这是一篇来自已证抗体库的有关大鼠 Cd8a的综述,是根据73篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Cd8a 抗体。
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6e
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6e). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5e
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, 4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5e). Mol Cancer Ther (2022) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab33786)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4d). Sci Rep (2022) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 图 4g
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上 (图 4g). J Exp Clin Cancer Res (2022) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s6g
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s6g). Theranostics (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 1:50; 图 5a
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 5a). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 1g
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化在人类样本上浓度为1:200 (图 1g). Aging (Albany NY) (2021) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5c). J Oncol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上. Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 s4
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Mol Ther Nucleic Acids (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 2d
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2d). Aging Cell (2020) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab33786)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7). Food Sci Nutr (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化在小鼠样本上 (图 2e). Sci Rep (2020) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-石蜡切片; 人类; 图 5d
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5d). Oncoimmunology (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s6c
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s6c). Sci Adv (2019) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-冰冻切片; 小鼠; 图 1d
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab22378)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1c
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c). Cancer Med (2019) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:200; 图 7a
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab33786)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 1d
艾博抗(上海)贸易有限公司 Cd8a抗体(AbCAM, AB4055)被用于被用于免疫组化在人类样本上 (图 1d). Immunity (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; African green monkey
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化-石蜡切片在African green monkey样本上. Reprod Toxicol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Cd8a抗体(Abcam, ab4055)被用于被用于免疫组化在小鼠样本上 (图 3). Sci Rep (2016) ncbi
大鼠 单克隆(YTS169.4)
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Cd8a抗体(abcam, 22378)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Transl Med (2016) ncbi
赛默飞世尔
小鼠 单克隆(OX8)
  • 流式细胞仪; 大鼠; 1:500
赛默飞世尔 Cd8a抗体(eBioscience, OX8)被用于被用于流式细胞仪在大鼠样本上浓度为1:500. Stem Cell Res Ther (2021) ncbi
小鼠 单克隆(OX8)
  • 流式细胞仪; 大鼠; 图 5a
赛默飞世尔 Cd8a抗体(Termo Fisher Scientifc, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 5a). Biomed Res Int (2019) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 s1a
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 s1a). PLoS ONE (2016) ncbi
小鼠 单克隆(OX8)
  • 流式细胞仪; 小鼠
赛默飞世尔 Cd8a抗体(eBioscience, OX8)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(OX8)
  • 免疫组化-石蜡切片; 大鼠; 图 1
赛默飞世尔 Cd8a抗体(eBioscience, OX8)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 1). Methods Mol Biol (2014) ncbi
小鼠 单克隆(OX8)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Cd8a抗体(eBiosciences, LT8)被用于被用于流式细胞仪在人类样本上 (图 1). J Immunol (2010) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠
赛默飞世尔 Cd8a抗体(Invitrogen, OX-8)被用于被用于流式细胞仪在大鼠样本上. Inflamm Bowel Dis (2008) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 表 1
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于流式细胞仪在大鼠样本上 (表 1). Inflamm Bowel Dis (2007) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 表 1
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于流式细胞仪在大鼠样本上 (表 1). Clin Exp Immunol (2006) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于流式细胞仪在大鼠样本上. Immunology (2005) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 5
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 5). Clin Exp Immunol (2004) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:25; 图 4
赛默飞世尔 Cd8a抗体(Caltag, OX-8)被用于被用于免疫组化在大鼠样本上浓度为1:25 (图 4). Muscle Nerve (2002) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔 Cd8a抗体(Biosource, MRC OX-8)被用于被用于免疫组化在大鼠样本上浓度为1:100. Cancer Res (1999) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:200; 图 6
赛默飞世尔 Cd8a抗体(Biosource, MRC OX-8)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Hum Gene Ther (1997) ncbi
小鼠 单克隆(OX-8)
  • 免疫沉淀; 大鼠; 500 ug/ml; 图 2
赛默飞世尔 Cd8a抗体(noco, MRC OX-8)被用于被用于免疫沉淀在大鼠样本上浓度为500 ug/ml (图 2). Eur J Immunol (1983) ncbi
BioLegend
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 10c
BioLegend Cd8a抗体(BioLegend, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 10c). PLoS ONE (2022) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 4a, s4b
BioLegend Cd8a抗体(Biolegend, 201705)被用于被用于流式细胞仪在大鼠样本上 (图 4a, s4b). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 1:400; 图 3a
BioLegend Cd8a抗体(Biolegend, 201705)被用于被用于流式细胞仪在大鼠样本上浓度为1:400 (图 3a). Mol Med Rep (2019) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 s1c
BioLegend Cd8a抗体(Biolegend, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 s1c). Nature (2019) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 16b
BioLegend Cd8a抗体(BioLegend, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 16b). PLoS ONE (2019) ncbi
小鼠 单克隆(G28)
  • 流式细胞仪; 大鼠; 图 7
BioLegend Cd8a抗体(Biolegend, 200608)被用于被用于流式细胞仪在大鼠样本上 (图 7). Behav Brain Res (2019) ncbi
小鼠 单克隆(G28)
  • 流式细胞仪; 大鼠; 图 1a
BioLegend Cd8a抗体(Biolegend, 200610)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Stem Cell Reports (2018) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 9A
BioLegend Cd8a抗体(Biolegend, 201712)被用于被用于流式细胞仪在大鼠样本上 (图 9A). Transplantation (2015) ncbi
小鼠 单克隆(G28)
  • 流式细胞仪; 大鼠
BioLegend Cd8a抗体(BioLegend, G28)被用于被用于流式细胞仪在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(G28)
BioLegend Cd8a抗体(BioLegend, G28)被用于. J Immunol (2014) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(OX-8)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 11a
伯乐(Bio-Rad)公司 Cd8a抗体(Serotec, MCA48GA)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 11a). Acta Neuropathol (2020) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化; 大鼠; 1:100; 图 4a
伯乐(Bio-Rad)公司 Cd8a抗体(Bio-Rad, MCA48R)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 4a). BMC Med (2020) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-石蜡切片; 大鼠; 1:100
  • 免疫组化; 大鼠; 图 50
伯乐(Bio-Rad)公司 Cd8a抗体(AbD serotec, MCA48GA)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 和 被用于免疫组化在大鼠样本上 (图 50). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6d
伯乐(Bio-Rad)公司 Cd8a抗体(AbD Serotec, mca48r)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6d). Nat Commun (2017) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s4b
伯乐(Bio-Rad)公司 Cd8a抗体(AbD Serotec, MCA48R)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s4b). Oncoimmunology (2016) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 1
伯乐(Bio-Rad)公司 Cd8a抗体(AbD Serotec, OX-8)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 1). EJNMMI Res (2015) ncbi
小鼠 单克隆(OX-8)
  • 抑制或激活实验; 大鼠
  • 免疫组化-石蜡切片; 大鼠; 图 7
伯乐(Bio-Rad)公司 Cd8a抗体(BioRad-AbD Serotec, MCA48EL)被用于被用于抑制或激活实验在大鼠样本上 和 被用于免疫组化-石蜡切片在大鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 3
伯乐(Bio-Rad)公司 Cd8a抗体(AbD Serotec, MCA48G)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 3). MBio (2015) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 小鼠; 图 8
伯乐(Bio-Rad)公司 Cd8a抗体(AbD Serotec, OX8)被用于被用于流式细胞仪在小鼠样本上 (图 8). BMC Immunol (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(32-M4)
  • 免疫组化; 人类; 图 1a
圣克鲁斯生物技术 Cd8a抗体(Santa Cruz, SC-1177)被用于被用于免疫组化在人类样本上 (图 1a). J Immunother Cancer (2022) ncbi
小鼠 单克隆(32-M4)
  • 免疫组化; 小鼠; 1:50; 图 9d
圣克鲁斯生物技术 Cd8a抗体(Santa Cruz, sc-1177)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 9d). J Neuroinflammation (2020) ncbi
小鼠 单克隆(6A242)
  • 流式细胞仪; 小鼠; 图 1
圣克鲁斯生物技术 Cd8a抗体(Santa Cruz, 6A242)被用于被用于流式细胞仪在小鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(OX8)
  • 免疫组化; 大鼠; 图 5
圣克鲁斯生物技术 Cd8a抗体(Santa Cruz, sc-53063)被用于被用于免疫组化在大鼠样本上 (图 5). J Transl Med (2015) ncbi
小鼠 单克隆(OX8)
  • 流式细胞仪; 大鼠; 图 2
圣克鲁斯生物技术 Cd8a抗体(Santa Cruz Biotechnology, sc-53063)被用于被用于流式细胞仪在大鼠样本上 (图 2). Res Vet Sci (2014) ncbi
美天旎
人类 单克隆(REA437)
  • 流式细胞仪; 小鼠; 图 5a
美天旎 Cd8a抗体(Miltenyi Biotec, 130-108-882)被用于被用于流式细胞仪在小鼠样本上 (图 5a). PLoS Pathog (2021) ncbi
碧迪BD
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 2e, 2f
碧迪BD Cd8a抗体(BD, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 2e, 2f). Invest Ophthalmol Vis Sci (2018) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-冰冻切片; 大鼠; 1:50
  • 免疫组化; 大鼠; 图 49
碧迪BD Cd8a抗体(BD Biosciences, 550298)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 和 被用于免疫组化在大鼠样本上 (图 49). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 1f
碧迪BD Cd8a抗体(BD Pharmingen, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
小鼠 单克隆(OX-8)
  • 免疫细胞化学; 小鼠; 图 5b
碧迪BD Cd8a抗体(BD Biosciences, 554854)被用于被用于免疫细胞化学在小鼠样本上 (图 5b). Mol Cell Biol (2016) ncbi
小鼠 单克隆(OX-8)
  • 免疫组化-冰冻切片; 大鼠
碧迪BD Cd8a抗体(BD Pharmingen, 554854)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Neuroinflammation (2016) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 3a
碧迪BD Cd8a抗体(BD Biosciences, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 3a). Brain Behav Immun (2015) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 4
碧迪BD Cd8a抗体(BD Biosciences, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠
碧迪BD Cd8a抗体(BD Pharmingen, OX-8)被用于被用于流式细胞仪在大鼠样本上. Neuroimmunomodulation (2015) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 6
碧迪BD Cd8a抗体(BD Biosciences, OX-8)被用于被用于流式细胞仪在大鼠样本上 (图 6). Mol Neurobiol (2016) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 大鼠; 图 7c
碧迪BD Cd8a抗体(BD, 558824)被用于被用于流式细胞仪在大鼠样本上 (图 7c). J Immunotoxicol (2015) ncbi
小鼠 单克隆(OX-8)
  • 流式细胞仪; 小鼠; 图 8
碧迪BD Cd8a抗体(BD Pharmingen, 554857)被用于被用于流式细胞仪在小鼠样本上 (图 8). BMC Immunol (2012) ncbi
文章列表
  1. Ravindranathan S, Passang T, Li J, Wang S, Dhamsania R, Ware M, et al. Targeting vasoactive intestinal peptide-mediated signaling enhances response to immune checkpoint therapy in pancreatic ductal adenocarcinoma. Nat Commun. 2022;13:6418 pubmed 出版商
  2. Bath N, Verhoven B, Wilson N, Zeng W, Zhong W, Coons L, et al. APRIL/BLyS deficient rats prevent donor specific antibody (DSA) production and cell proliferation in rodent kidney transplant model. PLoS ONE. 2022;17:e0275564 pubmed 出版商
  3. Ni H, Zhang H, Li L, Huang H, Guo H, Zhang L, et al. T cell-intrinsic STING signaling promotes regulatory T cell induction and immunosuppression by upregulating FOXP3 transcription in cervical cancer. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  5. Sullivan P, Kumar R, Li W, Hoglund V, Wang L, Zhang Y, et al. FGFR4-Targeted Chimeric Antigen Receptors Combined with Anti-Myeloid Polypharmacy Effectively Treat Orthotopic Rhabdomyosarcoma. Mol Cancer Ther. 2022;21:1608-1621 pubmed 出版商
  6. Deal B, Reynolds L, PATTERSON C, Janjic J, Pollock J. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep. 2022;12:8472 pubmed 出版商
  7. Salaroglio I, Belisario D, Bironzo P, Ananthanarayanan P, Ricci L, Digiovanni S, et al. SKP2 drives the sensitivity to neddylation inhibitors and cisplatin in malignant pleural mesothelioma. J Exp Clin Cancer Res. 2022;41:75 pubmed 出版商
  8. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  9. Drzyzga A, Cichon T, Czapla J, Jarosz Biej M, Pilny E, Matuszczak S, et al. The Proper Administration Sequence of Radiotherapy and Anti-Vascular Agent-DMXAA Is Essential to Inhibit the Growth of Melanoma Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  10. Aussel C, Baudry N, Grosbot M, Caron C, Vicaut E, Banzet S, et al. IL-1β primed mesenchymal stromal cells moderate hemorrhagic shock-induced organ injuries. Stem Cell Res Ther. 2021;12:438 pubmed 出版商
  11. Cerny O, Godlee C, Tocci R, Cross N, Shi H, Williamson J, et al. CD97 stabilises the immunological synapse between dendritic cells and T cells and is targeted for degradation by the Salmonella effector SteD. PLoS Pathog. 2021;17:e1009771 pubmed 出版商
  12. Wu K, Zheng X, Yao Z, Zheng Z, Huang W, Mu X, et al. Accumulation of CD45RO+CD8+ T cells is a diagnostic and prognostic biomarker for clear cell renal cell carcinoma. Aging (Albany NY). 2021;13:14304-14321 pubmed 出版商
  13. Chen S, Han C, Bian S, Chen J, Feng X, Li G, et al. Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE-/- Mice. J Oncol. 2021;2021:6629204 pubmed 出版商
  14. Fujimori D, Kinoshita J, Yamaguchi T, Nakamura Y, Gunjigake K, Ohama T, et al. Established fibrous peritoneal metastasis in an immunocompetent mouse model similar to clinical immune microenvironment of gastric cancer. BMC Cancer. 2020;20:1014 pubmed 出版商
  15. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  16. Moreno Valladares M, Silva T, Garcés J, Sáenz Antoñanzas A, Moreno Cugnon L, Álvarez Satta M, et al. CD8+ T cells are present at low levels in the white matter with physiological and pathological aging. Aging (Albany NY). 2020;12:18928-18941 pubmed 出版商
  17. Dhanasekaran R, Park J, Yevtodiyenko A, Bellovin D, Adam S, Kd A, et al. MYC ASO Impedes Tumorigenesis and Elicits Oncogene Addiction in Autochthonous Transgenic Mouse Models of HCC and RCC. Mol Ther Nucleic Acids. 2020;21:850-859 pubmed 出版商
  18. Moreno Valladares M, Moreno Cugnon L, Silva T, Garcés J, Sáenz Antoñanzas A, Álvarez Satta M, et al. CD8+ T cells are increased in the subventricular zone with physiological and pathological aging. Aging Cell. 2020;:e13198 pubmed 出版商
  19. Van der Perren A, Gelders G, Fenyi A, Bousset L, Brito F, Peelaerts W, et al. The structural differences between patient-derived α-synuclein strains dictate characteristics of Parkinson's disease, multiple system atrophy and dementia with Lewy bodies. Acta Neuropathol. 2020;139:977-1000 pubmed 出版商
  20. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  21. Oh W, Jung J, Choi Y, Mun J, Ku S, Song C. Protective effects of fermented rice extract on ulcerative colitis induced by dextran sodium sulfate in mice. Food Sci Nutr. 2020;8:1718-1728 pubmed 出版商
  22. Yoshida S, Miyagawa S, Toyofuku T, Fukushima S, Kawamura T, Kawamura A, et al. Syngeneic Mesenchymal Stem Cells Reduce Immune Rejection After Induced Pluripotent Stem Cell-Derived Allogeneic Cardiomyocyte Transplantation. Sci Rep. 2020;10:4593 pubmed 出版商
  23. Simon S, Hu X, Panten J, Grees M, Renders S, Thomas D, et al. Eosinophil accumulation predicts response to melanoma treatment with immune checkpoint inhibitors. Oncoimmunology. 2020;9:1727116 pubmed 出版商
  24. Jörns A, Ishikawa D, Teraoku H, Yoshimoto T, Wedekind D, Lenzen S. Remission of autoimmune diabetes by anti-TCR combination therapies with anti-IL-17A or/and anti-IL-6 in the IDDM rat model of type 1 diabetes. BMC Med. 2020;18:33 pubmed 出版商
  25. Williford J, Ishihara J, Ishihara A, Mansurov A, Hosseinchi P, Marchell T, et al. Recruitment of CD103+ dendritic cells via tumor-targeted chemokine delivery enhances efficacy of checkpoint inhibitor immunotherapy. Sci Adv. 2019;5:eaay1357 pubmed 出版商
  26. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  27. Jirsova Z, Heczkova M, Dankova H, Malinska H, Videnska P, Vespalcova H, et al. The Effect of Butyrate-Supplemented Parenteral Nutrition on Intestinal Defence Mechanisms and the Parenteral Nutrition-Induced Shift in the Gut Microbiota in the Rat Model. Biomed Res Int. 2019;2019:7084734 pubmed 出版商
  28. Ni X, Zhang L, Ma X, Shan L, Li L, Si J, et al. β‑estradiol alleviates hypertension‑ and concanavalin A‑mediated inflammatory responses via modulation of connexins in peripheral blood lymphocytes. Mol Med Rep. 2019;19:3743-3755 pubmed 出版商
  29. Lodygin D, Hermann M, Schweingruber N, Flügel Koch C, Watanabe T, Schlosser C, et al. β-Synuclein-reactive T cells induce autoimmune CNS grey matter degeneration. Nature. 2019;566:503-508 pubmed 出版商
  30. Bath N, Ding X, Wilson N, Verhoven B, Boldt B, Sukhwal A, et al. Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model. PLoS ONE. 2019;14:e0211865 pubmed 出版商
  31. Cao Z, Ji J, Zhang C, Wang F, Xu H, Yu Y, et al. The preoperative neutrophil-to-lymphocyte ratio is not a marker of prostate cancer characteristics but is an independent predictor of biochemical recurrence in patients receiving radical prostatectomy. Cancer Med. 2019;8:1004-1012 pubmed 出版商
  32. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  33. Yang X, Zhou J, He J, Liu J, Wang H, Liu Y, et al. An Immune System-Modified Rat Model for Human Stem Cell Transplantation Research. Stem Cell Reports. 2018;11:514-521 pubmed 出版商
  34. Pepple K, Wilson L, Van Gelder R. Comparison of Aqueous and Vitreous Lymphocyte Populations From Two Rat Models of Experimental Uveitis. Invest Ophthalmol Vis Sci. 2018;59:2504-2511 pubmed 出版商
  35. Connolly N, Stokum J, Schneider C, Ozawa T, Xu S, Galisteo R, et al. Genetically engineered rat gliomas: PDGF-driven tumor initiation and progression in tv-a transgenic rats recreate key features of human brain cancer. PLoS ONE. 2017;12:e0174557 pubmed 出版商
  36. Cheuk S, Schlums H, Gallais Sérézal I, Martini E, Chiang S, Marquardt N, et al. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin. Immunity. 2017;46:287-300 pubmed 出版商
  37. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  38. Tang J, Shen D, Caranasos T, Wang Z, Vandergriff A, Allen T, et al. Therapeutic microparticles functionalized with biomimetic cardiac stem cell membranes and secretome. Nat Commun. 2017;8:13724 pubmed 出版商
  39. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  40. Rigo Adrover M, Franch A, Castell M, Pérez Cano F. Preclinical Immunomodulation by the Probiotic Bifidobacterium breve M-16V in Early Life. PLoS ONE. 2016;11:e0166082 pubmed 出版商
  41. Sauer M, Herbst J, Diekmann U, Rudd C, Kardinal C. SHP-1 Acts as a Key Regulator of Alloresponses by Modulating LFA-1-Mediated Adhesion in Primary Murine T Cells. Mol Cell Biol. 2016;36:3113-3127 pubmed
  42. Nakhlé J, Pierron V, Bauchet A, Plas P, Thiongane A, Meyer Losic F, et al. Tasquinimod modulates tumor-infiltrating myeloid cells and improves the antitumor immune response to PD-L1 blockade in bladder cancer. Oncoimmunology. 2016;5:e1145333 pubmed 出版商
  43. Wang H, Schuetz C, Arima A, Chihaya Y, Weinbauer G, Habermann G, et al. Assessment of placental transfer and the effect on embryo-fetal development of a humanized monoclonal antibody targeting lymphotoxin-alpha in non-human primates. Reprod Toxicol. 2016;63:82-95 pubmed 出版商
  44. Marignier R, Ruiz A, Cavagna S, Nicole A, Watrin C, Touret M, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid. J Neuroinflammation. 2016;13:111 pubmed 出版商
  45. Wang S, Gao X, Shen G, Wang W, Li J, Zhao J, et al. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity. Sci Rep. 2016;6:24249 pubmed 出版商
  46. Haque M, Song J, Fino K, Sandhu P, Song X, Lei F, et al. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity. Sci Rep. 2016;6:20588 pubmed 出版商
  47. Kindy M, Yu J, Zhu H, Smith M, Gattoni Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14:1 pubmed 出版商
  48. Pohar J, Lainšček D, Fukui R, Yamamoto C, Miyake K, Jerala R, et al. Species-Specific Minimal Sequence Motif for Oligodeoxyribonucleotides Activating Mouse TLR9. J Immunol. 2015;195:4396-405 pubmed 出版商
  49. Elgström E, Eriksson S, Ljungberg O, Bendahl P, Ohlsson T, Nilsson R, et al. Evaluation of immune cell markers in tumor tissue treated with radioimmunotherapy in an immunocompetent rat colon carcinoma model. EJNMMI Res. 2015;5:47 pubmed 出版商
  50. Nuccitelli R, Berridge J, Mallon Z, Kreis M, Athos B, Nuccitelli P. Nanoelectroablation of Murine Tumors Triggers a CD8-Dependent Inhibition of Secondary Tumor Growth. PLoS ONE. 2015;10:e0134364 pubmed 出版商
  51. Nacka Aleksić M, Djikić J, Pilipović I, Stojić Vukanić Z, Kosec D, Bufan B, et al. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun. 2015;49:101-18 pubmed 出版商
  52. Abril Gil M, Garcia Just A, Pérez Cano F, Franch Ã, Castell M. Development and characterization of an effective food allergy model in Brown Norway rats. PLoS ONE. 2015;10:e0125314 pubmed 出版商
  53. Reese S, Wilson N, Huang G, Redfield R, Zhong W, Djamali A. Calcineurin Inhibitor Minimization With Ixazomib, an Investigational Proteasome Inhibitor, for the Prevention of Antibody Mediated Rejection in a Preclinical Model. Transplantation. 2015;99:1785-95 pubmed 出版商
  54. Chen P, Hsieh H, Huang C, Lin C, Wei K, Liu H. Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med. 2015;13:93 pubmed 出版商
  55. Fernández Hurst N, Bibolini M, Roth G. Diazepam Inhibits Proliferation of Lymph Node Cells Isolated from Rats with Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation. 2015;22:293-302 pubmed 出版商
  56. Safeukui I, Gómez N, Adelani A, Burté F, Afolabi N, Akondy R, et al. Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen. MBio. 2015;6: pubmed 出版商
  57. Lee M, Jang M, Choi J, Lee G, Min H, Chung W, et al. Bee Venom Acupuncture Alleviates Experimental Autoimmune Encephalomyelitis by Upregulating Regulatory T Cells and Suppressing Th1 and Th17 Responses. Mol Neurobiol. 2016;53:1419-1445 pubmed 出版商
  58. Thorn M, Hudson A, Kreeger J, Kawabe T, Bowman C, Collinge M. Evaluation of a novel delayed-type hypersensitivity assay to Candida albicans in adult and neonatal rats. J Immunotoxicol. 2015;12:350-60 pubmed 出版商
  59. Lehmann J, Härtig W, Seidel A, Füldner C, Hobohm C, Grosche J, et al. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience. 2014;279:139-54 pubmed 出版商
  60. Santra L, Rajmani R, Kumar G, Saxena S, Dhara S, Kumar A, et al. Non-Structural protein 1 (NS1) gene of Canine Parvovirus-2 regresses chemically induced skin tumors in Wistar rats. Res Vet Sci. 2014;97:292-6 pubmed 出版商
  61. Xie L, Sun F, Wang J, Mao X, Xie L, Yang S, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192:6009-19 pubmed 出版商
  62. Wang Y, Alexander S. DNA vaccination as a treatment for chronic kidney disease. Methods Mol Biol. 2014;1143:297-303 pubmed 出版商
  63. Zschemisch N, Glage S, Wedekind D, Weinstein E, Cui X, Dorsch M, et al. Zinc-finger nuclease mediated disruption of Rag1 in the LEW/Ztm rat. BMC Immunol. 2012;13:60 pubmed 出版商
  64. Horowitz A, Behrens R, Okell L, Fooks A, Riley E. NK cells as effectors of acquired immune responses: effector CD4+ T cell-dependent activation of NK cells following vaccination. J Immunol. 2010;185:2808-18 pubmed 出版商
  65. Qian B, Tonkonogy S, Sartor R. Aberrant innate immune responses in TLR-ligand activated HLA-B27 transgenic rat cells. Inflamm Bowel Dis. 2008;14:1358-65 pubmed 出版商
  66. Hoentjen F, Tonkonogy S, Qian B, Liu B, Dieleman L, Sartor R. CD4(+) T lymphocytes mediate colitis in HLA-B27 transgenic rats monoassociated with nonpathogenic Bacteroides vulgatus. Inflamm Bowel Dis. 2007;13:317-24 pubmed
  67. Hoentjen F, Tonkonogy S, Liu B, Sartor R, Taurog J, Dieleman L. Adoptive transfer of nontransgenic mesenteric lymph node cells induces colitis in athymic HLA-B27 transgenic nude rats. Clin Exp Immunol. 2006;143:474-83 pubmed
  68. Qian B, Tonkonogy S, Hoentjen F, Dieleman L, Sartor R. Dysregulated luminal bacterial antigen-specific T-cell responses and antigen-presenting cell function in HLA-B27 transgenic rats with chronic colitis. Immunology. 2005;116:112-21 pubmed
  69. Dieleman L, Hoentjen F, Qian B, Sprengers D, Tjwa E, Torres M, et al. Reduced ratio of protective versus proinflammatory cytokine responses to commensal bacteria in HLA-B27 transgenic rats. Clin Exp Immunol. 2004;136:30-9 pubmed
  70. Ito T, Kumamoto T, Horinouchi H, Yukishige K, Sugihara R, Fujimoto S, et al. Adhesion molecule expression in experimental myositis. Muscle Nerve. 2002;25:409-18 pubmed
  71. Benedetti S, Bruzzone M, Pollo B, DiMeco F, Magrassi L, Pirola B, et al. Eradication of rat malignant gliomas by retroviral-mediated, in vivo delivery of the interleukin 4 gene. Cancer Res. 1999;59:645-52 pubmed
  72. Benedetti S, DiMeco F, Pollo B, Cirenei N, Colombo B, Bruzzone M, et al. Limited efficacy of the HSV-TK/GCV system for gene therapy of malignant gliomas and perspectives for the combined transduction of the interleukin-4 gene. Hum Gene Ther. 1997;8:1345-53 pubmed
  73. Thomas M, Green J. Molecular nature of the W3/25 and MRC OX-8 marker antigens for rat T lymphocytes: comparisons with mouse and human antigens. Eur J Immunol. 1983;13:855-8 pubmed