这是一篇来自已证抗体库的有关大鼠 Ccnd2的综述,是根据21篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ccnd2 抗体。
Ccnd2 同义词: G1/S-specific cyclin-D2; vin-1 proto-oncogene

赛默飞世尔
小鼠 单克隆(DCS-3.1 + DCS-5.2)
  • 免疫印迹; 人类
赛默飞世尔 Ccnd2抗体(Fisher, MA5-12731)被用于被用于免疫印迹在人类样本上. Oncotarget (2016) ncbi
小鼠 单克隆(DCS-3.1 + DCS-5.2)
  • 免疫组化-石蜡切片; 小鼠; 1:100
赛默飞世尔 Ccnd2抗体(Thermo, MS-221-P0)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Nat Genet (2014) ncbi
小鼠 单克隆(DCS3.1)
  • 免疫印迹; 大鼠
赛默飞世尔 Ccnd2抗体(Biosource International, DCS-3.1)被用于被用于免疫印迹在大鼠样本上. Exp Cell Res (2006) ncbi
小鼠 单克隆(DCS-3.1)
  • 免疫印迹; 大鼠
赛默飞世尔 Ccnd2抗体(Biosource International, DCS-3.1)被用于被用于免疫印迹在大鼠样本上. Exp Cell Res (2006) ncbi
小鼠 单克隆(DCS-3.1 + DCS-5.2)
  • 免疫印迹; 大鼠; 1:200; 图 1b
赛默飞世尔 Ccnd2抗体(Neo Markers, MS 221)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 1b). Mol Endocrinol (2003) ncbi
小鼠 单克隆(DCS-3.1)
  • 免疫印迹; 大鼠; 图 8
赛默飞世尔 Ccnd2抗体(BioSource, AHF0112)被用于被用于免疫印迹在大鼠样本上 (图 8). Mol Endocrinol (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(DCS-5)
  • 流式细胞仪; 人类; 图 6
圣克鲁斯生物技术 Ccnd2抗体(Santa Cruz, sc-53637)被用于被用于流式细胞仪在人类样本上 (图 6). Melanoma Res (2015) ncbi
大鼠 单克隆(34B1-3)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ccnd2抗体(Santa Cruz, sc-452)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
赛信通(上海)生物试剂有限公司
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Ccnd2抗体(CST, 3741)被用于被用于免疫印迹在人类样本上 (图 1e). Cell Rep (2019) ncbi
兔 单克隆(D52F9)
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling, 3741)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a). Nature (2018) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Ccnd2抗体(cell signalling, 3741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Int J Oncol (2017) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling, 3741)被用于被用于免疫印迹在人类样本上 (图 2c). J Biol Chem (2017) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling Tech, 3741)被用于被用于免疫印迹在人类样本上 (图 s3). Sci Rep (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling, 3741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Cell Death Dis (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling, D52F9)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). J Proteome Res (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling Technology, D52F9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Int J Mol Med (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 小鼠; 1:500; 图 s4
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell signaling, 3741)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s4). J Bone Miner Res (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling, 3741)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Mol Med Rep (2016) ncbi
兔 单克隆(D52F9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Ccnd2抗体(Cell Signaling Technology, 3741)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
默克密理博中国
兔 多克隆
  • 免疫沉淀; 小鼠; 5 ug/ml; 图 1
默克密理博中国 Ccnd2抗体(Upstate, 06-137)被用于被用于免疫沉淀在小鼠样本上浓度为5 ug/ml (图 1). Nat Commun (2016) ncbi
兔 多克隆
  • 免疫印迹; 小鼠; 1:1000
默克密理博中国 Ccnd2抗体(Upstate Cell Signaling, 06-137)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2013) ncbi
兔 多克隆
  • 免疫沉淀; 小鼠
默克密理博中国 Ccnd2抗体(Upstate, 06-137)被用于被用于免疫沉淀在小鼠样本上. Oncogene (2011) ncbi
文章列表
  1. Cornell L, Wander S, Visal T, Wagle N, Shapiro G. MicroRNA-Mediated Suppression of the TGF-β Pathway Confers Transmissible and Reversible CDK4/6 Inhibitor Resistance. Cell Rep. 2019;26:2667-2680.e7 pubmed 出版商
  2. Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira N, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature. 2018;553:91-95 pubmed 出版商
  3. Li X, Liu F, Lin B, Luo H, Liu M, Wu J, et al. miR?150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma. Int J Oncol. 2017;: pubmed 出版商
  4. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  5. Turner J, Kashyap T, Dawson J, Gomez J, Bauer A, Grant S, et al. XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 2016;7:78896-78909 pubmed 出版商
  6. Jeong O, Chae Y, Jung H, Park S, Cho S, Kook H, et al. Long noncoding RNA linc00598 regulates CCND2 transcription and modulates the G1 checkpoint. Sci Rep. 2016;6:32172 pubmed 出版商
  7. Hanna J, Garcia M, Go J, Finkelstein D, Kodali K, Pagala V, et al. PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis. 2016;7:e2256 pubmed 出版商
  8. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  9. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  10. Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37:1274-80 pubmed 出版商
  11. Xu C, Ochi H, Fukuda T, Sato S, Sunamura S, Takarada T, et al. Circadian Clock Regulates Bone Resorption in Mice. J Bone Miner Res. 2016;31:1344-55 pubmed 出版商
  12. Mo X, Cao Q, Liang H, Liu J, Li H, Liu F. MicroRNA-610 suppresses the proliferation of human glioblastoma cells by repressing CCND2 and AKT3. Mol Med Rep. 2016;13:1961-6 pubmed 出版商
  13. Sarojini S, Pecora A, Milinovikj N, Barbiere J, Gupta S, Hussain Z, et al. A combination of high dose rate (10X FFF/2400 MU/min/10 MV X-rays) and total low dose (0.5 Gy) induces a higher rate of apoptosis in melanoma cells in vitro and superior preservation of normal melanocytes. Melanoma Res. 2015;25:376-89 pubmed 出版商
  14. Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, et al. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget. 2015;6:14796-813 pubmed
  15. Mirzaa G, Parry D, Fry A, Giamanco K, Schwartzentruber J, Vanstone M, et al. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat Genet. 2014;46:510-515 pubmed 出版商
  16. Crowther A, Gama V, Bevilacqua A, Chang S, Yuan H, Deshmukh M, et al. Tonic activation of Bax primes neural progenitors for rapid apoptosis through a mechanism preserved in medulloblastoma. J Neurosci. 2013;33:18098-108 pubmed 出版商
  17. Nakamura I, Fernández Barrena M, Ortiz Ruiz M, Almada L, Hu C, Elsawa S, et al. Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration. J Biol Chem. 2013;288:21389-98 pubmed 出版商
  18. Fernández R, Ruiz Miró M, Dolcet X, Aldea M, Gari E. Cyclin D1 interacts and collaborates with Ral GTPases enhancing cell detachment and motility. Oncogene. 2011;30:1936-46 pubmed 出版商
  19. Fritz M, Mirnics Z, Nylander K, Schor N. p75NTR enhances PC12 cell tumor growth by a non-receptor mechanism involving downregulation of cyclin D2. Exp Cell Res. 2006;312:3287-97 pubmed
  20. Friedrichsen B, Richter H, Hansen J, Rhodes C, Nielsen J, Billestrup N, et al. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells. Mol Endocrinol. 2003;17:945-58 pubmed
  21. Cheng G, Lewis A, Meinkoth J. Ras stimulates aberrant cell cycle progression and apoptosis in rat thyroid cells. Mol Endocrinol. 2003;17:450-9 pubmed