这是一篇来自已证抗体库的有关大鼠 Creb1的综述,是根据186篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Creb1 抗体。
Creb1 同义词: Creb

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E113)
  • 免疫组化; 人类; 1:100; 图 7g
  • 免疫印迹; 人类; 1:1000; 图 7e
  • 免疫印迹; 小鼠; 1:1000; 图 5n, 8f
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫组化在人类样本上浓度为1:100 (图 7g), 被用于免疫印迹在人类样本上浓度为1:1000 (图 7e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5n, 8f). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 单克隆(E306)
  • 免疫印迹; 小鼠; 1:1000; 图 5n, 8f
  • 免疫印迹; 人类; 1:1000; 图 7e
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32515)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5n, 8f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Adv Sci (Weinh) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 8a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab31387)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 8a). PLoS ONE (2022) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 小鼠; 1:5000; 图 4e
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4e). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(E113)
  • 免疫组化; 小鼠; 1:100; 图 s2-1e
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s2-1e). elife (2021) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 大鼠; 图 3k
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在大鼠样本上 (图 3k). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3j
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab31387)被用于被用于免疫印迹在大鼠样本上 (图 3j). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 人类; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6b). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(E113)
  • 染色质免疫沉淀 ; 大鼠; 图 5h
  • 免疫印迹; 大鼠; 图 5g
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 5h) 和 被用于免疫印迹在大鼠样本上 (图 5g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 鸡; 1:5000; 图 8a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在鸡样本上浓度为1:5000 (图 8a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 8
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab31387)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Brain Behav (2020) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 大鼠; 1:5000; 图 8
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 8). Brain Behav (2020) ncbi
domestic rabbit 单克隆(E113)
  • 免疫组化; 小鼠; 1:100; 图 6b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 7a
  • 免疫印迹; 小鼠; 1:2000; 图 1g
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab31387)被用于被用于免疫沉淀在小鼠样本上 (图 7a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1g). Cell Death Dis (2018) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 小鼠; 1:5,000; 图 6b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在小鼠样本上浓度为1:5,000 (图 6b). Bone Res (2018) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Mol Endocrinol (2017) ncbi
domestic rabbit 单克隆(E306)
  • 免疫印迹; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32515)被用于被用于免疫印迹在小鼠样本上 (图 3b). J Mol Endocrinol (2017) ncbi
domestic rabbit 单克隆(E113)
  • 免疫组化-石蜡切片; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫组化-石蜡切片在大鼠样本上 (图 5a). Respir Res (2017) ncbi
domestic rabbit 单克隆(E306)
  • 免疫印迹; 大鼠; 图 5b
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32515)被用于被用于免疫印迹在大鼠样本上 (图 5b). Respir Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab196883)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 大鼠; 1:2000; 图 6
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
  • 免疫印迹; 人类; 1:2000; 图 3
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab31387)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 1), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 小鼠; 1:800; 图 2a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 2a). Mol Pain (2016) ncbi
domestic rabbit 单克隆(E306)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32515)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). J Mol Neurosci (2016) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 大鼠; 1:500; 图 7
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7). Mol Brain (2015) ncbi
domestic rabbit 单克隆(E113)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Front Mol Neurosci (2015) ncbi
domestic rabbit 单克隆(E113)
  • 免疫组化-石蜡切片; 小鼠; 1:50
艾博抗(上海)贸易有限公司 Creb1抗体(Abcam, ab32096)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50. PLoS Genet (2014) ncbi
赛默飞世尔
domestic rabbit 单克隆(F.959.4)
  • 免疫印迹; 人类; 图 2a
赛默飞世尔 Creb1抗体(Thermo Fisher, MA5-11192)被用于被用于免疫印迹在人类样本上 (图 2a). JCI Insight (2020) ncbi
小鼠 单克隆(LB9)
  • 免疫印迹; 大鼠; 图 5b
赛默飞世尔 Creb1抗体(ThermoFisher, MA1-083)被用于被用于免疫印迹在大鼠样本上 (图 5b). Molecules (2019) ncbi
domestic rabbit 单克隆(F.959.4)
  • 免疫印迹; 大鼠; 图 5b
赛默飞世尔 Creb1抗体(ThermoFisher, MA5-11192)被用于被用于免疫印迹在大鼠样本上 (图 5b). Molecules (2019) ncbi
小鼠 单克隆(LB9)
  • 免疫印迹; 小鼠; 1:500; 图 s8
赛默飞世尔 Creb1抗体(Invitrogen, MA1-083)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s8). Transl Psychiatry (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s8
赛默飞世尔 Creb1抗体(Invitrogen, PA1-4619)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s8). Transl Psychiatry (2019) ncbi
domestic rabbit 单克隆(F.959.4)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 6f
  • 免疫印迹; 大鼠; 1:500; 图 6a
赛默飞世尔 Creb1抗体(Thermo, MA5-11192)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 6f) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 6a). J Pain (2017) ncbi
小鼠 单克隆(LB9)
  • 免疫组化; 大鼠; 1:500; 图 6
赛默飞世尔 Creb1抗体(Zymed, 35-0900)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 6). Neuroscience (2013) ncbi
小鼠 单克隆(LB9)
  • 免疫组化; 大鼠; 1:500; 图 3
赛默飞世尔 Creb1抗体(Zymed, 35-0900)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3). Brain Res (2009) ncbi
小鼠 单克隆(LB9)
  • 免疫印迹; 小鼠; 0.5 ug/ml; 图 4
赛默飞世尔 Creb1抗体(Zymed, 35-0900)被用于被用于免疫印迹在小鼠样本上浓度为0.5 ug/ml (图 4). J Clin Invest (2005) ncbi
圣克鲁斯生物技术
小鼠 单克隆(D-12)
  • 免疫印迹; 小鼠; 图 11
圣克鲁斯生物技术 Creb1抗体(Santa Cruz, sc-377154)被用于被用于免疫印迹在小鼠样本上 (图 11). PLoS ONE (2016) ncbi
小鼠 单克隆(24H4B)
  • 免疫印迹; 人类; 1:2000; 图 3a
圣克鲁斯生物技术 Creb1抗体(Santa Cruz, sc271)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). FEBS Lett (2016) ncbi
小鼠 单克隆(X-12)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Creb1抗体(Santa Cruz Biotechnology, sc-240)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(X-12)
  • 免疫印迹; 小鼠; 1:200; 图 4b
圣克鲁斯生物技术 Creb1抗体(Santa Cruz, sc-240)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 4b). Cell Signal (2016) ncbi
小鼠 单克隆(D-4)
  • 染色质免疫沉淀 ; 人类; 图 5
  • 免疫细胞化学; 人类; 1:50; 图 5
圣克鲁斯生物技术 Creb1抗体(Santa-Cruz Biotechnology, sc-374227)被用于被用于染色质免疫沉淀 在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 5). BMC Cancer (2015) ncbi
小鼠 单克隆(X-12)
  • ChIP-Seq; 人类; 图 2c
圣克鲁斯生物技术 Creb1抗体(Santa Cruz Biotechnology, sc-240)被用于被用于ChIP-Seq在人类样本上 (图 2c). Genome Res (2015) ncbi
小鼠 单克隆(X-12)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Creb1抗体(Santa Cruz Biotechnology, X-12)被用于被用于免疫印迹在人类样本上. Leukemia (2015) ncbi
小鼠 单克隆(24H4B)
  • 染色质免疫沉淀 ; 人类
  • EMSA; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Creb1抗体(Santa Cruz Biotechnology, 24H4B)被用于被用于染色质免疫沉淀 在人类样本上, 被用于EMSA在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 8d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 8d). Cancer Biol Ther (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:2000; 图 5h
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5h). Theranostics (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Diabetologia (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫组化在小鼠样本上 (图 7a). Front Aging Neurosci (2022) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:500; 图 4b, 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b, 5a). Front Aging Neurosci (2022) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 人类; 1:200; 图 4b, 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 4820)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4b, 5a). Front Aging Neurosci (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 3a). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Neural Regen Res (2022) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 s10f
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signalling, 9197)被用于被用于免疫印迹在人类样本上 (图 s10f). Theranostics (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197s)被用于被用于免疫印迹在小鼠样本上 (图 6a). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling technology, 9197S)被用于被用于免疫印迹在小鼠样本上 (图 4). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 5e
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197s)被用于被用于免疫印迹在人类样本上 (图 5e) 和 被用于免疫印迹在小鼠样本上 (图 4a). CNS Neurosci Ther (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 11a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 5m
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 5m). Cell Rep (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 2a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上 (图 2a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 大鼠; 1:2000; 图 6d, 6i
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 4820)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6d, 6i). Front Neurosci (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Oncogene (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Breast Cancer Res (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于免疫印迹在人类样本上 (图 4c). Genes (Basel) (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). PLoS Biol (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在人类样本上 (图 3c). Oncol Rep (2021) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9104)被用于被用于免疫印迹在人类样本上 (图 3c). Oncol Rep (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Aging Cell (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 2g
  • 免疫印迹; 人类; 图 5e, s3a
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在小鼠样本上 (图 2g) 和 被用于免疫印迹在人类样本上 (图 5e, s3a). Cell Death Dis (2021) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6g). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Cell Commun Signal (2021) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 2a). JCI Insight (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 3n
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上 (图 3n). elife (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 48H2)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Sci Adv (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 家羊; 1:1000; 图 s10c
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在家羊样本上浓度为1:1000 (图 s10c). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 4820)被用于被用于免疫印迹在人类样本上 (图 6d). Sci Adv (2020) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 1:1500; 图 1k
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在小鼠样本上浓度为1:1500 (图 1k). Sci Adv (2020) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 人类; 1:1000; 图 5f, 7
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signalling technology, 9196)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f, 7). Nat Commun (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 5f, 7
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signalling technology, 9197)被用于被用于免疫印迹在人类样本上 (图 5f, 7). Nat Commun (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:250; 图 6b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 6b). Arthritis Res Ther (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 1m, 5e
  • 免疫印迹; 大鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1m, 5e) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 2c). Aging Cell (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化-冰冻切片; 大鼠; 1:6000; 图 2i
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:6000 (图 2i). J Comp Neurol (2020) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2k
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197 s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2k). elife (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197S)被用于被用于免疫印迹在人类样本上 (图 4d). Cell Adh Migr (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). elife (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 1d). Cell (2019) ncbi
domestic rabbit 单克隆(48H2)
  • proximity ligation assay; 人类; 图 1e
  • 免疫组化-石蜡切片; 人类; 图 2a
  • 免疫沉淀; 人类; 图 1b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于proximity ligation assay在人类样本上 (图 1e), 被用于免疫组化-石蜡切片在人类样本上 (图 2a), 被用于免疫沉淀在人类样本上 (图 1b) 和 被用于免疫印迹在人类样本上 (图 1b). Anal Cell Pathol (Amst) (2019) ncbi
小鼠 单克隆(86B10)
  • 免疫沉淀; 人类; 图 1b
  • 免疫细胞化学; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9104)被用于被用于免疫沉淀在人类样本上 (图 1b) 和 被用于免疫细胞化学在人类样本上 (图 1c). Anal Cell Pathol (Amst) (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 3a). EMBO J (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫组化在小鼠样本上 (图 2h). Cell (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化; 小鼠; 1:100; 图 6b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Bone Res (2018) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 4820s)被用于被用于免疫印迹在小鼠样本上 (图 6a). PLoS Biol (2018) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:1000; 图 s7b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7b). Nat Cell Biol (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signalling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Neurochem Res (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 5a). FASEB J (2018) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 大鼠; 图 6o
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在大鼠样本上 (图 6o). Brain Behav Immun (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signalling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 1e). Mol Neurobiol (2018) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 人类; 1:1000; 图 s1c
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 4820)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1c). J Cell Sci (2017) ncbi
小鼠 单克隆(86B10)
  • 免疫组化-冰冻切片; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9104)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2b). Mol Vis (2017) ncbi
domestic rabbit 单克隆(87G3)
  • 免疫组化-冰冻切片; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9187)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3a). Mol Vis (2017) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9196)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 小鼠; 图 s7i
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 4820)被用于被用于免疫印迹在小鼠样本上 (图 s7i). Nature (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Diabetes (2017) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; pigs ; 图 2d
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 4820)被用于被用于免疫印迹在pigs 样本上 (图 2d). BMC Biotechnol (2017) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上 (图 6h). Br J Cancer (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Cell Death Differ (2017) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 小鼠; 图 6j
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9196)被用于被用于免疫印迹在小鼠样本上 (图 6j). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 3b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 8a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上 (图 8a). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化-自由浮动切片; 大鼠; 1:800; 图 1c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:800 (图 1c). elife (2017) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 86B10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Diabetes Obes Metab (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 7). Mol Carcinog (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 2a, s3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, s3a). Gastroenterology (2017) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 7). Sci Rep (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 1:1000; 图 1f, S10a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f, S10a). Nat Chem Biol (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:1000; 图 8f
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8f). Nat Commun (2016) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 小鼠; 1:2000; 图 6d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9196)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 5b, 5c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5b, 5c). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 4b). Biochem Biophys Res Commun (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 4b). Autophagy (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 图 4b
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在小鼠样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4a). Autophagy (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9196)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Exp Ther Med (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signalling, 9104)被用于被用于免疫印迹在小鼠样本上 (图 s2). J Cell Biol (2016) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9196S)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Biol Cell (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:500; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹基因敲除验证; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 4g). Oncotarget (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Tech, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上 (图 3d). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 1
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). elife (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:5000; 图 s5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signalling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5). Nat Commun (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 86B10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). J Exp Med (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于免疫印迹在人类样本上. PLoS Genet (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 10a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10a). Exp Neurol (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 4a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technologies, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 86B10)被用于被用于免疫印迹在小鼠样本上 (图 s7). Nature (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197S)被用于被用于免疫印迹在人类样本上 (图 5). Life Sci (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Neural Plast (2016) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 4820)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 8). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(87G3)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 87G3)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). elife (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:2000; 图 4
  • 染色质免疫沉淀 ; 人类; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4) 和 被用于染色质免疫沉淀 在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Neural Plast (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, cs-9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). EMBO Mol Med (2016) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, cs-9196)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signalling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). Mol Cell Endocrinol (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在大鼠样本上 (图 4a). Chin Med J (Engl) (2016) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104S)被用于被用于免疫印迹在大鼠样本上 (图 5). Autophagy (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 染色质免疫沉淀 ; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于染色质免疫沉淀 在大鼠样本上 (图 2). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 5f
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上 (图 5f). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 染色质免疫沉淀 ; 小鼠; 图 5e
  • EMSA; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 5e) 和 被用于EMSA在小鼠样本上 (图 5d). Cell Signal (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上 (图 6). Endocrinology (2016) ncbi
  • 免疫印迹; 大鼠; 1:600; 图 5a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 8212s)被用于被用于免疫印迹在大鼠样本上浓度为1:600 (图 5a). Mol Med Rep (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 5). Nat Commun (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 5). Eur Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9196)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biomed Res Int (2015) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9104)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Biomed Res Int (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 48H2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Anesthesiology (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurochem (2015) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Creb1抗体(cell signaling, # 4820)被用于被用于免疫印迹在小鼠样本上. Biochem Pharmacol (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197S)被用于被用于免疫印迹在大鼠样本上 (图 5). J Korean Med Sci (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(86B10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9104)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Int J Mol Sci (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(CST, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Pain (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technologies, 4820)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Mol Metab (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197L)被用于被用于免疫印迹在人类样本上 (图 2). Nat Cell Biol (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Int J Neuropsychopharmacol (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 染色质免疫沉淀 ; 人类
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于染色质免疫沉淀 在人类样本上. Leukemia (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(48H2)
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signalling Technology, 9197L)被用于. BMC Neurosci (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 犬; 图 3
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在犬样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Vet Comp Oncol (2016) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 图 s2b
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在小鼠样本上 (图 s2b). Cell Res (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 48H2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Alzheimers Dis (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; pigs ; 图 3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signaling, 9197S)被用于被用于免疫印迹在pigs 样本上 (图 3). Mol Neurobiol (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197S)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 9197)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Hum Mol Genet (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Tech, 9197)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 大鼠; 图 e3
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在大鼠样本上 (图 e3). Nature (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 9197)被用于被用于免疫印迹在人类样本上 (图 2d). Sci Rep (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, 48H2)被用于被用于免疫印迹在小鼠样本上. EMBO J (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell signal, 9197S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Evid Based Complement Alternat Med (2014) ncbi
domestic rabbit 单克隆(48H2)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling, 48H2)被用于被用于染色质免疫沉淀 在人类样本上 和 被用于免疫印迹在人类样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(1B6)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology Inc, 9196)被用于被用于免疫印迹在小鼠样本上. Br J Pharmacol (2013) ncbi
domestic rabbit 单克隆(D76D11)
  • 免疫细胞化学; 大鼠
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signaling Technology, D76D11)被用于被用于免疫细胞化学在大鼠样本上. J Neurosci (2013) ncbi
domestic rabbit 单克隆(48H2)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Creb1抗体(Cell Signalling, 48H2)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
文章列表
  1. Hu B, Lv X, Wei L, Wang Y, Zheng G, Yang C, et al. Sensory Nerve Maintains Intervertebral Disc Extracellular Matrix Homeostasis Via CGRP/CHSY1 Axis. Adv Sci (Weinh). 2022;9:e2202620 pubmed 出版商
  2. Tang Y, Li K, Hu B, Cai Z, Li J, Tao H, et al. Fatty acid binding protein 5 promotes the proliferation, migration, and invasion of hepatocellular carcinoma cells by degradation of Krüppel-like factor 9 mediated by miR-889-5p via cAMP-response element binding protein. Cancer Biol Ther. 2022;23:424-438 pubmed 出版商
  3. Shi H, Wu D, Chen R, Li N, Zhu L. Requirement of hippocampal DG nNOS-CAPON dissociation for the anxiolytic and antidepressant effects of fluoxetine. Theranostics. 2022;12:3656-3675 pubmed 出版商
  4. Merino B, Casanueva xc1 lvarez E, Quesada I, Gonz xe1 lez Casimiro C, Fern xe1 ndez D xed az C, Postigo Casado T, et al. Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia. 2022;65:1375-1389 pubmed 出版商
  5. Shrestha J, Santerre M, Allen C, Arjona S, Merali C, Mukerjee R, et al. HIV-1 gp120 Impairs Spatial Memory Through Cyclic AMP Response Element-Binding Protein. Front Aging Neurosci. 2022;14:811481 pubmed 出版商
  6. Cyra M, Schulte M, Berthold R, Heinst L, Jansen E, Gr xfc newald I, et al. SS18-SSX drives CREB activation in synovial sarcoma. Cell Oncol (Dordr). 2022;45:399-413 pubmed 出版商
  7. Abd El Rahman S, Fayed H. Improved cognition impairment by activating cannabinoid receptor type 2: Modulating CREB/BDNF expression and impeding TLR-4/NFκBp65/M1 microglia signaling pathway in D-galactose-injected ovariectomized rats. PLoS ONE. 2022;17:e0265961 pubmed 出版商
  8. Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H, et al. Forsythoside A Mitigates Alzheimer's-like Pathology by Inhibiting Ferroptosis-mediated Neuroinflammation via Nrf2/GPX4 Axis Activation. Int J Biol Sci. 2022;18:2075-2090 pubmed 出版商
  9. Liu Y, Hu P, Zhai S, Feng W, Zhang R, Li Q, et al. Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer's disease. Neural Regen Res. 2022;17:2079-2088 pubmed 出版商
  10. Ni Y, Hu B, Wu G, Shao Z, Zheng Y, Zhang R, et al. Interruption of neutrophil extracellular traps formation dictates host defense and tubular HOXA5 stability to augment efficacy of anti-Fn14 therapy against septic AKI. Theranostics. 2021;11:9431-9451 pubmed 出版商
  11. Wang Q, Qin F, Wang H, Yang H, Liu Q, Li Z, et al. Effect of Electro-Acupuncture at ST36 and SP6 on the cAMP -CREB Pathway and mRNA Expression Profile in the Brainstem of Morphine Tolerant Mice. Front Neurosci. 2021;15:698967 pubmed 出版商
  12. Lv X, Gao F, LI T, Xue P, Wang X, Wan M, et al. Skeleton interoception regulates bone and fat metabolism through hypothalamic neuroendocrine NPY. elife. 2021;10: pubmed 出版商
  13. Lim D, Kim M, Yoon M, Lee J, Lee C, Um M. 1,3-Dicaffeoylquinic Acid as an Active Compound of Arctium lappa Root Extract Ameliorates Depressive-Like Behavior by Regulating Hippocampal Nitric Oxide Synthesis in Ovariectomized Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  14. Chen H, Teng Y, Chen X, Liu Z, Geng F, Liu Y, et al. Platelet-derived growth factor (PDGF)-BB protects dopaminergic neurons via activation of Akt/ERK/CREB pathways to upregulate tyrosine hydroxylase. CNS Neurosci Ther. 2021;27:1300-1312 pubmed 出版商
  15. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  16. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  17. Kim Y, Lee J, Kim H, Jang J, Choung Y. Gap Junction-Mediated Intercellular Communication of cAMP Prevents CDDP-Induced Ototoxicity via cAMP/PKA/CREB Pathway. Int J Mol Sci. 2021;22: pubmed 出版商
  18. Liu L, Xu X, Qu Z, Zhao L, Zhang C, Li Z, et al. Determining 5HT7R's Involvement in Modifying the Antihyperalgesic Effects of Electroacupuncture on Rats With Recurrent Migraine. Front Neurosci. 2021;15:668616 pubmed 出版商
  19. Qiao Y, Jin T, Guan S, Cheng S, Wen S, Zeng H, et al. Long non-coding RNA Lnc-408 promotes invasion and metastasis of breast cancer cell by regulating LIMK1. Oncogene. 2021;40:4198-4213 pubmed 出版商
  20. Al Zahrani K, Abou Hamad J, Pascoal J, Labrèche C, Garland B, Sabourin L. AKT-mediated phosphorylation of Sox9 induces Sox10 transcription in a murine model of HER2-positive breast cancer. Breast Cancer Res. 2021;23:55 pubmed 出版商
  21. Nakajima W, Miyazaki K, Asano Y, Kubota S, Tanaka N. Krüppel-Like Factor 4 and Its Activator APTO-253 Induce NOXA-Mediated, p53-Independent Apoptosis in Triple-Negative Breast Cancer Cells. Genes (Basel). 2021;12: pubmed 出版商
  22. Arveseth C, Happ J, Hedeen D, Zhu J, Capener J, Klatt Shaw D, et al. Smoothened transduces Hedgehog signals via activity-dependent sequestration of PKA catalytic subunits. PLoS Biol. 2021;19:e3001191 pubmed 出版商
  23. Wang Z, Zhang X, Tian X, Yang Y, Ma L, Wang J, et al. CREB stimulates GPX4 transcription to inhibit ferroptosis in lung adenocarcinoma. Oncol Rep. 2021;45: pubmed 出版商
  24. Sadeghi M, Hemmati S, Mohammadi S, Yousefi Manesh H, Vafaei A, Zare M, et al. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun. 2021;9:53 pubmed 出版商
  25. Wang J, Liu B, Xu Y, Yang M, Wang C, Song M, et al. Activation of CREB-mediated autophagy by thioperamide ameliorates β-amyloid pathology and cognition in Alzheimer's disease. Aging Cell. 2021;20:e13333 pubmed 出版商
  26. Wan X, Zhou M, Huang F, Zhao N, Chen X, Wu Y, et al. AKT1-CREB stimulation of PDGFRα expression is pivotal for PTEN deficient tumor development. Cell Death Dis. 2021;12:172 pubmed 出版商
  27. Deguise M, Pileggi C, De Repentigny Y, Beauvais A, Tierney A, Chehade L, et al. SMN Depleted Mice Offer a Robust and Rapid Onset Model of Nonalcoholic Fatty Liver Disease. Cell Mol Gastroenterol Hepatol. 2021;12:354-377.e3 pubmed 出版商
  28. Martinot E, Boerboom D. Slit/Robo signaling regulates Leydig cell steroidogenesis. Cell Commun Signal. 2021;19:8 pubmed 出版商
  29. Guo S, Chen Y, Yang Y, Zhang X, Ma L, Xue X, et al. TRIB2 modulates proteasome function to reduce ubiquitin stability and protect liver cancer cells against oxidative stress. Cell Death Dis. 2021;12:42 pubmed 出版商
  30. Nakayama A, Albarrán Juárez J, Liang G, Roquid K, Iring A, Tonack S, et al. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. JCI Insight. 2020;5: pubmed 出版商
  31. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  32. Ruiz Velasco A, Zi M, Hille S, Azam T, Kaur N, Jiang J, et al. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. elife. 2020;9: pubmed 出版商
  33. Qin Y, Chen W, Jiang G, Zhou L, Yang X, Li H, et al. Interfering MSN-NONO complex-activated CREB signaling serves as a therapeutic strategy for triple-negative breast cancer. Sci Adv. 2020;6:eaaw9960 pubmed 出版商
  34. Schiffner R, Bischoff S, Lehmann T, Irintchev A, Nistor M, Lemke C, et al. Altered Cerebral Blood Flow and Potential Neuroprotective Effect of Human Relaxin-2 (Serelaxin) During Hypoxia or Severe Hypovolemia in a Sheep Model. Int J Mol Sci. 2020;21: pubmed 出版商
  35. Pech Pool S, Berumen L, Martínez Moreno C, García Alcocer G, Carranza M, Luna M, et al. Thyrotropin-Releasing Hormone (TRH) and Somatostatin (SST), but not Growth Hormone-Releasing Hormone (GHRH) nor Ghrelin (GHRL), Regulate Expression and Release of Immune Growth Hormone (GH) from Chicken Bursal B-Lymphocyte Cultures. Int J Mol Sci. 2020;21: pubmed 出版商
  36. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  37. Xhima K, Markham Coultes K, Nedev H, Heinen S, Saragovi H, Hynynen K, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci Adv. 2020;6:eaax6646 pubmed 出版商
  38. Li C, Liu W, Li X, Zhang Z, Qi H, Liu S, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv. STZ rat model of AD. Brain Behav. 2020;10:e01505 pubmed 出版商
  39. Inda M, Joshi S, Wang T, Bolaender A, Gandu S, Koren Iii J, et al. The epichaperome is a mediator of toxic hippocampal stress and leads to protein connectivity-based dysfunction. Nat Commun. 2020;11:319 pubmed 出版商
  40. Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, et al. Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther. 2019;21:247 pubmed 出版商
  41. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  42. Kim J, Cho J, Kim S, Kang H, Kim D, Kim V, et al. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J Clin Invest. 2019;129:4207-4223 pubmed 出版商
  43. Lu W, Chen S, Chen X, Hu J, Xuan A, Ding S. Localization of area prostriata and its connections with primary visual cortex in rodent. J Comp Neurol. 2020;528:389-406 pubmed 出版商
  44. Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, et al. The mechanosensitive Piezo1 channel is required for bone formation. elife. 2019;8: pubmed 出版商
  45. Jin H, Xue L, Mo L, Zhang D, Guo X, Xu J, et al. Downregulation of miR-200c stabilizes XIAP mRNA and contributes to invasion and lung metastasis of bladder cancer. Cell Adh Migr. 2019;13:236-248 pubmed 出版商
  46. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  47. Bazzari F, Abdallah D, El Abhar H. Chenodeoxycholic Acid Ameliorates AlCl3-Induced Alzheimer's Disease Neurotoxicity and Cognitive Deterioration via Enhanced Insulin Signaling in Rats. Molecules. 2019;24: pubmed 出版商
  48. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  49. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  50. Du H, LE Y, Sun F, Li K, Xu Y. ILF2 Directly Binds and Stabilizes CREB to Stimulate Malignant Phenotypes of Liver Cancer Cells. Anal Cell Pathol (Amst). 2019;2019:1575031 pubmed 出版商
  51. Su L, Zhou L, Chen F, Wang H, Qian H, Sheng Y, et al. Cideb controls sterol-regulated ER export of SREBP/SCAP by promoting cargo loading at ER exit sites. EMBO J. 2019;38: pubmed 出版商
  52. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  53. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  54. Chen H, Hu B, Lv X, Zhu S, Zhen G, Wan M, et al. Prostaglandin E2 mediates sensory nerve regulation of bone homeostasis. Nat Commun. 2019;10:181 pubmed 出版商
  55. Walia M, Taylor S, Ho P, Martin T, Walkley C. Tolerance to sustained activation of the cAMP/Creb pathway activity in osteoblastic cells is enabled by loss of p53. Cell Death Dis. 2018;9:844 pubmed 出版商
  56. Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22 pubmed 出版商
  57. Matesanz N, Nikolic I, Leiva M, Pulgarín Alfaro M, Santamans A, Bernardo E, et al. p38α blocks brown adipose tissue thermogenesis through p38δ inhibition. PLoS Biol. 2018;16:e2004455 pubmed 出版商
  58. Chhipa R, Fan Q, Anderson J, Muraleedharan R, Huang Y, Ciraolo G, et al. AMP kinase promotes glioblastoma bioenergetics and tumour growth. Nat Cell Biol. 2018;20:823-835 pubmed 出版商
  59. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  60. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed 出版商
  61. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  62. Jana M, Ghosh S, Pahan K. Upregulation of Myelin Gene Expression by a Physically-Modified Saline via Phosphatidylinositol 3-Kinase-Mediated Activation of CREB: Implications for Multiple Sclerosis. Neurochem Res. 2018;43:407-419 pubmed 出版商
  63. Cai X, Yuan Y, Liao Z, Xing K, Zhu C, Xu Y, et al. α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J. 2018;32:488-499 pubmed 出版商
  64. Tang Y, Cai X, Zhang H, Shen H, Wang W, Shen Z, et al. miR-212 mediates counter-regulation on CRH expression and HPA axis activity in male mice. J Mol Endocrinol. 2017;59:365-375 pubmed 出版商
  65. Shi Y, Zhang X, Chen C, Tang M, Wang Z, Liang X, et al. Schisantherin A attenuates ischemia/reperfusion-induced neuronal injury in rats via regulation of TLR4 and C5aR1 signaling pathways. Brain Behav Immun. 2017;66:244-256 pubmed 出版商
  66. Tsuda T, Takefuji M, Wettschureck N, Kotani K, Morimoto R, Okumura T, et al. Corticotropin releasing hormone receptor 2 exacerbates chronic cardiac dysfunction. J Exp Med. 2017;214:1877-1888 pubmed 出版商
  67. Hossain M, Oomura Y, Katafuchi T. Glucose Can Epigenetically Alter the Gene Expression of Neurotrophic Factors in the Murine Brain Cells. Mol Neurobiol. 2018;55:3408-3425 pubmed 出版商
  68. Almeida L, Neto M, Sousa L, Tannous M, Curti C, Leopoldino A. SET oncoprotein accumulation regulates transcription through DNA demethylation and histone hypoacetylation. Oncotarget. 2017;8:26802-26818 pubmed 出版商
  69. Frank S, Berger P, Ljungman M, Miranti C. Human prostate luminal cell differentiation requires NOTCH3 induction by p38-MAPK and MYC. J Cell Sci. 2017;130:1952-1964 pubmed 出版商
  70. Dong E, Bachleda A, Xiong Y, Osawa S, Weiss E. Reduced phosphoCREB in Müller glia during retinal degeneration in rd10 mice. Mol Vis. 2017;23:90-102 pubmed
  71. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  72. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  73. Mosialou I, Shikhel S, Liu J, Maurizi A, Luo N, He Z, et al. MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature. 2017;543:385-390 pubmed 出版商
  74. Patil M, Sharma B, Elattar S, Chang J, Kapil S, Yuan J, et al. Id1 Promotes Obesity by Suppressing Brown Adipose Thermogenesis and White Adipose Browning. Diabetes. 2017;66:1611-1625 pubmed 出版商
  75. Frank S, Schulz V, Miranti C. A streamlined method for the design and cloning of shRNAs into an optimized Dox-inducible lentiviral vector. BMC Biotechnol. 2017;17:24 pubmed 出版商
  76. Liu Y, Xu H, Geng Y, Xu D, Zhang L, Yang Y, et al. Dibutyryl-cAMP attenuates pulmonary fibrosis by blocking myofibroblast differentiation via PKA/CREB/CBP signaling in rats with silicosis. Respir Res. 2017;18:38 pubmed 出版商
  77. Mandl M, Zhang S, Ulrich M, Schmoeckel E, Mayr D, Vollmar A, et al. Inhibition of Cdk5 induces cell death of tumor-initiating cells. Br J Cancer. 2017;116:912-922 pubmed 出版商
  78. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  79. Qiao A, Jin X, Pang J, Moskophidis D, Mivechi N. The transcriptional regulator of the chaperone response HSF1 controls hepatic bioenergetics and protein homeostasis. J Cell Biol. 2017;216:723-741 pubmed 出版商
  80. Akhmedov D, Mendoza Rodriguez M, Rajendran K, Rossi M, Wess J, Berdeaux R. Gs-DREADD Knock-In Mice for Tissue-Specific, Temporal Stimulation of Cyclic AMP Signaling. Mol Cell Biol. 2017;37: pubmed 出版商
  81. Feng L, Xue D, Chen E, Zhang W, Gao X, Yu J, et al. HMGB1 promotes the secretion of multiple cytokines and potentiates the osteogenic differentiation of mesenchymal stem cells through the Ras/MAPK signaling pathway. Exp Ther Med. 2016;12:3941-3947 pubmed 出版商
  82. Pandini G, Satriano C, Pietropaolo A, Gianì F, Travaglia A, La Mendola D, et al. The Inorganic Side of NGF: Copper(II) and Zinc(II) Affect the NGF Mimicking Signaling of the N-Terminus Peptides Encompassing the Recognition Domain of TrkA Receptor. Front Neurosci. 2016;10:569 pubmed 出版商
  83. Yu X, Curlik D, Oh M, Yin J, Disterhoft J. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. elife. 2017;6: pubmed 出版商
  84. Möllmann J, Kahles F, Lebherz C, Kappel B, Baeck C, Tacke F, et al. The PDE4 inhibitor roflumilast reduces weight gain by increasing energy expenditure and leads to improved glucose metabolism. Diabetes Obes Metab. 2017;19:496-508 pubmed 出版商
  85. Quinn S, Graves S, Dains McGahee C, Friedman E, Hassan H, Witkowski P, et al. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells. Mol Carcinog. 2017;56:1344-1360 pubmed 出版商
  86. Kim H, Kim M, Park Y, Park I, Kim T, Yang S, et al. Prostaglandin E2 Activates YAP and a Positive-Signaling Loop to Promote Colon Regeneration After Colitis but Also Carcinogenesis in Mice. Gastroenterology. 2017;152:616-630 pubmed 出版商
  87. Luo W, Mizuno H, Iwata R, Nakazawa S, Yasuda K, Itohara S, et al. Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo. Sci Rep. 2016;6:35747 pubmed 出版商
  88. Roy A, Kundu M, Jana M, Mishra R, Yung Y, Luan C, et al. Identification and characterization of PPAR? ligands in the hippocampus. Nat Chem Biol. 2016;12:1075-1083 pubmed 出版商
  89. Eccles R, Czajkowski M, Barth C, Müller P, McShane E, Grunwald S, et al. Bimodal antagonism of PKA signalling by ARHGAP36. Nat Commun. 2016;7:12963 pubmed 出版商
  90. Doan K, Kinyua A, Yang D, Ko C, Moh S, Shong K, et al. FoxO1 in dopaminergic neurons regulates energy homeostasis and targets tyrosine hydroxylase. Nat Commun. 2016;7:12733 pubmed 出版商
  91. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  92. Yan X, Liu J, Ye Z, Huang J, He F, Xiao W, et al. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Electrical Stimulation. PLoS ONE. 2016;11:e0162784 pubmed 出版商
  93. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  94. Wang Y, Lin S, Hsieh P, Hung S. Concomitant beige adipocyte differentiation upon induction of mesenchymal stem cells into brown adipocytes. Biochem Biophys Res Commun. 2016;478:689-95 pubmed 出版商
  95. Wang J, Zhou J, Kho D, Reiners J, Wu G. Role for DUSP1 (dual-specificity protein phosphatase 1) in the regulation of autophagy. Autophagy. 2016;12:1791-1803 pubmed
  96. Zhang Y, Lin R, Tao J, Wu Y, Chen B, Yu K, et al. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus. Exp Ther Med. 2016;12:777-782 pubmed
  97. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  98. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  99. Barquilla A, Lamberto I, Noberini R, Heynen Genel S, Brill L, Pasquale E. Protein kinase A can block EphA2 receptor-mediated cell repulsion by increasing EphA2 S897 phosphorylation. Mol Biol Cell. 2016;27:2757-70 pubmed 出版商
  100. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  101. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  102. Qiao Y, Qian Y, Wang J, Tang X. Melanoma cell adhesion molecule stimulates yes-associated protein transcription by enhancing CREB activity via c-Jun/c-Fos in hepatocellular carcinoma cells. Oncol Lett. 2016;11:3702-3708 pubmed
  103. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  104. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  105. Antony N, McDougall A, Mantamadiotis T, Cole T, Bird A. Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep. 2016;6:25569 pubmed 出版商
  106. Natale C, Duperret E, Zhang J, Sadeghi R, Dahal A, O Brien K, et al. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. elife. 2016;5: pubmed 出版商
  107. Walia M, Ho P, Taylor S, Ng A, Gupte A, Chalk A, et al. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance. elife. 2016;5: pubmed 出版商
  108. Liang Y, Liu Y, Hou B, Zhang W, Liu M, Sun Y, et al. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Mol Pain. 2016;12: pubmed 出版商
  109. Park S, Lee J, Herbst R, Koo J. GSK-3? Is a Novel Target of CREB and CREB-GSK-3? Signaling Participates in Cell Viability in Lung Cancer. PLoS ONE. 2016;11:e0153075 pubmed 出版商
  110. Hattori K, Naguro I, Okabe K, Funatsu T, Furutani S, Takeda K, et al. ASK1 signalling regulates brown and beige adipocyte function. Nat Commun. 2016;7:11158 pubmed 出版商
  111. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  112. Byrd P, Stewart G, Smith A, Eaton C, Taylor A, Guy C, et al. A Hypomorphic PALB2 Allele Gives Rise to an Unusual Form of FA-N Associated with Lymphoid Tumour Development. PLoS Genet. 2016;12:e1005945 pubmed 出版商
  113. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  114. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  115. Antony A, Paillard M, Moffat C, Juskeviciute E, Correnti J, Bolon B, et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat Commun. 2016;7:10955 pubmed 出版商
  116. Johanns M, Lai Y, Hsu M, Jacobs R, Vertommen D, Van Sande J, et al. AMPK antagonizes hepatic glucagon-stimulated cyclic AMP signalling via phosphorylation-induced activation of cyclic nucleotide phosphodiesterase 4B. Nat Commun. 2016;7:10856 pubmed 出版商
  117. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  118. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  119. Choi D, Lee K, Lee J. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model of vascular dementia. Mol Med Rep. 2016;13:2981-90 pubmed 出版商
  120. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  121. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  122. Pan B, Lian J, Huang X, Deng C. Aripiprazole Increases the PKA Signalling and Expression of the GABAA Receptor and CREB1 in the Nucleus Accumbens of Rats. J Mol Neurosci. 2016;59:36-47 pubmed 出版商
  123. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  124. Zámbó V, Tóth M, Schlachter K, Szelényi P, Sarnyai F, Lotz G, et al. Cytosolic localization of NADH cytochrome bâ‚… oxidoreductase (Ncb5or). FEBS Lett. 2016;590:661-71 pubmed 出版商
  125. Singh N, Kotla S, Kumar R, Rao G. Cyclic AMP Response Element Binding Protein Mediates Pathological Retinal Neovascularization via Modulating DLL4-NOTCH1 Signaling. EBioMedicine. 2015;2:1767-84 pubmed 出版商
  126. Bouilloux F, Thireau J, Ventéo S, Farah C, Karam S, Dauvilliers Y, et al. Loss of the transcription factor Meis1 prevents sympathetic neurons target-field innervation and increases susceptibility to sudden cardiac death. elife. 2016;5: pubmed 出版商
  127. Tai D, Liu Y, Hsu W, Ma Y, Cheng S, Liu S, et al. MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome. Nat Commun. 2016;7:10552 pubmed 出版商
  128. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  129. Bian Y, Yang L, Wang Z, Wang Q, Zeng L, Xu G. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice. Neural Plast. 2015;2015:627837 pubmed 出版商
  130. Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, et al. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol Med. 2016;8:232-46 pubmed 出版商
  131. Bertoldo M, Guibert E, Faure M, Guillou F, Ramé C, Nadal Desbarats L, et al. Specific deletion of AMP-activated protein kinase (α1AMPK) in mouse Sertoli cells modifies germ cell quality. Mol Cell Endocrinol. 2016;423:96-112 pubmed 出版商
  132. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  133. Li X, Lu F, Li W, Xu J, Sun X, Qin L, et al. Underlying Mechanisms of Memory Deficits Induced by Etomidate Anesthesia in Aged Rat Model: Critical Role of Immediate Early Genes. Chin Med J (Engl). 2016;129:48-53 pubmed 出版商
  134. He G, Xu W, Li J, Li S, Liu B, Tan X, et al. Huwe1 interacts with Gadd45b under oxygen-glucose deprivation and reperfusion injury in primary Rat cortical neuronal cells. Mol Brain. 2015;8:88 pubmed 出版商
  135. Wang J, Cao Y, Li Q, Yang Y, Jin M, Chen D, et al. A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy. 2015;11:2057-2073 pubmed 出版商
  136. Snow W, Pahlavan P, Djordjevic J, McAllister D, Platt E, Alashmali S, et al. Morris Water Maze Training in Mice Elevates Hippocampal Levels of Transcription Factors Nuclear Factor (Erythroid-derived 2)-like 2 and Nuclear Factor Kappa B p65. Front Mol Neurosci. 2015;8:70 pubmed 出版商
  137. Arango Lievano M, Lambert W, Bath K, Garabedian M, Chao M, Jeanneteau F. Neurotrophic-priming of glucocorticoid receptor signaling is essential for neuronal plasticity to stress and antidepressant treatment. Proc Natl Acad Sci U S A. 2015;112:15737-42 pubmed 出版商
  138. Wang Y, Zhang Y, Hu W, Xie S, Gong C, Iqbal K, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709 pubmed 出版商
  139. Li M, Quan C, Toth R, Campbell D, MacKintosh C, Wang H, et al. Fasting and Systemic Insulin Signaling Regulate Phosphorylation of Brain Proteins That Modulate Cell Morphology and Link to Neurological Disorders. J Biol Chem. 2015;290:30030-41 pubmed 出版商
  140. Zhang Y, Li W, Zhu M, Li Y, Xu Z, Zuo B. FHL3 differentially regulates the expression of MyHC isoforms through interactions with MyoD and pCREB. Cell Signal. 2016;28:60-73 pubmed 出版商
  141. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  142. Hervouet E, Claude Taupin A, Gauthier T, Perez V, Fraichard A, Adami P, et al. The autophagy GABARAPL1 gene is epigenetically regulated in breast cancer models. BMC Cancer. 2015;15:729 pubmed 出版商
  143. Wu H, Yang S, Dai J, Qiu Y, Miao Y, Zhang X. Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia. Mol Med Rep. 2015;12:6427-34 pubmed 出版商
  144. Yang L, McKnight G. Hypothalamic PKA regulates leptin sensitivity and adiposity. Nat Commun. 2015;6:8237 pubmed 出版商
  145. Harmeier A, Obermueller S, Meyer C, Revel F, Buchy D, Chaboz S, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol. 2015;25:2049-61 pubmed 出版商
  146. Woolery K, Mohamed M, Linger R, Dobrinski K, Roman J, Kruk P. BRCA1 185delAG Mutation Enhances Interleukin-1β Expression in Ovarian Surface Epithelial Cells. Biomed Res Int. 2015;2015:652017 pubmed 出版商
  147. Savic D, Partridge E, Newberry K, Smith S, Meadows S, Roberts B, et al. CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res. 2015;25:1581-9 pubmed 出版商
  148. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  149. Chen B, Ma X, Geng Z, Huang S, Zhai L, Guo Y, et al. Up-regulation of c-Jun NH2-terminal kinase-interacting protein 3 (JIP3) contributes to BDNF-enhanced neurotransmitter release. J Neurochem. 2015;135:453-65 pubmed 出版商
  150. Wolter S, Kloth C, Golombek M, Dittmar F, Försterling L, Seifert R. cCMP causes caspase-dependent apoptosis in mouse lymphoma cell lines. Biochem Pharmacol. 2015;98:119-31 pubmed 出版商
  151. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  152. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  153. Kim H, Kim I, Dong Y, Lee I, Kim J, Kim J, et al. Melanogenesis-inducing effect of cirsimaritin through increases in microphthalmia-associated transcription factor and tyrosinase expression. Int J Mol Sci. 2015;16:8772-88 pubmed 出版商
  154. Zhang R, Huang M, Cao Z, Qi J, Qiu Z, Chiang L. MeCP2 plays an analgesic role in pain transmission through regulating CREB / miR-132 pathway. Mol Pain. 2015;11:19 pubmed 出版商
  155. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  156. Chakraborty A, Diefenbacher M, Mylona A, Kassel O, Behrens A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat Commun. 2015;6:6782 pubmed 出版商
  157. Rajan S, Dickson L, Mathew E, Orr C, Ellenbroek J, Philipson L, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A. Mol Metab. 2015;4:265-76 pubmed 出版商
  158. Shoshan E, Mobley A, Braeuer R, Kamiya T, Huang L, Vasquez M, et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and metastasis. Nat Cell Biol. 2015;17:311-21 pubmed 出版商
  159. Sadegh M, Ekman M, Krawczyk K, Svensson D, Göransson O, Dahan D, et al. Detrusor induction of miR-132/212 following bladder outlet obstruction: association with MeCP2 repression and cell viability. PLoS ONE. 2015;10:e0116784 pubmed 出版商
  160. Subbanna S, Nagre N, Umapathy N, Pace B, Basavarajappa B. Ethanol exposure induces neonatal neurodegeneration by enhancing CB1R Exon1 histone H4K8 acetylation and up-regulating CB1R function causing neurobehavioral abnormalities in adult mice. Int J Neuropsychopharmacol. 2014;18: pubmed 出版商
  161. Iwano S, Satou A, Matsumura S, Sugiyama N, Ishihama Y, Toyoshima F. PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X. Mol Cell Biol. 2015;35:1197-208 pubmed 出版商
  162. Chae H, Mitton B, Lacayo N, Sakamoto K. Replication factor C3 is a CREB target gene that regulates cell cycle progression through the modulation of chromatin loading of PCNA. Leukemia. 2015;29:1379-89 pubmed 出版商
  163. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  164. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  165. Musazzi L, Seguini M, Mallei A, Treccani G, Pelizzari M, Tornese P, et al. Time-dependent activation of MAPK/Erk1/2 and Akt/GSK3 cascades: modulation by agomelatine. BMC Neurosci. 2014;15:119 pubmed 出版商
  166. Noguchi S, Kumazaki M, Mori T, Baba K, Okuda M, Mizuno T, et al. Analysis of microRNA-203 function in CREB/MITF/RAB27a pathway: comparison between canine and human melanoma cells. Vet Comp Oncol. 2016;14:384-394 pubmed 出版商
  167. Leung C, Yeung T, Yip K, Pradeep S, Balasubramanian L, Liu J, et al. Calcium-dependent FAK/CREB/TNNC1 signalling mediates the effect of stromal MFAP5 on ovarian cancer metastatic potential. Nat Commun. 2014;5:5092 pubmed 出版商
  168. Chu Y, Gómez Rosso L, Huang P, Wang Z, Xu Y, Yao X, et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res. 2014;24:1250-65 pubmed 出版商
  169. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice. J Alzheimers Dis. 2015;43:1413-27 pubmed 出版商
  170. Chen Y, Zheng Z, Zhu X, Shi Y, Tian D, Zhao F, et al. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation. Mol Neurobiol. 2015;52:256-69 pubmed 出版商
  171. Morris M, Gilliam E, Button J, Li L. Dynamic modulation of innate immune response by varying dosages of lipopolysaccharide (LPS) in human monocytic cells. J Biol Chem. 2014;289:21584-90 pubmed 出版商
  172. Ramos A, Rodríguez Seoane C, Rosa I, Trossbach S, Ortega Alonso A, Tomppo L, et al. Neuropeptide precursor VGF is genetically associated with social anhedonia and underrepresented in the brain of major mental illness: its downregulation by DISC1. Hum Mol Genet. 2014;23:5859-65 pubmed 出版商
  173. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  174. Madiraju A, Erion D, Rahimi Y, Zhang X, Braddock D, Albright R, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542-6 pubmed 出版商
  175. Shaiken T, Opekun A. Dissecting the cell to nucleus, perinucleus and cytosol. Sci Rep. 2014;4:4923 pubmed 出版商
  176. Bruno N, Kelly K, Hawkins R, Bramah Lawani M, Amelio A, Nwachukwu J, et al. Creb coactivators direct anabolic responses and enhance performance of skeletal muscle. EMBO J. 2014;33:1027-43 pubmed 出版商
  177. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  178. Chen L, Dai J, Wang Z, Zhang H, Huang Y, Zhao Y. Ginseng Total Saponins Reverse Corticosterone-Induced Changes in Depression-Like Behavior and Hippocampal Plasticity-Related Proteins by Interfering with GSK-3 ? -CREB Signaling Pathway. Evid Based Complement Alternat Med. 2014;2014:506735 pubmed 出版商
  179. Du Y, Teng X, Wang N, Zhang X, Chen J, Ding P, et al. NF-?B and enhancer-binding CREB protein scaffolded by CREB-binding protein (CBP)/p300 proteins regulate CD59 protein expression to protect cells from complement attack. J Biol Chem. 2014;289:2711-24 pubmed 出版商
  180. Lambert W, Xu C, Neubert T, Chao M, Garabedian M, Jeanneteau F. Brain-derived neurotrophic factor signaling rewrites the glucocorticoid transcriptome via glucocorticoid receptor phosphorylation. Mol Cell Biol. 2013;33:3700-14 pubmed 出版商
  181. Korhonen R, Hömmö T, Keränen T, Laavola M, Hamalainen M, Vuolteenaho K, et al. Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1. Br J Pharmacol. 2013;169:1525-36 pubmed 出版商
  182. Megill A, Lee T, Dibattista A, Song J, Spitzer M, Rubinshtein M, et al. A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. J Neurosci. 2013;33:9306-18 pubmed 出版商
  183. Antony N, Weir J, McDougall A, Mantamadiotis T, Meikle P, Cole T, et al. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1) in mouse lung type II epithelial cells. PLoS ONE. 2013;8:e59763 pubmed 出版商
  184. Oliveira D, Sanada P, Filho A, Conceição G, Cerutti J, Cerutti S. Long-term treatment with standardized extract of Ginkgo biloba L. enhances the conditioned suppression of licking in rats by the modulation of neuronal and glial cell function in the dorsal hippocampus and central amygdala. Neuroscience. 2013;235:70-86 pubmed 出版商
  185. Oliveira D, Sanada P, Saragossa Filho A, Innocenti L, Oler G, Cerutti J, et al. Neuromodulatory property of standardized extract Ginkgo biloba L. (EGb 761) on memory: behavioral and molecular evidence. Brain Res. 2009;1269:68-89 pubmed 出版商
  186. Engelking L, Liang G, Hammer R, Takaishi K, Kuriyama H, Evers B, et al. Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J Clin Invest. 2005;115:2489-98 pubmed