这是一篇来自已证抗体库的有关大鼠 Cd44的综述,是根据64篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd44 抗体。
Cd44 同义词: CD44A; METAA; RHAMM

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3g
  • 免疫印迹; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫印迹在人类样本上 (图 3g) 和 被用于免疫印迹在小鼠样本上 (图 s4c). Clin Transl Med (2022) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 7d
  • 免疫印迹; 小鼠; 1:4000; 图 7c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 7d) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 7c). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 大鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 图 4b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上 (图 4b). Thorac Cancer (2022) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, 189524)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). Front Oncol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 s1
艾博抗(上海)贸易有限公司 Cd44抗体(ABCAM, ab157107)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 4d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于流式细胞仪在人类样本上 (图 4d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s3b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s3b). Sci Signal (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2m
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2m). Oncogene (2021) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫细胞化学; 人类; 1:500; 图 5b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化在大鼠样本上浓度为1:2000. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). BMC Gastroenterol (2019) ncbi
domestic rabbit 单克隆(EPR18668)
  • 免疫印迹; 人类; 1:3000; 图 1d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab189524)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1d). Mol Med Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5f
  • 免疫组化; 大鼠; 1:200; 图 9a
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5f) 和 被用于免疫组化在大鼠样本上浓度为1:200 (图 9a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4g
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4g). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:10,000; 图 5d
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab24504)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 5d). Int J Mol Sci (2016) ncbi
小鼠 单克隆(OX-50)
  • 流式细胞仪; 大鼠; 图 1c
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab23396)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Acta Biomater (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 图 1
  • 流式细胞仪; domestic rabbit; 图 1
艾博抗(上海)贸易有限公司 Cd44抗体(Abcam, ab157107)被用于被用于流式细胞仪在大鼠样本上 (图 1) 和 被用于流式细胞仪在domestic rabbit样本上 (图 1). Sci Rep (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 图 4a
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上 (图 4a). Mol Cell (2021) ncbi
大鼠 单克隆(IM7)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 5e
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 5e). J Clin Invest (2019) ncbi
小鼠 单克隆(DF1485)
  • 免疫沉淀; 人类; 图 s2c
  • 免疫细胞化学; 人类; 图 s2a
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫沉淀在人类样本上 (图 s2c), 被用于免疫细胞化学在人类样本上 (图 s2a) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(DF1485)
  • 其他; 人类; 1:100; 图 1a, 1c
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于其他在人类样本上浓度为1:100 (图 1a, 1c). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 人类; 图 s5d
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5d). Oncotarget (2015) ncbi
小鼠 单克隆(DF1485)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术 Cd44抗体(santa Cruz, sc-7297)被用于被用于流式细胞仪在人类样本上 (图 1). Biomed Res Int (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 小鼠; 图 2
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-18849)被用于被用于流式细胞仪在小鼠样本上 (图 2). Cancer Res (2015) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Cd44抗体(santa Cruz, sc-18849)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Int J Mol Med (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上浓度为1:500. BMC Cancer (2015) ncbi
大鼠 单克隆(IM7)
  • 流式细胞仪; 人类; 图 3a
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-18849)被用于被用于流式细胞仪在人类样本上 (图 3a). Cancer Res (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotechnology, sc-7297)被用于被用于免疫印迹在人类样本上. J Leukoc Biol (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上. J Biomed Mater Res A (2015) ncbi
小鼠 单克隆(DF1485)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Cd44抗体(Santa Cruz, sc-7297)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(DF1485)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
圣克鲁斯生物技术 Cd44抗体(Santa, sc-7297)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). Proc Natl Acad Sci U S A (2012) ncbi
大鼠 单克隆(IM7)
  • 免疫细胞化学; 小鼠; 1:50
圣克鲁斯生物技术 Cd44抗体(Santa Cruz Biotech, sc-18849)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Reproduction (2010) ncbi
BioLegend
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 2
BioLegend Cd44抗体(Biolegend, 203906)被用于被用于流式细胞仪在大鼠样本上 (图 2). Exp Ther Med (2020) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 s1
BioLegend Cd44抗体(Biolegend, 203906)被用于被用于流式细胞仪在大鼠样本上 (图 s1). Cell Tissue Res (2015) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 2
BioLegend Cd44抗体(BioLegend, OX-49)被用于被用于流式细胞仪在大鼠样本上 (图 2). Eur J Immunol (2015) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(OX-50)
  • 流式细胞仪; 人类; 图 3c
伯乐(Bio-Rad)公司 Cd44抗体(Serotec, MCA643FA)被用于被用于流式细胞仪在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆(OX-50)
  • 流式细胞仪; 大鼠; 1:100; 表 2
伯乐(Bio-Rad)公司 Cd44抗体(AbD Serotec, MCA643F)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 (表 2). Mol Med Rep (2015) ncbi
赛默飞世尔
小鼠 单克隆(OX49)
  • 流式细胞仪; 大鼠; 1:400; 图 1
赛默飞世尔 Cd44抗体(eBioscience, 12-0444)被用于被用于流式细胞仪在大鼠样本上浓度为1:400 (图 1). Mol Med Rep (2016) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(8E2)
  • 免疫组化-石蜡切片; 人类; 图 7i
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7i) 和 被用于免疫印迹在人类样本上 (图 3d). Sci Adv (2022) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1d, s2d, s2e, s2f
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 1d, s2d, s2e, s2f). Mol Cancer (2019) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-石蜡切片; 人类; 图 6b
  • 免疫细胞化学; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6b) 和 被用于免疫细胞化学在人类样本上 (图 1e). Mol Cancer Res (2017) ncbi
小鼠 单克隆(8E2)
  • 流式细胞仪; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Cd44抗体(cell signalling, 5640)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Hepatol (2017) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类; 1:100; 图 6
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Tech, 5640)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Sgnaling, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 1a,b
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology., 5640S)被用于被用于免疫印迹在人类样本上 (图 1a,b). Nucleic Acids Res (2016) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640S)被用于被用于免疫细胞化学在大鼠样本上. Sci Rep (2015) ncbi
小鼠 单克隆(8E2)
  • 抑制或激活实验; 小鼠
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于抑制或激活实验在小鼠样本上. J Mol Cell Cardiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫细胞化学; 人类; 1:800
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling Technology, 5640)被用于被用于免疫细胞化学在人类样本上浓度为1:800 和 被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫组化-自由浮动切片; 人类; 1:2000
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, #5640)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:2000. J Cell Physiol (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(cell signaling, 5640)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2015) ncbi
小鼠 单克隆(8E2)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Cd44抗体(Cell Signaling, 5640s)被用于被用于免疫组化在人类样本上. Cancer Res (2014) ncbi
碧迪BD
小鼠 单克隆(OX-49)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 3f
碧迪BD Cd44抗体(BD Pharmingen, 554869)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 3f). Neural Regen Res (2022) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 1:1000; 图 1c
碧迪BD Cd44抗体(BD Biosciences, 554869)被用于被用于流式细胞仪在大鼠样本上浓度为1:1000 (图 1c). Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 3b
碧迪BD Cd44抗体(BD, 550974)被用于被用于流式细胞仪在大鼠样本上 (图 3b). Sci Rep (2017) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 小鼠; 图 4
碧迪BD Cd44抗体(BD, 554869)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 2
碧迪BD Cd44抗体(BD Biosciences, 550974)被用于被用于流式细胞仪在大鼠样本上 (图 2). J Mater Sci Mater Med (2016) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD Cd44抗体(BD Pharmingen, 550974)被用于被用于流式细胞仪在大鼠样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(OX-49)
  • 流式细胞仪; 大鼠; 1:100
  • 免疫细胞化学; 大鼠; 1:100
碧迪BD Cd44抗体(BD Biosciences, 554869)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 和 被用于免疫细胞化学在大鼠样本上浓度为1:100. J Tissue Eng Regen Med (2014) ncbi
小鼠 单克隆(OX-49)
  • 免疫组化-石蜡切片; 大鼠; 图 8
碧迪BD Cd44抗体(BD Parmingen, clone OX-49)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 8). Am J Transplant (2009) ncbi
文章列表
  1. Chi J, Hsiao Y, Liang H, Huang T, Chen F, Chen C, et al. Blockade of the pentraxin 3/CD44 interaction attenuates lung injury-induced fibrosis. Clin Transl Med. 2022;12:e1099 pubmed 出版商
  2. Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, et al. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci. 2022;18:4329-4340 pubmed 出版商
  3. Ebrahim N, Al Saihati H, Mostafa O, Hassouna A, Abdulsamea S, Abd El Aziz M El Gebaly E, et al. Prophylactic Evidence of MSCs-Derived Exosomes in Doxorubicin/Trastuzumab-Induced Cardiotoxicity: Beyond Mechanistic Target of NRG-1/Erb Signaling Pathway. Int J Mol Sci. 2022;23: pubmed 出版商
  4. Chen Y, Xu J, Pan W, Xu X, Ma X, Chu Y, et al. Galectin-3 enhances trastuzumab resistance by regulating cancer malignancy and stemness in HER2-positive breast cancer cells. Thorac Cancer. 2022;13:1961-1973 pubmed 出版商
  5. Liu X, Wang Z, Yang Q, Hu X, Fu Q, Zhang X, et al. RNA Demethylase ALKBH5 Prevents Lung Cancer Progression by Regulating EMT and Stemness via Regulating p53. Front Oncol. 2022;12:858694 pubmed 出版商
  6. Tanton H, Sewastianik T, Seo H, Remillard D, Pierre R, Bala P, et al. A novel β-catenin/BCL9 complex inhibitor blocks oncogenic Wnt signaling and disrupts cholesterol homeostasis in colorectal cancer. Sci Adv. 2022;8:eabm3108 pubmed 出版商
  7. Kim J, Ahn M, Choi Y, Chun J, Jung K, Tanaka A, et al. Osteopontin is a biomarker for early autoimmune uveoretinitis. Neural Regen Res. 2022;17:1604-1608 pubmed 出版商
  8. Zhao Y, Li Z, Zhu Y, Fu J, Zhao X, Zhang Y, et al. Single-Cell Transcriptome Analysis Uncovers Intratumoral Heterogeneity and Underlying Mechanisms for Drug Resistance in Hepatobiliary Tumor Organoids. Adv Sci (Weinh). 2021;8:e2003897 pubmed 出版商
  9. Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, et al. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther. 2021;12:312 pubmed 出版商
  10. Sun X, He Z, Guo L, Wang C, Lin C, Ye L, et al. ALG3 contributes to stemness and radioresistance through regulating glycosylation of TGF-β receptor II in breast cancer. J Exp Clin Cancer Res. 2021;40:149 pubmed 出版商
  11. Liu G, Zhao H, Song Q, Li G, Lin S, Xiong S. Long non-coding RNA DPP10-AS1 exerts anti-tumor effects on colon cancer via the upregulation of ADCY1 by regulating microRNA-127-3p. Aging (Albany NY). 2021;13:9748-9765 pubmed 出版商
  12. Heider M, Eichner R, Stroh J, Morath V, Kuisl A, Zecha J, et al. The IMiD target CRBN determines HSP90 activity toward transmembrane proteins essential in multiple myeloma. Mol Cell. 2021;: pubmed 出版商
  13. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  14. Wang Z, Shi Y, Ying C, Jiang Y, Hu J. Hypoxia-induced PLOD1 overexpression contributes to the malignant phenotype of glioblastoma via NF-κB signaling. Oncogene. 2021;: pubmed 出版商
  15. Benavente F, Piltti K, Hooshmand M, Nava A, Lakatos A, Feld B, et al. Novel C1q receptor-mediated signaling controls neural stem cell behavior and neurorepair. elife. 2020;9: pubmed 出版商
  16. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  17. Jiang M, Bi X, Duan X, Pang N, Wang H, Yuan H, et al. Adipose tissue-derived stem cells modulate immune function in vivo and promote long-term hematopoiesis in vitro using the aGVHD model. Exp Ther Med. 2020;19:1725-1732 pubmed 出版商
  18. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  19. Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol. 2019;19:230 pubmed 出版商
  20. Lin Q, Chen X, Meng F, Ogawa K, Li M, Song R, et al. ASPH-notch Axis guided Exosomal delivery of Prometastatic Secretome renders breast Cancer multi-organ metastasis. Mol Cancer. 2019;18:156 pubmed 出版商
  21. Han Y, Feng H, Sun J, Liang X, Wang Z, Xing W, et al. Lkb1 deletion in periosteal mesenchymal progenitors induces osteogenic tumors through mTORC1 activation. J Clin Invest. 2019;130: pubmed 出版商
  22. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  23. Yoon C, Cho S, Chang K, Park D, Ryeom S, Yoon S. Role of Rac1 Pathway in Epithelial-to-Mesenchymal Transition and Cancer Stem-like Cell Phenotypes in Gastric Adenocarcinoma. Mol Cancer Res. 2017;15:1106-1116 pubmed 出版商
  24. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  25. Patouraux S, Rousseau D, Bonnafous S, Lebeaupin C, Luci C, Canivet C, et al. CD44 is a key player in non-alcoholic steatohepatitis. J Hepatol. 2017;67:328-338 pubmed 出版商
  26. Ritschka B, Storer M, Mas A, Heinzmann F, Ortells M, Morton J, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017;31:172-183 pubmed 出版商
  27. Wang D, Wang A, Wu F, Qiu X, Li Y, Chu J, et al. Sox10+ adult stem cells contribute to biomaterial encapsulation and microvascularization. Sci Rep. 2017;7:40295 pubmed 出版商
  28. Zhou Z, Xu Z, Wang F, Lu Y, Yin P, Jiang C, et al. New strategy to rescue the inhibition of osteogenesis of human bone marrow-derived mesenchymal stem cells under oxidative stress: combination of vitamin C and graphene foams. Oncotarget. 2016;7:71998-72010 pubmed 出版商
  29. Liu Z, Chu S, Yao S, Li Y, Fan S, Sun X, et al. CD74 interacts with CD44 and enhances tumorigenesis and metastasis via RHOA-mediated cofilin phosphorylation in human breast cancer cells. Oncotarget. 2016;7:68303-68313 pubmed 出版商
  30. Ichimaru S, Nakagawa S, Arai Y, Kishida T, Shin Ya M, Honjo K, et al. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage. Int J Mol Sci. 2016;17: pubmed 出版商
  31. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  32. Komatsu I, Wang J, Iwasaki K, Shimizu T, Okano T. The effect of tendon stem/progenitor cell (TSC) sheet on the early tendon healing in a rat Achilles tendon injury model. Acta Biomater. 2016;42:136-146 pubmed 出版商
  33. Fu X, Tong Z, Li Q, Niu Q, Zhang Z, Tong X, et al. Induction of adipose-derived stem cells into Schwann-like cells and observation of Schwann-like cell proliferation. Mol Med Rep. 2016;14:1187-93 pubmed 出版商
  34. Li X, Yuan Z, Wei X, Li H, Zhao G, Miao J, et al. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta. J Mater Sci Mater Med. 2016;27:77 pubmed 出版商
  35. Li X, Wu J, Li Q, Shigemura K, Chung L, Huang W. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget. 2016;7:12869-84 pubmed 出版商
  36. Zhang X, Ma Y, Fu X, Liu Q, Shao Z, Dai L, et al. Runx2-Modified Adipose-Derived Stem Cells Promote Tendon Graft Integration in Anterior Cruciate Ligament Reconstruction. Sci Rep. 2016;6:19073 pubmed 出版商
  37. Gururajan M, Cavassani K, Sievert M, Duan P, Lichterman J, Huang J, et al. SRC family kinase FYN promotes the neuroendocrine phenotype and visceral metastasis in advanced prostate cancer. Oncotarget. 2015;6:44072-83 pubmed 出版商
  38. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  39. Yun J, Song S, Kang J, Park J, Kim H, Han S, et al. Reduced cohesin destabilizes high-level gene amplification by disrupting pre-replication complex bindings in human cancers with chromosomal instability. Nucleic Acids Res. 2016;44:558-72 pubmed 出版商
  40. Sawitza I, Kordes C, Götze S, Herebian D, Häussinger D. Bile acids induce hepatic differentiation of mesenchymal stem cells. Sci Rep. 2015;5:13320 pubmed 出版商
  41. Liu X, Chen X, Rycaj K, Chao H, Deng Q, Jeter C, et al. Systematic dissection of phenotypic, functional, and tumorigenic heterogeneity of human prostate cancer cells. Oncotarget. 2015;6:23959-86 pubmed
  42. de Carvalho J, Zonari A, de Paula A, Martins T, Gomes D, Goes A. Production of Human Endothelial Cells Free from Soluble Xenogeneic Antigens for Bioartificial Small Diameter Vascular Graft Endothelization. Biomed Res Int. 2015;2015:652474 pubmed 出版商
  43. Liang Y, Hu J, Li J, Liu Y, Yu J, Zhuang X, et al. Epigenetic Activation of TWIST1 by MTDH Promotes Cancer Stem-like Cell Traits in Breast Cancer. Cancer Res. 2015;75:3672-80 pubmed 出版商
  44. Zhang F, Cui J, Lv B, Yu B. Nicorandil protects mesenchymal stem cells against hypoxia and serum deprivation-induced apoptosis. Int J Mol Med. 2015;36:415-23 pubmed 出版商
  45. Song H, Wang H, Wu W, Qi L, Shao L, Wang F, et al. Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res. 2015;362:97-113 pubmed 出版商
  46. Li L, Qi L, Liang Z, Song W, Liu Y, Wang Y, et al. Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells. Int J Mol Med. 2015;36:113-22 pubmed 出版商
  47. Seo K, Lee S, Ye B, Kim Y, Bae S, Kim C. Mechanical stretch enhances the expression and activity of osteopontin and MMP-2 via the Akt1/AP-1 pathways in VSMC. J Mol Cell Cardiol. 2015;85:13-24 pubmed 出版商
  48. Sadowski S, Boufraqech M, Zhang L, Mehta A, Kapur P, Zhang Y, et al. Torin2 targets dysregulated pathways in anaplastic thyroid cancer and inhibits tumor growth and metastasis. Oncotarget. 2015;6:18038-49 pubmed
  49. ORELLANA R, Kato S, Erices R, Bravo M, Gonzalez P, Oliva B, et al. Platelets enhance tissue factor protein and metastasis initiating cell markers, and act as chemoattractants increasing the migration of ovarian cancer cells. BMC Cancer. 2015;15:290 pubmed 出版商
  50. Costabile V, Duraturo F, Delrio P, Rega D, Pace U, Liccardo R, et al. Lithium chloride induces mesenchymal‑to‑epithelial reverting transition in primary colon cancer cell cultures. Int J Oncol. 2015;46:1913-23 pubmed 出版商
  51. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  52. Dong X, Lin Q, Aihara A, Li Y, Huang C, Chung W, et al. Aspartate β-Hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget. 2015;6:1231-48 pubmed
  53. Wong H, Siu W, Fung C, Zhang C, Shum W, Zhou X, et al. Characteristics of stem cells derived from rat fascia: in vitro proliferative and multilineage potential assessment. Mol Med Rep. 2015;11:1982-90 pubmed 出版商
  54. Ghotra V, He S, van der Horst G, Nijhoff S, de Bont H, Lekkerkerker A, et al. SYK is a candidate kinase target for the treatment of advanced prostate cancer. Cancer Res. 2015;75:230-40 pubmed 出版商
  55. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  56. Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, et al. β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 2015;22:298-310 pubmed 出版商
  57. Bailon E, Ugarte Berzal E, Amigo Jiménez I, Van den Steen P, Opdenakker G, Garcia Marco J, et al. Overexpression of progelatinase B/proMMP-9 affects migration regulatory pathways and impairs chronic lymphocytic leukemia cell homing to bone marrow and spleen. J Leukoc Biol. 2014;96:185-99 pubmed 出版商
  58. McNally A, Anderson J. Phenotypic expression in human monocyte-derived interleukin-4-induced foreign body giant cells and macrophages in vitro: dependence on material surface properties. J Biomed Mater Res A. 2015;103:1380-90 pubmed 出版商
  59. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  60. Zhao J, Lin J, Zhu D, Wang X, Brooks D, Chen M, et al. miR-30-5p functions as a tumor suppressor and novel therapeutic tool by targeting the oncogenic Wnt/?-catenin/BCL9 pathway. Cancer Res. 2014;74:1801-13 pubmed 出版商
  61. Baek H, Noh Y, Lee J, Yeon S, Jeong J, Kwon H. Autonomous isolation, long-term culture and differentiation potential of adult salivary gland-derived stem/progenitor cells. J Tissue Eng Regen Med. 2014;8:717-27 pubmed 出版商
  62. Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109:7049-54 pubmed 出版商
  63. Yuan F, Li X, Lin J, Schwabe C, Bullesbach E, Rao C, et al. The role of RXFP2 in mediating androgen-induced inguinoscrotal testis descent in LH receptor knockout mice. Reproduction. 2010;139:759-69 pubmed 出版商
  64. von Toerne C, Schmidt C, Adams J, Kiss E, Bedke J, Porubsky S, et al. Wnt pathway regulation in chronic renal allograft damage. Am J Transplant. 2009;9:2223-39 pubmed 出版商