这是一篇来自已证抗体库的有关大鼠 Ctnnb1的综述,是根据449篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Ctnnb1 抗体。
Ctnnb1 同义词: Catnb

圣克鲁斯生物技术
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 免疫印迹; 人类; 图 3d, 8e
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上 (图 3d, 8e). Cell Death Dis (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 大鼠; 1:500; 图 1d
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, SC-7963)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5e
  • 免疫印迹; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5e) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 大鼠; 图 3f
  • 免疫印迹; 大鼠; 图 3b
圣克鲁斯生物技术 Ctnnb1抗体(Santa, sc-7963)被用于被用于免疫细胞化学在大鼠样本上 (图 3f) 和 被用于免疫印迹在大鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 1c
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在小鼠样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 6f
圣克鲁斯生物技术 Ctnnb1抗体(Santa, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 6f). Cell Death Dis (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500; 图 7g
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7g). Commun Biol (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 牛; 图 3b
  • 免疫印迹; 牛; 1:2000; 图 2c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫细胞化学在牛样本上 (图 3b) 和 被用于免疫印迹在牛样本上浓度为1:2000 (图 2c). BMC Vet Res (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 犬; 图 1d
  • 免疫印迹; 人类; 图 2b, s2b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫细胞化学在犬样本上 (图 1d) 和 被用于免疫印迹在人类样本上 (图 2b, s2b). iScience (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 2e
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc7963)被用于被用于免疫印迹在小鼠样本上 (图 2e). Brain Behav (2020) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 4c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, E-5)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 4c). BMC Cancer (2019) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Adv (2019) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-133240)被用于被用于免疫印迹在人类样本上. iScience (2019) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上 (图 2a). Theranostics (2019) ncbi
小鼠 单克隆(BC-22)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology Inc, sc-57535)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Res (2019) ncbi
小鼠 单克隆(10H8)
  • 免疫印迹; 人类; 图 7f
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-65480)被用于被用于免疫印迹在人类样本上 (图 7f). Nat Commun (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:200; 图 8f
  • 免疫组化; 人类; 1:200; 图 2e
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8f), 被用于免疫组化在人类样本上浓度为1:200 (图 2e) 和 被用于免疫印迹在人类样本上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 s3b
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 5a
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 2d
  • 免疫细胞化学; 小鼠; 1:100
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 s3b), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 5a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 2d) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100. Arterioscler Thromb Vasc Biol (2017) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 人类; 表 1
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, E-5)被用于被用于免疫组化在人类样本上 (表 1). Endocr Relat Cancer (2017) ncbi
小鼠 单克隆
  • 免疫组化; 人类; 表 1
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, E-5)被用于被用于免疫组化在人类样本上 (表 1). Endocr Relat Cancer (2017) ncbi
小鼠 单克隆(10H8)
  • 免疫细胞化学; 人类; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 3a
  • 免疫印迹; 小鼠; 1:1000; 图 7a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-65480)被用于被用于免疫细胞化学在人类样本上 (图 4a), 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Oncol Lett (2016) ncbi
小鼠 单克隆(A-5)
  • 免疫印迹; 仓鼠; 1:3000; 图 s2a
  • 免疫沉淀; 鸡; 图 1c
  • 免疫组化; 鸡; 1:250; 图 4i
  • 免疫印迹; 鸡; 1:3000; 图 1b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-393501)被用于被用于免疫印迹在仓鼠样本上浓度为1:3000 (图 s2a), 被用于免疫沉淀在鸡样本上 (图 1c), 被用于免疫组化在鸡样本上浓度为1:250 (图 4i) 和 被用于免疫印迹在鸡样本上浓度为1:3000 (图 1b). J Cell Biol (2016) ncbi
小鼠 单克隆(15B8)
  • 免疫印迹; 仓鼠; 1:1000; 图 s2a
  • 免疫印迹; 鸡; 1:1000; 图 1b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-53483)被用于被用于免疫印迹在仓鼠样本上浓度为1:1000 (图 s2a) 和 被用于免疫印迹在鸡样本上浓度为1:1000 (图 1b). J Cell Biol (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:800; 图 s2b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc7963)被用于被用于免疫印迹在小鼠样本上浓度为1:800 (图 s2b). Nature (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:500; 图 4b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4b). Mol Pharm (2016) ncbi
小鼠 单克隆(12F7)
  • 免疫印迹; 人类; 1:200; 图 2d
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-59737)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2d). Mol Hum Reprod (2016) ncbi
小鼠 单克隆(24E1)
  • 免疫印迹; 小鼠; 1:500; 图 5c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-57534)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Med (2016) ncbi
小鼠 单克隆(6F9)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-53484)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化基因敲除验证; 小鼠; 1:250; 图 1
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 3
  • 免疫细胞化学; 小鼠; 1:100; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:250 (图 1), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:200; 图 3b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 3b). Reprod Biomed Online (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 1:100; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, Sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:100 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 1:100; 图 4b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4b). J Orthop Res (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-376841)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:200; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(santa Cruz, E-5)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500; 图 3a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠; 图 7
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫印迹在小鼠样本上 (图 7). Cardiovasc Res (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:100; 图 3a
圣克鲁斯生物技术 Ctnnb1抗体(SantaCruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(15B8)
  • 免疫印迹; 大鼠; 1:5000; 图 4
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-53483)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:100; 图 s5
  • 免疫印迹; 人类; 1:500; 图 s5
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s5). Cell Rep (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:1000; 图 2
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500; 图 8
圣克鲁斯生物技术 Ctnnb1抗体(santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 8). Cancer Cell Int (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 小鼠; 图 8
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-冰冻切片; 小鼠; 图 4
圣克鲁斯生物技术 Ctnnb1抗体(santa Cruz, sc-7963)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
小鼠 单克隆(12F7)
  • 免疫组化-石蜡切片; 小鼠; 图 5h
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-59737)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5h). elife (2016) ncbi
小鼠 单克隆(12F7)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1a
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc59737)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1a). Oncol Lett (2016) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4
  • 免疫印迹; 人类; 图 s2
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4) 和 被用于免疫印迹在人类样本上 (图 s2). Clin Exp Metastasis (2016) ncbi
小鼠 单克隆(12F7)
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 4
  • 免疫印迹; 大鼠; 1:50; 图 2
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-59737)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 4) 和 被用于免疫印迹在大鼠样本上浓度为1:50 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(10H8)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-65480)被用于被用于免疫印迹在人类样本上 (图 6b). Oncol Rep (2016) ncbi
小鼠 单克隆(12F7)
  • 免疫印迹; 人类; 1:500; 图 3c
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-59737)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Sci Rep (2015) ncbi
小鼠 单克隆(D-10)
  • 免疫沉淀; 人类; 图 2
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-133239)被用于被用于免疫沉淀在人类样本上 (图 2). Reproduction (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 9C
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9C). Antioxid Redox Signal (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术 Ctnnb1抗体(Santacruz, Sc-7963)被用于被用于免疫细胞化学在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:500. Anticancer Drugs (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在大鼠样本上 (图 7). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 5
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 5). BMC Surg (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 小鼠; 1:50; 图 3
圣克鲁斯生物技术 Ctnnb1抗体(santa Cruz, sc-7963)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫沉淀; 人类; 图 1
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫沉淀在人类样本上 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cells (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫印迹在小鼠样本上. Neurosci Lett (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 大鼠; 1:600
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在大鼠样本上浓度为1:600. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, E-5)被用于被用于免疫印迹在人类样本上. Stem Cells (2014) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz biotechnology, sc-7963)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫组化; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, SC-7963)被用于被用于免疫组化在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc7963)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(E-5)
  • 免疫细胞化学; 人类; 1:100
  • 免疫印迹; 人类; 1:100
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz Biotechnology, sc-7963)被用于被用于免疫细胞化学在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:100. PLoS ONE (2012) ncbi
小鼠 单克隆(E-5)
  • 染色质免疫沉淀 ; 小鼠
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于染色质免疫沉淀 在小鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(E-5)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Ctnnb1抗体(Santa Cruz, sc-7963)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. APMIS (2013) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 小鼠; 1:10,000; 图 6a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 6a). Fluids Barriers CNS (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab6302)被用于被用于免疫印迹在人类样本上 (图 2a). Pharmaceutics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 小鼠; 1:5000; 图 2j
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 2j). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 6s
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab6302)被用于被用于免疫细胞化学在人类样本上 (图 6s). EMBO J (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 大鼠; 1:5000; 图 7b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 7b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫细胞化学; 小鼠; 1:200; 图 4g
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 4g). NPJ Regen Med (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(abcam, ab32572)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7b). Oncoimmunology (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3f
  • 免疫细胞化学; 大鼠; 1:50; 图 s2c
  • 免疫细胞化学; 人类; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, 16051)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3f), 被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 s2c) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 1c). Br J Pharmacol (2021) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化; 小鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4a). Peerj (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 图 1d
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1d). Science (2020) ncbi
domestic rabbit 单克隆(E247)
  • 免疫细胞化学; 人类; 1:200; 图 8a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 8a). Int J Mol Sci (2020) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 人类; 1:4000; 图 1a, 2a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:4000 (图 1a, 2a). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). BMC Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4a
  • 免疫印迹; 人类; 1:1000; 图 9a, 9b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 9a, 9b). Cancer Manag Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6d, 6e
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, 16051)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6d, 6e). Clin Transl Gastroenterol (2020) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 1:7500; 图 6b, 6d
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上浓度为1:7500 (图 6b, 6d). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上 (图 6a). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, Ab2365)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:1000 (图 2b). Arthritis Res Ther (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化; 人类; 图 7g
  • 免疫印迹; 小鼠; 图 7s1a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化在人类样本上 (图 7g) 和 被用于免疫印迹在小鼠样本上 (图 7s1a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab27798)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). elife (2019) ncbi
小鼠 单克隆(BC-22)
  • 免疫印迹; 大鼠; 图 3a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab11350)被用于被用于免疫印迹在大鼠样本上 (图 3a). PLoS ONE (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 小鼠; 63 ng/ml; 图 4c
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, E247)被用于被用于免疫印迹在小鼠样本上浓度为63 ng/ml (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 4b, 5d
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b, 5d). J Cell Mol Med (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上 (图 3c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 大鼠; 图 6b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在大鼠样本上 (图 6b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
  • 免疫组化-石蜡切片; 小鼠; 图 2e
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab27798)被用于被用于免疫印迹在人类样本上 (图 2c) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 2e). J Mol Cell Cardiol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 3b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3b). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化; 小鼠; 1:400; 图 7c
  • 免疫印迹; 小鼠; 1:4000; 图 7c
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:4000 (图 7c). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-冰冻切片; 小鼠; 图 4j
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4j). Nat Commun (2018) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹基因敲除验证; 小鼠; 1:100; 图 s3, s6
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:100 (图 s3, s6). Hepatology (2019) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 1:5000; 图 4b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab2365)被用于被用于免疫细胞化学在小鼠样本上 (图 3b). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类; 图 5j
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上 (图 5j). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 9d
  • 免疫印迹; 人类; 1:5000; 图 3a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 9d) 和 被用于免疫印迹在人类样本上浓度为1:5000 (图 3a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化; 人类; 1:100; 图 5f
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化在人类样本上浓度为1:100 (图 5f). Stem Cell Res Ther (2017) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1a). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5h
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5h). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 大鼠; 图 4b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在大鼠样本上 (图 4b). Am J Transl Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3a
  • 免疫细胞化学; 小鼠; 图 3a
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a), 被用于免疫细胞化学在小鼠样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 5a). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 8a
  • 免疫印迹; 大鼠; 1:3000; 图 8g
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 8a) 和 被用于免疫印迹在大鼠样本上浓度为1:3000 (图 8g). Toxicol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4a
  • 免疫沉淀; 小鼠; 1:200; 表 1
  • 免疫印迹; 小鼠; 1:1000; 图 4d
艾博抗(上海)贸易有限公司 Ctnnb1抗体(abcam, ab16051)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4a), 被用于免疫沉淀在小鼠样本上浓度为1:200 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). Histochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(E247)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b). Am J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab27798)被用于被用于免疫印迹在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 5
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab2365)被用于被用于免疫沉淀在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s6a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化在人类样本上 (图 s6a). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(E247)
  • 免疫细胞化学; 小鼠; 图 s1a
艾博抗(上海)贸易有限公司 Ctnnb1抗体(abcam, ab32572)被用于被用于免疫细胞化学在小鼠样本上 (图 s1a). Eur J Cell Biol (2016) ncbi
domestic rabbit 单克隆(E247)
  • 核糖核酸免疫沉淀; 人类; 图 3f
  • EMSA; 人类; 图 3c
  • 免疫沉淀; 人类; 图 3h
  • 免疫细胞化学; 人类
  • 免疫组化; 人类; 图 3e
  • 免疫印迹; 人类; 图 3b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 3f), 被用于EMSA在人类样本上 (图 3c), 被用于免疫沉淀在人类样本上 (图 3h), 被用于免疫细胞化学在人类样本上, 被用于免疫组化在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 3b). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 6
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 6b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab16051)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6b). J Orthop Res (2016) ncbi
domestic rabbit 单克隆(E247)
  • 免疫印迹; 大鼠; 1:20,000; 图 1b
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 1b). Int J Neuropsychopharmacol (2015) ncbi
domestic rabbit 单克隆(E247)
  • 免疫细胞化学; 小鼠; 1:250; 图 4A
  • 免疫印迹; 小鼠; 1:5000; 图 3A
艾博抗(上海)贸易有限公司 Ctnnb1抗体(Abcam, ab32572)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 4A) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3A). Biochimie (2015) ncbi
赛默飞世尔
小鼠 单克隆(6F9)
  • 免疫印迹; 人类; 1:1000; 图 7k, 7i
  • 免疫印迹; 小鼠; 1:1000; 图 7g, s7b
赛默飞世尔 Ctnnb1抗体(Thermo Fisher, MA1-300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7k, 7i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7g, s7b). Nat Commun (2019) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Thermo Fisher, 71-2700)被用于. FASEB J (2019) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫印迹; 小鼠; 图 4f
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于被用于免疫印迹在小鼠样本上 (图 4f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 大鼠; 1:100; 图 3b
  • 免疫印迹; 大鼠; 1:250; 图 3a
赛默飞世尔 Ctnnb1抗体(ThermoFisher Scientific, 71-2700)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 3b) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 3a). FASEB J (2017) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 大鼠; 1:500; 表 1
  • 免疫印迹; 大鼠; 1:1000; 表 1
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (表 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (表 1). Spermatogenesis (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 小鼠; 图 5
赛默飞世尔 Ctnnb1抗体(生活技术, 71-2700)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 大鼠; 1:100; 图 5
  • 免疫印迹; 大鼠; 1:250; 图 5
赛默飞世尔 Ctnnb1抗体(Invitrogen, Life Technologies, 71-2700)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔 Ctnnb1抗体(生活技术, 71-2700)被用于被用于免疫细胞化学在人类样本上 (图 1). Thromb Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5a
赛默飞世尔 Ctnnb1抗体(Pierce, PA5-19469)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫印迹; 小鼠; 图 8
  • 免疫沉淀; 人类; 图 s5
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于被用于免疫印迹在小鼠样本上 (图 8), 被用于免疫沉淀在人类样本上 (图 s5) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit 多克隆(CAT-15)
  • 免疫细胞化学; 大鼠; 图 1
  • 免疫印迹; 大鼠; 1:400; 图 2
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于被用于免疫细胞化学在大鼠样本上 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:400 (图 2). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 4
赛默飞世尔 Ctnnb1抗体(Thermo Scientific, PA5-19469)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Ctnnb1抗体(Thermo Scientific, PA5-16762)被用于. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(6F9)
  • 免疫细胞化学; 人类; 1:500
  • 免疫组化; 人类
赛默飞世尔 Ctnnb1抗体(Thermo Scientific, MA1-300)被用于被用于免疫细胞化学在人类样本上浓度为1:500 和 被用于免疫组化在人类样本上. Oncotarget (2015) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于. FASEB J (2015) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71- 2700)被用于. Histol Histopathol (2015) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于. Andrology (2015) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于. Ann Biomed Eng (2015) ncbi
domestic rabbit 多克隆(CAT-15)
赛默飞世尔 Ctnnb1抗体(Invitrogen, 71-2700)被用于. Mol Biol Cell (2015) ncbi
小鼠 单克隆(15B8)
  • 免疫组化-石蜡切片; 人类; 1:500
赛默飞世尔 Ctnnb1抗体(Thermo Fisher Scientific Inc, 15B8)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. Clin Exp Metastasis (2015) ncbi
SICGEN
domestic goat 多克隆
  • 免疫印迹; 非洲爪蛙; 1:500; 图 6b
SICGEN Ctnnb1抗体(Sicgen, AB0095-200)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:500 (图 6b). Development (2017) ncbi
Novus Biologicals
domestic rabbit 多克隆
Novus Biologicals Ctnnb1抗体(Novus Biologicals, NBP1-89989)被用于. COPD (2015) ncbi
GeneTex
domestic rabbit 单克隆(E247)
  • 免疫印迹; 人类; 1:1000; 图 6a
GeneTex Ctnnb1抗体(GeneTex, GTX61089)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 人类; 图 8d
  • 免疫印迹; 人类; 图 3d, 8e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814)被用于被用于免疫组化-石蜡切片在人类样本上 (图 8d) 和 被用于免疫印迹在人类样本上 (图 3d, 8e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Fluids Barriers CNS (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:5000; 图 9c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 9c). J Biol Chem (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9581)被用于被用于免疫印迹在大鼠样本上 (图 s2). Gut Microbes (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:50
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9562)被用于被用于免疫组化在小鼠样本上浓度为1:50. Bone Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上 (图 s4b). iScience (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在人类样本上 (图 3d). iScience (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 6j
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6j). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:2000; 图 1k, 2e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1k, 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 人类; 1:200; 图 3e
  • 免疫印迹; 人类; 1:2000; 图 1k, 2e
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 7c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3e), 被用于免疫印迹在人类样本上浓度为1:2000 (图 1k, 2e) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 7c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 2009)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化; 小鼠; 图 7b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814S)被用于被用于免疫组化在小鼠样本上 (图 7b). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在人类样本上 (图 2e). iScience (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 s4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4d). Circulation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4d). Circulation (2021) ncbi
domestic rabbit 多克隆
  • ChIP-Seq; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9581)被用于被用于ChIP-Seq在人类样本上 (图 5a). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫印迹在人类样本上 (图 4d). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 其他; 小鼠; 1:200; 图 s7b
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于其他在小鼠样本上浓度为1:200 (图 s7b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 1b, 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上 (图 1b, 6a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1b, 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 1b, 6a). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s3a
  • 免疫细胞化学; 人类; 1:400; 图 2b
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s3a), 被用于免疫细胞化学在人类样本上浓度为1:400 (图 2b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Clin Cosmet Investig Dermatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s5a, s5b
  • 免疫印迹; 小鼠; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5a, s5b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d). NPJ Breast Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561T)被用于被用于免疫印迹在人类样本上 (图 5f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480S)被用于被用于免疫印迹在人类样本上 (图 3d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 小鼠; 1:100; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST (Cell Signaling Technology), 8480)被用于被用于免疫印迹在人类样本上 (图 3e). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 s6h
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6h). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 图 2d, s1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480T)被用于被用于免疫印迹在小鼠样本上 (图 2d, s1). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561T)被用于被用于免疫印迹在小鼠样本上 (图 2d). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 7b
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫印迹在人类样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 4a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 5651)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 3i
  • 免疫组化; 人类; 图 5c, 5d
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫细胞化学在人类样本上 (图 3i), 被用于免疫组化在人类样本上 (图 5c, 5d) 和 被用于免疫印迹在人类样本上 (图 3f). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 4176)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化; 小鼠; 1:1600; 图 s8-2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫组化在小鼠样本上浓度为1:1600 (图 s8-2a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a, 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6c). Neoplasma (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 人类; 图 7c
  • 免疫细胞化学; 人类; 1:100; 图 2h
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7c), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 2a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 1e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9562)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3h
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3h). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling Technology, D10A8)被用于被用于免疫印迹在人类样本上浓度为1:1000. elife (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 s5-1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5-1a). elife (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 小鼠; 图 1d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1d). Drug Metab Dispos (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Prolif (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在小鼠样本上 (图 4f). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 7b). Theranostics (2020) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 4176s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, D13A1, 8814)被用于被用于免疫印迹在小鼠样本上 (图 1a). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 3l
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3l). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 1, 3b, 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, Danvers, MA;, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1, 3b, 5a). Integr Cancer Ther (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 2f, 2g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 2f, 2g). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogenesis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 5i). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 5i
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于免疫印迹在人类样本上 (图 5i). PLoS ONE (2020) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于免疫组化在人类样本上 (图 6a). Oncogene (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 图 5, 6e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, #8480)被用于被用于免疫印迹在小鼠样本上 (图 5, 6e). Cancer Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Oncogene (2020) ncbi
小鼠 单克隆(L87A12)
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technologies, 2698)被用于被用于免疫印迹在人类样本上 (图 2e). Oncogene (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3i
  • 免疫印迹; 小鼠; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3i) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 人类; 图 2a
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3d). J Cell Mol Med (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:10,000; 图 7c, 7d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 7c, 7d). elife (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 1:500; 图 s1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1b). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 小鼠; 1:400; 图 6h
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于染色质免疫沉淀 在小鼠样本上浓度为1:400 (图 6h). Sci Adv (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 s7a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7a). J Biomed Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9562L)被用于被用于免疫沉淀在小鼠样本上浓度为1:500 (图 6b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). BMC Gastroenterol (2019) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). BMC Gastroenterol (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Cell Mol Gastroenterol Hepatol (2020) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 3i). Mol Oncol (2020) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 7e
  • 免疫印迹; 小鼠; 1:1000; 图 s7d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 7e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7d). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 1:250; 图 s5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technologies, D10A8)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s5a). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 8814)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类; 1:500; 图 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于核糖核酸免疫沉淀在人类样本上浓度为1:500 (图 6c). Aging (Albany NY) (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 核糖核酸免疫沉淀; 人类; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于核糖核酸免疫沉淀在人类样本上浓度为1:1000 (图 6c). Aging (Albany NY) (2019) ncbi
小鼠 单克隆(L87A12)
  • 免疫印迹; 小鼠; 1:2000; 图 3g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2698)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3g). Sci Adv (2019) ncbi
小鼠 单克隆(L54E2)
  • 免疫组化; 小鼠; 1:200; 图 s3c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2677)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s3c). Nature (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在小鼠样本上 (图 1b). Nature (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 3s2c
  • 免疫印迹; 人类; 1:1000; 图 8s1d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8814)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 3s2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8s1d). elife (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 5c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 5c). Stem Cells Transl Med (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Commun Signal (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biosci Rep (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 s2b). J Mol Cell Biol (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 小鼠; 1:100; 图 s1d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s1d). Science (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫组化在人类样本上 (图 4g). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 ex8j
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫印迹在人类样本上 (图 ex8j). Nature (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 5651S)被用于被用于免疫印迹在人类样本上 (图 8a). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 2f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9567)被用于被用于免疫印迹在人类样本上 (图 6a). PLoS Biol (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化; 小鼠; 图 6b
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫组化在小鼠样本上 (图 6b) 和 被用于免疫印迹在小鼠样本上 (图 6a). FASEB J (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814S)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9566)被用于被用于免疫细胞化学在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 1a). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
  • 免疫印迹; 人类; 图 1b, 1c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9566)被用于被用于免疫印迹在小鼠样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 1b, 1c). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 5e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫印迹在小鼠样本上 (图 5e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 3a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 2d, 4h
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d, 4h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). elife (2019) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 9a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 9a). J Exp Med (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3f
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 3f) 和 被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Oncogene (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D10A8)被用于被用于免疫印迹在人类样本上 (图 4c). Mol Oncol (2019) ncbi
小鼠 单克隆(L54E2)
  • 免疫细胞化学; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 图 s1f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 2849)被用于被用于免疫细胞化学在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上 (图 s1f). Stem Cell Reports (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-冰冻切片; 小鼠; 图 4g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 1:100; 图 8c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8c). Oncogene (2019) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 1:500; 图 4d
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4d). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 大鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4g). Exp Ther Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c, 2d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c, 2d). Mol Cell (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 小鼠; 1:100; 图 4o
  • 免疫细胞化学; 人类; 1:200; 图 2j
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4o), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2j) 和 被用于免疫印迹在人类样本上 (图 2a). Exp Dermatol (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 小鼠; 1:30; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化在小鼠样本上浓度为1:30 (图 6a). Exp Neurol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9562)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Bone Res (2018) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化; 人类; 1:100; 图 s4c
  • 其他; 小鼠; 1:500; 图 8j
  • 免疫印迹; 小鼠; 1:2000; 图 8g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s4c), 被用于其他在小鼠样本上浓度为1:500 (图 8j) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8g). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:2000; 图 4g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4g). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 5651)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Neurosci (2018) ncbi
小鼠 单克隆(L87A12)
  • 免疫沉淀; 小鼠; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2698)被用于被用于免疫沉淀在小鼠样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 其他; 小鼠; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于其他在小鼠样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Neurosci (2018) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technologies, D13A1)被用于被用于免疫印迹在小鼠样本上 (图 1e). Cell Metab (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 3a). elife (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 3a). J Cell Mol Med (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 1:1600; 图 6
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化在人类样本上浓度为1:1600 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹基因敲除验证; 小鼠; 图 s8h
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 s8h). Hepatology (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Endocrinology (2018) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). Endocrinology (2018) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 7j
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7j). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 染色质免疫沉淀 ; 人类; 图 5f
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于染色质免疫沉淀 在人类样本上 (图 5f), 被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). EBioMedicine (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上 (图 4b). Oncogene (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 s6g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 s6g). Nature (2017) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 7e
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 7e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4C
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4C). Oncol Lett (2017) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST Signaling, 4176S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST Signaling, 9561S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 4h
  • 免疫印迹; 小鼠; 1:1000; 图 4d,4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST Signaling, 5651S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 4h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4d,4c). Nat Commun (2017) ncbi
小鼠 单克隆(L54E2)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4627)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell signalling, 9582)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9587)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3g). Genes Dev (2017) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 小鼠; 图 5b
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫细胞化学在小鼠样本上 (图 5b) 和 被用于免疫印迹在小鼠样本上 (图 5c). Metabolism (2017) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于免疫印迹在人类样本上 (图 4a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176 S)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, D10A8)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Int J Mol Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; pigs ; 1:200; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell signalling, 9562)被用于被用于免疫细胞化学在pigs 样本上浓度为1:200 (图 2). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在pigs 样本上 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; pigs ; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在pigs 样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(L54E2)
  • 免疫印迹; 人类; 图 5B
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2677)被用于被用于免疫印迹在人类样本上 (图 5B). Biochem J (2017) ncbi
小鼠 单克隆(L54E2)
  • 免疫细胞化学基因敲除验证; 人类; 1:1000; 图 s11g
  • 免疫细胞化学基因敲除验证; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 4627)被用于被用于免疫细胞化学基因敲除验证在人类样本上浓度为1:1000 (图 s11g) 和 被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:1000 (图 2a). Nat Methods (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 s4d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 s4d). Nat Methods (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 3b
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫细胞化学在人类样本上 (图 3b) 和 被用于免疫印迹在人类样本上 (图 3e). Oncoimmunology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s2c). Nature (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D10A8)被用于被用于免疫组化在人类样本上 (图 6a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 小鼠; 1:100; 图 4d
  • 免疫印迹; 小鼠; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Int J Mol Med (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell signalling, D10A8)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 6c). Cell Commun Signal (2017) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 8814)被用于被用于免疫印迹在小鼠样本上 (图 5c). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 10
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, D10A8)被用于被用于免疫印迹在人类样本上 (图 10). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9562)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell signalling, 9562)被用于被用于免疫印迹在人类样本上 (图 3a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 6d, 6e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫印迹在人类样本上 (图 6d, 6e). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 6c
  • 免疫印迹; 人类; 图 6a
  • 免疫组化; 小鼠; 图 7b
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell signalling, 9562)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6c), 被用于免疫印迹在人类样本上 (图 6a), 被用于免疫组化在小鼠样本上 (图 7b) 和 被用于免疫印迹在小鼠样本上 (图 7a). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Development (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 小鼠; 1:100; 图 s5h
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s5h). Cell Discov (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, D10A8)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9582S)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Chem Biol (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:5000; 图 1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8814)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1b). J Cell Sci (2016) ncbi
小鼠 单克隆(L54E2)
  • 免疫细胞化学; 人类; 图 s12
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 4627S)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9562)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Nat Commun (2016) ncbi
小鼠 单克隆(L54E2)
  • 免疫细胞化学; 人类; 1:200; 图 5f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 2677)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 5f). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Nat Immunol (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9567)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9566)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587)被用于被用于免疫细胞化学在人类样本上 (图 2a). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; African green monkey; 1:1000; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d), 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; African green monkey; 1:1000; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 5651)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d), 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 2b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2b). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫沉淀; 人类; 图 5
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Mol Ther Methods Clin Dev (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8814)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3b
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9561)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9587)被用于被用于免疫印迹在小鼠样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814S)被用于被用于免疫细胞化学在小鼠样本上 (图 6c). Stem Cell Rev (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1g
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 9582)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 3
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:4000; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9562)被用于被用于免疫印迹在人类样本上 (图 6e). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-冰冻切片; 小鼠; 1:25; 图 6a
  • 免疫细胞化学; 小鼠; 1:25; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:25 (图 6a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:25 (图 5a). J Cell Biol (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化在小鼠样本上 (图 4c). Oncogene (2017) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 8814)被用于被用于免疫印迹在小鼠样本上 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(L54E2)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 9
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 2677s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 9). Dev Biol (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Dev Biol (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9582S)被用于被用于免疫印迹在人类样本上 (图 s1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 9561S)被用于被用于免疫印迹在人类样本上 (图 s1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Tech, 8480)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Tech, 9561)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 核糖核酸免疫沉淀; 人类; 图 3f
  • EMSA; 人类; 图 3c
  • 免疫沉淀; 人类; 图 3h
  • 免疫组化; 人类; 图 3e
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587)被用于被用于核糖核酸免疫沉淀在人类样本上 (图 3f), 被用于EMSA在人类样本上 (图 3c), 被用于免疫沉淀在人类样本上 (图 3h), 被用于免疫组化在人类样本上 (图 3e) 和 被用于免疫印迹在人类样本上 (图 3b). Nat Struct Mol Biol (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 5d). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(BD Biosciences, 9561)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 2). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 s5) 和 被用于免疫印迹在小鼠样本上 (图 s1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Tech, 9561)被用于被用于免疫印迹在小鼠样本上 (图 6). Cell Rep (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 8480)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9587P)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582S)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上. J Mol Med (Berl) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9567)被用于被用于免疫印迹在小鼠样本上 (图 4) 和 被用于免疫印迹在大鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 人类; 0.5 ug/ml; 图 st1
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8814S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为0.5 ug/ml (图 st1) 和 被用于免疫印迹在人类样本上 (图 2). Nature (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D10A8)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:25; 图 s1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:25 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 s7
  • 免疫细胞化学; 小鼠; 1:800; 图 s7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8814S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 s7) 和 被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 s7). Nature (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4270)被用于被用于免疫印迹在人类样本上 (图 6b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2009)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 6
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9587)被用于被用于染色质免疫沉淀 在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 4176)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(L54E2)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2677)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4270)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s10
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上 (图 s10). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9566)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 8480)被用于被用于免疫细胞化学在人类样本上 (图 s3) 和 被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 6d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 6d). Dev Dyn (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5A
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9562)被用于被用于免疫印迹在小鼠样本上 (图 5A). Mol Med Rep (2016) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化; 人类; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9582P)被用于被用于免疫组化在人类样本上浓度为1:500 (图 5d). Endocr Relat Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 11c
  • 免疫印迹; 人类; 图 11a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9581)被用于被用于免疫细胞化学在人类样本上 (图 11c) 和 被用于免疫印迹在人类样本上 (图 11a). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9561S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(CST, 8480S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2a). Eur Surg Res (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 5d). Oncogene (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Exp Cell Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Millipore, 9561)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 人类
  • 免疫组化; 人类
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫细胞化学在人类样本上, 被用于免疫组化在人类样本上 和 被用于免疫印迹在人类样本上 (图 4). Reproduction (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(cell Signaling Tech, 9582P)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9582)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫印迹在人类样本上 (图 7a). Oncogene (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上 (图 8). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 9582)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Acupunct Med (2016) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1f). PLoS Genet (2015) ncbi
小鼠 单克隆(L54E2)
  • 免疫组化; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2677)被用于被用于免疫组化在人类样本上 (图 6b). Leukemia (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, #8480)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1). Anticancer Res (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫细胞化学; 人类; 图 3C
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814S)被用于被用于免疫细胞化学在人类样本上 (图 3C). J Hematol Oncol (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类; 图 6d
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫细胞化学在人类样本上 (图 6d) 和 被用于免疫印迹在人类样本上 (图 6c). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480s)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(L87A12)
  • 免疫组化-石蜡切片; 人类; 1:200
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 2698S)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Exp Cell Res (2015) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Carcinogenesis (2015) ncbi
小鼠 单克隆(L87A12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 2698)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 6B3)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫印迹在人类样本上 (图 2c). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫组化; 人类; 1:100
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于免疫组化在人类样本上浓度为1:100. Fluids Barriers CNS (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582S)被用于被用于免疫印迹在人类样本上 (图 4). Int J Gynecol Cancer (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Nat Biotechnol (2015) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 1:500; 图 5f
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technologies,, D2F1)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). J Neural Transm (Vienna) (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 染色质免疫沉淀 ; 人类; 图 4
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于染色质免疫沉淀 在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 2). Sci Signal (2015) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 4176)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 抑制或激活实验; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D13A1)被用于被用于抑制或激活实验在人类样本上 (图 5b). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(D10A8)
  • 流式细胞仪; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8480)被用于被用于流式细胞仪在人类样本上. Clin Cancer Res (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9582)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signalling, 4176)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Reprod Fertil Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9561S)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Methods Mol Biol (2016) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫细胞化学; 人类; 1:2000; 图 5c
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 5c) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8814)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D13A1)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 8814)被用于被用于免疫组化-石蜡切片在小鼠样本上. Prostate (2014) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 8480)被用于被用于免疫印迹在人类样本上. Cancer Cell (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫细胞化学; 人类; 1:100
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫组化-石蜡切片; 人类; 图 7
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 9582)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫组化-石蜡切片在人类样本上 (图 7). Cancer Res (2014) ncbi
小鼠 单克隆(L87A12)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 2698)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 5). J Cancer Res Clin Oncol (2015) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫组化-石蜡切片在小鼠样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(L87A12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell signaling, 2698)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Signal (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, 9582)被用于被用于免疫印迹在人类样本上 (图 6). J Pathol (2014) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Tech, 4176)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2015) ncbi
domestic rabbit 单克隆(D2F1)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 4176)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582)被用于被用于免疫组化在小鼠样本上浓度为1:200. Mol Cell Biol (2014) ncbi
domestic rabbit 单克隆(D8E11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, D8E11)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫组化-石蜡切片; 小鼠; 1:800
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, 9582S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800. Dev Biol (2014) ncbi
小鼠 单克隆(L54E2)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling, L54E2)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D10A8)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology, D10A8)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Cell Mol Life Sci (2014) ncbi
domestic rabbit 单克隆(6B3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Ctnnb1抗体(Cell Signaling Technology Inc, 9582)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Biol Chem (2013) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:300; 图 1b
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 s1b
  • 免疫印迹; 小鼠; 1:500; 图 s2a
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 1b), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2a). MBio (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; common lancelet; 图 1j
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫组化在common lancelet样本上 (图 1j). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2c
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:8000; 图 5a
西格玛奥德里奇 Ctnnb1抗体(Millipore, C2206)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:8000 (图 5a). JCI Insight (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 3b
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在人类样本上 (图 3b). Dev Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:500; 图 6a
  • 免疫组化; 小鼠; 1:500; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 s1a
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:500 (图 6a), 被用于免疫组化在小鼠样本上浓度为1:500 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s1a). Genes Dev (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:150; 图 4h
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:150 (图 4h). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在大鼠样本上. Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 3
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于被用于其他在人类样本上 (图 3). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 染色质免疫沉淀 ; 人类; 图 2
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇 Ctnnb1抗体(Sigma, C 2206)被用于被用于染色质免疫沉淀 在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 2b
  • 免疫印迹; 小鼠; 1:2000; 图 3d
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
西格玛奥德里奇 Ctnnb1抗体(Sigma, C-2206)被用于被用于免疫细胞化学在人类样本上 (图 1). J Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫印迹在小鼠样本上 (图 4). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4
  • 免疫印迹; 小鼠; 1:10,000; 图 4
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:600; 图 2
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在人类样本上浓度为1:600 (图 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 4a
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫沉淀在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 4a). Invest Ophthalmol Vis Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫印迹在人类样本上 (图 8). Mol Syst Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
西格玛奥德里奇 Ctnnb1抗体(Sigma?\Aldrich, C2206)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 9b
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇 Ctnnb1抗体(Sigma, C22006)被用于被用于免疫细胞化学在小鼠样本上 (图 2). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 2B; S1C
  • 免疫印迹; 人类; 1:4000; 图 2A
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2B; S1C) 和 被用于免疫印迹在人类样本上浓度为1:4000 (图 2A). Mol Oncol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于. Dis Model Mech (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于. Oncogenesis (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(sigma, c2206)被用于. BMC Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma-Aldrich, C2206)被用于. EMBO Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma Aldrich, C2206)被用于. Kidney Int (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于. Stem Cells (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Ctnnb1抗体(Sigma, C2206)被用于. Gastric Cancer (2015) ncbi
碧迪BD
小鼠 单克隆(5/a-Catenin)
  • 免疫印迹基因敲除验证; 人类; 1:500; 图 3a
碧迪BD Ctnnb1抗体(BD Biosciences, 610194)被用于被用于免疫印迹基因敲除验证在人类样本上浓度为1:500 (图 3a). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(30/?-Catenin)
  • 免疫印迹; 小鼠; 1:1000; 图 5f
碧迪BD Ctnnb1抗体(BD Biosciences, 611536)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5f). Eneuro (2016) ncbi
小鼠 单克隆(5/a-Catenin)
  • 免疫印迹; 犬; 图 6a
  • 免疫印迹; 人类; 图 6a
碧迪BD Ctnnb1抗体(BD Transduction, 610194)被用于被用于免疫印迹在犬样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(5/a-Catenin)
  • 免疫组化-石蜡切片; 人类; 1:250; 表 3
碧迪BD Ctnnb1抗体(BD TL, 610194)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (表 3). Oncol Lett (2016) ncbi
小鼠 单克隆(30/?-Catenin)
  • 免疫沉淀; 大鼠; 图 s2
  • 免疫印迹; 大鼠; 1:500; 图 3
碧迪BD Ctnnb1抗体(BD Transduction Laboratories, 611536)被用于被用于免疫沉淀在大鼠样本上 (图 s2) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(5/a-Catenin)
  • 免疫印迹; 大鼠; 图 1
碧迪BD Ctnnb1抗体(BD Biosciences, 610194)被用于被用于免疫印迹在大鼠样本上 (图 1). Sci Rep (2014) ncbi
小鼠 单克隆(5/a-Catenin)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
碧迪BD Ctnnb1抗体(Pharmingen, 5)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Dev Cell (2010) ncbi
小鼠 单克隆(30/?-Catenin)
  • 免疫组化-冰冻切片; 小鼠; 1:10
碧迪BD Ctnnb1抗体(BD Biosciences, 611536)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:10. J Comp Neurol (2006) ncbi
文章列表
  1. Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed S, et al. Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis. 2021;12:912 pubmed 出版商
  2. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  3. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  4. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  5. Ma X, Takahashi Y, Wu W, Liang W, Chen J, Chakraborty D, et al. ADAM17 mediates ectodomain shedding of the soluble VLDL receptor fragment in the retinal epithelium. J Biol Chem. 2021;297:101185 pubmed 出版商
  6. Chen Y, Li J, Menon R, Jayaraman A, Lee K, Huang Y, et al. Dietary spinach reshapes the gut microbiome in an Apc-mutant genetic background: mechanistic insights from integrated multi-omics. Gut Microbes. 2021;13:1972756 pubmed 出版商
  7. Kim S, Henneicke H, Cavanagh L, Macfarlane E, Thai L, Foong D, et al. Osteoblastic glucocorticoid signaling exacerbates high-fat-diet- induced bone loss and obesity. Bone Res. 2021;9:40 pubmed 出版商
  8. García Sánchez D, González González A, García García P, Reyes R, Pérez Núñez M, Riancho J, et al. Effective Osteogenic Priming of Mesenchymal Stem Cells through LNA-ASOs-Mediated Sfrp1 Gene Silencing. Pharmaceutics. 2021;13: pubmed 出版商
  9. Mygland L, Brinch S, Strand M, Olsen P, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience. 2021;24:102807 pubmed 出版商
  10. Arnold F, Mahaddalkar P, Kraus J, Zhong X, Bergmann W, Srinivasan D, et al. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Adv Sci (Weinh). 2021;8:2100626 pubmed 出版商
  11. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  12. Shang P, Stepicheva N, Teel K, McCauley A, Fitting C, Hose S, et al. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol. 2021;4:850 pubmed 出版商
  13. Xue F, Zhao Z, Gu Y, Han J, Ye K, Zhang Y. 7,8-Dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. elife. 2021;10: pubmed 出版商
  14. Sehgal P, Mathew S, Sivadas A, Ray A, Tanwar J, Vishwakarma S, et al. LncRNA VEAL2 regulates PRKCB2 to modulate endothelial permeability in diabetic retinopathy. EMBO J. 2021;40:e107134 pubmed 出版商
  15. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  16. Low J, Du W, Gocha T, Oguz G, Zhang X, Chen M, et al. Molecular docking-aided identification of small molecule inhibitors targeting β-catenin-TCF4 interaction. iScience. 2021;24:102544 pubmed 出版商
  17. Zhao D, Zhong G, Li J, Pan J, Zhao Y, Song H, et al. Targeting E3 Ubiquitin-Ligase WWP1 Prevents Cardiac Hypertrophy Through Destabilizing DVL2 via Inhibition of K27-Linked Ubiquitination. Circulation. 2021;: pubmed 出版商
  18. Wan C, Mahara S, Sun C, Doan A, Chua H, Xu D, et al. Genome-scale CRISPR-Cas9 screen of Wnt/β-catenin signaling identifies therapeutic targets for colorectal cancer. Sci Adv. 2021;7: pubmed 出版商
  19. Beckmann D, Römer Hillmann A, Krause A, Hansen U, Wehmeyer C, Intemann J, et al. Lasp1 regulates adherens junction dynamics and fibroblast transformation in destructive arthritis. Nat Commun. 2021;12:3624 pubmed 出版商
  20. Ianni A, Hofmann M, Kumari P, Tarighi S, Al tamari H, Görgens A, et al. Depletion of Numb and Numblike in Murine Lung Epithelial Cells Ameliorates Bleomycin-Induced Lung Fibrosis by Inhibiting the β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:639162 pubmed 出版商
  21. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  22. Sha S, Shen X, Cao Y, Qu L. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway. Aging (Albany NY). 2021;13:15285-15306 pubmed 出版商
  23. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  24. Lee S, Remark L, Josephson A, Leclerc K, Lopez E, Kirby D, et al. Notch-Wnt signal crosstalk regulates proliferation and differentiation of osteoprogenitor cells during intramembranous bone healing. NPJ Regen Med. 2021;6:29 pubmed 出版商
  25. Zhai X, Gong M, Peng Y, Yang D. Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clin Cosmet Investig Dermatol. 2021;14:527-539 pubmed 出版商
  26. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  27. Wojnarowicz P, Escolano M, Huang Y, Desai B, Chin Y, Shah R, et al. Anti-tumor effects of an ID antagonist with no observed acquired resistance. NPJ Breast Cancer. 2021;7:58 pubmed 出版商
  28. Wang K, Ding Y, Xu C, Hao M, Li H, Ding L. Cldn-7 deficiency promotes experimental colitis and associated carcinogenesis by regulating intestinal epithelial integrity. Oncoimmunology. 2021;10:1923910 pubmed 出版商
  29. Jiang J, Li J, Yao W, Wang W, Shi B, Yuan F, et al. FOXC1 Negatively Regulates DKK1 Expression to Promote Gastric Cancer Cell Proliferation Through Activation of Wnt Signaling Pathway. Front Cell Dev Biol. 2021;9:662624 pubmed 出版商
  30. Xu Y, Pan S, Chen H, Qian H, Wang Z, Zhu X. MEX3A suppresses proliferation and EMT via inhibiting Akt signaling pathway in cervical cancer. Am J Cancer Res. 2021;11:1446-1462 pubmed
  31. Li X, Lin P, Tao Y, Jiang X, Li T, Wang Y, et al. LECT 2 Antagonizes FOXM1 Signaling via Inhibiting MET to Retard PDAC Progression. Front Cell Dev Biol. 2021;9:661122 pubmed 出版商
  32. Nasu M, Esumi S, Hatakeyama J, Tamamaki N, Shimamura K. Two-Phase Lineage Specification of Telencephalon Progenitors Generated From Mouse Embryonic Stem Cells. Front Cell Dev Biol. 2021;9:632381 pubmed 出版商
  33. Hsieh M, Weng C, Lin Y, Wu C, Chen L, Cheng K. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  34. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  35. Srivastava S, Zhou H, Setia O, Liu B, Kanasaki K, Koya D, et al. Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nat Commun. 2021;12:2368 pubmed 出版商
  36. Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, et al. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. J Exp Clin Cancer Res. 2021;40:122 pubmed 出版商
  37. Zewdu R, Mehrabad E, Ingram K, Fang P, Gillis K, Camolotto S, et al. An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma. elife. 2021;10: pubmed 出版商
  38. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  39. Ryu Y, Lee D, Shim J, Park J, Kim Y, Choi S, et al. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178:2533-2546 pubmed 出版商
  40. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  41. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  42. Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res. 2021;40:13 pubmed 出版商
  43. Nam B, Park H, Lee Y, Oh Y, Park J, Kim S, et al. TGFβ1 Suppressed Matrix Mineralization of Osteoblasts Differentiation by Regulating SMURF1-C/EBPβ-DKK1 Axis. Int J Mol Sci. 2020;21: pubmed 出版商
  44. Song M, YEKU O, Rafiq S, Purdon T, Dong X, Zhu L, et al. Tumor derived UBR5 promotes ovarian cancer growth and metastasis through inducing immunosuppressive macrophages. Nat Commun. 2020;11:6298 pubmed 出版商
  45. Jin Y, Sun X, Pei F, Zhao Z, Mao J. Wnt16 signaling promotes osteoblast differentiation of periosteal derived cells in vitro and in vivo. Peerj. 2020;8:e10374 pubmed 出版商
  46. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  47. Wang H, Wang M, Wen Y, Xu C, Chen X, Wu D, et al. Biphasic Regulation of Mesenchymal Genes Controls Fate Switches During Hematopoietic Differentiation of Human Pluripotent Stem Cells. Adv Sci (Weinh). 2020;7:2001019 pubmed 出版商
  48. Huang Y, Liang C, Ritz D, Coelho R, Septiadi D, Estermann M, et al. Collagen-rich omentum is a premetastatic niche for integrin α2-mediated peritoneal metastasis. elife. 2020;9: pubmed 出版商
  49. Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, et al. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. elife. 2020;9: pubmed 出版商
  50. Tan Y, Sementino E, Liu Z, Cai K, Testa J. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci Rep. 2020;10:15837 pubmed 出版商
  51. Sepe L, Hartl K, Iftekhar A, Berger H, Kumar N, Goosmann C, et al. Genotoxic Effect of Salmonella Paratyphi A Infection on Human Primary Gallbladder Cells. MBio. 2020;11: pubmed 出版商
  52. Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, et al. Huntington's disease alters human neurodevelopment. Science. 2020;369:787-793 pubmed 出版商
  53. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  54. Jiao T, Yao X, Zhao Y, Zhou Y, Gao Y, Fan S, et al. Dexamethasone-Induced Liver Enlargement Is Related to PXR/YAP Activation and Lipid Accumulation but Not Hepatocyte Proliferation. Drug Metab Dispos. 2020;48:830-839 pubmed 出版商
  55. Huang W, Yu D, Wang M, Han Y, Lin J, Wei D, et al. ITGBL1 promotes cell migration and invasion through stimulating the TGF-β signalling pathway in hepatocellular carcinoma. Cell Prolif. 2020;53:e12836 pubmed 出版商
  56. Peroutka R, Buzza M, Mukhopadhyay S, Johnson T, Driesbaugh K, Antalis T. Testisin/Prss21 deficiency causes increased vascular permeability and a hemorrhagic phenotype during luteal angiogenesis. PLoS ONE. 2020;15:e0234407 pubmed 出版商
  57. Liao T, Lin C, Jiang J, Yang S, Teng H, Yang M. Harnessing stemness and PD-L1 expression by AT-rich interaction domain-containing protein 3B in colorectal cancer. Theranostics. 2020;10:6095-6112 pubmed 出版商
  58. Liu Y, Jiang B, Cao Y, Chen W, Yin L, Xu Y, et al. High expression levels and localization of Sox5 in dilated cardiomyopathy. Mol Med Rep. 2020;22:948-956 pubmed 出版商
  59. Kozmikova I, Kozmik Z. Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. elife. 2020;9: pubmed 出版商
  60. Wu X, Gardashova G, Lan L, Han S, Zhong C, Marquez R, et al. Targeting the interaction between RNA-binding protein HuR and FOXQ1 suppresses breast cancer invasion and metastasis. Commun Biol. 2020;3:193 pubmed 出版商
  61. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  62. Cai L, Chao G, Li W, Zhu J, Li F, Qi B, et al. Activated CD4+ T cells-derived exosomal miR-142-3p boosts post-ischemic ventricular remodeling by activating myofibroblast. Aging (Albany NY). 2020;12:7380-7396 pubmed 出版商
  63. Singh S, Adam M, Matkar P, Bugyei Twum A, Desjardins J, Chen H, et al. Endothelial-specific Loss of IFT88 Promotes Endothelial-to-Mesenchymal Transition and Exacerbates Bleomycin-induced Pulmonary Fibrosis. Sci Rep. 2020;10:4466 pubmed 出版商
  64. Marchetti M, Meloni M, Anwar M, Zen A, Sala Newby G, Slater S, et al. MicroRNA-24-3p Targets Notch and Other Vascular Morphogens to Regulate Post-ischemic Microvascular Responses in Limb Muscles. Int J Mol Sci. 2020;21: pubmed 出版商
  65. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  66. Wang S, Qi Y, Gao X, Qiu W, Liu Q, Guo X, et al. Hypoxia-induced lncRNA PDIA3P1 promotes mesenchymal transition via sponging of miR-124-3p in glioma. Cell Death Dis. 2020;11:168 pubmed 出版商
  67. Du X, He W, He H, Wang H. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway. BMC Vet Res. 2020;16:72 pubmed 出版商
  68. Kasacka I, Piotrowska Z, Niezgoda M, Lewandowska A, Łebkowski W. Ageing-related changes in the levels of β-catenin, CacyBP/SIP, galectin-3 and immunoproteasome subunit LMP7 in the heart of men. PLoS ONE. 2020;15:e0229462 pubmed 出版商
  69. Padthaisong S, Thanee M, Namwat N, Phetcharaburanin J, Klanrit P, Khuntikeo N, et al. A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer. 2020;20:154 pubmed 出版商
  70. Chandrasekaran B, Dahiya N, Tyagi A, Kolluru V, Saran U, Baby B, et al. Chronic exposure to cadmium induces a malignant transformation of benign prostate epithelial cells. Oncogenesis. 2020;9:23 pubmed 出版商
  71. Ear J, Saklecha A, Rajapakse N, Choi J, Ghassemian M, Kufareva I, et al. Tyrosine-Based Signals Regulate the Assembly of Daple⋅PARD3 Complex at Cell-Cell Junctions. iScience. 2020;23:100859 pubmed 出版商
  72. Rinastiti P, Ikeda K, Rahardini E, Miyagawa K, Tamada N, Kuribayashi Y, et al. Loss of family with sequence similarity 13, member A exacerbates pulmonary hypertension through accelerating endothelial-to-mesenchymal transition. PLoS ONE. 2020;15:e0226049 pubmed 出版商
  73. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  74. You F, Li J, Zhang P, Zhang H, Cao X. miR106a Promotes the Growth of Transplanted Breast Cancer and Decreases the Sensitivity of Transplanted Tumors to Cisplatin. Cancer Manag Res. 2020;12:233-246 pubmed 出版商
  75. Ju L, Shan L, Yin B, Song Y. δ-Catenin regulates proliferation and apoptosis in renal cell carcinoma via promoting β-catenin nuclear localization and activating its downstream target genes. Cancer Med. 2020;9:2201-2212 pubmed 出版商
  76. McGinn O, Ward A, Fettig L, Riley D, Ivie J, Paul K, et al. Cytokeratin 5 alters β-catenin dynamics in breast cancer cells. Oncogene. 2020;39:2478-2492 pubmed 出版商
  77. Zhu K, Lai Y, Cao H, Bai X, Liu C, Yan Q, et al. Kindlin-2 modulates MafA and β-catenin expression to regulate β-cell function and mass in mice. Nat Commun. 2020;11:484 pubmed 出版商
  78. Deng M, Chen Z, Tan J, Liu H. Down-regulation of SLC35C1 induces colon cancer through over-activating Wnt pathway. J Cell Mol Med. 2020;24:3079-3090 pubmed 出版商
  79. Fine J, Kosyakovsky J, Baillargeon A, Tokarev J, Cooner J, Svitak A, et al. Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav. 2020;10:e01536 pubmed 出版商
  80. Zhou L, Shao C, Xie Y, Wang N, Xu S, Luo B, et al. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. elife. 2020;9: pubmed 出版商
  81. Boukhalfa A, Nascimbeni A, Ramel D, Dupont N, Hirsch E, Gayral S, et al. PI3KC2α-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun. 2020;11:294 pubmed 出版商
  82. Chen M, Lu P, Ma Q, Cao Y, Chen N, Li W, et al. CTNNB1/β-catenin dysfunction contributes to adiposity by regulating the cross-talk of mature adipocytes and preadipocytes. Sci Adv. 2020;6:eaax9605 pubmed 出版商
  83. Hsu H, Liu C, Lin J, Hsu T, Hsu J, Li A, et al. Involvement of collagen XVII in pluripotency gene expression and metabolic reprogramming of lung cancer stem cells. J Biomed Sci. 2020;27:5 pubmed 出版商
  84. Wang F, Duan X, Chen J, Gao Z, Zhou J, Wu X, et al. Integrated Imaging Methodology Detects Claudin-1 Expression in Premalignant Nonpolypoid and Polypoid Colonic Epithelium in Mice. Clin Transl Gastroenterol. 2020;11:e00089 pubmed 出版商
  85. Jiang M, Kang Y, Sewastianik T, Wang J, Tanton H, Alder K, et al. BCL9 provides multi-cellular communication properties in colorectal cancer by interacting with paraspeckle proteins. Nat Commun. 2020;11:19 pubmed 出版商
  86. Liu Q, Zhou C, Zhang B. Upregulation of musashi1 increases malignancy of hepatocellular carcinoma via the Wnt/β-catenin signaling pathway and predicts a poor prognosis. BMC Gastroenterol. 2019;19:230 pubmed 出版商
  87. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  88. Wang H, Chen Z, Wang S, Gao X, Qian M, Qiu W, et al. TGFβ1-induced beta-site APP-cleaving enzyme 2 upregulation promotes tumorigenesis through the NF-κB signalling pathway in human gliomas. Mol Oncol. 2020;14:407-425 pubmed 出版商
  89. Quach C, Song Y, Guo H, Li S, Maazi H, Fung M, et al. A truncating mutation in the autophagy gene UVRAG drives inflammation and tumorigenesis in mice. Nat Commun. 2019;10:5681 pubmed 出版商
  90. Hiepen C, Jatzlau J, Hildebrandt S, Kampfrath B, Goktas M, Murgai A, et al. BMPR2 acts as a gatekeeper to protect endothelial cells from increased TGFβ responses and altered cell mechanics. PLoS Biol. 2019;17:e3000557 pubmed 出版商
  91. Jiang K, Zhi X, Ma Y, Zhou L. Long non-coding RNA TOB1-AS1 modulates cell proliferation, apoptosis, migration and invasion through miR-23a/NEU1 axis via Wnt/b-catenin pathway in gastric cancer. Eur Rev Med Pharmacol Sci. 2019;23:9890-9899 pubmed 出版商
  92. Yang X, Jiang J, Zhang C, Li Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz J Med Biol Res. 2019;52:e8934 pubmed 出版商
  93. Xuan F, Yano F, Mori D, Chijimatsu R, Maenohara Y, Nakamoto H, et al. Wnt/β-catenin signaling contributes to articular cartilage homeostasis through lubricin induction in the superficial zone. Arthritis Res Ther. 2019;21:247 pubmed 出版商
  94. Chen X, Xiong X, Cui D, Yang F, Wei D, Li H, et al. DEPTOR is an in vivo tumor suppressor that inhibits prostate tumorigenesis via the inactivation of mTORC1/2 signals. Oncogene. 2020;39:1557-1571 pubmed 出版商
  95. Eyre R, Alferez D, Santiago Gómez A, Spence K, McConnell J, Hart C, et al. Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun. 2019;10:5016 pubmed 出版商
  96. Hu Y, Zhao Y, Shi C, Ren P, Wei B, Guo Y, et al. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888. Aging (Albany NY). 2019;11:8068-8084 pubmed 出版商
  97. Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, et al. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. Sci Adv. 2019;5:eaax2166 pubmed 出版商
  98. Padmanaban V, Krol I, Suhail Y, Szczerba B, Aceto N, Bader J, et al. E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 2019;573:439-444 pubmed 出版商
  99. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  100. Diaz Osterman C, Ozmadenci D, Kleinschmidt E, Taylor K, Barrie A, Jiang S, et al. FAK activity sustains intrinsic and acquired ovarian cancer resistance to platinum chemotherapy. elife. 2019;8: pubmed 出版商
  101. Duhachek Muggy S, Bhat K, Medina P, Cheng F, He L, Alli C, et al. Radiation Mitigation of the Intestinal Acute Radiation Injury in Mice by 1-[(4-Nitrophenyl)Sulfonyl]-4-Phenylpiperazine. Stem Cells Transl Med. 2019;: pubmed 出版商
  102. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17:109 pubmed 出版商
  103. Ji M, Wang Z, Chen J, Gu L, Chen M, Ding Y, et al. Up-regulated ENO1 promotes the bladder cancer cell growth and proliferation via regulating β-catenin. Biosci Rep. 2019;39: pubmed 出版商
  104. Wei C, Zhu M, Zhang P, Yang X, Wang L, Ying J, et al. Elevated kindlin-2 promotes tumour progression and angiogenesis through the mTOR/VEGFA pathway in melanoma. Aging (Albany NY). 2019;11:6273-6285 pubmed 出版商
  105. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  106. Dumortier J, Le Verge Serandour M, Tortorelli A, Mielke A, de Plater L, Turlier H, et al. Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst. Science. 2019;365:465-468 pubmed 出版商
  107. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38:334 pubmed 出版商
  108. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  109. Petersen C, Mahmood B, Badsted C, Dahlby T, Rasmussen H, Hansen M, et al. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer. 2019;19:643 pubmed 出版商
  110. Carvalho J, Fortunato I, Fonseca C, Pezzarossa A, Barbacena P, Domínguez Cejudo M, et al. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. elife. 2019;8: pubmed 出版商
  111. Parolia A, Cieslik M, Chu S, Xiao L, Ouchi T, Zhang Y, et al. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature. 2019;: pubmed 出版商
  112. Alsaeedi F, Wilson R, Candlish C, Ibrahim I, Leitch A, Abdelghany T, et al. Expression of serine/threonine protein kinase SGK1F promotes an hepatoblast state in stem cells directed to differentiate into hepatocytes. PLoS ONE. 2019;14:e0218135 pubmed 出版商
  113. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  114. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  115. Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, et al. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med. 2019;23:4443-4453 pubmed 出版商
  116. Montalbán Loro R, Lozano Ureña A, Ito M, Krueger C, Reik W, Ferguson Smith A, et al. TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn. Nat Commun. 2019;10:1726 pubmed 出版商
  117. Gong L, Xiao Y, Xia F, Wu P, Zhao T, Xie S, et al. The mevalonate coordinates energy input and cell proliferation. Cell Death Dis. 2019;10:327 pubmed 出版商
  118. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  119. Krimpenfort P, Snoek M, Lambooij J, Song J, van der Weide R, Bhaskaran R, et al. A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nat Commun. 2019;10:1425 pubmed 出版商
  120. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  121. Miller C, Lou H, Simpson C, van de Kooij B, Ha B, Fisher O, et al. Comprehensive profiling of the STE20 kinase family defines features essential for selective substrate targeting and signaling output. PLoS Biol. 2019;17:e2006540 pubmed 出版商
  122. Huang K, Ru B, Zhang Y, Chan W, Chow S, Zhang J, et al. Sertoli cell-specific coxsackievirus and adenovirus receptor knockout regulates cell adhesion and gene transcription via β-catenin inactivation and Cdc42 activation. FASEB J. 2019;33:7588-7602 pubmed 出版商
  123. Wei X, Guo J, Li Q, Jia Q, Jing Q, Li Y, et al. Bach1 regulates self-renewal and impedes mesendodermal differentiation of human embryonic stem cells. Sci Adv. 2019;5:eaau7887 pubmed 出版商
  124. Borhani S, Corciulo C, Larrañaga Vera A, Cronstein B. Adenosine A2A receptor (A2AR) activation triggers Akt signaling and enhances nuclear localization of β-catenin in osteoblasts. FASEB J. 2019;33:7555-7562 pubmed 出版商
  125. Patel N, Wang J, Shiozawa K, Jones K, Zhang Y, Prokop J, et al. HDAC2 Regulates Site-Specific Acetylation of MDM2 and Its Ubiquitination Signaling in Tumor Suppression. iScience. 2019;13:43-54 pubmed 出版商
  126. Zhang X, Qin Q, Dai H, Cai S, Zhou C, Guan J. Emodin protects H9c2 cells from hypoxia-induced injury by up-regulating miR-138 expression. Braz J Med Biol Res. 2019;52:e7994 pubmed 出版商
  127. Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, et al. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics. 2019;9:811-828 pubmed 出版商
  128. Majumdar T, Sharma S, Kumar M, Hussain M, Chauhan N, Kalia I, et al. Tryptophan-kynurenine pathway attenuates β-catenin-dependent pro-parasitic role of STING-TICAM2-IRF3-IDO1 signalosome in Toxoplasma gondii infection. Cell Death Dis. 2019;10:161 pubmed 出版商
  129. Hwang J, Kim A, Kim K, Il Park J, Oh H, Moon S, et al. TAZ couples Hippo/Wnt signalling and insulin sensitivity through Irs1 expression. Nat Commun. 2019;10:421 pubmed 出版商
  130. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  131. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  132. Ren D, Dai Y, Yang Q, Zhang X, Guo W, Ye L, et al. Wnt5a induces and maintains prostate cancer cells dormancy in bone. J Exp Med. 2019;216:428-449 pubmed 出版商
  133. Weng J, Yu L, Chen Z, Su H, Yu S, Zhang Y, et al. β-Catenin phosphorylation at Y654 and Y142 is crucial for high mobility group box-1 protein-induced pulmonary vascular hyperpermeability. J Mol Cell Cardiol. 2019;127:174-184 pubmed 出版商
  134. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  135. Xie Y, Fan H, Lu W, Yang Q, Nurkesh A, Yeleussizov T, et al. Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene. 2019;38:2967-2983 pubmed 出版商
  136. Yang F, Fang E, Mei H, Chen Y, Li H, Li D, et al. Cis-Acting circ-CTNNB1 Promotes β-Catenin Signaling and Cancer Progression via DDX3-Mediated Transactivation of YY1. Cancer Res. 2019;79:557-571 pubmed 出版商
  137. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  138. Narayana Y, Gadgil C, Mote R, Rajan R, Subramanyam D. Clathrin-Mediated Endocytosis Regulates a Balance between Opposing Signals to Maintain the Pluripotent State of Embryonic Stem Cells. Stem Cell Reports. 2019;12:152-164 pubmed 出版商
  139. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  140. Xu H, Li J, Chen H, Ghishan F. NHE8 Deficiency Promotes Colitis-Associated Cancer in Mice via Expansion of Lgr5-Expressing Cells. Cell Mol Gastroenterol Hepatol. 2019;7:19-31 pubmed 出版商
  141. Koren E, Yosefzon Y, Ankawa R, Soteriou D, Jacob A, Nevelsky A, et al. ARTS mediates apoptosis and regeneration of the intestinal stem cell niche. Nat Commun. 2018;9:4582 pubmed 出版商
  142. Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, et al. Hsp90ab1 stabilizes LRP5 to promote epithelial-mesenchymal transition via activating of AKT and Wnt/β-catenin signaling pathways in gastric cancer progression. Oncogene. 2019;38:1489-1507 pubmed 出版商
  143. Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839 pubmed 出版商
  144. Yang J, Sun L, Fan X, Yin B, Kang Y, Tang L, et al. Effect of exercise on bone in poorly controlled type 1 diabetes mediated by the ActRIIB/Smad signaling pathway. Exp Ther Med. 2018;16:3686-3693 pubmed 出版商
  145. Russell J, Lu W, Okabe H, Abrams M, Oertel M, Poddar M, et al. Hepatocyte-Specific β-Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology. 2019;69:742-759 pubmed 出版商
  146. Ji L, Lu B, Wang Z, Yang Z, Reece Hoyes J, Russ C, et al. Identification of ICAT as an APC Inhibitor, Revealing Wnt-Dependent Inhibition of APC-Axin Interaction. Mol Cell. 2018;72:37-47.e4 pubmed 出版商
  147. Zhou L, Jing J, Wang H, Wu X, Lu Z. Decorin promotes proliferation and migration of ORS keratinocytes and maintains hair anagen in mice. Exp Dermatol. 2018;27:1237-1244 pubmed 出版商
  148. Qiu C, Liu Z, Hou K, Liu S, Hu Y, Zhang L, et al. Wip1 knockout inhibits neurogenesis by affecting the Wnt/β-catenin signaling pathway in focal cerebral ischemia in mice. Exp Neurol. 2018;309:44-53 pubmed 出版商
  149. Wang L, Chai Y, Li C, Liu H, Su W, Liu X, et al. Oxidized phospholipids are ligands for LRP6. Bone Res. 2018;6:22 pubmed 出版商
  150. Pan B, Wu L, Pan L, Yang Y, Li H, Dai Y, et al. Up-regulation of microRNA-340 promotes osteosarcoma cell apoptosis while suppressing proliferation, migration, and invasion by inactivating the CTNNB1-mediated Notch signaling pathway. Biosci Rep. 2018;38: pubmed 出版商
  151. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  152. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  153. Zhang Y, Xia F, Liu X, Yu Z, Xie L, Liu L, et al. JAM3 maintains leukemia-initiating cell self-renewal through LRP5/AKT/?-catenin/CCND1 signaling. J Clin Invest. 2018;128:1737-1751 pubmed 出版商
  154. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  155. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  156. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  157. Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta M, et al. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. elife. 2018;7: pubmed 出版商
  158. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  159. Vl kov K, Vachtenheim J, R da J, Hor k P, Ondru ov L. Inducibly decreased MITF levels do not affect proliferation and phenotype switching but reduce differentiation of melanoma cells. J Cell Mol Med. 2018;22:2240-2251 pubmed 出版商
  160. Sui Y, Liu Z, Park S, Thatcher S, Zhu B, Fernandez J, et al. IKKβ is a β-catenin kinase that regulates mesenchymal stem cell differentiation. JCI Insight. 2018;3: pubmed 出版商
  161. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  162. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  163. Wang Y, Liu X, Zhou L, Duong D, Bhuripanyo K, Zhao B, et al. Identifying the ubiquitination targets of E6AP by orthogonal ubiquitin transfer. Nat Commun. 2017;8:2232 pubmed 出版商
  164. Wang W, Wang Y, Qu C, Wang S, Zhou J, Cao W, et al. The RNA genome of hepatitis E virus robustly triggers an antiviral interferon response. Hepatology. 2018;67:2096-2112 pubmed 出版商
  165. Vassilev V, Platek A, Hiver S, Enomoto H, Takeichi M. Catenins Steer Cell Migration via Stabilization of Front-Rear Polarity. Dev Cell. 2017;43:463-479.e5 pubmed 出版商
  166. Frey J, Kim S, Li Z, Wolfgang M, Riddle R. β-Catenin Directs Long-Chain Fatty Acid Catabolism in the Osteoblasts of Male Mice. Endocrinology. 2018;159:272-284 pubmed 出版商
  167. Nakagawa N, Li J, Yabuno Nakagawa K, Eom T, Cowles M, Mapp T, et al. APC sets the Wnt tone necessary for cerebral cortical progenitor development. Genes Dev. 2017;31:1679-1692 pubmed 出版商
  168. Caino M, Seo J, Wang Y, Rivadeneira D, Gabrilovich D, Kim E, et al. Syntaphilin controls a mitochondrial rheostat for proliferation-motility decisions in cancer. J Clin Invest. 2017;127:3755-3769 pubmed 出版商
  169. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  170. Liang X, Yuan X, Yu J, Wu Y, Li K, Sun C, et al. Histone Chaperone ASF1A Predicts Poor Outcomes for Patients With Gastrointestinal Cancer and Drives Cancer Progression by Stimulating Transcription of β-Catenin Target Genes. EBioMedicine. 2017;21:104-116 pubmed 出版商
  171. Li Q, Ye L, Zhang X, Wang M, Lin C, Huang S, et al. FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett. 2017;402:166-176 pubmed 出版商
  172. Matsumoto Y, La Rose J, Lim M, Adissu H, Law N, Mao X, et al. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest. 2017;127:2612-2625 pubmed 出版商
  173. Lu J, Yang Y, Guo G, Liu Y, Zhang Z, Dong S, et al. IKBKE regulates cell proliferation and epithelial-mesenchymal transition of human malignant glioma via the Hippo pathway. Oncotarget. 2017;8:49502-49514 pubmed 出版商
  174. Choi E, Jung B, Lee S, Yoo H, Shin E, Ko H, et al. A clinical drug library screen identifies clobetasol propionate as an NRF2 inhibitor with potential therapeutic efficacy in KEAP1 mutant lung cancer. Oncogene. 2017;36:5285-5295 pubmed 出版商
  175. Janda C, Dang L, You C, Chang J, de Lau W, Zhong Z, et al. Surrogate Wnt agonists that phenocopy canonical Wnt and ?-catenin signalling. Nature. 2017;545:234-237 pubmed 出版商
  176. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  177. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  178. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  179. Nag J, Kancharla A, Maoz M, Turm H, Agranovich D, Gupta C, et al. Low-density lipoprotein receptor-related protein 6 is a novel coreceptor of protease-activated receptor-2 in the dynamics of cancer-associated ?-catenin stabilization. Oncotarget. 2017;8:38650-38667 pubmed 出版商
  180. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  181. Kharfallah F, Guyot M, El Hassan A, Allache R, Merello E, De Marco P, et al. Scribble1 plays an important role in the pathogenesis of neural tube defects through its mediating effect of Par-3 and Vangl1/2 localization. Hum Mol Genet. 2017;26:2307-2320 pubmed 出版商
  182. Hu X, Zhang Z, Liang Z, Xie D, Zhang T, Yu D, et al. Downregulation of feline sarcoma-related protein inhibits cell migration, invasion and epithelial-mesenchymal transition via the ERK/AP-1 pathway in bladder urothelial cell carcinoma. Oncol Lett. 2017;13:686-694 pubmed 出版商
  183. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  184. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  185. Chattopadhyay R, Raghavan S, Rao G. Resolvin D1 via prevention of ROS-mediated SHP2 inactivation protects endothelial adherens junction integrity and barrier function. Redox Biol. 2017;12:438-455 pubmed 出版商
  186. Riascos Bernal D, Chinnasamy P, Gross J, Almonte V, Egaña Gorroño L, Parikh D, et al. Inhibition of Smooth Muscle ?-Catenin Hinders Neointima Formation After Vascular Injury. Arterioscler Thromb Vasc Biol. 2017;37:879-888 pubmed 出版商
  187. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  188. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  189. Boutin A, Liao W, Wang M, Hwang S, Karpinets T, Cheung H, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer. Genes Dev. 2017;31:370-382 pubmed 出版商
  190. Dogan A, Demirci S, Apdik H, Bayrak O, Gulluoglu S, Tuysuz E, et al. A new hope for obesity management: Boron inhibits adipogenesis in progenitor cells through the Wnt/β-catenin pathway. Metabolism. 2017;69:130-142 pubmed 出版商
  191. Domingues M, Martinez Sanz J, Papon L, Larue L, Mouawad L, Bonaventure J. Structure-based mutational analysis of ICAT residues mediating negative regulation of ?-catenin co-transcriptional activity. PLoS ONE. 2017;12:e0172603 pubmed 出版商
  192. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  193. Shi G, Zheng X, Zhu C, Li B, Wang Y, Jiang S, et al. Evidence of the Role of R-Spondin 1 and Its Receptor Lgr4 in the Transmission of Mechanical Stimuli to Biological Signals for Bone Formation. Int J Mol Sci. 2017;18: pubmed 出版商
  194. Balashova O, Visina O, Borodinsky L. Folate receptor 1 is necessary for neural plate cell apical constriction during Xenopus neural tube formation. Development. 2017;144:1518-1530 pubmed 出版商
  195. Palma Vera S, Schoen J, Chen S. Periovulatory follicular fluid levels of estradiol trigger inflammatory and DNA damage responses in oviduct epithelial cells. PLoS ONE. 2017;12:e0172192 pubmed 出版商
  196. Tung K, Harakal J, Qiao H, Rival C, Li J, Paul A, et al. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest. 2017;127:1046-1060 pubmed 出版商
  197. Tormos A, Rius Pérez S, Jorques M, Rada P, Ramírez L, Valverde A, et al. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS ONE. 2017;12:e0171738 pubmed 出版商
  198. Genovese N, Domeier T, Telugu B, Roberts R. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Sci Rep. 2017;7:41833 pubmed 出版商
  199. Bakshi S, Taylor J, Strickson S, McCartney T, Cohen P. Identification of TBK1 complexes required for the phosphorylation of IRF3 and the production of interferon ?. Biochem J. 2017;474:1163-1174 pubmed 出版商
  200. Andersson Rolf A, Mustata R, Merenda A, Kim J, Perera S, Grego T, et al. One-step generation of conditional and reversible gene knockouts. Nat Methods. 2017;14:287-289 pubmed 出版商
  201. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  202. Golden R, Chen B, Li T, Braun J, Manjunath H, Chen X, et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature. 2017;542:197-202 pubmed 出版商
  203. Barnes L, Saurat J, Kaya G. Senescent Atrophic Epidermis Retains Lrig1+ Stem Cells and Loses Wnt Signaling, a Phenotype Shared with CD44KO Mice. PLoS ONE. 2017;12:e0169452 pubmed 出版商
  204. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  205. Zhu J, Wang P, Yu Z, Lai W, Cao Y, Huang P, et al. Advanced glycosylation end product promotes forkhead box O1 and inhibits Wnt pathway to suppress capacities of epidermal stem cells. Am J Transl Res. 2016;8:5569-5579 pubmed
  206. Li C, Chang L, Chen Z, Liu Z, Wang Y, Ye Q. The role of lncRNA MALAT1 in the regulation of hepatocyte proliferation during liver regeneration. Int J Mol Med. 2017;39:347-356 pubmed 出版商
  207. Shen X, Jia Z, D Alonzo D, Wang X, Bruder E, Emch F, et al. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal. 2017;15:2 pubmed 出版商
  208. Le Dour C, Macquart C, Sera F, Homma S, Bonne G, Morrow J, et al. Decreased WNT/?-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum Mol Genet. 2017;26:333-343 pubmed 出版商
  209. Morandi L, Righi A, Maletta F, Rucci P, Pagni F, Gallo M, et al. Somatic mutation profiling of hobnail variant of papillary thyroid carcinoma. Endocr Relat Cancer. 2017;24:107-117 pubmed 出版商
  210. Boylan K, Buchanan P, Manion R, Shukla D, Braumberger K, Bruggemeyer C, et al. The expression of Nectin-4 on the surface of ovarian cancer cells alters their ability to adhere, migrate, aggregate, and proliferate. Oncotarget. 2017;8:9717-9738 pubmed 出版商
  211. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  212. Van Itallie C, Tietgens A, Anderson J. Visualizing the dynamic coupling of claudin strands to the actin cytoskeleton through ZO-1. Mol Biol Cell. 2017;28:524-534 pubmed 出版商
  213. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  214. Cao J, Tyburczy M, Moss J, Darling T, Widlund H, Kwiatkowski D. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest. 2017;127:349-364 pubmed 出版商
  215. Xu D, Zhou P, Wang Y, Zhang Y, Zhang R, Zhang L, et al. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol. 2016;7:439 pubmed
  216. Xiao Y, Yang X, Miao Y, He X, Wang M, Sha W. Inhibition of cell proliferation and tumor growth of colorectal cancer by inhibitors of Wnt and Notch signaling pathways. Oncol Lett. 2016;12:3695-3700 pubmed
  217. Schiffmacher A, Xie V, Taneyhill L. Cadherin-6B proteolysis promotes the neural crest cell epithelial-to-mesenchymal transition through transcriptional regulation. J Cell Biol. 2016;215:735-747 pubmed
  218. Cao L, Riascos Bernal D, Chinnasamy P, Dunaway C, Hou R, Pujato M, et al. Control of mitochondrial function and cell growth by the atypical cadherin Fat1. Nature. 2016;539:575-578 pubmed 出版商
  219. Gilbert J, Man H. The X-Linked Autism Protein KIAA2022/KIDLIA Regulates Neurite Outgrowth via N-Cadherin and ?-Catenin Signaling. Eneuro. 2016;3: pubmed
  220. Gao Y, Mruk D, Chen H, Lui W, Lee W, Cheng C. Regulation of the blood-testis barrier by a local axis in the testis: role of laminin ?2 in the basement membrane. FASEB J. 2017;31:584-597 pubmed 出版商
  221. Chu Q, Huang H, Huang T, Cao L, Peng L, Shi S, et al. Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis. Cell Death Dis. 2016;7:e2456 pubmed 出版商
  222. Salazar V, Ohte S, Capelo L, Gamer L, Rosen V. Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2. Development. 2016;143:4352-4367 pubmed
  223. Su W, Kowalczyk A. The VE-cadherin cytoplasmic domain undergoes proteolytic processing during endocytosis. Mol Biol Cell. 2017;28:76-84 pubmed 出版商
  224. Beyer S, Pontis J, Schirwis E, Battisti V, Rudolf A, Le Grand F, et al. Canonical Wnt signalling regulates nuclear export of Setdb1 during skeletal muscle terminal differentiation. Cell Discov. 2016;2:16037 pubmed
  225. JENKINS L, Singh P, Varadaraj A, Lee N, Shah S, Flores H, et al. Altering the Proteoglycan State of Transforming Growth Factor ? Type III Receptor (T?RIII)/Betaglycan Modulates Canonical Wnt/?-Catenin Signaling. J Biol Chem. 2016;291:25716-25728 pubmed
  226. Günther C, He G, Kremer A, Murphy J, Petrie E, Amann K, et al. The pseudokinase MLKL mediates programmed hepatocellular necrosis independently of RIPK3 during hepatitis. J Clin Invest. 2016;126:4346-4360 pubmed 出版商
  227. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  228. Gómez Salinero J, López Olañeta M, Ortiz Sánchez P, Larrasa Alonso J, Gatto A, Felkin L, et al. The Calcineurin Variant CnA?1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol. 2016;23:1372-1382 pubmed 出版商
  229. Gammons M, Rutherford T, Steinhart Z, Angers S, Bienz M. Essential role of the Dishevelled DEP domain in a Wnt-dependent human-cell-based complementation assay. J Cell Sci. 2016;129:3892-3902 pubmed
  230. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  231. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  232. Huang T, Alvarez A, Pangeni R, Horbinski C, Lu S, Kim S, et al. A regulatory circuit of miR-125b/miR-20b and Wnt signalling controls glioblastoma phenotypes through FZD6-modulated pathways. Nat Commun. 2016;7:12885 pubmed 出版商
  233. King B, Boccalatte F, Moran Crusio K, Wolf E, Wang J, Kayembe C, et al. The ubiquitin ligase Huwe1 regulates the maintenance and lymphoid commitment of hematopoietic stem cells. Nat Immunol. 2016;17:1312-1321 pubmed 出版商
  234. Park S, Yoon S, Kim H, Kim K. 90K Glycoprotein Promotes Degradation of Mutant ?-Catenin Lacking the ISGylation or Phosphorylation Sites in the N-terminus. Neoplasia. 2016;18:618-625 pubmed 出版商
  235. Barth K, Blasche R, Neiser A, Bramke S, Frank J, Kasper M. P2X7R-dependent regulation of glycogen synthase kinase 3β and claudin-18 in alveolar epithelial type I cells of mice lung. Histochem Cell Biol. 2016;146:757-768 pubmed 出版商
  236. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  237. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  238. Scotti L, Di Pietro M, Pascuali N, Irusta G, I de Zúñiga -, Gomez Peña M, et al. Sphingosine-1-phosphate restores endothelial barrier integrity in ovarian hyperstimulation syndrome. Mol Hum Reprod. 2016;22:852-866 pubmed
  239. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  240. Gallego Delgado J, Basu Roy U, Ty M, Alique M, Fernandez Arias C, Movila A, et al. Angiotensin receptors and ?-catenin regulate brain endothelial integrity in malaria. J Clin Invest. 2016;126:4016-4029 pubmed 出版商
  241. Chang L, Chen T, Chen S, Chen C, Lee C, Wu S, et al. Identification of a new class of WNT1 inhibitor: Cancer cells migration, G-quadruplex stabilization and target validation. Oncotarget. 2016;7:67986-68001 pubmed 出版商
  242. Drelon C, Berthon A, Sahut Barnola I, Mathieu M, Dumontet T, Rodriguez S, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7:12751 pubmed 出版商
  243. Lutgen V, Narasipura S, Sharma A, Min S, Al Harthi L. β-Catenin signaling positively regulates glutamate uptake and metabolism in astrocytes. J Neuroinflammation. 2016;13:242 pubmed 出版商
  244. Wang M, Nagle R, Knudsen B, Rogers G, Cress A. A basal cell defect promotes budding of prostatic intraepithelial neoplasia. J Cell Sci. 2017;130:104-110 pubmed 出版商
  245. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  246. Kong X, Liu F, Gao J. MiR-155 promotes epithelial-mesenchymal transition in hepatocellular carcinoma cells through the activation of PI3K/SGK3/β-catenin signaling pathways. Oncotarget. 2016;7:66051-66060 pubmed 出版商
  247. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  248. Wegwitz F, Lenfert E, Gerstel D, von Ehrenstein L, Einhoff J, Schmidt G, et al. CEACAM1 controls the EMT switch in murine mammary carcinoma in vitro and in vivo. Oncotarget. 2016;7:63730-63746 pubmed 出版商
  249. Ramazzotti G, Billi A, Manzoli L, Mazzetti C, Ruggeri A, Erneux C, et al. IPMK and β-catenin mediate PLC-β1-dependent signaling in myogenic differentiation. Oncotarget. 2016;7:84118-84127 pubmed 出版商
  250. Li N, Lee W, Cheng C. Overexpression of plastin 3 in Sertoli cells disrupts actin microfilament bundle homeostasis and perturbs the tight junction barrier. Spermatogenesis. 2016;6:e1206353 pubmed 出版商
  251. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, et al. Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med. 2016;22:1033-1042 pubmed 出版商
  252. Hofbauer P, Jung J, McArdle T, Ogle B. Simple Monolayer Differentiation of Murine Cardiomyocytes via Nutrient Deprivation-Mediated Activation of β-Catenin. Stem Cell Rev. 2016;12:731-743 pubmed
  253. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  254. Gao S, Yang X, Wang M. Inhibitory effects of B?cell translocation gene 2 on skin cancer cells via the Wnt/??catenin signaling pathway. Mol Med Rep. 2016;14:3464-8 pubmed 出版商
  255. Riascos Bernal D, Chinnasamy P, Cao L, Dunaway C, Valenta T, Basler K, et al. β-Catenin C-terminal signals suppress p53 and are essential for artery formation. Nat Commun. 2016;7:12389 pubmed 出版商
  256. Gerling M, Büller N, Kirn L, Joost S, Frings O, Englert B, et al. Stromal Hedgehog signalling is downregulated in colon cancer and its restoration restrains tumour growth. Nat Commun. 2016;7:12321 pubmed 出版商
  257. Hsu Y, Chang P, Ho C, Huang Y, Shih Y, Wang C, et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep. 2016;6:30575 pubmed 出版商
  258. Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3?/?-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016;12:1124-1128 pubmed
  259. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  260. Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, et al. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep. 2016;14:1891-900 pubmed 出版商
  261. Mihajlovic A, Bruce A. Rho-associated protein kinase regulates subcellular localisation of Angiomotin and Hippo-signalling during preimplantation mouse embryo development. Reprod Biomed Online. 2016;33:381-90 pubmed 出版商
  262. Dorland Y, Malinova T, van Stalborch A, Grieve A, van Geemen D, Jansen N, et al. The F-BAR protein pacsin2 inhibits asymmetric VE-cadherin internalization from tensile adherens junctions. Nat Commun. 2016;7:12210 pubmed 出版商
  263. Im J, Yoon S, Kim B, Ban H, Won K, Chung K, et al. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes ?-catenin-mediated invasion. Biochim Biophys Acta. 2016;1859:1449-1458 pubmed 出版商
  264. McClelland Descalzo D, Satoorian T, Walker L, Sparks N, Pulyanina P, zur Nieden N. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/?-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports. 2016;7:55-68 pubmed 出版商
  265. Cantú A, Altshuler Keylin S, Laird D. Discrete somatic niches coordinate proliferation and migration of primordial germ cells via Wnt signaling. J Cell Biol. 2016;214:215-29 pubmed 出版商
  266. Chen H, Wei Z, Sun J, Bhattacharya A, Savage D, Serda R, et al. A recellularized human colon model identifies cancer driver genes. Nat Biotechnol. 2016;34:845-51 pubmed 出版商
  267. Zhang Q, Liu S, Parajuli K, Zhang W, Zhang K, Mo Z, et al. Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene. 2017;36:687-699 pubmed 出版商
  268. Gao Y, Lui W, Lee W, Cheng C. Polarity protein Crumbs homolog-3 (CRB3) regulates ectoplasmic specialization dynamics through its action on F-actin organization in Sertoli cells. Sci Rep. 2016;6:28589 pubmed 出版商
  269. Talar B, Gajos Michniewicz A, Talar M, Chouaib S, Czyz M. Pentoxifylline Inhibits WNT Signalling in ?-Cateninhigh Patient-Derived Melanoma Cell Populations. PLoS ONE. 2016;11:e0158275 pubmed 出版商
  270. Frohwitter G, Buerger H, van Diest P, Korsching E, Kleinheinz J, Fillies T. Cytokeratin and protein expression patterns in squamous cell carcinoma of the oral cavity provide evidence for two distinct pathogenetic pathways. Oncol Lett. 2016;12:107-113 pubmed
  271. Eterno V, Zambelli A, Villani L, Tuscano A, Manera S, Spitaleri A, et al. AurkA controls self-renewal of breast cancer-initiating cells promoting wnt3a stabilization through suppression of miR-128. Sci Rep. 2016;6:28436 pubmed 出版商
  272. Shriver M, Marimuthu S, Paul C, Geist J, Seale T, Konstantopoulos K, et al. Giant obscurins regulate the PI3K cascade in breast epithelial cells via direct binding to the PI3K/p85 regulatory subunit. Oncotarget. 2016;7:45414-45428 pubmed 出版商
  273. Li J, Bao Q, Chen S, Liu H, Feng J, Qin H, et al. Different bone remodeling levels of trabecular and cortical bone in response to changes in Wnt/?-catenin signaling in mice. J Orthop Res. 2017;35:812-819 pubmed 出版商
  274. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  275. Dianati E, Poiraud J, Weber Ouellette A, Plante I. Connexins, E-cadherin, Claudin-7 and ?-catenin transiently form junctional nexuses during the post-natal mammary gland development. Dev Biol. 2016;416:52-68 pubmed 出版商
  276. Horrillo A, Porras G, Ayuso M, González Manchón C. Loss of endothelial barrier integrity in mice with conditional ablation of podocalyxin (Podxl) in endothelial cells. Eur J Cell Biol. 2016;95:265-76 pubmed 出版商
  277. Guo Y, Wang L, Li B, Xu H, Yang J, Zheng L, et al. Wnt/?-catenin pathway transactivates microRNA-150 that promotes EMT of colorectal cancer cells by suppressing CREB signaling. Oncotarget. 2016;7:42513-42526 pubmed 出版商
  278. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  279. Zhu P, Wang Y, Huang G, Ye B, Liu B, Wu J, et al. lnc-?-Catm elicits EZH2-dependent ?-catenin stabilization and sustains liver CSC self-renewal. Nat Struct Mol Biol. 2016;23:631-9 pubmed 出版商
  280. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  281. Jacobsen A, Heijmans N, Verkaar F, Smit M, Heringa J, van Amerongen R, et al. Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling. PLoS ONE. 2016;11:e0155743 pubmed 出版商
  282. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  283. Lubeseder Martellato C, Hidalgo Sastre A, Hartmann C, Alexandrow K, Kamyabi Moghaddam Z, Sipos B, et al. Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget. 2016;7:49156-49168 pubmed 出版商
  284. Jung J, Kang K, Kim J, Hong S, Park Y, Kim B. CXCR2 Inhibition in Human Pluripotent Stem Cells Induces Predominant Differentiation to Mesoderm and Endoderm Through Repression of mTOR, ?-Catenin, and hTERT Activities. Stem Cells Dev. 2016;25:1006-19 pubmed 出版商
  285. de Jong P, Taniguchi K, Harris A, Bertin S, Takahashi N, Duong J, et al. ERK5 signalling rescues intestinal epithelial turnover and tumour cell proliferation upon ERK1/2 abrogation. Nat Commun. 2016;7:11551 pubmed 出版商
  286. Allodi I, Comley L, Nichterwitz S, Nizzardo M, Simone C, Benitez J, et al. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS. Sci Rep. 2016;6:25960 pubmed 出版商
  287. Simmers M, Cole B, Ogletree M, Chen Z, Xu Y, Kong L, et al. Hemodynamics associated with atrial fibrillation directly alters thrombotic potential of endothelial cells. Thromb Res. 2016;143:34-9 pubmed 出版商
  288. Morris J, Moseley V, Cabang A, Coleman K, Wei W, Garrett Mayer E, et al. Reduction in promotor methylation utilizing EGCG (epigallocatechin-3-gallate) restores RXR? expression in human colon cancer cells. Oncotarget. 2016;7:35313-26 pubmed 出版商
  289. Illich D, Zhang M, Ursu A, Osorno R, Kim K, Yoon J, et al. Distinct Signaling Requirements for the Establishment of ESC Pluripotency in Late-Stage EpiSCs. Cell Rep. 2016;15:787-800 pubmed 出版商
  290. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  291. Marthandan S, Baumgart M, Priebe S, Groth M, Schaer J, Kaether C, et al. Conserved Senescence Associated Genes and Pathways in Primary Human Fibroblasts Detected by RNA-Seq. PLoS ONE. 2016;11:e0154531 pubmed 出版商
  292. Marcos Ramiro B, García Weber D, Barroso S, Feito J, Ortega M, Cernuda Morollón E, et al. RhoB controls endothelial barrier recovery by inhibiting Rac1 trafficking to the cell border. J Cell Biol. 2016;213:385-402 pubmed 出版商
  293. Chen Y, Pan K, Wang P, Cao Z, Wang W, Wang S, et al. HBP1-mediated Regulation of p21 Protein through the Mdm2/p53 and TCF4/EZH2 Pathways and Its Impact on Cell Senescence and Tumorigenesis. J Biol Chem. 2016;291:12688-705 pubmed 出版商
  294. Chatterjee I, Baruah J, Lurie E, Wary K. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development. Cardiovasc Res. 2016;111:105-18 pubmed 出版商
  295. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  296. Rolo A, Savery D, Escuin S, de Castro S, Armer H, Munro P, et al. Regulation of cell protrusions by small GTPases during fusion of the neural folds. elife. 2016;5:e13273 pubmed 出版商
  297. Zhuang L, Yang Y, Ma X, Han B, Wang Z, Zhao Q, et al. MicroRNA-92b promotes hepatocellular carcinoma progression by targeting Smad7 and is mediated by long non-coding RNA XIST. Cell Death Dis. 2016;7:e2203 pubmed 出版商
  298. Liu S, Zhou F, Shen Y, Zhang Y, Yin H, Zeng Y, et al. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget. 2016;7:32876-92 pubmed 出版商
  299. Lu C, Thoeni C, Connor A, Kawabe H, Gallinger S, Rotin D. Intestinal knockout of Nedd4 enhances growth of Apcmin tumors. Oncogene. 2016;35:5839-5849 pubmed 出版商
  300. Zhou R, Yuan Z, Liu J, Liu J. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signal transduction pathway in bone marrow stromal stem cells. Mol Med Rep. 2016;13:4689-96 pubmed 出版商
  301. Conway A, Van Nostrand E, Pratt G, Aigner S, Wilbert M, Sundararaman B, et al. Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Rep. 2016;15:666-679 pubmed 出版商
  302. Huang G, Yang X, Chen K, Xing J, Guo L, Zhu L, et al. Porf-2 Inhibits Neural Stem Cell Proliferation Through Wnt/?-Catenin Pathway by Its GAP Domain. Front Cell Neurosci. 2016;10:85 pubmed 出版商
  303. Zheng G, Li N, Jia X, Peng C, Luo L, Deng Y, et al. MYCN-mediated miR-21 overexpression enhances chemo-resistance via targeting CADM1 in tongue cancer. J Mol Med (Berl). 2016;94:1129-1141 pubmed
  304. Ren J, Li J, Liu X, Feng Y, Gui Y, Yang J, et al. Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Sci Rep. 2016;6:23968 pubmed 出版商
  305. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  306. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  307. Kaur A, Webster M, Marchbank K, Behera R, Ndoye A, Kugel C, et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature. 2016;532:250-4 pubmed 出版商
  308. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  309. Chou C, Fan C, Lin P, Liao P, Tung J, Hsieh C, et al. Sciellin mediates mesenchymal-to-epithelial transition in colorectal cancer hepatic metastasis. Oncotarget. 2016;7:25742-54 pubmed 出版商
  310. Jun S, Jung Y, Suh H, Wang W, Kim M, Oh Y, et al. LIG4 mediates Wnt signalling-induced radioresistance. Nat Commun. 2016;7:10994 pubmed 出版商
  311. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  312. Morgan E, Pittman J, DeGiacomo A, Cusher D, de Bakker C, Mroszczyk K, et al. BMPR1A antagonist differentially affects cartilage and bone formation during fracture healing. J Orthop Res. 2016;34:2096-2105 pubmed 出版商
  313. Kang R, Zhao S, Liu L, Li F, Li E, Luo L, et al. Knockdown of PSCA induces EMT and decreases metastatic potentials of the human prostate cancer DU145 cells. Cancer Cell Int. 2016;16:20 pubmed 出版商
  314. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  315. Kim J, Lee H, Park K, Choi Y, Nam J, Hong I. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget. 2016;7:20395-409 pubmed 出版商
  316. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  317. Li S, Wang F, Yang Y, Tiao M, Chuang J, Huang Y. Microarray Study of Pathway Analysis Expression Profile Associated with MicroRNA-29a with Regard to Murine Cholestatic Liver Injuries. Int J Mol Sci. 2016;17:324 pubmed 出版商
  318. Beyaz S, Mana M, Roper J, Kedrin D, Saadatpour A, Hong S, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature. 2016;531:53-8 pubmed 出版商
  319. Zhang M, Linghu E, Zhan Q, He T, Cao B, Brock M, et al. Methylation of DACT2 accelerates esophageal cancer development by activating Wnt signaling. Oncotarget. 2016;7:17957-69 pubmed 出版商
  320. Yang Z, Liu S, Zhu M, Zhang H, Wang J, Xu Q, et al. PS341 inhibits hepatocellular and colorectal cancer cells through the FOXO3/CTNNB1 signaling pathway. Sci Rep. 2016;6:22090 pubmed 出版商
  321. Ro S, Xue X, Ramakrishnan S, Cho C, Namkoong S, Jang I, et al. Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. elife. 2016;5:e12204 pubmed 出版商
  322. Lee S, Shatadal S, Griep A. Dlg-1 Interacts With and Regulates the Activities of Fibroblast Growth Factor Receptors and EphA2 in the Mouse Lens. Invest Ophthalmol Vis Sci. 2016;57:707-18 pubmed 出版商
  323. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  324. Gawron D, Ndah E, Gevaert K, Van Damme P. Positional proteomics reveals differences in N-terminal proteoform stability. Mol Syst Biol. 2016;12:858 pubmed 出版商
  325. Katoh I, Fukunishi N, Fujimuro M, Kasai H, Moriishi K, Hata R, et al. Repression of Wnt/β-catenin response elements by p63 (TP63). Cell Cycle. 2016;15:699-710 pubmed 出版商
  326. Skardal A, Devarasetty M, Forsythe S, Atala A, Soker S. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening. Biotechnol Bioeng. 2016;113:2020-32 pubmed 出版商
  327. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  328. Chang L, Lei X, Qin Y, Zeng G, Zhang X, Jin H, et al. Expression and prognostic value of SFRP1 and β-catenin in patients with glioblastoma. Oncol Lett. 2016;11:69-74 pubmed
  329. Bleckmann A, Conradi L, Menck K, Schmick N, Schubert A, Rietkötter E, et al. β-catenin-independent WNT signaling and Ki67 in contrast to the estrogen receptor status are prognostic and associated with poor prognosis in breast cancer liver metastases. Clin Exp Metastasis. 2016;33:309-23 pubmed 出版商
  330. Zhang J, Liu J, Li H, Wang J. β-Catenin signaling pathway regulates cisplatin resistance in lung adenocarcinoma cells by upregulating Bcl-xl. Mol Med Rep. 2016;13:2543-51 pubmed 出版商
  331. Zhao L, Li S, Gan L, Li C, Qiu Z, Feng Y, et al. Paired box 5 is a frequently methylated lung cancer tumour suppressor gene interfering β-catenin signalling and GADD45G expression. J Cell Mol Med. 2016;20:842-54 pubmed 出版商
  332. Ramasamy S, Saez B, Mukhopadhyay S, Ding D, Ahmed A, Chen X, et al. Tle1 tumor suppressor negatively regulates inflammation in vivo and modulates NF-κB inflammatory pathway. Proc Natl Acad Sci U S A. 2016;113:1871-6 pubmed 出版商
  333. Iyer S, Chou F, Wang R, Chiu H, Raju V, Little M, et al. Crim1 has cell-autonomous and paracrine roles during embryonic heart development. Sci Rep. 2016;6:19832 pubmed 出版商
  334. Liu S, Zhou P, Zhang Y. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis. Mol Med Rep. 2016;13:1999-2006 pubmed 出版商
  335. Wymeersch F, Huang Y, Blin G, Cambray N, Wilkie R, Wong F, et al. Position-dependent plasticity of distinct progenitor types in the primitive streak. elife. 2016;5:e10042 pubmed 出版商
  336. Avgustinova A, Iravani M, Robertson D, Fearns A, Gao Q, Klingbeil P, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. Nat Commun. 2016;7:10305 pubmed 出版商
  337. Kitayama M, Mizutani K, Maruoka M, Mandai K, Sakakibara S, Ueda Y, et al. A Novel Nectin-mediated Cell Adhesion Apparatus That Is Implicated in Prolactin Receptor Signaling for Mammary Gland Development. J Biol Chem. 2016;291:5817-31 pubmed 出版商
  338. Weilner S, Keider V, Winter M, Harreither E, Salzer B, Weiss F, et al. Vesicular Galectin-3 levels decrease with donor age and contribute to the reduced osteo-inductive potential of human plasma derived extracellular vesicles. Aging (Albany NY). 2016;8:16-33 pubmed
  339. Yang M, Xie X, Ding Y. SALL4 is a marker of poor prognosis in serous ovarian carcinoma promoting invasion and metastasis. Oncol Rep. 2016;35:1796-806 pubmed 出版商
  340. Cui H, Wang S, Miao J, Fu Z, Feng F, Wu J, et al. CD147 regulates cancer migration via direct interaction with Annexin A2 and DOCK3-β-catenin-WAVE2 signaling. Oncotarget. 2016;7:5613-29 pubmed 出版商
  341. Wang F, Feng Y, Li P, Wang K, Feng L, Liu Y, et al. RASSF10 is an epigenetically inactivated tumor suppressor and independent prognostic factor in hepatocellular carcinoma. Oncotarget. 2016;7:4279-97 pubmed 出版商
  342. Goodnough L, Dinuoscio G, ATIT R. Twist1 contributes to cranial bone initiation and dermal condensation by maintaining Wnt signaling responsiveness. Dev Dyn. 2016;245:144-56 pubmed 出版商
  343. Ou L, Fang L, Tang H, Qiao H, Zhang X, Wang Z. Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 2016;13:720-30 pubmed 出版商
  344. Rafehi S, Ramos Valdes Y, Bertrand M, McGee J, Préfontaine M, Sugimoto A, et al. TGFβ signaling regulates epithelial-mesenchymal plasticity in ovarian cancer ascites-derived spheroids. Endocr Relat Cancer. 2016;23:147-59 pubmed 出版商
  345. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  346. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  347. Ye S, Zhang D, Cheng F, Wilson D, Mackay J, He K, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci. 2016;129:269-76 pubmed 出版商
  348. Zhou R, Zhou X, Yin Z, Guo J, Hu T, Jiang S, et al. Tumor invasion and metastasis regulated by microRNA-184 and microRNA-574-5p in small-cell lung cancer. Oncotarget. 2015;6:44609-22 pubmed 出版商
  349. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  350. Abshagen K, Senne M, Genz B, Thomas M, Vollmar B. Differential Effects of Axin2 Deficiency on the Fibrogenic and Regenerative Response in Livers of Bile Duct-Ligated Mice. Eur Surg Res. 2015;55:328-340 pubmed
  351. Ma S, Yang L, Niu T, Cheng C, Zhong L, Zheng M, et al. SKLB-677, an FLT3 and Wnt/β-catenin signaling inhibitor, displays potent activity in models of FLT3-driven AML. Sci Rep. 2015;5:15646 pubmed 出版商
  352. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  353. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  354. Akhade V, Dighe S, Kataruka S, Rao M. Mechanism of Wnt signaling induced down regulation of mrhl long non-coding RNA in mouse spermatogonial cells. Nucleic Acids Res. 2016;44:387-401 pubmed 出版商
  355. Xiong W, Zhang L, Yu L, Xie W, Man Y, Xiong Y, et al. Estradiol promotes cells invasion by activating β-catenin signaling pathway in endometriosis. Reproduction. 2015;150:507-16 pubmed 出版商
  356. Basu S, Combe K, Kwiatkowski F, Caldefie Chézet F, Penault Llorca F, Bignon Y, et al. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen. PLoS ONE. 2015;10:e0138443 pubmed 出版商
  357. Konzack A, Jakupovic M, Kubaichuk K, Görlach A, Dombrowski F, Miinalainen I, et al. Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis. Antioxid Redox Signal. 2015;23:1059-75 pubmed 出版商
  358. Leve F, Peres Moreira R, Binato R, Abdelhay E, Morgado Díaz J. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. PLoS ONE. 2015;10:e0139094 pubmed 出版商
  359. Buchert M, Rohde F, Eissmann M, Tebbutt N, Williams B, Tan C, et al. A hypermorphic epithelial β-catenin mutation facilitates intestinal tumorigenesis in mice in response to compounding WNT-pathway mutations. Dis Model Mech. 2015;8:1361-73 pubmed 出版商
  360. Yokdang N, Hatakeyama J, Wald J, Simion C, Tellez J, Chang D, et al. LRIG1 opposes epithelial-to-mesenchymal transition and inhibits invasion of basal-like breast cancer cells. Oncogene. 2016;35:2932-47 pubmed 出版商
  361. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  362. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  363. Conde Perez A, Gros G, Longvert C, Pedersen M, Petit V, Aktary Z, et al. A caveolin-dependent and PI3K/AKT-independent role of PTEN in β-catenin transcriptional activity. Nat Commun. 2015;6:8093 pubmed 出版商
  364. Zhang Y, Dai Q, Chen W, Jiang S, Chen S, Zhang Y, et al. Effects of acupuncture on cortical expression of Wnt3a, β-catenin and Sox2 in a rat model of traumatic brain injury. Acupunct Med. 2016;34:48-54 pubmed 出版商
  365. Ohata S, Herranz Pérez V, Nakatani J, Boletta A, García Verdugo J, Álvarez Buylla A. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J Neurosci. 2015;35:11153-68 pubmed 出版商
  366. Madison B, Jeganathan A, Mizuno R, Winslow M, Castells A, Cuatrecasas M, et al. Let-7 Represses Carcinogenesis and a Stem Cell Phenotype in the Intestine via Regulation of Hmga2. PLoS Genet. 2015;11:e1005408 pubmed 出版商
  367. Eiring A, Khorashad J, Anderson D, Yu F, Redwine H, Mason C, et al. β-Catenin is required for intrinsic but not extrinsic BCR-ABL1 kinase-independent resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Leukemia. 2015;29:2328-37 pubmed 出版商
  368. Yoshida N, Kinugasa T, Ohshima K, Yuge K, Ohchi T, Fujino S, et al. Analysis of Wnt and β-catenin Expression in Advanced Colorectal Cancer. Anticancer Res. 2015;35:4403-10 pubmed
  369. Maggiorani D, Dissard R, Belloy M, Saulnier Blache J, Casemayou A, Ducassé L, et al. Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells. PLoS ONE. 2015;10:e0131416 pubmed 出版商
  370. Tan C, Hirokawa Y, Burgess A. Analysis of Wnt signalling dynamics during colon crypt development in 3D culture. Sci Rep. 2015;5:11036 pubmed 出版商
  371. Su Y, Chang Y, Lin W, Liang C, Lee J. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157 pubmed 出版商
  372. Kim D, Yeom J, Lee B, Lee K, Bae J, Rhee S. Inhibition of discoidin domain receptor 2-mediated lung cancer cells progression by gold nanoparticle-aptamer-assisted delivery of peptides containing transmembrane-juxtamembrane 1/2 domain. Biochem Biophys Res Commun. 2015;464:392-5 pubmed 出版商
  373. Tong T, Kim N, Park T. Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin. PLoS ONE. 2015;10:e0129578 pubmed 出版商
  374. Wang J, Zhang K, Wang J, Wu X, Liu X, Li B, et al. Underexpression of LKB1 tumor suppressor is associated with enhanced Wnt signaling and malignant characteristics of human intrahepatic cholangiocarcinoma. Oncotarget. 2015;6:18905-20 pubmed
  375. Zhang H, Jing X, Wu X, Hu J, Zhang X, Wang X, et al. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs. 2015;26:706-15 pubmed 出版商
  376. Mathur R, Sehgal L, Braun F, Berkova Z, Romaguerra J, Wang M, et al. Targeting Wnt pathway in mantle cell lymphoma-initiating cells. J Hematol Oncol. 2015;8:63 pubmed 出版商
  377. Li N, Mruk D, Wong C, Lee W, Han D, Cheng C. Actin-bundling protein plastin 3 is a regulator of ectoplasmic specialization dynamics during spermatogenesis in the rat testis. FASEB J. 2015;29:3788-805 pubmed 出版商
  378. Ayadi M, Bouygues A, Ouaret D, Ferrand N, Chouaib S, Thiery J, et al. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors. Oncotarget. 2015;6:18518-33 pubmed
  379. Tréhoux S, Lahdaoui F, Delpu Y, Renaud F, Leteurtre E, Torrisani J, et al. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta. 2015;1853:2392-403 pubmed 出版商
  380. Kim S, Lee E, Kuh H. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial-mesenchymal transition in vitro. Exp Cell Res. 2015;335:187-96 pubmed 出版商
  381. Cheung C, Bendris N, Paul C, Hamieh A, Anouar Y, Hahne M, et al. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways. Carcinogenesis. 2015;36:914-24 pubmed 出版商
  382. Grzesiak M, Mitan A, Janik M, Knapczyk Stwora K, Slomczynska M. Flutamide alters β-catenin expression and distribution, and its interactions with E-cadherin in the porcine corpus luteum of mid- and late pregnancy. Histol Histopathol. 2015;30:1341-52 pubmed 出版商
  383. Cuevas C, Tapia Rojas C, Cespedes C, Inestrosa N, Vio C. β-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. Biomed Res Int. 2015;2015:726012 pubmed 出版商
  384. Brunner S, Weber F, Werner J, Agha A, Farkas S, Schlitt H, et al. Neuroendocrine tumors of the pancreas: a retrospective single-center analysis using the ENETS TNM-classification and immunohistochemical markers for risk stratification. BMC Surg. 2015;15:49 pubmed 出版商
  385. Isogai T, van der Kammen R, Innocenti M. SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep. 2015;5:9802 pubmed 出版商
  386. Caruso M, Ferranti F, Corano Scheri K, Dobrowolny G, Ciccarone F, Grammatico P, et al. R-spondin 1/dickkopf-1/beta-catenin machinery is involved in testicular embryonic angiogenesis. PLoS ONE. 2015;10:e0124213 pubmed 出版商
  387. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  388. Gay M, Valenta T, Herr P, Paratore Hari L, Basler K, Sommer L. Distinct adhesion-independent functions of β-catenin control stage-specific sensory neurogenesis and proliferation. BMC Biol. 2015;13:24 pubmed 出版商
  389. Zarzycka M, Chojnacka K, Mruk D, Górowska E, Hejmej A, Kotula Balak M, et al. Flutamide alters the distribution of c-Src and affects the N-cadherin-β-catenin complex in the seminiferous epithelium of adult rat. Andrology. 2015;3:569-81 pubmed 出版商
  390. Cho J, Lee S, Oh A, Yoon M, Woo T, Park B. NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget. 2015;6:10073-85 pubmed
  391. Bol G, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Mol Med. 2015;7:648-69 pubmed 出版商
  392. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  393. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  394. Furihata T, Kawamatsu S, Ito R, Saito K, Suzuki S, Kishida S, et al. Hydrocortisone enhances the barrier properties of HBMEC/ciβ, a brain microvascular endothelial cell line, through mesenchymal-to-endothelial transition-like effects. Fluids Barriers CNS. 2015;12:7 pubmed 出版商
  395. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  396. ErLin S, WenJie W, LiNing W, BingXin L, MingDe L, Yan S, et al. Musashi-1 maintains blood-testis barrier structure during spermatogenesis and regulates stress granule formation upon heat stress. Mol Biol Cell. 2015;26:1947-56 pubmed 出版商
  397. Song E, Yu W, Xiong X, Kuang X, Ai Y, Xiong X. Astrocyte elevated gene-1 promotes progression of cervical squamous cell carcinoma by inducing epithelial-mesenchymal transition via Wnt signaling. Int J Gynecol Cancer. 2015;25:345-55 pubmed 出版商
  398. Dow L, Fisher J, O Rourke K, Muley A, Kastenhuber E, Livshits G, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol. 2015;33:390-394 pubmed 出版商
  399. Riise J, Plath N, Pakkenberg B, Parachikova A. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease. J Neural Transm (Vienna). 2015;122:1303-18 pubmed 出版商
  400. Walker M, Stopford C, Cederlund M, Fang F, Jahn C, Rabinowitz A, et al. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal. 2015;8:ra12 pubmed 出版商
  401. Xue J, Chen Y, Wu Y, Wang Z, Zhou A, Zhang S, et al. Tumour suppressor TRIM33 targets nuclear β-catenin degradation. Nat Commun. 2015;6:6156 pubmed 出版商
  402. Wei Y, Backlund L, Wegener G, Mathé A, Lavebratt C. Telomerase dysregulation in the hippocampus of a rat model of depression: normalization by lithium. Int J Neuropsychopharmacol. 2015;18:pyv002 pubmed 出版商
  403. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  404. Traenkle B, Emele F, Anton R, Poetz O, Haeussler R, Maier J, et al. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol Cell Proteomics. 2015;14:707-23 pubmed 出版商
  405. Wilkinson L, Neal C, Singh R, Sparrow D, Kurniawan N, Ju A, et al. Renal developmental defects resulting from in utero hypoxia are associated with suppression of ureteric β-catenin signaling. Kidney Int. 2015;87:975-83 pubmed 出版商
  406. Gao B, Huang Q, Jie Q, Wang L, Zhang H, Liu J, et al. Dose-response estrogen promotes osteogenic differentiation via GPR40 (FFAR1) in murine BMMSCs. Biochimie. 2015;110:36-44 pubmed 出版商
  407. Kim Y, Han D, Min H, Jin J, Yi E, Kim Y. Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines. Mol Cells. 2014;37:888-98 pubmed 出版商
  408. Satelli A, Mitra A, Brownlee Z, Xia X, Bellister S, Overman M, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2015;21:899-906 pubmed 出版商
  409. Ulanet D, Couto K, Jha A, Choe S, Wang A, Woo H, et al. Mesenchymal phenotype predisposes lung cancer cells to impaired proliferation and redox stress in response to glutaminase inhibition. PLoS ONE. 2014;9:e115144 pubmed 出版商
  410. Scotti L, Abramovich D, Pascuali N, Durand L, Irusta G, de Zúñiga I, et al. Inhibition of angiopoietin-1 (ANGPT1) affects vascular integrity in ovarian hyperstimulation syndrome (OHSS). Reprod Fertil Dev. 2016;28:690-9 pubmed 出版商
  411. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  412. da Silva S, Morand G, Alobaid F, Hier M, Mlynarek A, Alaoui Jamali M, et al. Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clin Exp Metastasis. 2015;32:55-63 pubmed 出版商
  413. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  414. Herr K, Tsang Y, Ong J, Li Q, Yap L, Yu W, et al. Loss of α-catenin elicits a cholestatic response and impairs liver regeneration. Sci Rep. 2014;4:6835 pubmed 出版商
  415. Kim K, Ossipova O, Sokol S. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells. 2015;33:674-85 pubmed 出版商
  416. Uehara Y, Inoue M, Fukuda K, Yamakoshi H, Hosoi Y, Kanda H, et al. Inhibition of β-catenin and STAT3 with a curcumin analog suppresses gastric carcinogenesis in vivo. Gastric Cancer. 2015;18:774-83 pubmed 出版商
  417. Vestergaard M, Awan A, Warzecha C, Christensen S, Andersen C. Immunofluorescence Microscopy and mRNA Analysis of Human Embryonic Stem Cells (hESCs) Including Primary Cilia Associated Signaling Pathways. Methods Mol Biol. 2016;1307:123-40 pubmed 出版商
  418. Jansen S, Holman R, Hedemann I, Frankes E, Elzinga C, Timens W, et al. Prostaglandin E2 promotes MYCN non-amplified neuroblastoma cell survival via β-catenin stabilization. J Cell Mol Med. 2015;19:210-26 pubmed 出版商
  419. Matsuyama M, Nomori A, Nakakuni K, Shimono A, Fukushima M. Secreted Frizzled-related protein 1 (Sfrp1) regulates the progression of renal fibrosis in a mouse model of obstructive nephropathy. J Biol Chem. 2014;289:31526-33 pubmed 出版商
  420. Mendonça M, Soares E, Stávale L, Kalapothakis E, Cruz Höfling M. Vascular endothelial growth factor increases during blood-brain barrier-enhanced permeability caused by Phoneutria nigriventer spider venom. Biomed Res Int. 2014;2014:721968 pubmed 出版商
  421. Milara J, Peiró T, Serrano A, Artigues E, Aparicio J, Tenor H, et al. Simvastatin Increases the Ability of Roflumilast N-oxide to Inhibit Cigarette Smoke-Induced Epithelial to Mesenchymal Transition in Well-differentiated Human Bronchial Epithelial Cells in vitro. COPD. 2015;12:320-31 pubmed 出版商
  422. Valkenburg K, Yu X, De Marzo A, Spiering T, Matusik R, Williams B. Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate. 2014;74:1506-20 pubmed 出版商
  423. Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, et al. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell. 2014;26:222-34 pubmed 出版商
  424. Xie Y, Lu W, Liu S, Yang Q, Carver B, Li E, et al. Crosstalk between nuclear MET and SOX9/?-catenin correlates with castration-resistant prostate cancer. Mol Endocrinol. 2014;28:1629-39 pubmed 出版商
  425. Willis C, Klüppel M. Chondroitin sulfate-E is a negative regulator of a pro-tumorigenic Wnt/beta-catenin-Collagen 1 axis in breast cancer cells. PLoS ONE. 2014;9:e103966 pubmed 出版商
  426. Ostapoff K, Cenik B, Wang M, Ye R, Xu X, Nugent D, et al. Neutralizing murine TGF?R2 promotes a differentiated tumor cell phenotype and inhibits pancreatic cancer metastasis. Cancer Res. 2014;74:4996-5007 pubmed 出版商
  427. Hsu H, Liu Y, Tseng K, Yang T, Yeh C, You J, et al. CBB1003, a lysine-specific demethylase 1 inhibitor, suppresses colorectal cancer cells growth through down-regulation of leucine-rich repeat-containing G-protein-coupled receptor 5 expression. J Cancer Res Clin Oncol. 2015;141:11-21 pubmed 出版商
  428. Coulson Thomas V, Gesteira T, Esko J, KAO W. Heparan sulfate regulates hair follicle and sebaceous gland morphogenesis and homeostasis. J Biol Chem. 2014;289:25211-26 pubmed 出版商
  429. Hsu H, Liu Y, Tseng K, Tan B, Chen S, Chen H. LGR5 regulates survival through mitochondria-mediated apoptosis and by targeting the Wnt/?-catenin signaling pathway in colorectal cancer cells. Cell Signal. 2014;26:2333-42 pubmed 出版商
  430. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  431. Otani K, Dong Y, Li X, Lu J, Zhang N, Xu L, et al. Odd-skipped related 1 is a novel tumour suppressor gene and a potential prognostic biomarker in gastric cancer. J Pathol. 2014;234:302-15 pubmed 出版商
  432. Moody S, Schinzel A, Singh S, Izzo F, Strickland M, Luo L, et al. PRKACA mediates resistance to HER2-targeted therapy in breast cancer cells and restores anti-apoptotic signaling. Oncogene. 2015;34:2061-71 pubmed 出版商
  433. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  434. Konsavage W, Yochum G. The myc 3' wnt-responsive element suppresses colonic tumorigenesis. Mol Cell Biol. 2014;34:1659-69 pubmed 出版商
  435. Kohler E, Baruah J, Urao N, Ushio Fukai M, Fukai T, Chatterjee I, et al. Low-dose 6-bromoindirubin-3'-oxime induces partial dedifferentiation of endothelial cells to promote increased neovascularization. Stem Cells. 2014;32:1538-52 pubmed 出版商
  436. Grünberg J, Hammarstedt A, Hedjazifar S, Smith U. The Novel Secreted Adipokine WNT1-inducible Signaling Pathway Protein 2 (WISP2) Is a Mesenchymal Cell Activator of Canonical WNT. J Biol Chem. 2014;289:6899-907 pubmed 出版商
  437. Hilliard S, Yao X, El Dahr S. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387:1-14 pubmed 出版商
  438. D Anselmi F, Masiello M, Cucina A, Proietti S, Dinicola S, Pasqualato A, et al. Microenvironment promotes tumor cell reprogramming in human breast cancer cell lines. PLoS ONE. 2013;8:e83770 pubmed 出版商
  439. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  440. Kazantseva J, Kivil A, Tints K, Kazantseva A, Neuman T, Palm K. Alternative splicing targeting the hTAF4-TAFH domain of TAF4 represses proliferation and accelerates chondrogenic differentiation of human mesenchymal stem cells. PLoS ONE. 2013;8:e74799 pubmed 出版商
  441. Knoblich K, Wang H, Sharma C, Fletcher A, Turley S, Hemler M. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits ?-catenin degradation. Cell Mol Life Sci. 2014;71:1305-14 pubmed 出版商
  442. Nakamura I, Fernández Barrena M, Ortiz Ruiz M, Almada L, Hu C, Elsawa S, et al. Activation of the transcription factor GLI1 by WNT signaling underlies the role of SULFATASE 2 as a regulator of tissue regeneration. J Biol Chem. 2013;288:21389-98 pubmed 出版商
  443. Colli L, Saggioro F, Serafini L, Camargo R, Machado H, Moreira A, et al. Components of the canonical and non-canonical Wnt pathways are not mis-expressed in pituitary tumors. PLoS ONE. 2013;8:e62424 pubmed 出版商
  444. Ford C, Jary E, Ma S, Nixdorf S, Heinzelmann Schwarz V, Ward R. The Wnt gatekeeper SFRP4 modulates EMT, cell migration and downstream Wnt signalling in serous ovarian cancer cells. PLoS ONE. 2013;8:e54362 pubmed 出版商
  445. Latasa M, Salis F, Urtasun R, Garcia Irigoyen O, Elizalde M, Uriarte I, et al. Regulation of amphiregulin gene expression by ?-catenin signaling in human hepatocellular carcinoma cells: a novel crosstalk between FGF19 and the EGFR system. PLoS ONE. 2012;7:e52711 pubmed 出版商
  446. Styner M, Meyer M, Galior K, Case N, Xie Z, Sen B, et al. Mechanical strain downregulates C/EBP? in MSC and decreases endoplasmic reticulum stress. PLoS ONE. 2012;7:e51613 pubmed 出版商
  447. Li Y, Wu C, Chen W, Huang Y, Chai C. The expression and significance of WWOX and ?-catenin in hepatocellular carcinoma. APMIS. 2013;121:120-6 pubmed 出版商
  448. Gladden A, Hebert A, Schneeberger E, McClatchey A. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727-39 pubmed 出版商
  449. Akins M, Greer C. Axon behavior in the olfactory nerve reflects the involvement of catenin-cadherin mediated adhesion. J Comp Neurol. 2006;499:979-89 pubmed