecules. 2019;9: pubmed 出版商
  71. Wohlrab C, Kuiper C, Vissers M, Phillips E, Robinson B, Dachs G. Ascorbate modulates the hypoxic pathway by increasing intracellular activity of the HIF hydroxylases in renal cell carcinoma cells. Hypoxia (Auckl). 2019;7:17-31 pubmed 出版商
  72. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  73. Pietila M, Sahgal P, Peuhu E, Jäntti N, Paatero I, Närvä E, et al. SORLA regulates endosomal trafficking and oncogenic fitness of HER2. Nat Commun. 2019;10:2340 pubmed 出版商
  74. Zhang C, Zhu Q, Gu J, Chen S, Li Q, Ying L. Down-regulation of CCNE1 expression suppresses cell proliferation and sensitizes gastric carcinoma cells to Cisplatin. Biosci Rep. 2019;39: pubmed 出版商
  75. Shi K, Yin X, Cai M, Yan Y, Jia C, Ma P, et al. PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors. elife. 2019;8: pubmed 出版商
  76. Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23:4443-4453 pubmed 出版商
  77. Udden S, Kwak Y, Godfrey V, Khan M, Khan S, Loof N, et al. NLRP12 suppresses hepatocellular carcinoma via downregulation of cJun N-terminal kinase activation in the hepatocyte. elife. 2019;8: pubmed 出版商
  78. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  79. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  80. Yang H, Shen J, Wang Y, Liu Y, Shen D, Quan S. Tankyrase Promotes Aerobic Glycolysis and Proliferation of Ovarian Cancer through Activation of Wnt/β-Catenin Signaling. Biomed Res Int. 2019;2019:2686340 pubmed 出版商
  81. Chen L, Yang R, Qiao W, Zhang W, Chen J, Mao L, et al. 1,25-Dihydroxyvitamin D exerts an antiaging role by activation of Nrf2-antioxidant signaling and inactivation of p16/p53-senescence signaling. Aging Cell. 2019;18:e12951 pubmed 出版商
  82. Wang Z, Feng X, Molinolo A, Martin D, Vitale Cross L, Nohata N, et al. 4E-BP1 Is a Tumor Suppressor Protein Reactivated by mTOR Inhibition in Head and Neck Cancer. Cancer Res. 2019;: pubmed 出版商
  83. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  84. SCHADE A, Oser M, Nicholson H, DeCaprio J. Cyclin D-CDK4 relieves cooperative repression of proliferation and cell cycle gene expression by DREAM and RB. Oncogene. 2019;38:4962-4976 pubmed 出版商
  85. Fang G, Qi J, Huang L, Zhao X. LncRNA MRAK048635_P1 is critical for vascular smooth muscle cell function and phenotypic switching in essential hypertension. Biosci Rep. 2019;: pubmed 出版商
  86. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  87. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  88. Su W, Wang Y, Wang F, Zhang B, Zhang H, Shen Y, et al. Circular RNA hsa_circ_0007059 indicates prognosis and influences malignant behavior via AKT/mTOR in oral squamous cell carcinoma. J Cell Physiol. 2019;: pubmed 出版商
  89. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  90. Ji Q, Xu X, Kang L, Xu Y, Xiao J, Goodman S, et al. Hematopoietic PBX-interacting protein mediates cartilage degeneration during the pathogenesis of osteoarthritis. Nat Commun. 2019;10:313 pubmed 出版商
  91. Yang F, Fang E, Mei H, Chen Y, Li H, Li D, et al. Cis-Acting circ-CTNNB1 Promotes β-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1. Cancer Res. 2019;79:557-571 pubmed 出版商
  92. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  93. Wang Y, Du L, Liang X, Meng P, Bi L, Wang Y, et al. Sirtuin 4 Depletion Promotes Hepatocellular Carcinoma Tumorigenesis Through Regulating Adenosine-Monophosphate-Activated Protein Kinase Alpha/Mammalian Target of Rapamycin Axis in Mice. Hepatology. 2018;: pubmed 出版商
  94. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFβ signaling. Mol Psychiatry. 2018;: pubmed 出版商
  95. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  96. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  97. Song X, Chen H, Zhang C, Yu Y, Chen Z, Liang H, et al. SRC-3 inhibition blocks tumor growth of pancreatic ductal adenocarcinoma. Cancer Lett. 2019;442:310-319 pubmed 出版商
  98. Bugaj L, Sabnis A, Mitchell A, Garbarino J, Toettcher J, Bivona T, et al. Cancer mutations and targeted drugs can disrupt dynamic signal encoding by the Ras-Erk pathway. Science. 2018;361: pubmed 出版商
  99. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol. 2018;118:365-374 pubmed 出版商
  100. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  101. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  102. Huang G, Jiang H, Lin Y, Wu Y, Cai W, Shi B, et al. lncAKHE enhances cell growth and migration in hepatocellular carcinoma via activation of NOTCH2 signaling. Cell Death Dis. 2018;9:487 pubmed 出版商
  103. Morgan E, Wasson C, Hanson L, Kealy D, Pentland I, McGuire V, et al. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog. 2018;14:e1006975 pubmed 出版商
  104. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  105. Yang R, Tao Z, Huang M, Zheng Y, Dai M, Zou Y, et al. Knockout of the placenta specific 8 gene radiosensitizes nasopharyngeal carcinoma cells by activating the PI3K/AKT/GSK3β pathway. Am J Transl Res. 2018;10:455-464 pubmed
  106. Haller M, Au J, O Neill M, Lamb D. 16p11.2 transcription factor MAZ is a dosage-sensitive regulator of genitourinary development. Proc Natl Acad Sci U S A. 2018;115:E1849-E1858 pubmed 出版商
  107. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  108. Kim M, Morales L, Baek M, Slaga T, DiGiovanni J, Kim D. UVB-induced nuclear translocation of TC-PTP by AKT/14-3-3? axis inhibits keratinocyte survival and proliferation. Oncotarget. 2017;8:90674-90692 pubmed 出版商
  109. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  110. Huang C, Wu S, Ji H, Yan X, Xie Y, Murai S, et al. Identification of XBP1-u as a novel regulator of the MDM2/p53 axis using an shRNA library. Sci Adv. 2017;3:e1701383 pubmed 出版商
  111. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  112. Chong I, Aronson L, Bryant H, Gulati A, Campbell J, Elliott R, et al. Mapping genetic vulnerabilities reveals BTK as a novel therapeutic target in oesophageal cancer. Gut. 2018;67:1780-1792 pubmed 出版商
  113. Liu Z, Li H, Liu J, Wu M, Chen X, Liu L, et al. Inactivated Wnt signaling in resveratrol-treated epidermal squamous cancer cells and its biological implication. Oncol Lett. 2017;14:2239-2243 pubmed 出版商
  114. Zhou Y, Huang T, Zhang J, Wong C, Zhang B, Dong Y, et al. TEAD1/4 exerts oncogenic role and is negatively regulated by miR-4269 in gastric tumorigenesis. Oncogene. 2017;36:6518-6530 pubmed 出版商
  115. Capurro M, Izumikawa T, Suarez P, Shi W, Cydzik M, Kaneiwa T, et al. Glypican-6 promotes the growth of developing long bones by stimulating Hedgehog signaling. J Cell Biol. 2017;216:2911-2926 pubmed 出版商
  116. Wang Q, Yu Y, Zhang P, Chen Y, Li C, Chen J, et al. The crucial role of activin A/ALK4 pathway in the pathogenesis of Ang-II-induced atrial fibrosis and vulnerability to atrial fibrillation. Basic Res Cardiol. 2017;112:47 pubmed 出版商
  117. Fell S, Li S, Wallis K, Kock A, Surova O, Rraklli V, et al. Neuroblast differentiation during development and in neuroblastoma requires KIF1B?-mediated transport of TRKA. Genes Dev. 2017;31:1036-1053 pubmed 出版商
  118. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  119. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  120. Oblinger J, Burns S, Huang J, Pan L, Ren Y, Shen R, et al. Overexpression of eIF4F components in meningiomas and suppression of meningioma cell growth by inhibiting translation initiation. Exp Neurol. 2018;299:299-307 pubmed 出版商
  121. Kokabu S, Nakatomi C, Matsubara T, Ono Y, Addison W, Lowery J, et al. The transcriptional co-repressor TLE3 regulates myogenic differentiation by repressing the activity of the MyoD transcription factor. J Biol Chem. 2017;292:12885-12894 pubmed 出版商
  122. Wang B, Gu Q, Li J. DOC-2/DAB2 interactive protein regulates proliferation and mobility of nasopharyngeal carcinoma cells by targeting PI3K/Akt pathway. Oncol Rep. 2017;38:317-324 pubmed 出版商
  123. He D, Ren B, Liu S, Tan L, Cieply K, Tseng G, et al. Oncogenic activity of amplified miniature chromosome maintenance 8 in human malignancies. Oncogene. 2017;36:3629-3639 pubmed 出版商
  124. Kapil S, Sharma B, Patil M, Elattar S, Yuan J, Hou S, et al. The cell polarity protein Scrib functions as a tumor suppressor in liver cancer. Oncotarget. 2017;8:26515-26531 pubmed 出版商
  125. Sun J, Zhang X, Sun Y, Tang Z, Guo D. Effects of Hylomecon vernalis ethanol extracts on cell cycle and apoptosis of colon cancer cells. Mol Med Rep. 2017;15:3485-3492 pubmed 出版商
  126. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  127. Jiang J, Chen X, Liu H, Shao J, Xie R, Gu P, et al. Polypyrimidine Tract-Binding Protein 1 promotes proliferation, migration and invasion in clear-cell renal cell carcinoma by regulating alternative splicing of PKM. Am J Cancer Res. 2017;7:245-259 pubmed
  128. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  129. Yu G, Zhang T, Jing Y, Bao Q, Tang Q, Zhang Y. miR-519 suppresses nasopharyngeal carcinoma cell proliferation by targeting oncogene URG4/URGCP. Life Sci. 2017;175:47-51 pubmed 出版商
  130. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  131. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  132. Yang Y, Hu S, Liu J, Cui Y, Fan Y, Lv T, et al. CD8+ T cells promote proliferation of benign prostatic hyperplasia epithelial cells under low androgen level via modulation of CCL5/STAT5/CCND1 signaling pathway. Sci Rep. 2017;7:42893 pubmed 出版商
  133. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  134. Wang N, Yao F, Li K, Zhang L, Yin G, Du M, et al. Fisetin regulates astrocyte migration and proliferation in vitro. Int J Mol Med. 2017;39:783-790 pubmed 出版商
  135. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  136. Whitaker A, Berthet E, Cantu A, Laird D, Alliston T. Smad4 regulates growth plate matrix production and chondrocyte polarity. Biol Open. 2017;6:358-364 pubmed 出版商
  137. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  138. Zhu Y, Kawaguchi K, Kiyama R. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors. PLoS ONE. 2017;12:e0171390 pubmed 出版商
  139. Xiang J, Yang S, Xin N, Gaertig M, Reeves R, Li S, et al. DYRK1A regulates Hap1-Dcaf7/WDR68 binding with implication for delayed growth in Down syndrome. Proc Natl Acad Sci U S A. 2017;114:E1224-E1233 pubmed 出版商
  140. Cayrol F, Praditsuktavorn P, Fernando T, Kwiatkowski N, Marullo R, Calvo Vidal M, et al. THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors. Nat Commun. 2017;8:14290 pubmed 出版商
  141. Ha S, Jin F, Kwak C, Abekura F, Park J, Park N, et al. Jellyfish extract induces apoptotic cell death through the p38 pathway and cell cycle arrest in chronic myelogenous leukemia K562 cells. Peerj. 2017;5:e2895 pubmed 出版商
  142. Cai L, Wang H, Yang Q. CRKL overexpression promotes cell proliferation and inhibits apoptosis in endometrial carcinoma. Oncol Lett. 2017;13:51-56 pubmed 出版商
  143. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  144. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  145. Jafari N, Kim H, Park R, Li L, Jang M, Morris A, et al. CRISPR-Cas9 Mediated NOX4 Knockout Inhibits Cell Proliferation and Invasion in HeLa Cells. PLoS ONE. 2017;12:e0170327 pubmed 出版商
  146. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  147. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  148. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  149. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  150. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  151. Li S, Sun Z, Zhang Y, Ruan Y, Chen Q, Gong W, et al. COX-2/mPGES-1/PGE2 cascade activation mediates uric acid-induced mesangial cell proliferation. Oncotarget. 2017;8:10185-10198 pubmed 出版商
  152. Chaney S, Mukherjee S, Giddabasappa A, Rueda E, Hamilton W, Johnson J, et al. Increased proliferation of late-born retinal progenitor cells by gestational lead exposure delays rod and bipolar cell differentiation. Mol Vis. 2016;22:1468-1489 pubmed
  153. Sun J, Liu X, Gao H, Zhang L, Ji Q, Wang Z, et al. Overexpression of colorectal cancer oncogene CHRDL2 predicts a poor prognosis. Oncotarget. 2017;8:11489-11506 pubmed 出版商
  154. Choiniere J, Wu J, Wang L. Pyruvate Dehydrogenase Kinase 4 Deficiency Results in Expedited Cellular Proliferation through E2F1-Mediated Increase of Cyclins. Mol Pharmacol. 2017;91:189-196 pubmed 出版商
  155. Lazaro S, Perez Crespo M, Enguita A, Hernandez P, Martínez Palacio J, Oteo M, et al. Ablating all three retinoblastoma family members in mouse lung leads to neuroendocrine tumor formation. Oncotarget. 2017;8:4373-4386 pubmed 出版商
  156. Liu L, Guan H, Li Y, Ying Z, Wu J, Zhu X, et al. Astrocyte Elevated Gene 1 Interacts with Acetyltransferase p300 and c-Jun To Promote Tumor Aggressiveness. Mol Cell Biol. 2017;37: pubmed 出版商
  157. Nuzzo A, Giuffrida D, Masturzo B, Mele P, Piccoli E, Eva C, et al. Altered expression of G1/S phase cell cycle regulators in placental mesenchymal stromal cells derived from preeclamptic pregnancies with fetal-placental compromise. Cell Cycle. 2017;16:200-212 pubmed 出版商
  158. Walline H, Carey T, Goudsmit C, Bellile E, D Souza G, Peterson L, et al. High-Risk HPV, Biomarkers, and Outcome in Matched Cohorts of Head and Neck Cancer Patients Positive and Negative for HIV. Mol Cancer Res. 2017;15:179-188 pubmed 出版商
  159. Chen Z, Tang C, Zhu Y, Xie M, He D, Pan Q, et al. TrpC5 regulates differentiation through the Ca2+/Wnt5a signalling pathway in colorectal cancer. Clin Sci (Lond). 2017;131:227-237 pubmed 出版商
  160. Hong Y, Liang H, Uzair Ur Rehman -, Wang Y, Zhang W, Zhou Y, et al. miR-96 promotes cell proliferation, migration and invasion by targeting PTPN9 in breast cancer. Sci Rep. 2016;6:37421 pubmed 出版商
  161. Song H, Li L, Zhong L, Yang R, Jiang K, Yang X, et al. NLS?RAR? modulates acute promyelocytic leukemia NB4 cell proliferation and differentiation via the PI3K/AKT pathway. Mol Med Rep. 2016;14:5495-5500 pubmed 出版商
  162. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  163. Fujimura K, Mitsuhashi T, Shibata S, Shimozato S, Takahashi T. In Utero Exposure to Valproic Acid Induces Neocortical Dysgenesis via Dysregulation of Neural Progenitor Cell Proliferation/Differentiation. J Neurosci. 2016;36:10908-10919 pubmed
  164. Zhao Y, Fan D, Ru B, Cheng K, Hu S, Zhang J, et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. Eur J Cancer. 2016;68:38-50 pubmed 出版商
  165. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  166. Cao R, Meng Z, Liu T, Wang G, Qian G, Cao T, et al. Decreased TRPM7 inhibits activities and induces apoptosis of bladder cancer cells via ERK1/2 pathway. Oncotarget. 2016;7:72941-72960 pubmed 出版商
  167. Soon G, Ow G, Chan H, Ng S, Wang S. Primary cardiac diffuse large B-cell lymphoma in immunocompetent patients: clinical, histologic, immunophenotypic, and genotypic features of 3 cases. Ann Diagn Pathol. 2016;24:40-6 pubmed 出版商
  168. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  169. Yao J, Qin L, Miao S, Wang X, Wu X. Overexpression of miR-506 suppresses proliferation and promotes apoptosis of osteosarcoma cells by targeting astrocyte elevated gene-1. Oncol Lett. 2016;12:1840-1848 pubmed
  170. Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, et al. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett. 2016;12:1642-1648 pubmed
  171. Kang M, Jeong K, Kim W, Lee H, Gong G, Suh N, et al. Musashi RNA-binding protein 2 regulates estrogen receptor 1 function in breast cancer. Oncogene. 2017;36:1745-1752 pubmed 出版商
  172. Wu Y, Xie R, Liu X, Wang J, Peng Y, Tang W, et al. Knockdown of FOXK1 alone or in combination with apoptosis-inducing 5-FU inhibits cell growth in colorectal cancer. Oncol Rep. 2016;36:2151-9 pubmed 出版商
  173. Zak M, van Oort T, Hendriksen F, Garcia M, Vassart G, Grolman W. LGR4 and LGR5 Regulate Hair Cell Differentiation in the Sensory Epithelium of the Developing Mouse Cochlea. Front Cell Neurosci. 2016;10:186 pubmed 出版商
  174. Doobin D, Kemal S, Dantas T, Vallee R. Severe NDE1-mediated microcephaly results from neural progenitor cell cycle arrests at multiple specific stages. Nat Commun. 2016;7:12551 pubmed 出版商
  175. Gao S, Yang X, Wang M. Inhibitory effects of B?cell translocation gene 2 on skin cancer cells via the Wnt/??catenin signaling pathway. Mol Med Rep. 2016;14:3464-8 pubmed 出版商
  176. Shi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14:2921-8 pubmed 出版商
  177. Kim Y, Jin D, Lee B, Cho E, Han J, Shim Y, et al. Overexpression of β-Catenin and Cyclin D1 is Associated with Poor Overall Survival in Patients with Stage IA-IIA Squamous Cell Lung Cancer Irrespective of Adjuvant Chemotherapy. J Thorac Oncol. 2016;11:2193-2201 pubmed 出版商
  178. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  179. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  180. Song J, Song L, Herrera A, Venkataraman G, Murata Collins J, Bedell V, et al. Cyclin D1 expression in peripheral T-cell lymphomas. Mod Pathol. 2016;29:1306-1312 pubmed 出版商
  181. Kurita D, Takeuchi K, Kobayashi S, Hojo A, Uchino Y, Sakagami M, et al. A cyclin D1-negative mantle cell lymphoma with an IGL-CCND2 translocation that relapsed with blastoid morphology and aggressive clinical behavior. Virchows Arch. 2016;469:471-6 pubmed 出版商
  182. Fan C, Jia L, Zheng Y, Jin C, Liu Y, Liu H, et al. MiR-34a Promotes Osteogenic Differentiation of Human Adipose-Derived Stem Cells via the RBP2/NOTCH1/CYCLIN D1 Coregulatory Network. Stem Cell Reports. 2016;7:236-48 pubmed 出版商
  183. Xia X, Yu Y, Zhang L, Ma Y, Wang H. Inhibitor of DNA binding 1 regulates cell cycle progression of endothelial progenitor cells through induction of Wnt2 expression. Mol Med Rep. 2016;14:2016-24 pubmed 出版商
  184. Ocón B, Aranda C, Gámez Belmonte R, Suárez M, Zarzuelo A, Martinez Augustin O, et al. The glucocorticoid budesonide has protective and deleterious effects in experimental colitis in mice. Biochem Pharmacol. 2016;116:73-88 pubmed 出版商
  185. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  186. Gvozdenović A, Boro A, Meier D, Bode Lesniewska B, Born W, Muff R, et al. Targeting αvβ3 and αvβ5 integrins inhibits pulmonary metastasis in an intratibial xenograft osteosarcoma mouse model. Oncotarget. 2016;7:55141-55154 pubmed 出版商
  187. Troxell M, Higgins J. Renal cell carcinoma in kidney allografts: histologic types, including biphasic papillary carcinoma. Hum Pathol. 2016;57:28-36 pubmed 出版商
  188. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  189. Wu D, Chen C, Wu Z, Liu B, Gao L, Yang Q, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35:108 pubmed 出版商
  190. Han A, Li J, Li Y, Wang Y, Bergholz J, Zhang Y, et al. p63α modulates c-Myc activity via direct interaction and regulation of MM1 protein stability. Oncotarget. 2016;7:44277-44287 pubmed 出版商
  191. Tsai K, Leung C, Lo Y, Chen T, Chan W, Yu S, et al. Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep. 2016;6:28176 pubmed 出版商
  192. Li J, Bao Q, Chen S, Liu H, Feng J, Qin H, et al. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/?-catenin signaling in mice. J Orthop Res. 2017;35:812-819 pubmed 出版商
  193. Zhao X, Wang J, Xiao L, Xu Q, Zhao E, Zheng X, et al. Effects of 17-AAG on the cell cycle and apoptosis of H446 cells and the associated mechanisms. Mol Med Rep. 2016;14:1067-74 pubmed 出版商
  194. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  195. Zheng J, Huang X, Tan W, Yu D, Du Z, Chang J, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet. 2016;48:747-57 pubmed 出版商
  196. Chen P, Qin L, Li G, Tellides G, Simons M. Smooth muscle FGF/TGFβ cross talk regulates atherosclerosis progression. EMBO Mol Med. 2016;8:712-28 pubmed 出版商
  197. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  198. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  199. Lombardo G, Dentelli P, Togliatto G, Rosso A, Gili M, Gallo S, et al. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci Rep. 2016;6:25689 pubmed 出版商
  200. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  201. O Santos A, Parrini M, Camonis J. RalGPS2 Is Essential for Survival and Cell Cycle Progression of Lung Cancer Cells Independently of Its Established Substrates Ral GTPases. PLoS ONE. 2016;11:e0154840 pubmed 出版商
  202. Welk V, Coux O, Kleene V, Abeza C, Trumbach D, Eickelberg O, et al. Inhibition of Proteasome Activity Induces Formation of Alternative Proteasome Complexes. J Biol Chem. 2016;291:13147-59 pubmed 出版商
  203. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  204. Chaudhary S, Madhukrishna B, Adhya A, Keshari S, Mishra S. Overexpression of caspase 7 is ER? dependent to affect proliferation and cell growth in breast cancer cells by targeting p21(Cip). Oncogenesis. 2016;5:e219 pubmed 出版商
  205. Xiao L, Shi X, Zhang Y, Zhu Y, Zhu L, Tian W, et al. YAP induces cisplatin resistance through activation of autophagy in human ovarian carcinoma cells. Onco Targets Ther. 2016;9:1105-14 pubmed 出版商
  206. Shi J, CUI N, Wang S, Zhao M, Wang B, Wang Y, et al. Overexpression of YB1 C-terminal domain inhibits proliferation, angiogenesis and tumorigenicity in a SK-BR-3 breast cancer xenograft mouse model. FEBS Open Bio. 2016;6:33-42 pubmed 出版商
  207. Yan B, Zhang Z, Jin D, Cai C, Jia C, Liu W, et al. mTORC1 regulates PTHrP to coordinate chondrocyte growth, proliferation and differentiation. Nat Commun. 2016;7:11151 pubmed 出版商
  208. Li J, Tang C, Li L, Li R, Fan Y. Quercetin sensitizes glioblastoma to t-AUCB by dual inhibition of Hsp27 and COX-2 in vitro and in vivo. J Exp Clin Cancer Res. 2016;35:61 pubmed 出版商
  209. Tomei P, Masola V, Granata S, Bellin G, Carratu P, Ficial M, et al. Everolimus-induced epithelial to mesenchymal transition (EMT) in bronchial/pulmonary cells: when the dosage does matter in transplantation. J Nephrol. 2016;29:881-891 pubmed
  210. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  211. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  212. Ercilla A, Llopis A, Feu S, Aranda S, Ernfors P, Freire R, et al. New origin firing is inhibited by APC/CCdh1 activation in S-phase after severe replication stress. Nucleic Acids Res. 2016;44:4745-62 pubmed 出版商
  213. Xu T, Zong Y, Peng L, Kong S, Zhou M, Zou J, et al. Overexpression of eIF4E in colorectal cancer patients is associated with liver metastasis. Onco Targets Ther. 2016;9:815-22 pubmed 出版商
  214. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  215. Nair H, Baker R, Owston M, Escalona R, Dick E, Vandeberg J, et al. An efficient model of human endometriosis by induced unopposed estrogenicity in baboons. Oncotarget. 2016;7:10857-69 pubmed 出版商
  216. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  217. Kan H, Huang Y, Li X, Liu D, Chen J, Shu M. Zinc finger protein ZBTB20 is an independent prognostic marker and promotes tumor growth of human hepatocellular carcinoma by repressing FoxO1. Oncotarget. 2016;7:14336-49 pubmed 出版商
  218. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  219. Taverna E, Mora Bermúdez F, Strzyz P, Florio M, Icha J, Haffner C, et al. Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells. Sci Rep. 2016;6:21206 pubmed 出版商
  220. Hong M, Nam K, Kim K, Kim S, Kim I. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha. Cell Stress Chaperones. 2016;21:485-97 pubmed 出版商
  221. Wu T, Li Y, Liu B, Zhang S, Wu L, Zhu X, et al. Expression of Ferritin Light Chain (FTL) Is Elevated in Glioblastoma, and FTL Silencing Inhibits Glioblastoma Cell Proliferation via the GADD45/JNK Pathway. PLoS ONE. 2016;11:e0149361 pubmed 出版商
  222. Lamba Saini M, Bouzin C, Weynand B, Marbaix E. An Appraisal of Proliferation and Apoptotic Markers in Papillary Thyroid Carcinoma: An Automated Analysis. PLoS ONE. 2016;11:e0148656 pubmed 出版商
  223. Ge S, Zhang J, Du Y, Hu B, Zhou Z, Lou J. Dynamic changes in the gene expression profile during rat oral carcinogenesis induced by 4-nitroquinoline 1-oxide. Mol Med Rep. 2016;13:2561-9 pubmed 出版商
  224. Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, et al. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med. 2016;20:842-54 pubmed 出版商
  225. Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, et al. Circadian Clock Regulates Bone Resorption in Mice. J Bone Miner Res. 2016;31:1344-55 pubmed 出版商
  226. Podmirseg S, Jäkel H, Ranches G, Kullmann M, Sohm B, Villunger A, et al. Caspases uncouple p27(Kip1) from cell cycle regulated degradation and abolish its ability to stimulate cell migration and invasion. Oncogene. 2016;35:4580-90 pubmed 出版商
  227. Kourtidis A, Anastasiadis P. PLEKHA7 defines an apical junctional complex with cytoskeletal associations and miRNA-mediated growth implications. Cell Cycle. 2016;15:498-505 pubmed 出版商
  228. Panda A, Abdelmohsen K, Martindale J, Di Germanio C, Yang X, Grammatikakis I, et al. Novel RNA-binding activity of MYF5 enhances Ccnd1/Cyclin D1 mRNA translation during myogenesis. Nucleic Acids Res. 2016;44:2393-408 pubmed 出版商
  229. Kanter M, Turan G, Usta C, Usta A, Esen H, Tavlı L, et al. Survivin and cycline D1 expressions are associated with malignant potential in mucinous ovarian neoplasms. J Mol Histol. 2016;47:145-52 pubmed 出版商
  230. Zhang J, Weng Z, Tsang K, Tsang L, Chan H, Jiang X. MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS ONE. 2016;11:e0148062 pubmed 出版商
  231. Jiang C, Fang X, Jiang Y, Shen F, Hu Z, Li X, et al. TNF-α induces vascular endothelial cells apoptosis through overexpressing pregnancy induced noncoding RNA in Kawasaki disease model. Int J Biochem Cell Biol. 2016;72:118-124 pubmed 出版商
  232. Carabalona A, Hu D, Vallee R. KIF1A inhibition immortalizes brain stem cells but blocks BDNF-mediated neuronal migration. Nat Neurosci. 2016;19:253-62 pubmed 出版商
  233. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  234. Lv H, Zhang Z, Wu X, Wang Y, Li C, Gong W, et al. Preclinical Evaluation of Liposomal C8 Ceramide as a Potent anti-Hepatocellular Carcinoma Agent. PLoS ONE. 2016;11:e0145195 pubmed 出版商
  235. Chen X, Dong X, Gao H, Jiang Y, Jin Y, Chang Y, et al. Suppression of HSP27 increases the anti‑tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep. 2016;13:689-96 pubmed 出版商
  236. Mayr C, Wagner A, Loeffelberger M, Brückner D, Jakab M, Berr F, et al. The BMI1 inhibitor PTC-209 is a potential compound to halt cellular growth in biliary tract cancer cells. Oncotarget. 2016;7:745-58 pubmed 出版商
  237. Zemke M, Draganova K, Klug A, Schöler A, Zurkirchen L, Gay M, et al. Loss of Ezh2 promotes a midbrain-to-forebrain identity switch by direct gene derepression and Wnt-dependent regulation. BMC Biol. 2015;13:103 pubmed 出版商
  238. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  239. van Jaarsveld M, van Kuijk P, Boersma A, Helleman J, Van Ijcken W, Mathijssen R, et al. miR-634 restores drug sensitivity in resistant ovarian cancer cells by targeting the Ras-MAPK pathway. Mol Cancer. 2015;14:196 pubmed 出版商
  240. Yu D, Makkar G, Dong T, Strickland D, Sarkar R, Monahan T. MARCKS Signaling Differentially Regulates Vascular Smooth Muscle and Endothelial Cell Proliferation through a KIS-, p27kip1- Dependent Mechanism. PLoS ONE. 2015;10:e0141397 pubmed 出版商
  241. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  242. Zampieri A, Champagne J, Auzemery B, Fuentes I, Maurel B, Bienvenu F. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse. Sci Rep. 2015;5:15739 pubmed 出版商
  243. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  244. Tang J, Chen Y, Cui R, Li D, Xiao L, Lin P, et al. Upregulation of fractalkine contributes to the proliferative response of prostate cancer cells to hypoxia via promoting the G1/S phase transition. Mol Med Rep. 2015;12:7907-14 pubmed 出版商
  245. Lauková J, Kozubík A, Hofmanová J, Nekvindová J, Sova P, Moyer M, et al. Loss of PTEN Facilitates Rosiglitazone-Mediated Enhancement of Platinum(IV) Complex LA-12-Induced Apoptosis in Colon Cancer Cells. PLoS ONE. 2015;10:e0141020 pubmed 出版商
  246. Fujino K, Motooka Y, Hassan W, Ali Abdalla M, Sato Y, Kudoh S, et al. Insulinoma-Associated Protein 1 Is a Crucial Regulator of Neuroendocrine Differentiation in Lung Cancer. Am J Pathol. 2015;185:3164-77 pubmed 出版商
  247. Kim S, Bozeman R, Kaisani A, Kim W, Zhang L, Richardson J, et al. Radiation promotes colorectal cancer initiation and progression by inducing senescence-associated inflammatory responses. Oncogene. 2016;35:3365-75 pubmed 出版商
  248. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  249. Yao M, Xie C, Kiang M, Teng Y, Harman D, Tiffen J, et al. Targeting of cytosolic phospholipase A2α impedes cell cycle re-entry of quiescent prostate cancer cells. Oncotarget. 2015;6:34458-74 pubmed 出版商
  250. Chaudhary S, Tang X, Arumugam A, Li C, Srivastava R, Weng Z, et al. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget. 2015;6:36789-814 pubmed 出版商
  251. Xu Y, Zheng Y, Sun X, Yu X, Gu J, Wu W, et al. Concurrent radiotherapy with gefitinib in elderly patients with esophageal squamous cell carcinoma: Preliminary results of a phase II study. Oncotarget. 2015;6:38429-39 pubmed 出版商
  252. Kim Y, Chen C, Bolton E. Androgen Receptor-Mediated Growth Suppression of HPr-1AR and PC3-Lenti-AR Prostate Epithelial Cells. PLoS ONE. 2015;10:e0138286 pubmed 出版商
  253. Shain A, Garrido M, Botton T, Talevich E, Yeh I, Sanborn J, et al. Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway. Nat Genet. 2015;47:1194-9 pubmed 出版商
  254. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  255. Quijada P, Hariharan N, Cubillo J, Bala K, Emathinger J, Wang B, et al. Nuclear Calcium/Calmodulin-dependent Protein Kinase II Signaling Enhances Cardiac Progenitor Cell Survival and Cardiac Lineage Commitment. J Biol Chem. 2015;290:25411-26 pubmed 出版商
  256. Lee S, Litan A, Li Z, Graves B, Lindsey S, Barwe S, et al. Na,K-ATPase β1-subunit is a target of sonic hedgehog signaling and enhances medulloblastoma tumorigenicity. Mol Cancer. 2015;14:159 pubmed 出版商
  257. Zhang G, Xiong K, Ma W, Xu W, Zeng H. Initiate Tumors with Single Cell Spheres Formed in Serum-Containing Medium. J Cancer. 2015;6:901-12 pubmed 出版商
  258. Sakabe I, Hu R, Jin L, Clarke R, Kasid U. TMEM33: a new stress-inducible endoplasmic reticulum transmembrane protein and modulator of the unfolded protein response signaling. Breast Cancer Res Treat. 2015;153:285-97 pubmed 出版商
  259. Wong F, Fei J, Mora Bermúdez F, Taverna E, Haffner C, Fu J, et al. Sustained Pax6 Expression Generates Primate-like Basal Radial Glia in Developing Mouse Neocortex. PLoS Biol. 2015;13:e1002217 pubmed 出版商
  260. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  261. Sarojini S, Pecora A, Milinovikj N, Barbiere J, Gupta S, Hussain Z, et al. A combination of high dose rate (10X FFF/2400 MU/min/10 MV X-rays) and total low dose (0.5 Gy) induces a higher rate of apoptosis in melanoma cells in vitro and superior preservation of normal melanocytes. Melanoma Res. 2015;25:376-89 pubmed 出版商
  262. Binder Gallimidi A, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein A, et al. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6:22613-23 pubmed
  263. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  264. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  265. Orlando S, Gallastegui E, Besson A, Abril G, Aligué R, Pujol M, et al. p27Kip1 and p21Cip1 collaborate in the regulation of transcription by recruiting cyclin-Cdk complexes on the promoters of target genes. Nucleic Acids Res. 2015;43:6860-73 pubmed 出版商
  266. Cantarero L, Sanz García M, Vinograd Byk H, Renbaum P, Levy Lahad E, Lazo P. VRK1 regulates Cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep. 2015;5:10543 pubmed 出版商
  267. Jäger W, Xue H, Hayashi T, Janssen C, Awrey S, Wyatt A, et al. Patient-derived bladder cancer xenografts in the preclinical development of novel targeted therapies. Oncotarget. 2015;6:21522-32 pubmed
  268. Han Y, Lee J, Lee S. Fucoidan inhibits the migration and proliferation of HT-29 human colon cancer cells via the phosphoinositide-3 kinase/Akt/mechanistic target of rapamycin pathways. Mol Med Rep. 2015;12:3446-3452 pubmed 出版商
  269. Yin C, Tang G, Lu G, Feng X, Keating M, Medeiros L, et al. Del(20q) in patients with chronic lymphocytic leukemia: a therapy-related abnormality involving lymphoid or myeloid cells. Mod Pathol. 2015;28:1130-7 pubmed 出版商
  270. Brunner S, Weber F, Werner J, Agha A, Farkas S, Schlitt H, et al. Neuroendocrine tumors of the pancreas: a retrospective single-center analysis using the ENETS TNM-classification and immunohistochemical markers for risk stratification. BMC Surg. 2015;15:49 pubmed 出版商
  271. Pozo K, Hillmann A, Augustyn A, Plattner F, Hai T, Singh T, et al. Differential expression of cell cycle regulators in CDK5-dependent medullary thyroid carcinoma tumorigenesis. Oncotarget. 2015;6:12080-93 pubmed
  272. Beca F, Pereira M, Cameselle Teijeiro J, Martins D, Schmitt F. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer. BMC Cancer. 2015;15:285 pubmed 出版商
  273. Fu Q, Chen Z, Gong X, Cai Y, Chen Y, Ma X, et al. β-Catenin expression is regulated by an IRES-dependent mechanism and stimulated by paclitaxel in human ovarian cancer cells. Biochem Biophys Res Commun. 2015;461:21-7 pubmed 出版商
  274. Zhang W, Hou J, Wang X, Jiang R, Yin Y, Ji J, et al. PTPRO-mediated autophagy prevents hepatosteatosis and tumorigenesis. Oncotarget. 2015;6:9420-33 pubmed
  275. Li L, Xu Z, Liu G, Xu C, Wang Z, Li X, et al. Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells. PLoS ONE. 2015;10:e0119865 pubmed 出版商
  276. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  277. Puzio Kuter A, Laddha S, Castillo Martin M, Sun Y, Cordon Cardo C, Chan C, et al. Involvement of tumor suppressors PTEN and p53 in the formation of multiple subtypes of liposarcoma. Cell Death Differ. 2015;22:1785-91 pubmed 出版商
  278. Lee J, Garbe J, Vrba L, Miyano M, Futscher B, Stampfer M, et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol. 2015;3:13 pubmed 出版商
  279. Kim Y, Jin D, Lee B, Cho E, Han J, Shim Y, et al. RARβ2 hypermethylation is associated with poor recurrence-free survival in never-smokers with adenocarcinoma of the lung. Clin Epigenetics. 2015;7:32 pubmed 出版商
  280. Dubon M, Park K. Substance P enhances the proliferation and migration potential of murine bone marrow-derived mesenchymal stem cell-like cell lines. Exp Ther Med. 2015;9:1185-1191 pubmed
  281. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  282. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  283. Li Y, Hu S, Zuo Z, Hong M, Lin P, Li S, et al. CD5-positive follicular lymphoma: clinicopathologic correlations and outcome in 88 cases. Mod Pathol. 2015;28:787-98 pubmed 出版商
  284. Sun X, Tang S, Xu C, Wang C, Qin S, Du N, et al. DICER1 regulated let-7 expression levels in p53-induced cancer repression requires cyclin D1. J Cell Mol Med. 2015;19:1357-65 pubmed 出版商
  285. Fujimura N, Klimova L, Antosova B, Smolikova J, Machon O, Kozmik Z. Genetic interaction between Pax6 and β-catenin in the developing retinal pigment epithelium. Dev Genes Evol. 2015;225:121-8 pubmed 出版商
  286. Meykler S, Baloch Z, Barroeta J. A case of marginal zone lymphoma with extensive emperipolesis diagnosed on pleural effusion cytology with immunocytochemistry and flow cytometry. Cytopathology. 2016;27:70-2 pubmed 出版商
  287. Gergics P, Brinkmeier M, Camper S. Lhx4 deficiency: increased cyclin-dependent kinase inhibitor expression and pituitary hypoplasia. Mol Endocrinol. 2015;29:597-612 pubmed 出版商
  288. Hsieh W, Huang Y, Wang T, Ming Y, Tsai C, Pang J. IFI27, a novel epidermal growth factor-stabilized protein, is functionally involved in proliferation and cell cycling of human epidermal keratinocytes. Cell Prolif. 2015;48:187-97 pubmed 出版商
  289. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  290. Barrichon M, Hadi T, Wendremaire M, Ptasinski C, Seigneuric R, Marcion G, et al. Dose-dependent biphasic leptin-induced proliferation is caused by non-specific IL-6/NF-κB pathway activation in human myometrial cells. Br J Pharmacol. 2015;172:2974-90 pubmed 出版商
  291. Mishra R, Nagini S, Rana A. Expression and inactivation of glycogen synthase kinase 3 alpha/ beta and their association with the expression of cyclin D1 and p53 in oral squamous cell carcinoma progression. Mol Cancer. 2015;14:20 pubmed 出版商
  292. Bai M, Yuan M, Liao H, Chen J, Xie B, Yan D, et al. OCT4 pseudogene 5 upregulates OCT4 expression to promote proliferation by competing with miR-145 in endometrial carcinoma. Oncol Rep. 2015;33:1745-52 pubmed 出版商
  293. Niu Z, Liu H, Zhou M, Wang H, Liu Y, Li X, et al. Knockdown of c-Myc inhibits cell proliferation by negatively regulating the Cdk/Rb/E2F pathway in nasopharyngeal carcinoma cells. Acta Biochim Biophys Sin (Shanghai). 2015;47:183-91 pubmed 出版商
  294. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  295. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  296. Chong K, Hsu C, Hung T, Hu H, Huang T, Wang T, et al. Wnt pathway activation and ABCB1 expression account for attenuation of proteasome inhibitor-mediated apoptosis in multidrug-resistant cancer cells. Cancer Biol Ther. 2015;16:149-59 pubmed 出版商
  297. Huang S, Zou X, Zhu J, Fu Y, Lin Q, Liang Y, et al. Attenuation of microRNA-16 derepresses the cyclins D1, D2 and E1 to provoke cardiomyocyte hypertrophy. J Cell Mol Med. 2015;19:608-19 pubmed 出版商
  298. Blanchard Z, Paul B, Craft B, ElShamy W. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res. 2015;17:5 pubmed 出版商
  299. Kaushik G, Venugopal A, Ramamoorthy P, Standing D, Subramaniam D, Umar S, et al. Honokiol inhibits melanoma stem cells by targeting notch signaling. Mol Carcinog. 2015;54:1710-21 pubmed 出版商
  300. Qiao X, Roth I, Féraille E, Hasler U. Different effects of ZO-1, ZO-2 and ZO-3 silencing on kidney collecting duct principal cell proliferation and adhesion. Cell Cycle. 2014;13:3059-75 pubmed 出版商
  301. Zhao H, Xie C, Lin X, Zhao Y, Han Y, Fan C, et al. Coexpression of IQ-domain GTPase-activating protein 1 (IQGAP1) and Dishevelled (Dvl) is correlated with poor prognosis in non-small cell lung cancer. PLoS ONE. 2014;9:e113713 pubmed 出版商
  302. Dabydeen S, Kang K, Díaz Cruz E, Alamri A, Axelrod M, Bouker K, et al. Comparison of tamoxifen and letrozole response in mammary preneoplasia of ER and aromatase overexpressing mice defines an immune-associated gene signature linked to tamoxifen resistance. Carcinogenesis. 2015;36:122-32 pubmed 出版商
  303. Wang T, Chen Z, Zhu Y, Pan Q, Liu Y, Qi X, et al. Inhibition of transient receptor potential channel 5 reverses 5-Fluorouracil resistance in human colorectal cancer cells. J Biol Chem. 2015;290:448-56 pubmed 出版商
  304. Hung T, Hsu S, Cheng C, Choo K, Tseng C, Chen T, et al. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway. Oncotarget. 2014;5:12273-90 pubmed
  305. Eifler M, Uecker R, Weisbach H, Bogdanow B, Richter E, König L, et al. PUL21a-Cyclin A2 interaction is required to protect human cytomegalovirus-infected cells from the deleterious consequences of mitotic entry. PLoS Pathog. 2014;10:e1004514 pubmed 出版商
  306. Liu X, Yang W, Zheng P. Msi1 promotes tumor growth and cell proliferation by targeting cell cycle checkpoint proteins p21, p27 and p53 in cervical carcinomas. Oncotarget. 2014;5:10870-85 pubmed
  307. Zhang N, Chu E, Zhang J, Li X, Liang Q, Chen J, et al. Peroxisome proliferator activated receptor alpha inhibits hepatocarcinogenesis through mediating NF-κB signaling pathway. Oncotarget. 2014;5:8330-40 pubmed
  308. Zhang Q, Chabot Richards D, Evans M, Spengel K, Andrews J, Kang H, et al. A retrospective study to assess the relative value of peripheral blood, bone marrow aspirate and biopsy morphology, immunohistochemical stains, and flow cytometric analysis in the diagnosis of chronic B cell lymphoproliferative neoplasms. Int J Lab Hematol. 2015;37:390-402 pubmed 出版商
  309. Brun C, Périé L, Baraige F, Vernus B, Bonnieu A, Blanquet V. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation. Cell Physiol Biochem. 2014;34:1241-59 pubmed 出版商
  310. Joliot V, Ait Mohamed O, Battisti V, Pontis J, Philipot O, Robin P, et al. The SWI/SNF subunit/tumor suppressor BAF47/INI1 is essential in cell cycle arrest upon skeletal muscle terminal differentiation. PLoS ONE. 2014;9:e108858 pubmed 出版商
  311. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  312. Contreras Jurado C, García Serrano L, Martínez Fernández M, Ruiz Llorente L, Paramio J, Aranda A. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors. PLoS ONE. 2014;9:e108137 pubmed 出版商
  313. Dumitrescu A, Aberdeen G, Pepe G, Albrecht E. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex. Endocrinology. 2014;155:4774-84 pubmed 出版商
  314. Perry M, Dufour C, Eichner L, Tsang D, Deblois G, Muller W, et al. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol. 2014;34:4232-43 pubmed 出版商
  315. Tian L, Wang C, Hagen F, Gormley M, Addya S, Soccio R, et al. Acetylation-defective mutant of Pparγ is associated with decreased lipid synthesis in breast cancer cells. Oncotarget. 2014;5:7303-15 pubmed
  316. Valkenburg K, Yu X, De Marzo A, Spiering T, Matusik R, Williams B. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74:1506-20 pubmed 出版商
  317. Oliveira C, de Bock C, Molloy T, Sadeqzadeh E, Geng X, Hersey P, et al. Macrophage migration inhibitory factor engages PI3K/Akt signalling and is a prognostic factor in metastatic melanoma. BMC Cancer. 2014;14:630 pubmed 出版商
  318. Yi T, Kabha E, Papadopoulos E, Wagner G. 4EGI-1 targets breast cancer stem cells by selective inhibition of translation that persists in CSC maintenance, proliferation and metastasis. Oncotarget. 2014;5:6028-37 pubmed
  319. Inada A, Inada O, Fujii N, Fujishima K, Inai T, Fujii H, et al. ?-cell induction in vivo in severely diabetic male mice by changing the circulating levels and pattern of the ratios of estradiol to androgens. Endocrinology. 2014;155:3829-42 pubmed 出版商
  320. Resch U, Cuapio A, Sturtzel C, Hofer E, de Martin R, Holper Schichl Y. Polyubiquitinated tristetraprolin protects from TNF-induced, caspase-mediated apoptosis. J Biol Chem. 2014;289:25088-100 pubmed 出版商
  321. Gao Y, Chen Y, Xu D, Wang J, Yu G. Differential expression of ANXA1 in benign human gastrointestinal tissues and cancers. BMC Cancer. 2014;14:520 pubmed 出版商
  322. Bañón Maneus E, Rovira J, Ramírez Bajo M, Moya Rull D, Hierro Garcia N, Takenaka S, et al. Wnt pathway activation in long term remnant rat model. Biomed Res Int. 2014;2014:324713 pubmed 出版商
  323. Costales M, Lopez F, García Inclán C, Fernandez S, Marcos C, Llorente J, et al. Establishment and characterization of an orthotopic sinonasal squamous cell carcinoma mouse model. Head Neck. 2015;37:1769-75 pubmed 出版商
  324. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  325. Ormanns S, Neumann J, Horst D, Kirchner T, Jung A. WNT signaling and distant metastasis in colon cancer through transcriptional activity of nuclear ?-Catenin depend on active PI3K signaling. Oncotarget. 2014;5:2999-3011 pubmed
  326. Yu W, Bonnet M, Farso M, Ma K, Chabot J, Martin E, et al. The expression of apoptosis inducing factor (AIF) is associated with aging-related cell death in the cortex but not in the hippocampus in the TgCRND8 mouse model of Alzheimer's disease. BMC Neurosci. 2014;15:73 pubmed 出版商
  327. Chien P, Hsieh H, Chi P, Yang C. PAR1-dependent COX-2/PGE2 production contributes to cell proliferation via EP2 receptors in primary human cardiomyocytes. Br J Pharmacol. 2014;171:4504-19 pubmed 出版商
  328. Alanis D, Chang D, Akiyama H, Krasnow M, Chen J. Two nested developmental waves demarcate a compartment boundary in the mouse lung. Nat Commun. 2014;5:3923 pubmed 出版商
  329. Velicky P, Haider S, Otti G, Fiala C, Pollheimer J, Knöfler M. Notch-dependent RBPJ? inhibits proliferation of human cytotrophoblasts and their differentiation into extravillous trophoblasts. Mol Hum Reprod. 2014;20:756-66 pubmed 出版商
  330. Moriarity B, Rahrmann E, Beckmann D, Conboy C, Watson A, Carlson D, et al. Simple and efficient methods for enrichment and isolation of endonuclease modified cells. PLoS ONE. 2014;9:e96114 pubmed 出版商
  331. Kiszner G, Wichmann B, Nemeth I, Varga E, Meggyeshazi N, Teleki I, et al. Cell cycle analysis can differentiate thin melanomas from dysplastic nevi and reveals accelerated replication in thick melanomas. Virchows Arch. 2014;464:603-12 pubmed 出版商
  332. Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T, Nakayama K. Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 2014;289:12946-61 pubmed 出版商
  333. Scharfmann R, Pechberty S, Hazhouz Y, von Bülow M, Bricout Neveu E, Grenier Godard M, et al. Development of a conditionally immortalized human pancreatic ? cell line. J Clin Invest. 2014;124:2087-98 pubmed 出版商
  334. Li J, Bai X, Zou Y, Hao Y, Xu X. Aberration of the Wnt signaling pathway in pulmonary fatal adenocarcinoma: a case report. Chin J Cancer Res. 2014;26:E13-6 pubmed 出版商
  335. Nobs L, Baranek C, Nestel S, Kulik A, Kapfhammer J, Nitsch C, et al. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex. Glia. 2014;62:829-39 pubmed 出版商
  336. Neumeister V, Parisi F, England A, Siddiqui S, Anagnostou V, Zarrella E, et al. A tissue quality index: an intrinsic control for measurement of effects of preanalytical variables on FFPE tissue. Lab Invest. 2014;94:467-74 pubmed 出版商
  337. Berkenkamp B, Susnik N, Baisantry A, Kuznetsova I, Jacobi C, Sörensen Zender I, et al. In vivo and in vitro analysis of age-associated changes and somatic cellular senescence in renal epithelial cells. PLoS ONE. 2014;9:e88071 pubmed 出版商
  338. Marttinen M, Pajari A, Paivarinta E, Storvik M, Marttinen P, Nurmi T, et al. Plant sterol feeding induces tumor formation and alters sterol metabolism in the intestine of Apc(Min) mice. Nutr Cancer. 2014;66:259-69 pubmed 出版商
  339. Wu K, Chen K, Wang C, Jiao X, Wang L, Zhou J, et al. Cell fate factor DACH1 represses YB-1-mediated oncogenic transcription and translation. Cancer Res. 2014;74:829-39 pubmed 出版商
  340. Lin Q, Aihara A, Chung W, Li Y, Huang Z, Chen X, et al. LRH1 as a driving factor in pancreatic cancer growth. Cancer Lett. 2014;345:85-90 pubmed 出版商
  341. Hou J, Xia Y, Jiang R, Chen D, Xu J, Deng L, et al. PTPRO plays a dual role in hepatic ischemia reperfusion injury through feedback activation of NF-?B. J Hepatol. 2014;60:306-12 pubmed 出版商
  342. Sreevalsan S, Safe S. The cannabinoid WIN 55,212-2 decreases specificity protein transcription factors and the oncogenic cap protein eIF4E in colon cancer cells. Mol Cancer Ther. 2013;12:2483-93 pubmed 出版商
  343. Mudaliar M, Haggart R, Miele G, Sellar G, Tan K, Goodlad J, et al. Comparative gene expression profiling identifies common molecular signatures of NF-?B activation in canine and human diffuse large B cell lymphoma (DLBCL). PLoS ONE. 2013;8:e72591 pubmed 出版商
  344. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  345. Shan L, Li X, Liu L, Ding X, Wang Q, Zheng Y, et al. GATA3 cooperates with PARP1 to regulate CCND1 transcription through modulating histone H1 incorporation. Oncogene. 2014;33:3205-16 pubmed 出版商
  346. Nobs L, Nestel S, Kulik A, Nitsch C, Atanasoski S. Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex. Glia. 2013;61:1443-55 pubmed 出版商
  347. Bradford C, Kumar B, Bellile E, Lee J, Taylor J, D SILVA N, et al. Biomarkers in advanced larynx cancer. Laryngoscope. 2014;124:179-87 pubmed 出版商
  348. Comstock C, Augello M, Goodwin J, de Leeuw R, Schiewer M, Ostrander W, et al. Targeting cell cycle and hormone receptor pathways in cancer. Oncogene. 2013;32:5481-91 pubmed 出版商
  349. Mitterberger M, Zwerschke W. Mechanisms of resveratrol-induced inhibition of clonal expansion and terminal adipogenic differentiation in 3T3-L1 preadipocytes. J Gerontol A Biol Sci Med Sci. 2013;68:1356-76 pubmed 出版商
  350. Wang J, El Masry N, Talbot I, Tomlinson I, Alison M, El Bahrawy M. Expression Profiling of Proliferation and Apoptotic Markers along the Adenoma-Carcinoma Sequence in Familial Adenomatous Polyposis Patients. Gastroenterol Res Pract. 2013;2013:107534 pubmed 出版商
  351. Nichele I, Zamo A, Bertolaso A, Bifari F, Tinelli M, Franchini M, et al. VR09 cell line: an EBV-positive lymphoblastoid cell line with in vivo characteristics of diffuse large B cell lymphoma of activated B-cell type. PLoS ONE. 2012;7:e52811 pubmed 出版商
  352. Alimova I, Birks D, Harris P, Knipstein J, Venkataraman S, Marquez V, et al. Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro Oncol. 2013;15:149-60 pubmed 出版商
  353. Cigna N, Farrokhi Moshai E, Brayer S, Marchal Sommé J, Wemeau Stervinou L, Fabre A, et al. The hedgehog system machinery controls transforming growth factor-?-dependent myofibroblastic differentiation in humans: involvement in idiopathic pulmonary fibrosis. Am J Pathol. 2012;181:2126-37 pubmed 出版商
  354. Chen S, Fu S, Hsu S, Huang Y, Hsu B. Synergistic Effect of Hyperglycemia and p27(kip1) Suppression on Adult Mouse Islet Beta Cell Replication. Int J Endocrinol. 2012;2012:417390 pubmed 出版商
  355. Akli S, Zhang X, Bondaruk J, Tucker S, Czerniak P, Benedict W, et al. Low molecular weight cyclin E is associated with p27-resistant, high-grade, high-stage and invasive bladder cancer. Cell Cycle. 2012;11:1468-76 pubmed 出版商
  356. Zuo Z, Tang Y, Bi C, Zhang W, Zhao S, Wang X, et al. Extraosseous (extramedullary) plasmacytomas: a clinicopathologic and immunophenotypic study of 32 Chinese cases. Diagn Pathol. 2011;6:123 pubmed 出版商
  357. Jung Y, Joo K, Seong D, Choi Y, Kong D, Kim Y, et al. Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol. 2012;40:1122-32 pubmed 出版商
  358. Loponen H, Ylikoski J, Albrecht J, Pirvola U. Restrictions in cell cycle progression of adult vestibular supporting cells in response to ectopic cyclin D1 expression. PLoS ONE. 2011;6:e27360 pubmed 出版商
  359. Na B, Huang Z, Wang Q, Qi Z, Tian Y, Lu C, et al. Transgenic expression of entire hepatitis B virus in mice induces hepatocarcinogenesis independent of chronic liver injury. PLoS ONE. 2011;6:e26240 pubmed 出版商
  360. Wang G, Yan Q, Woods A, Aubrey L, Feng Q, Beier F. Inducible nitric oxide synthase-nitric oxide signaling mediates the mitogenic activity of Rac1 during endochondral bone growth. J Cell Sci. 2011;124:3405-13 pubmed 出版商
  361. Korgun E, Unek G, Herrera E, Jones C, Wadsack C, Kipmen Korgun D, et al. Mapping of CIP/KIP inhibitors, G1 cyclins D1, D3, E and p53 proteins in the rat term placenta. Histochem Cell Biol. 2011;136:267-78 pubmed 出版商
  362. van der Weyden L, Alcolea M, Jones P, Rust A, Arends M, Adams D. Acute sensitivity of the oral mucosa to oncogenic K-ras. J Pathol. 2011;224:22-32 pubmed 出版商
  363. Hsu F, Yang M, Lin E, Tseng C, Lin H. The significance of Her2 on androgen receptor protein stability in the transition of androgen requirement in prostate cancer cells. Am J Physiol Endocrinol Metab. 2011;300:E902-8 pubmed 出版商
  364. Cheuk W, Tam F, Chan A, Luk I, Yuen A, Chan W, et al. Idiopathic cervical fibrosis--a new member of IgG4-related sclerosing diseases: report of 4 cases, 1 complicated by composite lymphoma. Am J Surg Pathol. 2010;34:1678-85 pubmed 出版商
  365. Yang G, Chang B, Yang F, Guo X, Cai K, Xiao X, et al. Aurora kinase A promotes ovarian tumorigenesis through dysregulation of the cell cycle and suppression of BRCA2. Clin Cancer Res. 2010;16:3171-81 pubmed 出版商
  366. Leong A, Haffajee Z. Citraconic anhydride: a new antigen retrieval solution. Pathology. 2010;42:77-81 pubmed 出版商
  367. Italiano A, Bianchini L, Gjernes E, Keslair F, Ranchere Vince D, Dumollard J, et al. Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res. 2009;15:5696-703 pubmed 出版商
  368. Chimploy K, Díaz G, Li Q, Carter O, Dashwood W, Mathews C, et al. E2F4 and ribonucleotide reductase mediate S-phase arrest in colon cancer cells treated with chlorophyllin. Int J Cancer. 2009;125:2086-94 pubmed 出版商
  369. Rogers S, Box C, Chambers P, Barbachano Y, Nutting C, Rhys Evans P, et al. Determinants of response to epidermal growth factor receptor tyrosine kinase inhibition in squamous cell carcinoma of the head and neck. J Pathol. 2009;218:122-30 pubmed 出版商
  370. Dawson M, Opat S, Taouk Y, Donovan M, Zammit M, Monaghan K, et al. Clinical and immunohistochemical features associated with a response to bortezomib in patients with multiple myeloma. Clin Cancer Res. 2009;15:714-22 pubmed 出版商
  371. Tiedemann R, Schmidt J, Keats J, Shi C, Zhu Y, Palmer S, et al. Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood. 2009;113:4027-37 pubmed 出版商
  372. Rowan S, Conley K, Le T, Donner A, Maas R, Brown N. Notch signaling regulates growth and differentiation in the mammalian lens. Dev Biol. 2008;321:111-22 pubmed 出版商
  373. Kajanne R, Leppa S, Luukkainen P, Ustinov J, Thiel A, Ristimaki A, et al. Hydrocortisone and indomethacin negatively modulate EGF-R signaling in human fetal intestine. Pediatr Res. 2007;62:570-5 pubmed
  374. Jones L, Tilli M, Assefnia S, Torre K, Halama E, Parrish A, et al. Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERalpha-negative and ERalpha-positive mammary preneoplasia and cancer. Oncogene. 2008;27:794-802 pubmed
  375. Rao H, Thirumangalakudi L, Desmond P, Grammas P. Cyclin D1, cdk4, and Bim are involved in thrombin-induced apoptosis in cultured cortical neurons. J Neurochem. 2007;101:498-505 pubmed
  376. Reis Filho J, Simpson P, Turner N, Lambros M, Jones C, Mackay A, et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006;12:6652-62 pubmed
  377. Konoplev S, Medeiros L, Bueso Ramos C, Jorgensen J, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. Am J Clin Pathol. 2005;124:414-20 pubmed
  378. Friedrichsen B, Richter H, Hansen J, Rhodes C, Nielsen J, Billestrup N, et al. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells. Mol Endocrinol. 2003;17:945-58 pubmed
  379. Law B, Chytil A, Dumont N, Hamilton E, Waltner Law M, Aakre M, et al. Rapamycin potentiates transforming growth factor beta-induced growth arrest in nontransformed, oncogene-transformed, and human cancer cells. Mol Cell Biol. 2002;22:8184-98 pubmed