这是一篇来自已证抗体库的有关大鼠 E钙粘蛋白 (E cadherin) 的综述,是根据530篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合E钙粘蛋白 抗体。
艾博抗(上海)贸易有限公司
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Sci Adv (2021) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:5000; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab51034)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 3a). J Nutr (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:100; 图 4c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 4c). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 鸡; 1:250; 图 5m
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:250 (图 5m). elife (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫印迹; 大鼠; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫印迹在大鼠样本上 (图 3b). Oxid Med Cell Longev (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Sci Rep (2021) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5d
  • 免疫印迹; 人类; 1:1000; 图 4j
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 4j). elife (2021) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 3c, 3d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 3c, 3d). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7a). Front Immunol (2021) ncbi
小鼠 单克隆(4A2)
  • 免疫组化; 人类; 图 2k
  • 免疫印迹; 人类; 图 2g, 3g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab231303)被用于被用于免疫组化在人类样本上 (图 2k) 和 被用于免疫印迹在人类样本上 (图 2g, 3g). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫组化在人类样本上 (图 1a). Am J Clin Exp Urol (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Cell Death Dis (2021) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; domestic rabbit; 1:50; 图 5c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为1:50 (图 5c). Invest Ophthalmol Vis Sci (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Front Immunol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4h). Cell Res (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:1000; 图 6h
  • 免疫印迹; 人类; 1:1000; 图 2f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6h) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 4g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4g). Cell Tissue Res (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:1000; 图 3e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3e). Front Oncol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 4g
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Mol Cancer (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Oncogenesis (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:500; 图 7a, 7b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 7a, 7b). Oncol Rep (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1s1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1s1c). elife (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1b, 7a
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 1b, 7a) 和 被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000; 图 s2i
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2i). Nat Commun (2020) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:300; 图 e1b
  • 免疫细胞化学; 小鼠; 1:300; 图 e1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 e1b) 和 被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 e1b). Nature (2020) ncbi
小鼠 单克隆(HECD-1)
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于. Oncol Lett (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上浓度为1:100. J Cell Biol (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1a). Aging Cell (2020) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2c). Cancer Cell Int (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 8c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 8c). Oncotarget (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c). Cell Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1a). Stem Cells Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 5 ug/ml; 图 6a
  • 免疫印迹; 人类; 1:50; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为5 ug/ml (图 6a) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 3b). Cancer Cell Int (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a, 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a, 3c). Breast Cancer (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:2000; 图 3e, 3f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3e, 3f). Biosci Rep (2019) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2f
  • 免疫细胞化学; 人类; 图 1f
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2f), 被用于免疫细胞化学在人类样本上 (图 1f) 和 被用于免疫印迹在人类样本上 (图 2d). Biomed Res Int (2019) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 3d
  • 免疫印迹; 人类; 图 6h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 3d) 和 被用于免疫印迹在人类样本上 (图 6h). J Clin Invest (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:3000; 图 2b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 2b). Mol Med Rep (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3a). J Mol Med (Berl) (2019) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3c). J Exp Clin Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1c). PLoS ONE (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:100; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(AbCam, Ab1416)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 1b). Oncotarget (2017) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 3b). Prostate (2018) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 小鼠; 1:250; 图 s1a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76319)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s1a). Development (2018) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Cancer Res (2018) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Mol Med Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化; 人类; 图 6i
  • 免疫印迹; 人类; 图 5d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化在人类样本上 (图 6i) 和 被用于免疫印迹在人类样本上 (图 5d). J Biol Chem (2017) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 图 s4b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于流式细胞仪在人类样本上 (图 s4b). MBio (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Lett (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50; 图 s7c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 s7c). Sci Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1a
  • 免疫印迹; 人类; 图 1f
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1f). Matrix Biol (2017) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 1:500; 图 3c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3c). Mol Med Rep (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7a). Biomaterials (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 1h
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 1h). Biochem Biophys Res Commun (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:50; 图 4a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:50 (图 4a). Int J Cancer (2017) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 1d
  • 免疫组化; 人类; 图 1h
  • 免疫印迹; 人类; 图 1e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫细胞化学在人类样本上 (图 1d), 被用于免疫组化在人类样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell Int (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化; 小鼠; 1:200; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在人类样本上 (图 5). Cell Res (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 8
  • 免疫印迹; 人类; 1:200; 图 10a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上浓度为1:200 (图 10a). Cancer Cell Int (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 3D
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 3D). Onco Targets Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:250; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, 16505)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 1). Virology (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 3). Fertil Steril (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 8
  • 免疫细胞化学; 人类; 1:50; 图 6
  • 免疫印迹; 人类; 1:50; 图 6
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 8), 被用于免疫细胞化学在人类样本上浓度为1:50 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:50 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 s3b
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫细胞化学在人类样本上 (图 s3b). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 图 9
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上 (图 9). J Orthop Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:250; 图 2
  • 免疫印迹; 人类; 1:2500; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 2). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 斑马鱼; 1:50,000; 图 5
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab16505)被用于被用于免疫印迹在斑马鱼样本上浓度为1:50,000 (图 5). Int J Mol Sci (2016) ncbi
小鼠 单克隆(M168)
  • 免疫组化-石蜡切片; 人类; 图 2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2016) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 人类; 图 7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在人类样本上 (图 7a). Onco Targets Ther (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-冰冻切片; 人类; 图 1
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 1). J Invest Dermatol (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 图 s7a
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(abcam, ab1416)被用于被用于免疫细胞化学在人类样本上 (图 s7a). Oncogene (2016) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:200; 图 7
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7). elife (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1c
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1c). PLoS ONE (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 猕猴; 1:500; 图 2
  • 免疫印迹; 猕猴; 1:500; 图 8
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在猕猴样本上浓度为1:500 (图 2) 和 被用于免疫印迹在猕猴样本上浓度为1:500 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
  • 免疫印迹; 人类; 1:600; 图 7
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:600 (图 7). Respir Res (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 1:400; 图 5
  • 免疫印迹; 人类; 1:400; 图 4
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 4). Int J Med Sci (2015) ncbi
小鼠 单克隆(M168)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上. Nat Commun (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, clone HECD-1)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上 (图 2e). PLoS ONE (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类; 1:1000; 图 3
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Med Oncol (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:100
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Mol Carcinog (2015) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:50
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab1416)被用于被用于免疫细胞化学在人类样本上. Fertil Steril (2013) ncbi
小鼠 单克隆(HECD-1)
  • 流式细胞仪; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, HECD-1)被用于被用于流式细胞仪在人类样本上浓度为1:400, 被用于免疫细胞化学在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(HECD-1)
  • 免疫细胞化学; 人类; 1:500; 图 s2
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, Ab1416)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s2). Oncogene (2014) ncbi
小鼠 单克隆(M168)
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司E钙粘蛋白抗体(Abcam, ab76055)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(CH-19)
  • 免疫组化; 小鼠; 图 3a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59876)被用于被用于免疫组化在小鼠样本上 (图 3a). EMBO J (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 5c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 1:100; 图 4b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:200; 图 2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2a). World J Surg Oncol (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化; 人类; 图 1f
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, DECMA-1)被用于被用于免疫组化在人类样本上 (图 1f). Oncogene (2020) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:300; 图 6b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 6b). PLoS ONE (2020) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 5a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G-10)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). BMC Cancer (2019) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 图 4a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59876)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 4e
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4e). Int J Mol Med (2017) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 人类; 2 ug/ml; 图 s1
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 s1). Biol Open (2017) ncbi
小鼠 单克隆(Sec11)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59780)被用于被用于免疫印迹在人类样本上 (图 1c). Biosci Rep (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 犬; 1:50; 图 st7
  • 免疫组化-石蜡切片; 大鼠; 1:50; 图 st7
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-59778)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:50 (图 st7) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:50 (图 st7). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫细胞化学; 小鼠; 图 S1b
圣克鲁斯生物技术E钙粘蛋白抗体(Santa cruz, DECMA-1)被用于被用于免疫细胞化学在小鼠样本上 (图 S1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, G-10)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3B
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3B). Oncol Lett (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). BMC Res Notes (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 小鼠; 图 8
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫印迹在小鼠样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc8426)被用于被用于免疫印迹在人类样本上 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:500; 图 2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, G10)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2a). Exp Cell Res (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在小鼠样本上. Cell Physiol Biochem (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫印迹在人类样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; 大鼠; 图 5
  • 免疫印迹; 大鼠; 图 2
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, SC-8426)被用于被用于免疫细胞化学在大鼠样本上 (图 5) 和 被用于免疫印迹在大鼠样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 s2a
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 s2a). Oncotarget (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术E钙粘蛋白抗体(santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotech, sc-59778)被用于被用于免疫印迹在人类样本上浓度为1:500. Biochem Biophys Res Commun (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-8426)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫组化-石蜡切片; 人类; 图 6
  • 免疫组化-石蜡切片; 小鼠; 图 6
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Cell Cycle (2015) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc59778)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000. J Physiol (2015) ncbi
小鼠 单克隆(G-10)
  • 免疫细胞化学; domestic rabbit; 5 ug/ml
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-8426)被用于被用于免疫细胞化学在domestic rabbit样本上浓度为5 ug/ml. In Vitro Cell Dev Biol Anim (2015) ncbi
小鼠 单克隆(CH-19)
  • 免疫印迹; 小鼠; 1:4000; 图 5c
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, sc-59876)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Nat Neurosci (2014) ncbi
大鼠 单克隆(DECMA-1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz, sc-59778)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Cell Res (2014) ncbi
小鼠 单克隆(G-10)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术E钙粘蛋白抗体(Santa Cruz Biotechnology, SC-8426)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 4b). Biology (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 4c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 4c). iScience (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在小鼠样本上 (图 2a). Front Pharmacol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2e). Cell Death Dis (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:750; 图 3d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:750 (图 3d). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 s6a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6a). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:2000; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:2000 (图 1c). Animals (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3g
  • 免疫组化; 小鼠; 图 s1-1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3g) 和 被用于免疫组化在小鼠样本上 (图 s1-1a). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:5000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610,181)被用于被用于免疫组化在斑马鱼样本上浓度为1:5000. Prion (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1d, 4e
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1d, 4e). Cell Death Discov (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:4000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:4000 (图 1a). Cell Mol Gastroenterol Hepatol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 s3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 s3d). PLoS Genet (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Cancer Sci (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:2000; 图 4b
  • 免疫印迹; 人类; 1:2000; 图 2d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 2d). J Biol Chem (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 1:500; 图 1a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). Curr Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). Commun Biol (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1j
碧迪BDE钙粘蛋白抗体(BD Biosciences, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1j). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 5a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:250; 图 4d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). Stem Cell Res (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:50; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 4a). NPJ Regen Med (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 5f
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5f). elife (2021) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4h
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4h). Cell Stem Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Dis Markers (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 1g
  • 免疫印迹; 人类; 1:1000; 图 8h
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 8h). elife (2020) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:500; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Int J Oncol (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1b). Nat Commun (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 3f
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3f). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 5). Oncol Lett (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4e, 4p, e4l
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4e, 4p, e4l). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:100; 图 1e
  • 免疫印迹; 人类; 1:2000; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 1e) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 1d). Proc Natl Acad Sci U S A (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 3i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3i). Cancer Cell (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Bio transductions, 610182)被用于被用于其他在斑马鱼样本上浓度为1:100 (图 2). elife (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1h
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1h). Nature (2020) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 2c). Breast Cancer Res (2019) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上 (图 1d). Cell Stem Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4c). Endocrinology (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Biol Open (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3j
碧迪BDE钙粘蛋白抗体(BD-Transductions, 610182)被用于被用于免疫印迹在人类样本上 (图 3j). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7d). Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 3d, 4g
  • 免疫印迹; 人类; 1:1000; 图 3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3d, 4g) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). EBioMedicine (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1g
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1g). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 4b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4b). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 1b
  • 免疫印迹; 人类; 1:1000; 图 2f
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). elife (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Nat Cell Biol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:5000; 图 s3b
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 s3b). J Cell Sci (2019) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 图 5b
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫细胞化学在人类样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Exp Cell Res (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
碧迪BDE钙粘蛋白抗体(BD, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上 (图 4c). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 5a). J Pathol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 6a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Nat Commun (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 7m
  • 免疫组化-石蜡切片; 小鼠; 图 3d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7m) 和 被用于免疫组化-石蜡切片在小鼠样本上 (图 3d). Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于. Nature (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2i). J Biol Chem (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6b). Mol Oncol (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4c
  • 免疫印迹; 人类; 图 4d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4c) 和 被用于免疫印迹在人类样本上 (图 4d). Sci Rep (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 2d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 2d). Mol Biol Cell (2019) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 8c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 8c). Oncotarget (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, G10181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1b). J Clin Invest (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • proximity ligation assay; 人类; 1:1000; 图 2e
  • 免疫细胞化学; 人类; 1:1000; 图 2d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于proximity ligation assay在人类样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2d). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 s4c
  • 免疫印迹; 人类; 1:10,000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100 (图 s4c) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 1a). Nat Commun (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2a). Oncogene (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 3). Biol Pharm Bull (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1c). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2i
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2i). Genes Dev (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 3a). Biochim Biophys Acta Mol Basis Dis (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6e
碧迪BDE钙粘蛋白抗体(MilliporeBD Transduction Lab, BD610181)被用于被用于免疫印迹在犬样本上 (图 6e). Nature (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 1i
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratory, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1i). Cell Stem Cell (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 1:1000; 图 4c
碧迪BDE钙粘蛋白抗体(BD Transduction, 61081)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 4c). J Cell Sci (2018) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5c). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). Am J Physiol Renal Physiol (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 3c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 7g
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 7g). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 4b). Cancer Res (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 ex1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 ex1a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2b
  • 免疫印迹; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 2b) 和 被用于免疫印迹在人类样本上 (图 1d). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 s1d
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1d). PLoS Genet (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 6b
碧迪BDE钙粘蛋白抗体(BDTransduction实验室, 610182)被用于被用于免疫印迹在犬样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7c
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7c). EMBO Mol Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3d
  • 免疫印迹; 人类; 图 4c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫细胞化学在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 4c). Oncogenesis (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3c
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:50; 图 5c
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于流式细胞仪在人类样本上浓度为1:50 (图 5c). Stem Cell Res Ther (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:2000; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Sci Rep (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 2c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 2c). J Clin Invest (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 2.5 ug/ml; 表 s3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化在人类样本上浓度为2.5 ug/ml (表 s3). Development (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200; 图 1
  • 免疫印迹; 犬; 图 7b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200 (图 1) 和 被用于免疫印迹在犬样本上 (图 7b). Mol Biol Cell (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4b
  • 免疫印迹; 人类; 1:10,000; 图 4a
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 4a). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 1:500; 图 st7
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 st7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:500 (图 st7) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 st7). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3A
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3A). Oncotarget (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1d). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
碧迪BDE钙粘蛋白抗体(BD, 560062)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Cell Biol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 3b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4a). Int J Oncol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 4g
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上 (图 4g). J Exp Med (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 0.8 ug/ml; 图 4k
  • 免疫印迹; 犬; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-石蜡切片在犬样本上浓度为0.8 ug/ml (图 4k) 和 被用于免疫印迹在犬样本上 (图 2). J Vet Med Sci (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:500; 图 7D
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 7D). elife (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1e
  • 免疫细胞化学; 人类; 1:100; 图 2b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1e) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 2b). Nat Commun (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s7h
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s7h). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(Becton Dickinson Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 s2k
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s2k). Autophagy (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2c). Nature (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1a). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 2c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 2c). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 图 s2b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 560061)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上 (图 s2b). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3). J Dent Res (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 st4
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 st4). Development (2017) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2a
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6e
  • 免疫印迹; 小鼠; 1:1000; 图 6a
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610405)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6e) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36/E-Cadherin)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Adh Migr (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a). Stem Cell Reports (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 4d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 4d). Immunity (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 1a). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 564186)被用于被用于免疫印迹在人类样本上 (图 4e). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4b
  • 免疫细胞化学; African green monkey; 2 ug/ml; 图 7c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 4b) 和 被用于免疫细胞化学在African green monkey样本上浓度为2 ug/ml (图 7c). J Cell Physiol (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 3A
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3A). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:25; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:25 (图 1). Neoplasia (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 6a
  • 免疫细胞化学; 犬; 图 6d
  • 免疫印迹; 犬; 图 6a
碧迪BDE钙粘蛋白抗体(BD Transduction, 610405)被用于被用于免疫印迹在人类样本上 (图 6a), 被用于免疫细胞化学在犬样本上 (图 6d) 和 被用于免疫印迹在犬样本上 (图 6a). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 4a). Am J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Carcinogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 s1c
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 s1c). EMBO Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b, 4c
  • 免疫印迹; 小鼠; 图 2c
碧迪BDE钙粘蛋白抗体(BD BIOSCIENCES, 610181)被用于被用于免疫印迹在人类样本上 (图 3b, 4c) 和 被用于免疫印迹在小鼠样本上 (图 2c). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2a). Gastroenterol Res Pract (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:250; 图 3a
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化在人类样本上浓度为1:250 (图 3a). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2e
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 2e). Breast Cancer Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61082)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:300; 图 2
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 6e
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6e). Gut (2017) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3c). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). J Mol Psychiatry (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s5
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上 (图 s5). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 5b
  • 免疫印迹; 人类; 图 5a
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 2c). Pflugers Arch (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500; 图 s2a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Mol Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). EMBO Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610,182)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
  • 免疫组化; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7) 和 被用于免疫组化在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3
  • 免疫细胞化学; 仓鼠; 图 s2
  • 免疫细胞化学; 犬; 图 1a
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上 (图 s3), 被用于免疫细胞化学在仓鼠样本上 (图 s2) 和 被用于免疫细胞化学在犬样本上 (图 1a). Oncotarget (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫沉淀; 犬; 图 5f
  • 免疫细胞化学; 犬; 图 1a
  • 免疫印迹; 犬; 图 s1a
  • 免疫沉淀; 仓鼠; 图 3e
  • 免疫印迹; 仓鼠; 图 3e
  • 免疫沉淀; 人类; 图 6d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 34)被用于被用于免疫沉淀在犬样本上 (图 5f), 被用于免疫细胞化学在犬样本上 (图 1a), 被用于免疫印迹在犬样本上 (图 s1a), 被用于免疫沉淀在仓鼠样本上 (图 3e), 被用于免疫印迹在仓鼠样本上 (图 3e) 和 被用于免疫沉淀在人类样本上 (图 6d). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Mol Biol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:500; 图 s1i
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1i). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 s7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s7). Am J Physiol Gastrointest Liver Physiol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cell Rep (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(Translab, 610404)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 1:1000; 图 7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7). J Cell Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 7
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 7) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Tissue Eng Part C Methods (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 3). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:100; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 图 1
  • 免疫印迹; pigs ; 1:1000; 图 1
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在pigs 样本上 (图 1), 被用于免疫印迹在pigs 样本上浓度为1:1000 (图 1), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61081)被用于被用于免疫印迹在人类样本上 (图 5). Breast Cancer Res Treat (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上 (图 2b). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫细胞化学; 人类; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Oncol Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transductio, 610181)被用于被用于免疫细胞化学在人类样本上 (图 s3). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 4
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 4). Nat Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 1b). Stem Cells Int (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:2000; 图 4
  • 免疫细胞化学; 人类; 1:2000; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, BD610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3), 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4) 和 被用于免疫细胞化学在人类样本上浓度为1:2000 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; pigs ; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在pigs 样本上浓度为1:100 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在犬样本上 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 3a
  • 免疫细胞化学; 小鼠; 1:200; 图 3a
碧迪BDE钙粘蛋白抗体(BD, 560064)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3a). Cell Death Differ (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 6). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:250; 图 1
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1) 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 2). Biochem J (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300; 图 2
  • 免疫印迹; 人类; 1:300; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:300 (图 2). elife (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1b
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化在人类样本上 (图 1b). Int J Oncol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s3). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 560061)被用于被用于流式细胞仪在人类样本上 (图 st1). Exp Cell Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1500; 图 s1
碧迪BDE钙粘蛋白抗体(BD科学, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1500 (图 s1). BMC Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 2). Bone (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4a). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:500; 图 1c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1c). Science (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 3d
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610405)被用于被用于免疫印迹在人类样本上 (图 3d). Cell Death Dis (2016) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD transduction, BD 610405)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 3). J Pathol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2c
  • 免疫印迹; 人类; 图 1f
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上 (图 1f). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 2a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2a). Cell Cycle (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
碧迪BDE钙粘蛋白抗体(BD, 36/E-Cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e). Science (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Cancer Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 10 ug/ml; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为10 ug/ml (图 2). Fluids Barriers CNS (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000; 图 6
  • 免疫印迹; 人类; 1:1000; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Int J Mol Med (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000; 图 1
碧迪BDE钙粘蛋白抗体(bD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 0.25 ug/ml; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610 182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.25 ug/ml (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:400; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4). Dev Cell (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). Neoplasia (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100; 图 e5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:100 (图 e5). Nature (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上 (图 s3). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 2). Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠; 1:150; 图 1
  • 免疫印迹; 大鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, 610181)被用于被用于免疫细胞化学在大鼠样本上浓度为1:150 (图 1) 和 被用于免疫印迹在大鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 1:200
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在鸡样本上浓度为1:200. Development (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:500; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在犬样本上浓度为1:500 (图 5). elife (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类; 图 s4b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 s2
  • 免疫印迹; 小鼠; 图 s2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上 (图 s2) 和 被用于免疫印迹在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 犬; 1:200; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 1a). Cytoskeleton (Hoboken) (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610182)被用于被用于免疫印迹在小鼠样本上 (图 3). Nutr Res (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-自由浮动切片; 鸡; 1:1000; 图 5
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-自由浮动切片在鸡样本上浓度为1:1000 (图 5). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Mol Cancer Ther (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 5
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 5) 和 被用于免疫印迹在人类样本上 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). J Am Soc Nephrol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 犬; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在犬样本上 (图 1c). BMC Genomics (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(Transduction Laboratories, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Pathol Res Pract (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 4
  • 免疫组化; 人类; 1:500; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 4) 和 被用于免疫组化在人类样本上浓度为1:500 (图 6). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 图 7
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Methods Mol Biol (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 7e
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化在人类样本上 (图 7e). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
碧迪BDE钙粘蛋白抗体(BD-Transduction laboratories, 610181)被用于被用于免疫组化在小鼠样本上. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1c
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 1c). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 5). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 st1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 st1). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD -Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 1d
  • 免疫印迹; 小鼠; 图 1d
碧迪BDE钙粘蛋白抗体(BD Transduction/BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 1d) 和 被用于免疫印迹在小鼠样本上 (图 1d). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫印迹在人类样本上 (图 2). Int J Cancer (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 6b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:500; 图 1e
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1e). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 1
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:600; 图 2c
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:600 (图 2c). Mol Biol Cell (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 2
碧迪BDE钙粘蛋白抗体(BD Bioscience, 36)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 2). Hum Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2
  • 免疫印迹; 人类; 1:1000; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36/E-cadherin)被用于被用于免疫细胞化学在人类样本上. J Biol Chem (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 2
碧迪BDE钙粘蛋白抗体(bD Bioscience, 36)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 鸡; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在鸡样本上 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Science Transduction, 610181)被用于被用于免疫印迹在人类样本上 (图 4). J Biomed Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 4
碧迪BDE钙粘蛋白抗体(Transduction Laboratories, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 2c
  • 免疫印迹; 人类; 1:1000; 图 6b
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化在人类样本上 (图 2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Int J Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 1
  • 免疫沉淀; 人类; 图 6
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 1), 被用于免疫沉淀在人类样本上 (图 6), 被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3). Oncogenesis (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD612131)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Science (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610182)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:100; 表 1
  • 免疫印迹; 人类; 1:2500; 图 3B
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 3B). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). Dis Model Mech (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Dev Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD biosciences, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:100. Mitochondrion (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction lab, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Invest Ophthalmol Vis Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 1e
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E)被用于被用于免疫组化在小鼠样本上 (图 1e). Nat Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:50
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, BD 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 牛
  • 免疫印迹; 牛
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在牛样本上 和 被用于免疫印迹在牛样本上. Int J Mol Med (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 人类; 图 4
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫沉淀在人类样本上 (图 4), 被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). J Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫印迹; 人类; 1:10000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫印迹在人类样本上浓度为1:10000. BMC Cancer (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD Bioscience, 560061)被用于被用于免疫组化在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 s5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s5). Nature (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 3a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上. J Cell Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4d
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 图 2d
碧迪BDE钙粘蛋白抗体(BD Transduction labs, 610181)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Stem Cell Reports (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上. FEBS Lett (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1). Gastroenterology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100; 图 5
  • 免疫细胞化学; 人类; 1:100; 图 3
  • 免疫印迹; 人类; 1:1000; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). EMBO Mol Med (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上. Lab Invest (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 4h
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上 (图 4h). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:2000; 图 1b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1b). Sci Signal (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD, 610405)被用于被用于免疫印迹在小鼠样本上. Physiol Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 图 5b
  • 免疫组化; 人类; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在小鼠样本上 (图 5b) 和 被用于免疫组化在人类样本上 (图 4). Sci Rep (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; pigs
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在pigs 样本上. Biomaterials (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化在人类样本上 (图 1). Nat Cell Biol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2). Development (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 其他; 人类; 图 6a
  • 免疫印迹; 人类; 图 2a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于其他在人类样本上 (图 6a) 和 被用于免疫印迹在人类样本上 (图 2a). PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化在人类样本上浓度为1:200. Ann Biomed Eng (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 1a
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 s6
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 s6). Genes Dev (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction, 36/E-cadherin)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences Dickinson, 610181)被用于被用于免疫沉淀在人类样本上, 被用于免疫印迹在人类样本上 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. PLoS ONE (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在人类样本上浓度为1:100. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫印迹在人类样本上 (图 5). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫组化在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Bioscience, 34/E-Cadherin)被用于被用于免疫印迹在小鼠样本上. Neoplasia (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 图 6
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠; 125 ng/ml
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在大鼠样本上浓度为125 ng/ml. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:50
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Eur J Pharm Sci (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Cytoskeleton (Hoboken) (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:4000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上浓度为1:4000. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Immunol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:1000
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. Eur J Pharm Biopharm (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在小鼠样本上. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Bioscience, 612 131)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Endocrinology (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫细胞化学在小鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠; 1:50; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 61081)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3b). Am J Pathol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1 ug/ml
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml. J Lab Autom (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Mol Hum Reprod (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:200; 图 4
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4). Nat Commun (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610405)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200 or 1:1000
  • 免疫组化-石蜡切片; 小鼠; 1:200 or 1:1000
碧迪BDE钙粘蛋白抗体(BD, BDB610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 or 1:1000 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 or 1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, BD610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上浓度为1:1000. Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 小鼠; 图 7
碧迪BDE钙粘蛋白抗体(BDbiosciences, 610182)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). Mol Cancer Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 36)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 s1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610404)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 2a
  • 免疫印迹; 人类; 图 3b
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上 (图 2a) 和 被用于免疫印迹在人类样本上 (图 3b). Mol Biol Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 斑马鱼; 1:100; 图 2
碧迪BDE钙粘蛋白抗体(BD Transduction, 610182)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 2). PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:35; 图 5
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-Cadherin)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:35 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD BioSciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson, 610182)被用于被用于免疫组化在小鼠样本上浓度为1:200. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫细胞化学在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610405)被用于被用于免疫印迹在人类样本上. J Exp Clin Cancer Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 流式细胞仪; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD, 612131)被用于被用于流式细胞仪在人类样本上浓度为1:100. Biomed Mater (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫细胞化学在人类样本上. Pharm Res (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Biol Chem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上浓度为1:1000. J Cell Biochem (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(Sigma Aldrich, 610181)被用于被用于免疫印迹在人类样本上. J Invest Dermatol (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫细胞化学在大鼠样本上. Traffic (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬; 图 3
  • 免疫印迹; 犬; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫组化在犬样本上 (图 3) 和 被用于免疫印迹在犬样本上 (图 1). Am J Vet Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 0.25 ug/ml
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫印迹在人类样本上浓度为0.25 ug/ml. J Cell Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 6
  • 免疫组化-石蜡切片; 小鼠; 1:120; 图 s1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:120 (图 s1). Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200. Oncogene (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 图 5
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:400
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:400. J Vet Med Sci (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610404)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Psychiatry (2015) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 犬
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫组化在犬样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. PLoS Genet (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences Pharmingen, clone 36)被用于被用于免疫细胞化学在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000; 图 1a
碧迪BDE钙粘蛋白抗体(BD Transduction lab, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:100
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). Biol Open (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Exp Cell Res (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Cancer Discov (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 2
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). Front Physiol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 1:200; 图 3
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3). Nat Cell Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类; 1:300
碧迪BDE钙粘蛋白抗体(BD, 36/E)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300. Virchows Arch (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; pigs ; 1:200
碧迪BDE钙粘蛋白抗体(Becton Dickinson Pharmingen, 560062)被用于被用于免疫组化-冰冻切片在pigs 样本上浓度为1:200. Br J Nutr (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 36)被用于被用于免疫组化在大鼠样本上. Dev Biol (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200. Epigenetics (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上. Reproduction (2014) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 1:250
碧迪BDE钙粘蛋白抗体(BD Transduction, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250. Breast Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:5000
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610181)被用于被用于免疫印迹在人类样本上浓度为1:5000. Mol Carcinog (2014) ncbi
小鼠 单克隆(34/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610404)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Mol Endocrinol (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 1:500
碧迪BDE钙粘蛋白抗体(BD Pharmingen, 610181)被用于被用于免疫组化在小鼠样本上浓度为1:500. Cancer Res (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Bioscience, 610182)被用于被用于免疫印迹在人类样本上. Evid Based Complement Alternat Med (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 小鼠; 1:1000
碧迪BDE钙粘蛋白抗体(BD, 610181)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 犬; 1:200
碧迪BDE钙粘蛋白抗体(BD Transduction Lab, 610181)被用于被用于免疫细胞化学在犬样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-石蜡切片; 小鼠; 图 1
碧迪BDE钙粘蛋白抗体(BD Transduction Laboratories, 610181)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS Genet (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 大鼠
碧迪BDE钙粘蛋白抗体(BD Transduction Labs, 36)被用于被用于免疫印迹在大鼠样本上. Invest Ophthalmol Vis Sci (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610181)被用于被用于免疫印迹在人类样本上. Int J Cancer (2013) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BDE钙粘蛋白抗体(BD, 610182)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Development (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类
  • 免疫印迹; 人类
碧迪BDE钙粘蛋白抗体(BD Biosciences, 610182)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫印迹在人类样本上. J Biol Chem (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫细胞化学; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD科学, 610181)被用于被用于免疫细胞化学在人类样本上 (图 3). PLoS ONE (2012) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化; 小鼠; 0.8 ug/ml; 图 2g
  • 免疫印迹; 犬; 0.05 ug/ml; 图 1
碧迪BDE钙粘蛋白抗体(BD Biosciences, 36/E-cadherin)被用于被用于免疫组化在小鼠样本上浓度为0.8 ug/ml (图 2g) 和 被用于免疫印迹在犬样本上浓度为0.05 ug/ml (图 1). Am J Vet Res (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫印迹; 人类; 1:1000
碧迪BDE钙粘蛋白抗体(BD实验室, 610182)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cancer Cell (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫组化-冰冻切片; 人类; 图 3
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3). Hum Mol Genet (2011) ncbi
小鼠 单克隆(36/E-Cadherin)
  • 免疫沉淀; 小鼠; 1:2000; 图 1c
  • 免疫细胞化学; 小鼠; 1:2000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 6a
碧迪BDE钙粘蛋白抗体(BD, 36)被用于被用于免疫沉淀在小鼠样本上浓度为1:2000 (图 1c), 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6a). Dev Cell (2010) ncbi
西格玛奥德里奇
小鼠 单克隆(CH-19)
  • 免疫组化; 大鼠; 1:500; 图 1d
西格玛奥德里奇E钙粘蛋白抗体(Sigma-Aldrich, C1821)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1d). Sci Rep (2021) ncbi
MBL International
单克隆
  • 免疫印迹; 大鼠; 图 3b
MBL InternationalE钙粘蛋白抗体(MBL, K0085-3)被用于被用于免疫印迹在大鼠样本上 (图 3b). Sci Rep (2016) ncbi
文章列表
  1. Jacquet M, Hervouet E, Baudu T, Herfs M, Parratte C, Feugeas J, et al. GABARAPL1 Inhibits EMT Signaling through SMAD-Tageted Negative Feedback. Biology (Basel). 2021;10: pubmed 出版商
  2. Fu H, Gui Y, Liu S, Wang Y, Bastacky S, Qiao Y, et al. The hepatocyte growth factor/c-met pathway is a key determinant of the fibrotic kidney local microenvironment. iScience. 2021;24:103112 pubmed 出版商
  3. Sun W, Byon C, Kim D, Choi H, Park J, Joo S, et al. Renoprotective Effects of Maslinic Acid on Experimental Renal Fibrosis in Unilateral Ureteral Obstruction Model via Targeting MyD88. Front Pharmacol. 2021;12:708575 pubmed 出版商
  4. Li K, Wu R, Zhou M, Tong H, Luo K. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. Sci Adv. 2021;7:eabg7265 pubmed 出版商
  5. Baeza V, Cifuentes M, Martinez F, Ramírez E, Nualart F, Ferrada L, et al. IIIG9 inhibition in adult ependymal cells changes adherens junctions structure and induces cellular detachment. Sci Rep. 2021;11:18537 pubmed 出版商
  6. Zhang Y, Wen P, Luo J, Ding H, Cao H, He W, et al. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death Dis. 2021;12:847 pubmed 出版商
  7. Fu Q, North P, Ke X, Huang Y, Fritz K, Majnik A, et al. Adverse Maternal Environment and Postweaning Western Diet Alter Hepatic CD36 Expression and Methylation Concurrently with Nonalcoholic Fatty Liver Disease in Mouse Offspring. J Nutr. 2021;151:3102-3112 pubmed 出版商
  8. La Rocca G, King B, Shui B, Li X, Zhang M, Akat K, et al. Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. elife. 2021;10: pubmed 出版商
  9. da Silva F, Zhang K, Pinson A, Fatti E, Wilsch Bräuninger M, Herbst J, et al. Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex. EMBO J. 2021;40:e108041 pubmed 出版商
  10. Li T, Yang X, Xu D, Gao Z, Gao Y, Jin F, et al. OC-STAMP Overexpression Drives Lung Alveolar Epithelial Cell Type II Senescence in Silicosis. Oxid Med Cell Longev. 2021;2021:4158495 pubmed 出版商
  11. Mateos Quiros C, Garrido Jimenez S, Álvarez Hernán G, Diaz Chamorro S, Barrera Lopez J, Francisco Morcillo J, et al. Junctional Adhesion Molecule 3 Expression in the Mouse Airway Epithelium Is Linked to Multiciliated Cells. Front Cell Dev Biol. 2021;9:622515 pubmed 出版商
  12. Bernardini C, La Mantia D, Salaroli R, Zannoni A, Nauwelaerts N, Deferm N, et al. Development of a Pig Mammary Epithelial Cell Culture Model as a Non-Clinical Tool for Studying Epithelial Barrier-A Contribution from the IMI-ConcePTION Project. Animals (Basel). 2021;11: pubmed 出版商
  13. Guillot C, Djeffal Y, Michaut A, Rabe B, Pourquie O. Dynamics of primitive streak regression controls the fate of neuromesodermal progenitors in the chicken embryo. elife. 2021;10: pubmed 出版商
  14. Wu Y, Zhang J, Li C, Hu H, Qin B, Wang T, et al. The Activation of ROS/NF-κB/MMP-9 Pathway Promotes Calcium-Induced Kidney Crystal Deposition. Oxid Med Cell Longev. 2021;2021:8836355 pubmed 出版商
  15. Perez García V, Lea G, Lopez Jimenez P, Okkenhaug H, Burton G, Moffett A, et al. BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. elife. 2021;10: pubmed 出版商
  16. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  17. Pollock N, Leighton P, Neil G, Allison W. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion. 2021;15:70-81 pubmed 出版商
  18. Song M, Zhao G, Sun H, Yao S, Zhou Z, Jiang P, et al. circPTPN12/miR-21-5 p/∆Np63α pathway contributes to human endometrial fibrosis. elife. 2021;10: pubmed 出版商
  19. Lasierra Losada M, Pauler M, Vandamme N, Goossens S, Berx G, Leppkes M, et al. Pancreas morphogenesis and homeostasis depends on tightly regulated Zeb1 levels in epithelial cells. Cell Death Discov. 2021;7:138 pubmed 出版商
  20. DeLaForest A, Kohlnhofer B, Franklin O, Stavniichuk R, Thompson C, Pulakanti K, et al. GATA4 Controls Epithelial Morphogenesis in the Developing Stomach to Promote Establishment of Glandular Columnar Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1391-1413 pubmed 出版商
  21. Keshvari S, Caruso M, Teakle N, Batoon L, Sehgal A, Patkar O, et al. CSF1R-dependent macrophages control postnatal somatic growth and organ maturation. PLoS Genet. 2021;17:e1009605 pubmed 出版商
  22. Muranushi R, Araki K, Yokobori T, Chingunjav B, Hoshino K, Dolgormaa G, et al. High membrane expression of CMTM6 in hepatocellular carcinoma is associated with tumor recurrence. Cancer Sci. 2021;112:3314-3323 pubmed 出版商
  23. Goswami S, Balasubramanian I, D Agostino L, Bandyopadhyay S, Patel R, Avasthi S, et al. RAB11A-mediated YAP localization to adherens and tight junctions is essential for colonic epithelial integrity. J Biol Chem. 2021;297:100848 pubmed 出版商
  24. Yao J, Yang Z, Yang J, Wang Z, Zhang Z. Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 2021;13:13726-13738 pubmed 出版商
  25. Zheng H, Zhang Y, He J, Yang Z, Zhang R, Li L, et al. Hydroxychloroquine Inhibits Macrophage Activation and Attenuates Renal Fibrosis After Ischemia-Reperfusion Injury. Front Immunol. 2021;12:645100 pubmed 出版商
  26. Chen X, Ma W, Yao Y, Zhang Q, Li J, Wu X, et al. Serum deprivation-response protein induces apoptosis in hepatocellular carcinoma through ASK1-JNK/p38 MAPK pathways. Cell Death Dis. 2021;12:425 pubmed 出版商
  27. Oh T, Lee M, Lee Y, Kim G, Lee D, You J, et al. PGC1α Loss Promotes Lung Cancer Metastasis through Epithelial-Mesenchymal Transition. Cancers (Basel). 2021;13: pubmed 出版商
  28. Hill W, Zaragkoulias A, Salvador Barbero B, Parfitt G, Alatsatianos M, Padilha A, et al. EPHA2-dependent outcompetition of KRASG12D mutant cells by wild-type neighbors in the adult pancreas. Curr Biol. 2021;31:2550-2560.e5 pubmed 出版商
  29. Kariya Y, Oyama M, Suzuki T, Kariya Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun Biol. 2021;4:490 pubmed 出版商
  30. Nishina T, Deguchi Y, Ohshima D, Takeda W, Ohtsuka M, Shichino S, et al. Interleukin-11-expressing fibroblasts have a unique gene signature correlated with poor prognosis of colorectal cancer. Nat Commun. 2021;12:2281 pubmed 出版商
  31. Fayad R, Rojas M, Partisani M, Finetti P, Dib S, Abélanet S, et al. EFA6B regulates a stop signal for collective invasion in breast cancer. Nat Commun. 2021;12:2198 pubmed 出版商
  32. Pascal L, Dhir R, Balasubramani G, Chen W, Hudson C, Srivastava P, et al. E-cadherin expression is inversely correlated with aging and inflammation in the prostate. Am J Clin Exp Urol. 2021;9:140-149 pubmed
  33. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  34. Hocevar S, Liu L, Duncan R. Matrigel is required for efficient differentiation of isolated, stem cell-derived otic vesicles into inner ear organoids. Stem Cell Res. 2021;53:102295 pubmed 出版商
  35. Wan L, Wang Y, Zhang Z, Wang J, Niu M, Wu Y, et al. Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis. 2021;12:325 pubmed 出版商
  36. Bilodeau C, Shojaie S, Goltsis O, Wang J, Luo D, Ackerley C, et al. TP63 basal cells are indispensable during endoderm differentiation into proximal airway cells on acellular lung scaffolds. NPJ Regen Med. 2021;6:12 pubmed 出版商
  37. Wijshake T, Zou Z, Chen B, Zhong L, Xiao G, Xie Y, et al. Tumor-suppressor function of Beclin 1 in breast cancer cells requires E-cadherin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  38. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  39. Samuel R, Majd H, Richter M, Ghazizadeh Z, Zekavat S, Navickas A, et al. Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell. 2020;27:876-889.e12 pubmed 出版商
  40. Ma Z, Gao Y, Liu W, Zheng L, Jin B, Duan B, et al. CD82 Suppresses ADAM17-Dependent E-Cadherin Cleavage and Cell Migration in Prostate Cancer. Dis Markers. 2020;2020:8899924 pubmed 出版商
  41. Wang Y, Gao G, Wu Y, Wang Y, Wu X, Zhou Q. S100A4 Silencing Facilitates Corneal Wound Healing After Alkali Burns by Promoting Autophagy via Blocking the PI3K/Akt/mTOR Signaling Pathway. Invest Ophthalmol Vis Sci. 2020;61:19 pubmed 出版商
  42. Oliemuller E, Newman R, Tsang S, Foo S, Muirhead G, Noor F, et al. SOX11 promotes epithelial/mesenchymal hybrid state and alters tropism of invasive breast cancer cells. elife. 2020;9: pubmed 出版商
  43. Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithelial-Mesenchymal Transition in Asthma Airway Remodeling Is Regulated by the IL-33/CD146 Axis. Front Immunol. 2020;11:1598 pubmed 出版商
  44. Jiang Z, Zhang C, Liu X, Ma X, Bian X, Xiao X, et al. Dexamethasone inhibits stemness maintenance and enhances chemosensitivity of hepatocellular carcinoma stem cells by inducing deSUMOylation of HIF‑1α and Oct4. Int J Oncol. 2020;57:780-790 pubmed 出版商
  45. Li Y, He J, Wang F, Wang X, Yang F, Zhao C, et al. Role of MMP-9 in epithelial-mesenchymal transition of thyroid cancer. World J Surg Oncol. 2020;18:181 pubmed 出版商
  46. Wu J, Song D, Li Z, Guo B, Xiao Y, Liu W, et al. Immunity-and-matrix-regulatory cells derived from human embryonic stem cells safely and effectively treat mouse lung injury and fibrosis. Cell Res. 2020;30:794-809 pubmed 出版商
  47. Yang Y, Tai W, Lu N, Li T, Liu Y, Wu W, et al. lncRNA ZFAS1 promotes lung fibroblast-to-myofibroblast transition and ferroptosis via functioning as a ceRNA through miR-150-5p/SLC38A1 axis. Aging (Albany NY). 2020;12:9085-9102 pubmed 出版商
  48. Bozic M, Caus M, Rodrigues Díez R, Pedraza N, Ruiz Ortega M, Garí E, et al. Protective role of renal proximal tubular alpha-synuclein in the pathogenesis of kidney fibrosis. Nat Commun. 2020;11:1943 pubmed 出版商
  49. Vidal V, Jian Motamedi F, Rekima S, Gregoire E, Szenker Ravi E, Leushacke M, et al. R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors. elife. 2020;9: pubmed 出版商
  50. Liang W, Gao R, Yang M, Wang X, Cheng K, Shi X, et al. MARCKSL1 promotes the proliferation, migration and invasion of lung adenocarcinoma cells. Oncol Lett. 2020;19:2272-2280 pubmed 出版商
  51. Schley G, Grampp S, Goppelt Struebe M. Inhibition of oxygen-sensing prolyl hydroxylases increases lipid accumulation in human primary tubular epithelial cells without inducing ER stress. Cell Tissue Res. 2020;381:125-140 pubmed 出版商
  52. Jin T, Liu M, Liu Y, Li Y, Xu Z, He H, et al. Lcn2-derived Circular RNA (hsa_circ_0088732) Inhibits Cell Apoptosis and Promotes EMT in Glioma via the miR-661/RAB3D Axis. Front Oncol. 2020;10:170 pubmed 出版商
  53. Jin D, Guo J, Wu Y, Yang L, Wang X, Du J, et al. m6A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020;19:40 pubmed 出版商
  54. Ailiken G, Kitamura K, Hoshino T, Satoh M, Tanaka N, Minamoto T, et al. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis. 2020;9:26 pubmed 出版商
  55. Kluz P, Kolb R, Xie Q, Borcherding N, Liu Q, Luo Y, et al. Cancer cell-intrinsic function of CD177 in attenuating β-catenin signaling. Oncogene. 2020;39:2877-2889 pubmed 出版商
  56. Potilinski M, Ortiz G, Salica J, Lopez E, Fernández Acquier M, Chuluyan E, et al. Elucidating the mechanism of action of alpha-1-antitrypsin using retinal pigment epithelium cells exposed to high glucose. Potential use in diabetic retinopathy. PLoS ONE. 2020;15:e0228895 pubmed 出版商
  57. Tan S, Swathi Y, Tan S, Goh J, Seishima R, Murakami K, et al. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature. 2020;578:437-443 pubmed 出版商
  58. Feng Y, Ji D, Huang Y, Ji B, Zhang Y, Li J, et al. TGM3 functions as a tumor suppressor by repressing epithelial‑to‑mesenchymal transition and the PI3K/AKT signaling pathway in colorectal cancer. Oncol Rep. 2020;43:864-876 pubmed 出版商
  59. Xiong G, Chen J, Zhang G, Wang S, Kawasaki K, Zhu J, et al. Hsp47 promotes cancer metastasis by enhancing collagen-dependent cancer cell-platelet interaction. Proc Natl Acad Sci U S A. 2020;117:3748-3758 pubmed 出版商
  60. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  61. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  62. Arora P, Dongre S, Raman R, Sonawane M. Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. elife. 2020;9: pubmed 出版商
  63. Kasendra M, Luc R, Yin J, Manatakis D, Kulkarni G, Lucchesi C, et al. Duodenum Intestine-Chip for preclinical drug assessment in a human relevant model. elife. 2020;9: pubmed 出版商
  64. Du X, Zhang Z, Zheng X, Zhang H, Dong D, Zhang Z, et al. An electrochemical biosensor for the detection of epithelial-mesenchymal transition. Nat Commun. 2020;11:192 pubmed 出版商
  65. Wang G, Xu J, Zhao J, Yin W, Liu D, Chen W, et al. Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nat Commun. 2020;11:220 pubmed 出版商
  66. Diaz Cuadros M, Wagner D, Budjan C, Hubaud A, Tarazona O, Donelly S, et al. In vitro characterization of the human segmentation clock. Nature. 2020;580:113-118 pubmed 出版商
  67. Liang L, Wu J, Luo J, Wang L, Chen Z, Han C, et al. Oxymatrine reverses 5-fluorouracil resistance by inhibition of colon cancer cell epithelial-mesenchymal transition and NF-κB signaling in vitro. Oncol Lett. 2020;19:519-526 pubmed 出版商
  68. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  69. Wan L, Chong S, Xuan F, Liang A, Cui X, Gates L, et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature. 2020;577:121-126 pubmed 出版商
  70. Jhang J, Birder L, Jiang Y, Hsu Y, Ho H, Kuo H. Dysregulation of bladder corticotropin-releasing hormone receptor in the pathogenesis of human interstitial cystitis/bladder pain syndrome. Sci Rep. 2019;9:19169 pubmed 出版商
  71. Belote R, Simon S. Ca2+ transients in melanocyte dendrites and dendritic spine-like structures evoked by cell-to-cell signaling. J Cell Biol. 2020;219: pubmed 出版商
  72. Davaadelger B, Choi M, Singhal H, Clare S, Khan S, Kim J. BRCA1 mutation influences progesterone response in human benign mammary organoids. Breast Cancer Res. 2019;21:124 pubmed 出版商
  73. Foster A, El Chami C, O Neill C, Watson R. Osmolyte transporter expression is reduced in photoaged human skin: Implications for skin hydration in aging. Aging Cell. 2020;19:e13058 pubmed 出版商
  74. Wang Z, Li Y, Zhan S, Zhang L, Zhang S, Tang Q, et al. SMAD4 Y353C promotes the progression of PDAC. BMC Cancer. 2019;19:1037 pubmed 出版商
  75. Chen R, Chen X, Xia L, Zhang J, Pan Z, Ma X, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 2019;10:4695 pubmed 出版商
  76. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  77. Low J, Li P, Chew E, Zhou B, Suzuki K, Zhang T, et al. Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell. 2019;25:373-387.e9 pubmed 出版商
  78. Haider S, Gamperl M, Burkard T, Kunihs V, Kaindl U, Junttila S, et al. Estrogen Signaling Drives Ciliogenesis in Human Endometrial Organoids. Endocrinology. 2019;160:2282-2297 pubmed 出版商
  79. Vazquez Iglesias L, Barcia Castro L, Rodríguez Quiroga M, Páez de la Cadena M, Rodríguez Berrocal J, Cordero O. Surface expression marker profile in colon cancer cell lines and sphere-derived cells suggests complexity in CD26+ cancer stem cells subsets. Biol Open. 2019;8: pubmed 出版商
  80. Wang H, Xiang D, Liu B, He A, Randle H, Zhang K, et al. Inadequate DNA Damage Repair Promotes Mammary Transdifferentiation, Leading to BRCA1 Breast Cancer. Cell. 2019;178:135-151.e19 pubmed 出版商
  81. Oz Levi D, Olender T, Bar Joseph I, Zhu Y, Marek Yagel D, Barozzi I, et al. Noncoding deletions reveal a gene that is critical for intestinal function. Nature. 2019;: pubmed 出版商
  82. Moamer A, Hachim I, Binothman N, Wang N, Lebrun J, Ali S. A role for kinesin-1 subunits KIF5B/KLC1 in regulating epithelial mesenchymal plasticity in breast tumorigenesis. EBioMedicine. 2019;: pubmed 出版商
  83. He W, Tang J, Li W, Li Y, Mei Y, He L, et al. Mutual regulation of JAG2 and PRAF2 promotes migration and invasion of colorectal cancer cells uncoupled from epithelial-mesenchymal transition. Cancer Cell Int. 2019;19:160 pubmed 出版商
  84. Dosh R, Jordan Mahy N, Sammon C, Le Maitre C. Interleukin 1 is a key driver of inflammatory bowel disease-demonstration in a murine IL-1Ra knockout model. Oncotarget. 2019;10:3559-3575 pubmed 出版商
  85. Yin M, Zhou H, Lin C, Long L, Yang X, Zhang H, et al. CD34+KLF4+ Stromal Stem Cells Contribute to Endometrial Regeneration and Repair. Cell Rep. 2019;27:2709-2724.e3 pubmed 出版商
  86. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  87. Hu J, Guan W, Yan L, Ye Z, Wu L, Xu H. Cancer Stem Cell Marker Endoglin (CD105) Induces Epithelial Mesenchymal Transition (EMT) but Not Metastasis in Clear Cell Renal Cell Carcinoma. Stem Cells Int. 2019;2019:9060152 pubmed 出版商
  88. Tang L, Wen J, Wen P, Li X, Gong M, Li Q. Long non-coding RNA LINC01314 represses cell migration, invasion, and angiogenesis in gastric cancer via the Wnt/β-catenin signaling pathway by down-regulating KLK4. Cancer Cell Int. 2019;19:94 pubmed 出版商
  89. Gao X, Liu X, Lu Y, Wang Y, Cao W, Liu X, et al. PIM1 is responsible for IL-6-induced breast cancer cell EMT and stemness via c-myc activation. Breast Cancer. 2019;: pubmed 出版商
  90. Li Y, Lu Y, Chen Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci Rep. 2019;39: pubmed 出版商
  91. Lytle N, Ferguson L, Rajbhandari N, Gilroy K, Fox R, Deshpande A, et al. A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell. 2019;177:572-586.e22 pubmed 出版商
  92. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  93. Li Y, Li H, Duan Y, Cai X, You D, Zhou F, et al. Blockage of TGF-α Induced by Spherical Silica Nanoparticles Inhibits Epithelial-Mesenchymal Transition and Proliferation of Human Lung Epithelial Cells. Biomed Res Int. 2019;2019:8231267 pubmed 出版商
  94. Jung H, Fattet L, Tsai J, Kajimoto T, Chang Q, Newton A, et al. Apical-basal polarity inhibits epithelial-mesenchymal transition and tumour metastasis by PAR-complex-mediated SNAI1 degradation. Nat Cell Biol. 2019;21:359-371 pubmed 出版商
  95. Jalal S, Shi S, Acharya V, Huang R, Viasnoff V, Bershadsky A, et al. Actin cytoskeleton self-organization in single epithelial cells and fibroblasts under isotropic confinement. J Cell Sci. 2019;132: pubmed 出版商
  96. Li Y, Hu Q, Li C, Liang K, Xiang Y, Hsiao H, et al. PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease. J Clin Invest. 2019;129:1129-1151 pubmed 出版商
  97. Guan H, Li N, Wang X, Shan X, Li Z, Lin Z. Role of Paip1 on angiogenesis and invasion in pancreatic cancer. Exp Cell Res. 2019;376:198-209 pubmed 出版商
  98. Haikala H, Anttila J, Marques E, Raatikainen T, Ilander M, Hakanen H, et al. Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy. Nat Commun. 2019;10:620 pubmed 出版商
  99. Paul D, Islam S, Manne R, Dinesh U, Malonia S, Maity B, et al. F-box protein FBXO16 functions as a tumor suppressor by attenuating nuclear β-catenin function. J Pathol. 2019;248:266-279 pubmed 出版商
  100. Kast D, Dominguez R. Mechanism of IRSp53 inhibition by 14-3-3. Nat Commun. 2019;10:483 pubmed 出版商
  101. Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn L, Rosenthal B, et al. A Peninsular Structure Coordinates Asynchronous Differentiation with Morphogenesis to Generate Pancreatic Islets. Cell. 2019;176:790-804.e13 pubmed 出版商
  102. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  103. Aggarwal S, Gabrovsek L, Langeberg L, Golkowski M, Ong S, Smith F, et al. Depletion of dAKAP1-protein kinase A signaling islands from the outer mitochondrial membrane alters breast cancer cell metabolism and motility. J Biol Chem. 2019;294:3152-3168 pubmed 出版商
  104. Zhang C, Wang Y. Metformin attenuates cells stemness and epithelial‑mesenchymal transition in colorectal cancer cells by inhibiting the Wnt3a/β‑catenin pathway. Mol Med Rep. 2019;19:1203-1209 pubmed 出版商
  105. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  106. Lee C, Cheng Y, Chang C, Lin C, Chang J. Alpha-tubulin acetyltransferase/MEC-17 regulates cancer cell migration and invasion through epithelial-mesenchymal transition suppression and cell polarity disruption. Sci Rep. 2018;8:17477 pubmed 出版商
  107. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  108. Pinette J, Mao S, Millis B, Krystofiak E, Faust J, Tyska M. Brush border protocadherin CDHR2 promotes the elongation and maximized packing of microvilli in vivo. Mol Biol Cell. 2019;30:108-118 pubmed 出版商
  109. Espinoza Sánchez N, Enciso J, Pelayo R, Fuentes Panana E. An NF?B-dependent mechanism of tumor cell plasticity and lateral transmission of aggressive features. Oncotarget. 2018;9:26679-26700 pubmed 出版商
  110. Lau A, Chung H, Komada T, Platnich J, Sandall C, Choudhury S, et al. Renal immune surveillance and dipeptidase-1 contribute to contrast-induced acute kidney injury. J Clin Invest. 2018;128:2894-2913 pubmed 出版商
  111. Klein M, Dickson M, Antonescu C, Qin L, Dooley S, Barlas A, et al. PDLIM7 and CDH18 regulate the turnover of MDM2 during CDK4/6 inhibitor therapy-induced senescence. Oncogene. 2018;37:5066-5078 pubmed 出版商
  112. Hsu J, Xia W, Hsu Y, Chan L, Yu W, Cha J, et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 2018;9:1908 pubmed 出版商
  113. Rademaker G, Hennequière V, Brohée L, Nokin M, Lovinfosse P, Durieux F, et al. Myoferlin controls mitochondrial structure and activity in pancreatic ductal adenocarcinoma, and affects tumor aggressiveness. Oncogene. 2018;37:4398-4412 pubmed 出版商
  114. Suzuki S, Tanaka A, Nakamura H, Murayama T. Knockout of Ceramide Kinase Aggravates Pathological and Lethal Responses in Mice with Experimental Colitis. Biol Pharm Bull. 2018;41:797-805 pubmed 出版商
  115. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  116. Perez García V, Fineberg E, Wilson R, Murray A, Mazzeo C, Tudor C, et al. Placentation defects are highly prevalent in embryonic lethal mouse mutants. Nature. 2018;555:463-468 pubmed 出版商
  117. Takai K, Drain A, Lawson D, Littlepage L, Karpuj M, Kessenbrock K, et al. Discoidin domain receptor 1 (DDR1) ablation promotes tissue fibrosis and hypoxia to induce aggressive basal-like breast cancers. Genes Dev. 2018;32:244-257 pubmed 出版商
  118. Hsieh W, Ramadesikan S, FEKETE D, Aguilar R. Kidney-differentiated cells derived from Lowe Syndrome patient's iPSCs show ciliogenesis defects and Six2 retention at the Golgi complex. PLoS ONE. 2018;13:e0192635 pubmed 出版商
  119. Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1609-1621 pubmed 出版商
  120. Sallais J, Alahari S, Tagliaferro A, Bhattacharjee J, Post M, Caniggia I. Factor inhibiting HIF1-A novel target of SUMOylation in the human placenta. Oncotarget. 2017;8:114002-114018 pubmed 出版商
  121. Ekoue D, Ansong E, Liu L, Macias V, Deaton R, Lacher C, et al. Correlations of SELENOF and SELENOP genotypes with serum selenium levels and prostate cancer. Prostate. 2018;78:279-288 pubmed 出版商
  122. Palesch D, Bosinger S, Tharp G, Vanderford T, Paiardini M, Chahroudi A, et al. Sooty mangabey genome sequence provides insight into AIDS resistance in a natural SIV host. Nature. 2018;553:77-81 pubmed 出版商
  123. Yui S, Azzolin L, Maimets M, Pedersen M, Fordham R, Hansen S, et al. YAP/TAZ-Dependent Reprogramming of Colonic Epithelium Links ECM Remodeling to Tissue Regeneration. Cell Stem Cell. 2018;22:35-49.e7 pubmed 出版商
  124. Van Itallie C, Tietgens A, Aponte A, Gucek M, Cartagena Rivera A, Chadwick R, et al. MARCKS-related protein regulates cytoskeletal organization at cell-cell and cell-substrate contacts in epithelial cells. J Cell Sci. 2018;131: pubmed 出版商
  125. Tucker A, Dyer C, Fons Romero J, Teshima T, Fuchs J, Thompson H. Mapping the distribution of stem/progenitor cells across the mouse middle ear during homeostasis and inflammation. Development. 2018;145: pubmed 出版商
  126. Brooks J, Fleischmann Mundt B, Woller N, Niemann J, Ribback S, Peters K, et al. Perioperative, Spatiotemporally Coordinated Activation of T and NK Cells Prevents Recurrence of Pancreatic Cancer. Cancer Res. 2018;78:475-488 pubmed 出版商
  127. Blom S, Paavolainen L, Bychkov D, Turkki R, Mäki Teeri P, Hemmes A, et al. Systems pathology by multiplexed immunohistochemistry and whole-slide digital image analysis. Sci Rep. 2017;7:15580 pubmed 出版商
  128. You S, Guan Y, Li W. Epithelial?mesenchymal transition in colorectal carcinoma cells is mediated by DEK/IMP3. Mol Med Rep. 2017;: pubmed 出版商
  129. Paikari A, D Belair C, Saw D, Blelloch R. The eutheria-specific miR-290 cluster modulates placental growth and maternal-fetal transport. Development. 2017;144:3731-3743 pubmed 出版商
  130. Hama T, Nakanishi K, Sato M, Mukaiyama H, Togawa H, Shima Y, et al. Aberrant Smad3 phosphoisoforms in cyst-lining epithelial cells in the cpk mouse, a model of autosomal recessive polycystic kidney disease. Am J Physiol Renal Physiol. 2017;:ajprenal.00697.2016 pubmed 出版商
  131. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  132. Rong X, Wang B, Palladino E, de Aguiar Vallim T, Ford D, Tontonoz P. ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 2017;127:3640-3651 pubmed 出版商
  133. Luo W, Tan P, Rodriguez M, He L, Tan K, Zeng L, et al. Leucine-rich repeat-containing G protein-coupled receptor 4 (Lgr4) is necessary for prostate cancer metastasis via epithelial-mesenchymal transition. J Biol Chem. 2017;292:15525-15537 pubmed 出版商
  134. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  135. Toloczko A, Guo F, Yuen H, Wen Q, Wood S, Ong Y, et al. Deubiquitinating Enzyme USP9X Suppresses Tumor Growth via LATS Kinase and Core Components of the Hippo Pathway. Cancer Res. 2017;77:4921-4933 pubmed 出版商
  136. Viswanathan V, Ryan M, Dhruv H, Gill S, Eichhoff O, Seashore Ludlow B, et al. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 2017;547:453-457 pubmed 出版商
  137. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002 pubmed 出版商
  138. Xu P, Tao X, Zhao C, Huang Q, Chang H, Ban N, et al. DTX3L is upregulated in glioma and is associated with glioma progression. Int J Mol Med. 2017;40:491-498 pubmed 出版商
  139. Richardson R, Mitchell K, Hammond N, Mollo M, Kouwenhoven E, Wyatt N, et al. p63 exerts spatio-temporal control of palatal epithelial cell fate to prevent cleft palate. PLoS Genet. 2017;13:e1006828 pubmed 出版商
  140. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  141. Feldner A, Adam M, Tetzlaff F, Moll I, Komljenovic D, Sahm F, et al. Loss of Mpdz impairs ependymal cell integrity leading to perinatal-onset hydrocephalus in mice. EMBO Mol Med. 2017;9:890-905 pubmed 出版商
  142. Olvedy M, Tisserand J, Luciani F, Boeckx B, Wouters J, Lopez S, et al. Comparative oncogenomics identifies tyrosine kinase FES as a tumor suppressor in melanoma. J Clin Invest. 2017;127:2310-2325 pubmed 出版商
  143. Samson E, Tsao D, Zimak J, McLaughlin R, Trenton N, Mace E, et al. The coordinating role of IQGAP1 in the regulation of local, endosome-specific actin networks. Biol Open. 2017;6:785-799 pubmed 出版商
  144. Li P, Wang Y, Mao X, Jiang Y, Liu J, Li J, et al. CRB3 downregulation confers breast cancer stem cell traits through TAZ/?-catenin. Oncogenesis. 2017;6:e322 pubmed 出版商
  145. Jeong S, Lim S, Schevzov G, Gunning P, Helfman D. Loss of Tpm4.1 leads to disruption of cell-cell adhesions and invasive behavior in breast epithelial cells via increased Rac1 signaling. Oncotarget. 2017;8:33544-33559 pubmed 出版商
  146. Iglesia R, Prado M, Cruz L, Martins V, Santos T, Lopes M. Engagement of cellular prion protein with the co-chaperone Hsp70/90 organizing protein regulates the proliferation of glioblastoma stem-like cells. Stem Cell Res Ther. 2017;8:76 pubmed 出版商
  147. Cho H, Kim J, Jang H, Lee T, Jung M, Kim T, et al. Alpha-lipoic acid ameliorates the epithelial mesenchymal transition induced by unilateral ureteral obstruction in mice. Sci Rep. 2017;7:46065 pubmed 出版商
  148. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  149. Li N, Xue W, Yuan H, Dong B, Ding Y, Liu Y, et al. AKT-mediated stabilization of histone methyltransferase WHSC1 promotes prostate cancer metastasis. J Clin Invest. 2017;127:1284-1302 pubmed 出版商
  150. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  151. Garrido Gomez T, Ona K, Kapidzic M, Gormley M, Simon C, Genbacev O, et al. Severe pre-eclampsia is associated with alterations in cytotrophoblasts of the smooth chorion. Development. 2017;144:767-777 pubmed 出版商
  152. Zhang L, Liu H, Mu X, Cui J, Peng Z. Dysregulation of Fra1 expression by Wnt/β-catenin signalling promotes glioma aggressiveness through epithelial-mesenchymal transition. Biosci Rep. 2017;37: pubmed 出版商
  153. Lapierre L, Manning E, Mitchell K, Caldwell C, Goldenring J. Interaction of phosphorylated Rab11-FIP2 with Eps15 regulates apical junction composition. Mol Biol Cell. 2017;28:1088-1100 pubmed 出版商
  154. Wu Y, Wang Y, Lin Y, Liu Y, Wang Y, Jia J, et al. Dub3 inhibition suppresses breast cancer invasion and metastasis by promoting Snail1 degradation. Nat Commun. 2017;8:14228 pubmed 出版商
  155. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  156. Wu Q, Yan H, Tao S, Wang X, Mou L, Chen P, et al. XIAP 3'-untranslated region as a ceRNA promotes FSCN1 function in inducing the progression of breast cancer by binding endogenous miR-29a-5p. Oncotarget. 2017;8:16784-16800 pubmed 出版商
  157. Xu W, Li B, Guan X, Chung S, Wang Y, Yip Y, et al. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun. 2017;8:14399 pubmed 出版商
  158. Schiering C, Wincent E, Metidji A, Iseppon A, Li Y, Potocnik A, et al. Feedback control of AHR signalling regulates intestinal immunity. Nature. 2017;542:242-245 pubmed 出版商
  159. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  160. Gamal W, Treskes P, Samuel K, Sullivan G, Siller R, Srsen V, et al. Low-dose acetaminophen induces early disruption of cell-cell tight junctions in human hepatic cells and mouse liver. Sci Rep. 2017;7:37541 pubmed 出版商
  161. Griggs L, Hassan N, Malik R, Griffin B, Martinez B, Elmore L, et al. Fibronectin fibrils regulate TGF-?1-induced Epithelial-Mesenchymal Transition. Matrix Biol. 2017;60-61:157-175 pubmed 出版商
  162. Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, et al. Fibronectin-guided migration of carcinoma collectives. Nat Commun. 2017;8:14105 pubmed 出版商
  163. Lango Chavarría M, Chimal Ramírez G, Ruiz Tachiquín M, Espinoza Sánchez N, Suárez Arriaga M, Fuentes Pananá E. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients. Int J Oncol. 2017;50:432-440 pubmed 出版商
  164. Maltabe V, Barka E, Kontonika M, Florou D, Kouvara Pritsouli M, Roumpi M, et al. Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells Int. 2016;2016:8305624 pubmed 出版商
  165. Hu C, Gan J. TRIM37 promotes epithelial?mesenchymal transition in colorectal cancer. Mol Med Rep. 2017;15:1057-1062 pubmed 出版商
  166. Mescher M, Jeong P, Knapp S, Rübsam M, Saynisch M, Kranen M, et al. The epidermal polarity protein Par3 is a non-cell autonomous suppressor of malignant melanoma. J Exp Med. 2017;214:339-358 pubmed 出版商
  167. Yokoyama N, Ohta H, Kagawa Y, Leela Arporn R, Dermlim A, Nisa K, et al. Expression of apical junction complex proteins in colorectal mucosa of miniature dachshunds with inflammatory colorectal polyps. J Vet Med Sci. 2017;79:456-463 pubmed 出版商
  168. Price A, Huang E, Sebastiano V, Dunn A. A semi-interpenetrating network of polyacrylamide and recombinant basement membrane allows pluripotent cell culture in a soft, ligand-rich microenvironment. Biomaterials. 2017;121:179-192 pubmed 出版商
  169. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  170. Salomon J, Gaston C, Magescas J, Duvauchelle B, Canioni D, Sengmanivong L, et al. Contractile forces at tricellular contacts modulate epithelial organization and monolayer integrity. Nat Commun. 2017;8:13998 pubmed 出版商
  171. Britschgi A, Duss S, Kim S, Couto J, Brinkhaus H, Koren S, et al. The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature. 2017;541:541-545 pubmed 出版商
  172. Hichino A, Okamoto M, Taga S, Akizuki R, Endo S, Matsunaga T, et al. Down-regulation of Claudin-2 Expression and Proliferation by Epigenetic Inhibitors in Human Lung Adenocarcinoma A549 Cells. J Biol Chem. 2017;292:2411-2421 pubmed 出版商
  173. Eritja N, Chen B, Rodríguez Barrueco R, Santacana M, Gatius S, Vidal A, et al. Autophagy orchestrates adaptive responses to targeted therapy in endometrial cancer. Autophagy. 2017;13:608-624 pubmed 出版商
  174. McCracken K, Aihara E, Martin B, Crawford C, Broda T, Treguier J, et al. Wnt/β-catenin promotes gastric fundus specification in mice and humans. Nature. 2017;541:182-187 pubmed 出版商
  175. Han X, Fang Z, Wang H, Jiao R, Zhou J, Fang N. CUL4A functions as an oncogene in ovarian cancer and is directly regulated by miR-494. Biochem Biophys Res Commun. 2016;480:675-681 pubmed 出版商
  176. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  177. Lloyd Lewis B, Davis F, Harris O, Hitchcock J, Lourenco F, Pasche M, et al. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods. Breast Cancer Res. 2016;18:127 pubmed
  178. Tang Z, Li J, Shen Q, Feng J, Liu H, Wang W, et al. Contribution of upregulated dipeptidyl peptidase 9 (DPP9) in promoting tumoregenicity, metastasis and the prediction of poor prognosis in non-small cell lung cancer (NSCLC). Int J Cancer. 2017;140:1620-1632 pubmed 出版商
  179. Bhagirath D, Zhao X, Mirza S, West W, Band H, Band V. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner. PLoS ONE. 2016;11:e0167064 pubmed 出版商
  180. Gao C, Su Y, Koeman J, Haak E, Dykema K, Essenberg C, et al. Chromosome instability drives phenotypic switching to metastasis. Proc Natl Acad Sci U S A. 2016;113:14793-14798 pubmed 出版商
  181. Tamasas B, Cox T. Massively Increased Caries Susceptibility in an Irf6 Cleft Lip/Palate Model. J Dent Res. 2017;96:315-322 pubmed 出版商
  182. Tsai Y, Nattiv R, Dedhia P, Nagy M, Chin A, Thomson M, et al. In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development. 2017;144:1045-1055 pubmed 出版商
  183. Lin Z, Zhang Y, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem. 2016;291:26837-26849 pubmed 出版商
  184. Bizzarro V, Belvedere R, Migliaro V, Romano E, Parente L, Petrella A. Hypoxia regulates ANXA1 expression to support prostate cancer cell invasion and aggressiveness. Cell Adh Migr. 2017;11:247-260 pubmed 出版商
  185. Noordstra I, Liu Q, Nijenhuis W, Hua S, Jiang K, Baars M, et al. Control of apico-basal epithelial polarity by the microtubule minus-end-binding protein CAMSAP3 and spectraplakin ACF7. J Cell Sci. 2016;129:4278-4288 pubmed
  186. JENKINS L, Singh P, Varadaraj A, Lee N, Shah S, Flores H, et al. Altering the Proteoglycan State of Transforming Growth Factor ? Type III Receptor (T?RIII)/Betaglycan Modulates Canonical Wnt/?-Catenin Signaling. J Biol Chem. 2016;291:25716-25728 pubmed
  187. Ray S, Chiba N, Yao C, Guan X, McConnell A, Brockway B, et al. Rare SOX2+ Airway Progenitor Cells Generate KRT5+ Cells that Repopulate Damaged Alveolar Parenchyma following Influenza Virus Infection. Stem Cell Reports. 2016;7:817-825 pubmed 出版商
  188. Cronan M, Beerman R, ROSENBERG A, Saelens J, Johnson M, Oehlers S, et al. Macrophage Epithelial Reprogramming Underlies Mycobacterial Granuloma Formation and Promotes Infection. Immunity. 2016;45:861-876 pubmed 出版商
  189. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  190. Mai H, Xu X, Mei G, Hong T, Huang J, Wang T, et al. The interplay between HPIP and casein kinase 1? promotes renal cell carcinoma growth and metastasis via activation of mTOR pathway. Oncogenesis. 2016;5:e260 pubmed 出版商
  191. Dubail J, Vasudevan D, Wang L, Earp S, Jenkins M, Haltiwanger R, et al. Impaired ADAMTS9 secretion: A potential mechanism for eye defects in Peters Plus Syndrome. Sci Rep. 2016;6:33974 pubmed 出版商
  192. Matos M, Lapyckyj L, Rosso M, Besso M, Mencucci M, Briggiler C, et al. Identification of a Novel Human E-Cadherin Splice Variant and Assessment of Its Effects Upon EMT-Related Events. J Cell Physiol. 2017;232:1368-1386 pubmed 出版商
  193. Dye B, Dedhia P, Miller A, Nagy M, White E, Shea L, et al. A bioengineered niche promotes in vivo engraftment and maturation of pluripotent stem cell derived human lung organoids. elife. 2016;5: pubmed 出版商
  194. Lee E, Wang J, Yumoto K, Jung Y, Cackowski F, Decker A, et al. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis. Neoplasia. 2016;18:553-66 pubmed 出版商
  195. Kim M, Jeong J, Seo J, Kim H, Kim S, Jin W. Dysregulated JAK2 expression by TrkC promotes metastasis potential, and EMT program of metastatic breast cancer. Sci Rep. 2016;6:33899 pubmed 出版商
  196. Hubbs A, Fluharty K, Edwards R, Barnabei J, Grantham J, Palmer S, et al. Accumulation of Ubiquitin and Sequestosome-1 Implicate Protein Damage in Diacetyl-Induced Cytotoxicity. Am J Pathol. 2016;186:2887-2908 pubmed 出版商
  197. Hesler R, Huang J, Starr M, Treboschi V, Bernanke A, Nixon A, et al. TGF-?-induced stromal CYR61 promotes resistance to gemcitabine in pancreatic ductal adenocarcinoma through downregulation of the nucleoside transporters hENT1 and hCNT3. Carcinogenesis. 2016;37:1041-1051 pubmed 出版商
  198. Liu P, Wang C, Ma C, Wu Q, Zhang W, Lao G. MicroRNA-23a regulates epithelial-to-mesenchymal transition in endometrial endometrioid adenocarcinoma by targeting SMAD3. Cancer Cell Int. 2016;16:67 pubmed 出版商
  199. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, et al. Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med. 2016;8:1162-1183 pubmed 出版商
  200. Vardaki I, Ceder S, Rutishauser D, Baltatzis G, Foukakis T, Panaretakis T. Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget. 2016;7:74966-74978 pubmed 出版商
  201. Lan A, Blais A, Coelho D, Capron J, Maarouf M, Benamouzig R, et al. Dual effects of a high-protein diet on DSS-treated mice during colitis resolution phase. Am J Physiol Gastrointest Liver Physiol. 2016;311:G624-G633 pubmed 出版商
  202. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  203. Arévalo Romero H, Meza I, Vallejo Flores G, Fuentes Panana E. Helicobacter pylori CagA and IL-1? Promote the Epithelial-to-Mesenchymal Transition in a Nontransformed Epithelial Cell Model. Gastroenterol Res Pract. 2016;2016:4969163 pubmed 出版商
  204. Hendrick J, Franz Wachtel M, Moeller Y, Schmid S, Macek B, Olayioye M. The polarity protein Scribble positions DLC3 at adherens junctions to regulate Rho signaling. J Cell Sci. 2016;129:3583-3596 pubmed
  205. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  206. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  207. Li C, Li Q, Cai Y, He Y, Lan X, Wang W, et al. Overexpression of angiopoietin 2 promotes the formation of oral squamous cell carcinoma by increasing epithelial-mesenchymal transition-induced angiogenesis. Cancer Gene Ther. 2016;23:295-302 pubmed 出版商
  208. Eom B, Joo J, Park B, Jo M, Choi S, Cho S, et al. Nomogram Incorporating CD44v6 and Clinicopathological Factors to Predict Lymph Node Metastasis for Early Gastric Cancer. PLoS ONE. 2016;11:e0159424 pubmed 出版商
  209. Reginensi A, Enderle L, Gregorieff A, Johnson R, Wrana J, McNeill H. A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun. 2016;7:12309 pubmed 出版商
  210. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  211. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  212. Fu H, Ma Y, Yang M, Zhang C, Huang H, Xia Y, et al. Persisting and Increasing Neutrophil Infiltration Associates with Gastric Carcinogenesis and E-cadherin Downregulation. Sci Rep. 2016;6:29762 pubmed 出版商
  213. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  214. Schokrpur S, Hu J, Moughon D, Liu P, Lin L, Hermann K, et al. CRISPR-Mediated VHL Knockout Generates an Improved Model for Metastatic Renal Cell Carcinoma. Sci Rep. 2016;6:29032 pubmed 出版商
  215. Lin X, Yang Z, Zhang P, Liu Y, Shao G. miR-154 inhibits migration and invasion of human non-small cell lung cancer by targeting ZEB2. Oncol Lett. 2016;12:301-306 pubmed
  216. Li H, Mai R, Huang H, Chou C, Chang Y, Chang Y, et al. DDX3 Represses Stemness by Epigenetically Modulating Tumor-suppressive miRNAs in Hepatocellular Carcinoma. Sci Rep. 2016;6:28637 pubmed 出版商
  217. Dutta A, Le Magnen C, Mitrofanova A, Ouyang X, Califano A, Abate Shen C. Identification of an NKX3.1-G9a-UTY transcriptional regulatory network that controls prostate differentiation. Science. 2016;352:1576-80 pubmed 出版商
  218. Folmsbee S, Wilcox D, Tyberghein K, De Bleser P, Tourtellotte W, van Hengel J, et al. ?T-catenin in restricted brain cell types and its potential connection to autism. J Mol Psychiatry. 2016;4:2 pubmed 出版商
  219. Helmke C, Raab M, Rodel F, Matthess Y, Oellerich T, Mandal R, et al. Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Res. 2016;26:914-34 pubmed 出版商
  220. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  221. Bott L, Salomons F, Maric D, Liu Y, Merry D, Fischbeck K, et al. The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep. 2016;6:27703 pubmed 出版商
  222. Pomo J, Taylor R, Gullapalli R. Influence of TP53 and CDH1 genes in hepatocellular cancer spheroid formation and culture: a model system to understand cancer cell growth mechanics. Cancer Cell Int. 2016;16:44 pubmed 出版商
  223. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  224. Hao Y, Chow A, Yip W, Li C, Wan T, Tong B, et al. G protein-coupled estrogen receptor inhibits the P2Y receptor-mediated Ca(2+) signaling pathway in human airway epithelia. Pflugers Arch. 2016;468:1489-503 pubmed 出版商
  225. Parang B, Bradley A, Mittal M, Short S, Thompson J, Barrett C, et al. Myeloid translocation genes differentially regulate colorectal cancer programs. Oncogene. 2016;35:6341-6349 pubmed 出版商
  226. Andersen A, Flinck M, Oernbo E, Pedersen N, Viuff B, Pedersen S. Roles of acid-extruding ion transporters in regulation of breast cancer cell growth in a 3-dimensional microenvironment. Mol Cancer. 2016;15:45 pubmed 出版商
  227. Kajiho H, Kajiho Y, Frittoli E, Confalonieri S, Bertalot G, Viale G, et al. RAB2A controls MT1-MMP endocytic and E-cadherin polarized Golgi trafficking to promote invasive breast cancer programs. EMBO Rep. 2016;17:1061-80 pubmed 出版商
  228. Raman R, Damle I, Rote R, Banerjee S, Dingare C, Sonawane M. aPKC regulates apical localization of Lgl to restrict elongation of microridges in developing zebrafish epidermis. Nat Commun. 2016;7:11643 pubmed 出版商
  229. He Y, Ou Z, Chen X, Zu X, Liu L, Li Y, et al. LPS/TLR4 Signaling Enhances TGF-β Response Through Downregulating BAMBI During Prostatic Hyperplasia. Sci Rep. 2016;6:27051 pubmed 出版商
  230. Lee S, Kim H, Kim K, Lee H, Lee S, Lee D. Arhgap17, a RhoGTPase activating protein, regulates mucosal and epithelial barrier function in the mouse colon. Sci Rep. 2016;6:26923 pubmed 出版商
  231. Hong L, Pan F, Jiang H, Zhang L, Liu Y, Cai C, et al. miR-125b inhibited epithelial-mesenchymal transition of triple-negative breast cancer by targeting MAP2K7. Onco Targets Ther. 2016;9:2639-48 pubmed 出版商
  232. Kokado M, Okada Y, Miyamoto T, Yamanaka O, Saika S. Effects of epiplakin-knockdown in cultured corneal epithelial cells. BMC Res Notes. 2016;9:278 pubmed 出版商
  233. Chen C, Wang S, Chan P, Shen M, Chen H. Phosphorylation of E-cadherin at threonine 790 by protein kinase C? reduces ?-catenin binding and suppresses the function of E-cadherin. Oncotarget. 2016;7:37260-37276 pubmed 出版商
  234. Lin S, Wang B, Lin C, Chien P, Wu Y, Ko J, et al. Chidamide alleviates TGF-?-induced epithelial-mesenchymal transition in lung cancer cell lines. Mol Biol Rep. 2016;43:687-95 pubmed 出版商
  235. Lee Y, Kim S, Song S, Hong H, Lee Y, Oh B, et al. Crosstalk between CCL7 and CCR3 promotes metastasis of colon cancer cells via ERK-JNK signaling pathways. Oncotarget. 2016;7:36842-36853 pubmed 出版商
  236. Miyawaki S, Kawamura Y, Oiwa Y, Shimizu A, Hachiya T, Bono H, et al. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016;7:11471 pubmed 出版商
  237. Vorvis C, Hatziapostolou M, Mahurkar Joshi S, Koutsioumpa M, Williams J, Donahue T, et al. Transcriptomic and CRISPR/Cas9 technologies reveal FOXA2 as a tumor suppressor gene in pancreatic cancer. Am J Physiol Gastrointest Liver Physiol. 2016;310:G1124-37 pubmed 出版商
  238. Ho T, Guilbaud G, Blow J, Sale J, Watson C. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep. 2016;15:724-734 pubmed 出版商
  239. Alaee M, Danesh G, Pasdar M. Plakoglobin Reduces the in vitro Growth, Migration and Invasion of Ovarian Cancer Cells Expressing N-Cadherin and Mutant p53. PLoS ONE. 2016;11:e0154323 pubmed 出版商
  240. Tokhtaeva E, Sun H, Deiss Yehiely N, Wen Y, Soni P, Gabrielli N, et al. The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits. J Cell Sci. 2016;129:2394-406 pubmed 出版商
  241. Nietzer S, Baur F, Sieber S, Hansmann J, Schwarz T, Stoffer C, et al. Mimicking Metastases Including Tumor Stroma: A New Technique to Generate a Three-Dimensional Colorectal Cancer Model Based on a Biological Decellularized Intestinal Scaffold. Tissue Eng Part C Methods. 2016;22:621-35 pubmed 出版商
  242. Richardson R, Metzger M, Knyphausen P, Ramezani T, Slanchev K, Kraus C, et al. Re-epithelialization of cutaneous wounds in adult zebrafish combines mechanisms of wound closure in embryonic and adult mammals. Development. 2016;143:2077-88 pubmed 出版商
  243. Murray A, Sienerth A, Hemberger M. Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation. Sci Rep. 2016;6:25112 pubmed 出版商
  244. Inada M, Izawa G, Kobayashi W, Ozawa M. 293 cells express both epithelial as well as mesenchymal cell adhesion molecules. Int J Mol Med. 2016;37:1521-7 pubmed 出版商
  245. Thakkar A, Wang B, Picon Ruiz M, Buchwald P, Ince T. Vitamin D and androgen receptor-targeted therapy for triple-negative breast cancer. Breast Cancer Res Treat. 2016;157:77-90 pubmed 出版商
  246. De Boeck M, Cui C, Mulder A, Jost C, Ikeno S, Ten Dijke P. Smad6 determines BMP-regulated invasive behaviour of breast cancer cells in a zebrafish xenograft model. Sci Rep. 2016;6:24968 pubmed 出版商
  247. Yan M, Li X, Tong D, Han C, Zhao R, He Y, et al. miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep. 2016;36:65-71 pubmed 出版商
  248. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  249. Stewart M, Plante I, Penuela S, Laird D. Loss of Panx1 Impairs Mammary Gland Development at Lactation: Implications for Breast Tumorigenesis. PLoS ONE. 2016;11:e0154162 pubmed 出版商
  250. Choi V, Herrou J, Hecht A, Teoh W, Turner J, Crosson S, et al. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice. Nat Med. 2016;22:563-7 pubmed 出版商
  251. Chan C, Chu H, Zhang A, Leung L, Sze K, Kao R, et al. Hemagglutinin of influenza A virus binds specifically to cell surface nucleolin and plays a role in virus internalization. Virology. 2016;494:78-88 pubmed 出版商
  252. Montalbano M, Curcurù G, Shirafkan A, Vento R, Rastellini C, Cicalese L. Modeling of Hepatocytes Proliferation Isolated from Proximal and Distal Zones from Human Hepatocellular Carcinoma Lesion. PLoS ONE. 2016;11:e0153613 pubmed 出版商
  253. Hellstrom M, Moreno Moya J, Bandstein S, Bom E, Akouri R, Miyazaki K, et al. Bioengineered uterine tissue supports pregnancy in a rat model. Fertil Steril. 2016;106:487-496.e1 pubmed 出版商
  254. Cozzolino A, Noce V, Battistelli C, Marchetti A, Grassi G, Cicchini C, et al. Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells Int. 2016;2016:5481493 pubmed 出版商
  255. Guerrera D, Shah J, Vasileva E, Sluysmans S, Méan I, Jond L, et al. PLEKHA7 Recruits PDZD11 to Adherens Junctions to Stabilize Nectins. J Biol Chem. 2016;291:11016-29 pubmed 出版商
  256. Kwon J, Jeong S, Choi I, Kim N. ADAM10 Is Involved in Cell Junction Assembly in Early Porcine Embryo Development. PLoS ONE. 2016;11:e0152921 pubmed 出版商
  257. Klinkert K, Rocancourt M, Houdusse A, Echard A. Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun. 2016;7:11166 pubmed 出版商
  258. Hornsveld M, Tenhagen M, van de Ven R, Smits A, van Triest M, van Amersfoort M, et al. Restraining FOXO3-dependent transcriptional BMF activation underpins tumour growth and metastasis of E-cadherin-negative breast cancer. Cell Death Differ. 2016;23:1483-92 pubmed 出版商
  259. Ma B, Cheng H, Gao R, Mu C, Chen L, Wu S, et al. Zyxin-Siah2-Lats2 axis mediates cooperation between Hippo and TGF-β signalling pathways. Nat Commun. 2016;7:11123 pubmed 出版商
  260. Lee N, Fok K, White A, Wilson N, O Leary C, Cox H, et al. Neogenin recruitment of the WAVE regulatory complex maintains adherens junction stability and tension. Nat Commun. 2016;7:11082 pubmed 出版商
  261. Vincent A, Berthel E, Dacheux E, Magnard C, Venezia N. BRCA1 affects protein phosphatase 6 signalling through its interaction with ANKRD28. Biochem J. 2016;473:949-60 pubmed 出版商
  262. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  263. Bassey Archibong B, Kwiecien J, Milosavljevic S, Hallett R, Rayner L, Erb M, et al. Kaiso depletion attenuates transforming growth factor-? signaling and metastatic activity of triple-negative breast cancer cells. Oncogenesis. 2016;5:e208 pubmed 出版商
  264. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  265. Zhao N, Sun H, Sun B, Zhu D, Zhao X, Wang Y, et al. miR-27a-3p suppresses tumor metastasis and VM by down-regulating VE-cadherin expression and inhibiting EMT: an essential role for Twist-1 in HCC. Sci Rep. 2016;6:23091 pubmed 出版商
  266. Ji X, Liu Y, Hurd R, Wang J, Fitzmaurice B, Nishina P, et al. Retinal Pigment Epithelium Atrophy 1 (rpea1): A New Mouse Model With Retinal Detachment Caused by a Disruption of Protein Kinase C, θ. Invest Ophthalmol Vis Sci. 2016;57:877-88 pubmed 出版商
  267. Lakschevitz F, Hassanpour S, Rubin A, Fine N, Sun C, Glogauer M. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342:200-9 pubmed 出版商
  268. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  269. Fiorino C, Harrison R. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone. 2016;86:106-18 pubmed 出版商
  270. Hirth S, Bühler A, Bührdel J, Rudeck S, Dahme T, Rottbauer W, et al. Paxillin and Focal Adhesion Kinase (FAK) Regulate Cardiac Contractility in the Zebrafish Heart. PLoS ONE. 2016;11:e0150323 pubmed 出版商
  271. Tomann P, Paus R, Millar S, Scheidereit C, Schmidt Ullrich R. Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 2016;143:1512-22 pubmed 出版商
  272. Shukla S, Schmidt J, Goldfarb K, Cech T, Parker R. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol. 2016;23:286-92 pubmed 出版商
  273. Pattabiraman D, Bierie B, Kober K, Thiru P, Krall J, Zill C, et al. Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability. Science. 2016;351:aad3680 pubmed 出版商
  274. Colangelo T, Polcaro G, Ziccardi P, Pucci B, Muccillo L, Galgani M, et al. Proteomic screening identifies calreticulin as a miR-27a direct target repressing MHC class I cell surface exposure in colorectal cancer. Cell Death Dis. 2016;7:e2120 pubmed 出版商
  275. Colangelo T, Polcaro G, Ziccardi P, Muccillo L, Galgani M, Pucci B, et al. The miR-27a-calreticulin axis affects drug-induced immunogenic cell death in human colorectal cancer cells. Cell Death Dis. 2016;7:e2108 pubmed 出版商
  276. Kai T, Tsukamoto Y, Hijiya N, Tokunaga A, Nakada C, Uchida T, et al. Kidney-specific knockout of Sav1 in the mouse promotes hyperproliferation of renal tubular epithelium through suppression of the Hippo pathway. J Pathol. 2016;239:97-108 pubmed 出版商
  277. Rodrigues Pinto R, Berry A, Piper Hanley K, Hanley N, Richardson S, Hoyland J. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord-specific markers during early human intervertebral disc development. J Orthop Res. 2016;34:1327-40 pubmed 出版商
  278. Shukla S, Sinha S, Khan S, Kumar S, Singh K, Mitra K, et al. Cucurbitacin B inhibits the stemness and metastatic abilities of NSCLC via downregulation of canonical Wnt/β-catenin signaling axis. Sci Rep. 2016;6:21860 pubmed 出版商
  279. Jung B, Padula D, Burtscher I, Landerer C, Lutter D, Theis F, et al. Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS ONE. 2016;11:e0149477 pubmed 出版商
  280. Chung V, Tan T, Tan M, Wong M, Kuay K, Yang Z, et al. GRHL2-miR-200-ZEB1 maintains the epithelial status of ovarian cancer through transcriptional regulation and histone modification. Sci Rep. 2016;6:19943 pubmed 出版商
  281. Hwang S, Lee H, Kim H, Lee H, Shin C, Yun S, et al. Ubiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma. Sci Rep. 2016;6:21596 pubmed 出版商
  282. Lehmann W, Mossmann D, Kleemann J, Mock K, Meisinger C, Brummer T, et al. ZEB1 turns into a transcriptional activator by interacting with YAP1 in aggressive cancer types. Nat Commun. 2016;7:10498 pubmed 出版商
  283. Weyemi U, Redon C, Choudhuri R, Aziz T, Maeda D, Boufraqech M, et al. The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition. Nat Commun. 2016;7:10711 pubmed 出版商
  284. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  285. Haikala H, Klefström J, Eilers M, Wiese K. MYC-induced apoptosis in mammary epithelial cells is associated with repression of lineage-specific gene signatures. Cell Cycle. 2016;15:316-23 pubmed 出版商
  286. Roy J, Kim B, Hill E, Visconti P, Krapf D, Vinegoni C, et al. Tyrosine kinase-mediated axial motility of basal cells revealed by intravital imaging. Nat Commun. 2016;7:10666 pubmed 出版商
  287. Howitt M, Lavoie S, Michaud M, Blum A, Tran S, Weinstock J, et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 2016;351:1329-33 pubmed 出版商
  288. Maiden S, Petrova Y, Gumbiner B. Microtubules Inhibit E-Cadherin Adhesive Activity by Maintaining Phosphorylated p120-Catenin in a Colon Carcinoma Cell Model. PLoS ONE. 2016;11:e0148574 pubmed 出版商
  289. Bühler A, Kustermann M, Bummer T, Rottbauer W, Sandri M, Just S. Atrogin-1 Deficiency Leads to Myopathy and Heart Failure in Zebrafish. Int J Mol Sci. 2016;17: pubmed 出版商
  290. Kuracha M, Thomas P, Loggie B, Govindarajan V. Patient-derived xenograft mouse models of pseudomyxoma peritonei recapitulate the human inflammatory tumor microenvironment. Cancer Med. 2016;5:711-9 pubmed 出版商
  291. Lazarevic I, Engelhardt B. Modeling immune functions of the mouse blood-cerebrospinal fluid barrier in vitro: primary rather than immortalized mouse choroid plexus epithelial cells are suited to study immune cell migration across this brain barrier. Fluids Barriers CNS. 2016;13:2 pubmed 出版商
  292. Shah D, Ali M, Pasha Z, Jaboori A, Jassim S, Jain S, et al. Histatin-1 Expression in Human Lacrimal Epithelium. PLoS ONE. 2016;11:e0148018 pubmed 出版商
  293. Wu X, Yang L, Zheng Z, Li Z, Shi J, Li Y, et al. Src promotes cutaneous wound healing by regulating MMP-2 through the ERK pathway. Int J Mol Med. 2016;37:639-48 pubmed 出版商
  294. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breast cancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874 pubmed 出版商
  295. Gaide Chevronnay H, Janssens V, Van Der Smissen P, Rocca C, Liao X, Refetoff S, et al. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology. 2016;157:1363-71 pubmed 出版商
  296. Branco M, King M, Perez García V, Bogutz A, Caley M, Fineberg E, et al. Maternal DNA Methylation Regulates Early Trophoblast Development. Dev Cell. 2016;36:152-63 pubmed 出版商
  297. Couderc C, Boin A, Fuhrmann L, Vincent Salomon A, Mandati V, Kieffer Y, et al. AMOTL1 Promotes Breast Cancer Progression and Is Antagonized by Merlin. Neoplasia. 2016;18:10-24 pubmed 出版商
  298. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  299. Choi S, Chen Z, Tang L, Fang Y, Shin S, Panarelli N, et al. Bcl-xL promotes metastasis independent of its anti-apoptotic activity. Nat Commun. 2016;7:10384 pubmed 出版商
  300. Lu Y, Hu J, Sun W, Li S, Deng S, Li M. MiR-29c inhibits cell growth, invasion, and migration of pancreatic cancer by targeting ITGB1. Onco Targets Ther. 2016;9:99-109 pubmed 出版商
  301. Stahley S, Warren M, Feldman R, Swerlick R, Mattheyses A, Kowalczyk A. Super-Resolution Microscopy Reveals Altered Desmosomal Protein Organization in Tissue from Patients with Pemphigus Vulgaris. J Invest Dermatol. 2016;136:59-66 pubmed 出版商
  302. Little E, Camp E, Wang C, Watson P, Watson D, Cole D. The CaSm (LSm1) oncogene promotes transformation, chemoresistance and metastasis of pancreatic cancer cells. Oncogenesis. 2016;5:e182 pubmed 出版商
  303. Sun Y, Zhu D, Chen F, Qian M, Wei H, Chen W, et al. SFRP2 augments WNT16B signaling to promote therapeutic resistance in the damaged tumor microenvironment. Oncogene. 2016;35:4321-34 pubmed 出版商
  304. Shu S, Lin C, He H, Witwicki R, Tabassum D, Roberts J, et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature. 2016;529:413-417 pubmed 出版商
  305. García Castro I, Garcia Lopez G, Avila González D, Flores Herrera H, Molina Hernández A, Portillo W, et al. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons. PLoS ONE. 2015;10:e0146082 pubmed 出版商
  306. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A. 2016;113:E71-80 pubmed 出版商
  307. Zhang Y, Fan J, Ho J, Hu T, Kneeland S, Fan X, et al. Crim1 regulates integrin signaling in murine lens development. Development. 2016;143:356-66 pubmed 出版商
  308. Smith K, Zhou B, Avdulov S, Benyumov A, Peterson M, Liu Y, et al. Transforming Growth Factor-β1 Induced Epithelial Mesenchymal Transition is blocked by a chemical antagonist of translation factor eIF4E. Sci Rep. 2015;5:18233 pubmed 出版商
  309. Nagy N, Barad C, Graham H, Hotta R, Cheng L, Fejszak N, et al. Sonic hedgehog controls enteric nervous system development by patterning the extracellular matrix. Development. 2016;143:264-75 pubmed 出版商
  310. Brunati M, Perucca S, Han L, Cattaneo A, Consolato F, Andolfo A, et al. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. elife. 2015;4:e08887 pubmed 出版商
  311. Osorio L, Farfán N, Castellón E, Contreras H. SNAIL transcription factor increases the motility and invasive capacity of prostate cancer cells. Mol Med Rep. 2016;13:778-86 pubmed 出版商
  312. Kessler M, Hoffmann K, Brinkmann V, Thieck O, Jackisch S, Toelle B, et al. The Notch and Wnt pathways regulate stemness and differentiation in human fallopian tube organoids. Nat Commun. 2015;6:8989 pubmed 出版商
  313. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  314. Qi D, Kaur Gill N, Santiskulvong C, Sifuentes J, Dorigo O, Rao J, et al. Screening cell mechanotype by parallel microfiltration. Sci Rep. 2015;5:17595 pubmed 出版商
  315. Huang Y, Lan Q, Ponsonnet L, Blanquet M, Christofori G, Zaric J, et al. The matricellular protein CYR61 interferes with normal pancreatic islets architecture and promotes pancreatic neuroendocrine tumor progression. Oncotarget. 2016;7:1663-74 pubmed 出版商
  316. Faltermeier C, Drake J, Clark P, Smith B, Zong Y, Volpe C, et al. Functional screen identifies kinases driving prostate cancer visceral and bone metastasis. Proc Natl Acad Sci U S A. 2016;113:E172-81 pubmed 出版商
  317. Cruz L, Vedula P, Gutierrez N, Shah N, Rodriguez S, Ayee B, et al. Balancing spatially regulated β-actin translation and dynamin-mediated endocytosis is required to assemble functional epithelial monolayers. Cytoskeleton (Hoboken). 2015;72:597-608 pubmed 出版商
  318. Kühne H, Hause G, Grundmann S, Schutkowski A, Brandsch C, Stangl G. Vitamin D receptor knockout mice exhibit elongated intestinal microvilli and increased ezrin expression. Nutr Res. 2016;36:184-92 pubmed 出版商
  319. Uribe R, Buzzi A, Bronner M, Strobl Mazzulla P. Histone demethylase KDM4B regulates otic vesicle invagination via epigenetic control of Dlx3 expression. J Cell Biol. 2015;211:815-27 pubmed 出版商
  320. Hernando H, Gelato K, Lesche R, Beckmann G, Koehr S, Otto S, et al. EZH2 Inhibition Blocks Multiple Myeloma Cell Growth through Upregulation of Epithelial Tumor Suppressor Genes. Mol Cancer Ther. 2016;15:287-98 pubmed 出版商
  321. Chow C, Ebine K, Knab L, Bentrem D, Kumar K, Munshi H. Cancer Cell Invasion in Three-dimensional Collagen Is Regulated Differentially by Gα13 Protein and Discoidin Domain Receptor 1-Par3 Protein Signaling. J Biol Chem. 2016;291:1605-18 pubmed 出版商
  322. Sharmin S, Taguchi A, Kaku Y, Yoshimura Y, Ohmori T, Sakuma T, et al. Human Induced Pluripotent Stem Cell-Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation. J Am Soc Nephrol. 2016;27:1778-91 pubmed 出版商
  323. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  324. Jung M, Ryu Y, Kang G. Investigation of the origin of stromal and endothelial cells at the desmoplastic interface in xenograft tumor in mice. Pathol Res Pract. 2015;211:925-30 pubmed 出版商
  325. Kumar N, Richter J, Cutts J, Bush K, Trujillo C, Nigam S, et al. Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. elife. 2015;4: pubmed 出版商
  326. Dixon D, Coates J, Del Carpio Pons A, Horabin J, Walker A, Abdul N, et al. A potential mode of action for Anakinra in patients with arthrofibrosis following total knee arthroplasty. Sci Rep. 2015;5:16466 pubmed 出版商
  327. Buczek M, Miles A, Green W, Johnson C, Boocock D, Pockley A, et al. Cytoplasmic PML promotes TGF-β-associated epithelial-mesenchymal transition and invasion in prostate cancer. Oncogene. 2016;35:3465-75 pubmed 出版商
  328. Bhate A, Parker D, Bebee T, Ahn J, Arif W, Rashan E, et al. ESRP2 controls an adult splicing programme in hepatocytes to support postnatal liver maturation. Nat Commun. 2015;6:8768 pubmed 出版商
  329. Valcourt U, Carthy J, Okita Y, Alcaraz L, Kato M, Thuault S, et al. Analysis of Epithelial-Mesenchymal Transition Induced by Transforming Growth Factor β. Methods Mol Biol. 2016;1344:147-81 pubmed 出版商
  330. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  331. Burns J, Kelly M, Hoa M, Morell R, Kelley M. Single-cell RNA-Seq resolves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun. 2015;6:8557 pubmed 出版商
  332. Arya P, Rainey M, Bhattacharyya S, Mohapatra B, George M, Kuracha M, et al. The endocytic recycling regulatory protein EHD1 Is required for ocular lens development. Dev Biol. 2015;408:41-55 pubmed 出版商
  333. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  334. Martínez Revollar G, Garay E, Martín Tapia D, Nava P, Huerta M, Lopez Bayghen E, et al. Heterogeneity between triple negative breast cancer cells due to differential activation of Wnt and PI3K/AKT pathways. Exp Cell Res. 2015;339:67-80 pubmed 出版商
  335. Takasato M, Er P, Chiu H, Maier B, Baillie G, Ferguson C, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. 2015;526:564-8 pubmed 出版商
  336. Stewart M, Bechberger J, Welch I, Naus C, Laird D. Cx26 knockout predisposes the mammary gland to primary mammary tumors in a DMBA-induced mouse model of breast cancer. Oncotarget. 2015;6:37185-99 pubmed 出版商
  337. Hwang J, Sung W, Tu H, Hsieh K, Yeh C, Chen C, et al. The Overexpression of FEN1 and RAD54B May Act as Independent Prognostic Factors of Lung Adenocarcinoma. PLoS ONE. 2015;10:e0139435 pubmed 出版商
  338. Abou Kheir W, Eid A, El Merahbi R, Assaf R, Daoud G. A Unique Expression of Keratin 14 in a Subset of Trophoblast Cells. PLoS ONE. 2015;10:e0139939 pubmed 出版商
  339. Jeannot P, Callot C, Baer R, Duquesnes N, Guerra C, Guillermet Guibert J, et al. Loss of p27Kip¹ promotes metaplasia in the pancreas via the regulation of Sox9 expression. Oncotarget. 2015;6:35880-92 pubmed 出版商
  340. Nagaoka K, Fujii K, Zhang H, Usuda K, Watanabe G, Ivshina M, et al. CPEB1 mediates epithelial-to-mesenchyme transition and breast cancer metastasis. Oncogene. 2016;35:2893-901 pubmed 出版商
  341. Yan M, Yao C, Chow J, Chang C, Hwang P, Chuang S, et al. Fucoidan Elevates MicroRNA-29b to Regulate DNMT3B-MTSS1 Axis and Inhibit EMT in Human Hepatocellular Carcinoma Cells. Mar Drugs. 2015;13:6099-116 pubmed 出版商
  342. Brkic M, Balusu S, Van Wonterghem E, Gorlé N, Benilova I, Kremer A, et al. Amyloid β Oligomers Disrupt Blood-CSF Barrier Integrity by Activating Matrix Metalloproteinases. J Neurosci. 2015;35:12766-78 pubmed 出版商
  343. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  344. Wang H, Li G, Zhang J, Gao F, Li W, Qin Y, et al. Novel WT1 Missense Mutations in Han Chinese Women with Premature Ovarian Failure. Sci Rep. 2015;5:13983 pubmed 出版商
  345. Widder M, Lützkendorf J, Caysa H, Unverzagt S, Wickenhauser C, Benndorf R, et al. Multipotent mesenchymal stromal cells promote tumor growth in distinct colorectal cancer cells by a β1-integrin-dependent mechanism. Int J Cancer. 2016;138:964-75 pubmed 出版商
  346. Basak P, Dillon R, Leslie H, Raouf A, Mowat M. The Deleted in Liver Cancer 1 (Dlc1) tumor suppressor is haploinsufficient for mammary gland development and epithelial cell polarity. BMC Cancer. 2015;15:630 pubmed 出版商
  347. Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T. Conditionally Stabilized dCas9 Activator for Controlling Gene Expression in Human Cell Reprogramming and Differentiation. Stem Cell Reports. 2015;5:448-59 pubmed 出版商
  348. Maris P, Blomme A, Palacios A, Costanza B, Bellahcène A, Bianchi E, et al. Asporin Is a Fibroblast-Derived TGF-β1 Inhibitor and a Tumor Suppressor Associated with Good Prognosis in Breast Cancer. PLoS Med. 2015;12:e1001871 pubmed 出版商
  349. Brusgard J, Choe M, Chumsri S, Renoud K, MacKerell A, Sudol M, et al. RUNX2 and TAZ-dependent signaling pathways regulate soluble E-Cadherin levels and tumorsphere formation in breast cancer cells. Oncotarget. 2015;6:28132-50 pubmed 出版商
  350. Wang J, Bao L, Yu B, Liu Z, Han W, Deng C, et al. Interleukin-1β Promotes Epithelial-Derived Alveolar Elastogenesis via αvβ6 Integrin-Dependent TGF-β Activation. Cell Physiol Biochem. 2015;36:2198-216 pubmed 出版商
  351. Pickup M, Hover L, Guo Y, Gorska A, Chytil A, Novitskiy S, et al. Deletion of the BMP receptor BMPR1a impairs mammary tumor formation and metastasis. Oncotarget. 2015;6:22890-904 pubmed
  352. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  353. Tille J, Ho L, Shah J, Seyde O, McKee T, Citi S. The Expression of the Zonula Adhaerens Protein PLEKHA7 Is Strongly Decreased in High Grade Ductal and Lobular Breast Carcinomas. PLoS ONE. 2015;10:e0135442 pubmed 出版商
  354. Archibald A, Al Masri M, Liew Spilger A, McCaffrey L. Atypical protein kinase C induces cell transformation by disrupting Hippo/Yap signaling. Mol Biol Cell. 2015;26:3578-95 pubmed 出版商
  355. Kumar P, Thirkill T, Ji J, Monte L, Douglas G. Differential Effects of Sodium Butyrate and Lithium Chloride on Rhesus Monkey Trophoblast Differentiation. PLoS ONE. 2015;10:e0135089 pubmed 出版商
  356. Li H, Yu P, Huang K, Su H, Hsiao T, Chang C, et al. NKX6.1 functions as a metastatic suppressor through epigenetic regulation of the epithelial-mesenchymal transition. Oncogene. 2016;35:2266-78 pubmed 出版商
  357. Faura Tellez G, Vandepoele K, Brouwer U, Koning H, Elderman R, Hackett T, et al. Protocadherin-1 binds to SMAD3 and suppresses TGF-β1-induced gene transcription. Am J Physiol Lung Cell Mol Physiol. 2015;309:L725-35 pubmed 出版商
  358. Takahashi S, Kohashi K, Yamamoto H, Hirahashi M, Kumagai R, Takizawa N, et al. Expression of adhesion molecules and epithelial-mesenchymal transition factors in medullary carcinoma of the colorectum. Hum Pathol. 2015;46:1257-66 pubmed 出版商
  359. Cartón García F, Overeem A, Nieto R, Bazzocco S, Dopeso H, Macaya I, et al. Myo5b knockout mice as a model of microvillus inclusion disease. Sci Rep. 2015;5:12312 pubmed 出版商
  360. Cho M, Park J, Choi H, Park M, Won H, Park Y, et al. DOT1L cooperates with the c-Myc-p300 complex to epigenetically derepress CDH1 transcription factors in breast cancer progression. Nat Commun. 2015;6:7821 pubmed 出版商
  361. He D, Lu Y, Hu H, Zhang J, Qin B, Wang Y, et al. The Wnt11 Signaling Pathway in Potential Cellular EMT and Osteochondral Differentiation Progression in Nephrolithiasis Formation. Int J Mol Sci. 2015;16:16313-29 pubmed 出版商
  362. Xu J, Wan P, Wang M, Zhang J, Gao X, Hu B, et al. AIP1-mediated actin disassembly is required for postnatal germ cell migration and spermatogonial stem cell niche establishment. Cell Death Dis. 2015;6:e1818 pubmed 出版商
  363. Burkhalter R, Westfall S, Liu Y, Stack M. Lysophosphatidic Acid Initiates Epithelial to Mesenchymal Transition and Induces β-Catenin-mediated Transcription in Epithelial Ovarian Carcinoma. J Biol Chem. 2015;290:22143-54 pubmed 出版商
  364. Haraguchi M, Sato M, Ozawa M. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS ONE. 2015;10:e0132260 pubmed 出版商
  365. Atsuta Y, Takahashi Y. FGF8 coordinates tissue elongation and cell epithelialization during early kidney tubulogenesis. Development. 2015;142:2329-37 pubmed 出版商
  366. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  367. O Shaughnessy Kirwan A, Signolet J, Costello I, Gharbi S, Hendrich B. Constraint of gene expression by the chromatin remodelling protein CHD4 facilitates lineage specification. Development. 2015;142:2586-97 pubmed 出版商
  368. Wainwright E, Wilhelm D, Combes A, Little M, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol. 2015;404:88-102 pubmed 出版商
  369. Sugiyama Y, Shelley E, Badouel C, McNeill H, McAvoy J. Atypical Cadherin Fat1 Is Required for Lens Epithelial Cell Polarity and Proliferation but Not for Fiber Differentiation. Invest Ophthalmol Vis Sci. 2015;56:4099-107 pubmed 出版商
  370. Lee Y, Han M, Baek S, Kim S, Oh S. MED30 Regulates the Proliferation and Motility of Gastric Cancer Cells. PLoS ONE. 2015;10:e0130826 pubmed 出版商
  371. Nishioka M, Venkatesan N, Dessalle K, Mogas A, Kyoh S, Lin T, et al. Fibroblast-epithelial cell interactions drive epithelial-mesenchymal transition differently in cells from normal and COPD patients. Respir Res. 2015;16:72 pubmed 出版商
  372. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  373. Xu N, Zhou X, Wang S, Xu L, Zhou H, Liu X. Artesunate Induces SKM-1 Cells Apoptosis by Inhibiting Hyperactive β-catenin Signaling Pathway. Int J Med Sci. 2015;12:524-9 pubmed 出版商
  374. Preca B, Bajdak K, Mock K, Sundararajan V, Pfannstiel J, Maurer J, et al. A self-enforcing CD44s/ZEB1 feedback loop maintains EMT and stemness properties in cancer cells. Int J Cancer. 2015;137:2566-77 pubmed 出版商
  375. Su Y, Chang Y, Lin W, Liang C, Lee J. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis. 2015;4:e157 pubmed 出版商
  376. Zhang Y, Desai A, Yang S, Bae K, Antczak M, Fink S, et al. TISSUE REGENERATION. Inhibition of the prostaglandin-degrading enzyme 15-PGDH potentiates tissue regeneration. Science. 2015;348:aaa2340 pubmed 出版商
  377. Kourtidis A, Yanagisawa M, Huveldt D, Copland J, Anastasiadis P. Pro-Tumorigenic Phosphorylation of p120 Catenin in Renal and Breast Cancer. PLoS ONE. 2015;10:e0129964 pubmed 出版商
  378. Koos B, Cane G, Grannas K, Löf L, ArngÃ¥rden L, Heldin J, et al. Proximity-dependent initiation of hybridization chain reaction. Nat Commun. 2015;6:7294 pubmed 出版商
  379. Huang R, Kuay K, Tan T, Asad M, Tang H, Ng A, et al. Functional relevance of a six mesenchymal gene signature in epithelial-mesenchymal transition (EMT) reversal by the triple angiokinase inhibitor, nintedanib (BIBF1120). Oncotarget. 2015;6:22098-113 pubmed
  380. Berry R, Ozdemir D, Aronow B, Lindström N, Dudnakova T, Thornburn A, et al. Deducing the stage of origin of Wilms' tumours from a developmental series of Wt1-mutant mice. Dis Model Mech. 2015;8:903-17 pubmed 出版商
  381. Poncy A, Antoniou A, Cordi S, Pierreux C, Jacquemin P, Lemaigre F. Transcription factors SOX4 and SOX9 cooperatively control development of bile ducts. Dev Biol. 2015;404:136-48 pubmed 出版商
  382. Gonzalez S, Fernando R, Berthelot J, Perrin Tricaud C, Sarzi E, Chrast R, et al. In vivo time-lapse imaging of mitochondria in healthy and diseased peripheral myelin sheath. Mitochondrion. 2015;23:32-41 pubmed 出版商
  383. Coulson Thomas V, Chang S, Yeh L, Coulson Thomas Y, Yamaguchi Y, Esko J, et al. Loss of corneal epithelial heparan sulfate leads to corneal degeneration and impaired wound healing. Invest Ophthalmol Vis Sci. 2015;56:3004-14 pubmed 出版商
  384. Hernández P, Mahlakõiv T, Yang I, Schwierzeck V, Nguyen N, Guendel F, et al. Interferon-λ and interleukin 22 act synergistically for the induction of interferon-stimulated genes and control of rotavirus infection. Nat Immunol. 2015;16:698-707 pubmed 出版商
  385. Cicchini C, de Nonno V, Battistelli C, Cozzolino A, De Santis Puzzonia M, Ciafrè S, et al. Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochim Biophys Acta. 2015;1849:919-29 pubmed 出版商
  386. Izawa G, Kobayashi W, Haraguchi M, Sudo A, Ozawa M. The ectopic expression of Snail in MDBK cells does not induce epithelial-mesenchymal transition. Int J Mol Med. 2015;36:166-72 pubmed 出版商
  387. Palla A, Piazzolla D, Alcazar N, Cañamero M, Graña O, Gómez López G, et al. The pluripotency factor NANOG promotes the formation of squamous cell carcinomas. Sci Rep. 2015;5:10205 pubmed 出版商
  388. Duvall Noelle N, Karwandyar A, Richmond A, Raman D. LASP-1: a nuclear hub for the UHRF1-DNMT1-G9a-Snail1 complex. Oncogene. 2016;35:1122-33 pubmed 出版商
  389. Grikscheit K, Frank T, Wang Y, Grosse R. Junctional actin assembly is mediated by Formin-like 2 downstream of Rac1. J Cell Biol. 2015;209:367-76 pubmed 出版商
  390. Cheng J, Yang H, Fang J, Ma L, Gong R, Wang P, et al. Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun. 2015;6:7023 pubmed 出版商
  391. Mortazavi F, Lu J, Phan R, Lewis M, Trinidad K, Aljilani A, et al. Significance of KRAS/PAK1/Crk pathway in non-small cell lung cancer oncogenesis. BMC Cancer. 2015;15:381 pubmed 出版商
  392. Ruscetti M, Quach B, Dadashian E, Mulholland D, Wu H. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells during Prostate Cancer Metastasis. Cancer Res. 2015;75:2749-59 pubmed 出版商
  393. Bhagirath D, Zhao X, West W, Qiu F, Band H, Band V. Cell type of origin as well as genetic alterations contribute to breast cancer phenotypes. Oncotarget. 2015;6:9018-30 pubmed
  394. Drost J, van Jaarsveld R, Ponsioen B, Zimberlin C, van Boxtel R, Buijs A, et al. Sequential cancer mutations in cultured human intestinal stem cells. Nature. 2015;521:43-7 pubmed 出版商
  395. Malik S, Villanova L, Tanaka S, Aonuma M, Roy N, Berber E, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep. 2015;5:9841 pubmed 出版商
  396. Jang D, Kwon H, Jeong K, Lee J, Pak Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128:2179-90 pubmed 出版商
  397. Giribaldi M, Muñoz A, Halvorsen K, Patel A, Rai P. MTH1 expression is required for effective transformation by oncogenic HRAS. Oncotarget. 2015;6:11519-29 pubmed
  398. Flanagan D, Phesse T, Barker N, Schwab R, Amin N, Malaterre J, et al. Frizzled7 functions as a Wnt receptor in intestinal epithelial Lgr5(+) stem cells. Stem Cell Reports. 2015;4:759-67 pubmed 出版商
  399. Pilli V, Gupta K, Kotha B, Aradhyam G. Snail-mediated Cripto-1 repression regulates the cell cycle and epithelial-mesenchymal transition-related gene expression. FEBS Lett. 2015;589:1249-56 pubmed 出版商
  400. Bettaieb A, Jiang J, Sasaki Y, Chao T, Kiss Z, Chen X, et al. Hepatocyte Nicotinamide Adenine Dinucleotide Phosphate Reduced Oxidase 4 Regulates Stress Signaling, Fibrosis, and Insulin Sensitivity During Development of Steatohepatitis in Mice. Gastroenterology. 2015;149:468-80.e10 pubmed 出版商
  401. Chen P, Wu T, Cheng Y, Chen C, Lee H. NKX2-1-mediated p53 expression modulates lung adenocarcinoma progression via modulating IKKβ/NF-κB activation. Oncotarget. 2015;6:14274-89 pubmed
  402. Meidhof S, Brabletz S, Lehmann W, Preca B, Mock K, Ruh M, et al. ZEB1-associated drug resistance in cancer cells is reversed by the class I HDAC inhibitor mocetinostat. EMBO Mol Med. 2015;7:831-47 pubmed 出版商
  403. Maity G, De A, Das A, Banerjee S, Sarkar S, Banerjee S. Aspirin blocks growth of breast tumor cells and tumor-initiating cells and induces reprogramming factors of mesenchymal to epithelial transition. Lab Invest. 2015;95:702-17 pubmed 出版商
  404. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  405. Saias L, Gomes A, Cazales M, Ducommun B, Lobjois V. Cell-Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Res. 2015;75:2426-33 pubmed 出版商
  406. Janes K. An analysis of critical factors for quantitative immunoblotting. Sci Signal. 2015;8:rs2 pubmed 出版商
  407. Buchholz M, Honstein T, Kirchhoff S, Kreider R, Schmidt H, Sipos B, et al. A multistep high-content screening approach to identify novel functionally relevant target genes in pancreatic cancer. PLoS ONE. 2015;10:e0122946 pubmed 出版商
  408. Wu S, Yi J, Zhang Y, Zhou J, Sun J. Leaky intestine and impaired microbiome in an amyotrophic lateral sclerosis mouse model. Physiol Rep. 2015;3: pubmed 出版商
  409. Yarilin D, Xu K, Turkekul M, Fan N, Romin Y, Fijisawa S, et al. Machine-based method for multiplex in situ molecular characterization of tissues by immunofluorescence detection. Sci Rep. 2015;5:9534 pubmed 出版商
  410. Cho J, Lee S, Oh A, Yoon M, Woo T, Park B. NF2 blocks Snail-mediated p53 suppression in mesothelioma. Oncotarget. 2015;6:10073-85 pubmed
  411. Charest J, Okamoto T, Kitano K, Yasuda A, Gilpin S, Mathisen D, et al. Design and validation of a clinical-scale bioreactor for long-term isolated lung culture. Biomaterials. 2015;52:79-87 pubmed 出版商
  412. Li S, Wu X, Dong C, Xie X, Wu J, Zhang X. The differential expression of OCT4 isoforms in cervical carcinoma. PLoS ONE. 2015;10:e0118033 pubmed 出版商
  413. Bazellières E, Conte V, Elosegui Artola A, Serra Picamal X, Bintanel Morcillo M, Roca Cusachs P, et al. Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol. 2015;17:409-20 pubmed 出版商
  414. Verduzco D, Lloyd M, Xu L, Ibrahim Hashim A, Balagurunathan Y, Gatenby R, et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion, and therapy resistance. PLoS ONE. 2015;10:e0120958 pubmed 出版商
  415. Kann M, Bae E, Lenz M, Li L, Trannguyen B, Schumacher V, et al. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development. 2015;142:1254-66 pubmed 出版商
  416. Yamada A, Aki T, Unuma K, Funakoshi T, Uemura K. Paraquat induces epithelial-mesenchymal transition-like cellular response resulting in fibrogenesis and the prevention of apoptosis in human pulmonary epithelial cells. PLoS ONE. 2015;10:e0120192 pubmed 出版商
  417. Chen X, Liu X, Lang H, Zhang S, Luo Y, Zhang J. S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through β-catenin in pancreatic cancer cell line. PLoS ONE. 2015;10:e0121319 pubmed 出版商
  418. Dicay M, Hirota C, Ronaghan N, Peplowski M, Zaheer R, Carati C, et al. Interferon-γ suppresses intestinal epithelial aquaporin-1 expression via Janus kinase and STAT3 activation. PLoS ONE. 2015;10:e0118713 pubmed 出版商
  419. Skardal A, Devarasetty M, Rodman C, Atala A, Soker S. Liver-Tumor Hybrid Organoids for Modeling Tumor Growth and Drug Response In Vitro. Ann Biomed Eng. 2015;43:2361-73 pubmed 出版商
  420. Conn S, Pillman K, Toubia J, Conn V, Salmanidis M, Phillips C, et al. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125-34 pubmed 出版商
  421. Qiao Y, Shiue C, Zhu J, Zhuang T, Jonsson P, Wright A, et al. AP-1-mediated chromatin looping regulates ZEB2 transcription: new insights into TNFα-induced epithelial-mesenchymal transition in triple-negative breast cancer. Oncotarget. 2015;6:7804-14 pubmed
  422. Chang A, Liu Y, Ayyanathan K, Benner C, Jiang Y, Prokop J, et al. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors. Genes Dev. 2015;29:603-16 pubmed 出版商
  423. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  424. Wang G, Liu G, Ye Y, Fu Y, Zhang X. The role of microRNA-1274a in the tumorigenesis of gastric cancer: accelerating cancer cell proliferation and migration via directly targeting FOXO4. Biochem Biophys Res Commun. 2015;459:629-35 pubmed 出版商
  425. Gendronneau G, Sanii S, Dang T, Deshayes F, Delacour D, Pichard E, et al. Overexpression of galectin-7 in mouse epidermis leads to loss of cell junctions and defective skin repair. PLoS ONE. 2015;10:e0119031 pubmed 出版商
  426. Rogler A, Kendziorra E, Giedl J, Stoehr C, Taubert H, Goebell P, et al. Functional analyses and prognostic significance of SFRP1 expression in bladder cancer. J Cancer Res Clin Oncol. 2015;141:1779-90 pubmed 出版商
  427. Kwon H, Lee J, Jeong K, Jang D, Pak Y. Fatty acylated caveolin-2 is a substrate of insulin receptor tyrosine kinase for insulin receptor substrate-1-directed signaling activation. Biochim Biophys Acta. 2015;1853:1022-34 pubmed 出版商
  428. Chen C, Zhao Z, Liu Y, Mu D. microRNA-99a is downregulated and promotes proliferation, migration and invasion in non-small cell lung cancer A549 and H1299 cells. Oncol Lett. 2015;9:1128-1134 pubmed
  429. Gu J, Xu F, Zhao G, Lu C, Lin Z, Ding J, et al. Capn4 promotes non-small cell lung cancer progression via upregulation of matrix metalloproteinase 2. Med Oncol. 2015;32:51 pubmed 出版商
  430. Wagner R, Luciani F, Cario André M, Rubod A, Petit V, Benzekri L, et al. Altered E-Cadherin Levels and Distribution in Melanocytes Precede Clinical Manifestations of Vitiligo. J Invest Dermatol. 2015;135:1810-1819 pubmed 出版商
  431. Cai K, Wang Y, Smith E, Smedberg J, Yang D, Yang W, et al. Global deletion of Trp53 reverts ovarian tumor phenotype of the germ cell-deficient white spotting variant (Wv) mice. Neoplasia. 2015;17:89-100 pubmed 出版商
  432. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  433. Schumacher M, Aihara E, Feng R, Engevik A, Shroyer N, Ottemann K, et al. The use of murine-derived fundic organoids in studies of gastric physiology. J Physiol. 2015;593:1809-27 pubmed 出版商
  434. Chiappetta G, Valentino T, Vitiello M, Pasquinelli R, Monaco M, Palma G, et al. PATZ1 acts as a tumor suppressor in thyroid cancer via targeting p53-dependent genes involved in EMT and cell migration. Oncotarget. 2015;6:5310-23 pubmed
  435. Arriagada A, Albornoz E, Opazo M, Becerra A, Vidal G, Fardella C, et al. Excess iodide induces an acute inhibition of the sodium/iodide symporter in thyroid male rat cells by increasing reactive oxygen species. Endocrinology. 2015;156:1540-51 pubmed 出版商
  436. Kreft M, Jerman U, Lasič E, Hevir Kene N, Rižner T, Peternel L, et al. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur J Pharm Sci. 2015;69:1-9 pubmed 出版商
  437. Caldwell B, Lucas C, Kee A, Gaus K, Gunning P, Hardeman E, et al. Tropomyosin isoforms support actomyosin biogenesis to generate contractile tension at the epithelial zonula adherens. Cytoskeleton (Hoboken). 2014;71:663-76 pubmed 出版商
  438. Tange S, Oktyabri D, Terashima M, Ishimura A, Suzuki T. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines. PLoS ONE. 2014;9:e115684 pubmed 出版商
  439. Olsen P, Solberg N, Lund K, Vehus T, Gelazauskaite M, Wilson S, et al. Implications of targeted genomic disruption of β-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS ONE. 2014;9:e115496 pubmed 出版商
  440. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  441. Vitiello E, Ferreira J, Maiato H, Balda M, Matter K. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion. Nat Commun. 2014;5:5826 pubmed 出版商
  442. Watari A, Hashegawa M, Yagi K, Kondoh M. Homoharringtonine increases intestinal epithelial permeability by modulating specific claudin isoforms in Caco-2 cell monolayers. Eur J Pharm Biopharm. 2015;89:232-8 pubmed 出版商
  443. Powell J, Hess B, Hutchison J, Straub T. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits. In Vitro Cell Dev Biol Anim. 2015;51:433-40 pubmed 出版商
  444. Golden D, Cantley L. Casein kinase 2 prevents mesenchymal transformation by maintaining Foxc2 in the cytoplasm. Oncogene. 2015;34:4702-12 pubmed 出版商
  445. Smid J, Faulkes S, Rudnicki M. Periostin induces pancreatic regeneration. Endocrinology. 2015;156:824-36 pubmed 出版商
  446. Carter E, Miron Buchacra G, Goldoni S, Danahay H, Westwick J, Watson M, et al. Phosphoinositide 3-kinase alpha-dependent regulation of branching morphogenesis in murine embryonic lung: evidence for a role in determining morphogenic properties of FGF7. PLoS ONE. 2014;9:e113555 pubmed 出版商
  447. Liu D, Yovchev M, Zhang J, Alfieri A, Tchaikovskaya T, Laconi E, et al. Identification and characterization of mesenchymal-epithelial progenitor-like cells in normal and injured rat liver. Am J Pathol. 2015;185:110-28 pubmed 出版商
  448. Guckenberger D, Berthier E, Beebe D. High-density self-contained microfluidic KOALA kits for use by everyone. J Lab Autom. 2015;20:146-53 pubmed 出版商
  449. Lee Y, Ehninger D, Zhou M, Oh J, Kang M, Kwak C, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17:1736-43 pubmed 出版商
  450. Poidatz D, Dos Santos E, Gronier H, Vialard F, Maury B, De Mazancourt P, et al. Trophoblast syncytialisation necessitates mitochondrial function through estrogen-related receptor-γ activation. Mol Hum Reprod. 2015;21:206-16 pubmed 出版商
  451. Kim M, Kim M, Lee M, Kim C, Lim D. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun. 2014;5:5370 pubmed 出版商
  452. Soh B, Buac K, Xu H, Li E, Ng S, Wu H, et al. N-cadherin prevents the premature differentiation of anterior heart field progenitors in the pharyngeal mesodermal microenvironment. Cell Res. 2014;24:1420-32 pubmed 出版商
  453. Tao W, Moore R, Smith E, Xu X. Hormonal induction and roles of Disabled-2 in lactation and involution. PLoS ONE. 2014;9:e110737 pubmed 出版商
  454. Kunasegaran K, Ho V, Chang T, De Silva D, Bakker M, Christoffels V, et al. Transcriptional repressor Tbx3 is required for the hormone-sensing cell lineage in mammary epithelium. PLoS ONE. 2014;9:e110191 pubmed 出版商
  455. Sun Q, Luo T, Ren Y, Florey O, Shirasawa S, Sasazuki T, et al. Competition between human cells by entosis. Cell Res. 2014;24:1299-310 pubmed 出版商
  456. Sun Q, Cibas E, Huang H, Hodgson L, Overholtzer M. Induction of entosis by epithelial cadherin expression. Cell Res. 2014;24:1288-98 pubmed 出版商
  457. Kocher B, White L, Piwnica Worms D. DAPK3 suppresses acini morphogenesis and is required for mouse development. Mol Cancer Res. 2015;13:358-67 pubmed 出版商
  458. Laporta J, Keil K, Vezina C, Hernandez L. Peripheral serotonin regulates maternal calcium trafficking in mammary epithelial cells during lactation in mice. PLoS ONE. 2014;9:e110190 pubmed 出版商
  459. Cai X, Dai Z, Reeves R, Caballero Benítez A, Duran K, Delrow J, et al. Autonomous stimulation of cancer cell plasticity by the human NKG2D lymphocyte receptor coexpressed with its ligands on cancer cells. PLoS ONE. 2014;9:e108942 pubmed 出版商
  460. Yu S, Yehia G, Wang J, Stypulkowski E, Sakamori R, Jiang P, et al. Global ablation of the mouse Rab11a gene impairs early embryogenesis and matrix metalloproteinase secretion. J Biol Chem. 2014;289:32030-43 pubmed 出版商
  461. Lu H, Clauser K, Tam W, Fröse J, Ye X, Eaton E, et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 2014;16:1105-17 pubmed 出版商
  462. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  463. Sako Kubota K, Tanaka N, Nagae S, Meng W, Takeichi M. Minus end-directed motor KIFC3 suppresses E-cadherin degradation by recruiting USP47 to adherens junctions. Mol Biol Cell. 2014;25:3851-60 pubmed 出版商
  464. Sonal -, Sidhaye J, Phatak M, Banerjee S, Mulay A, Deshpande O, et al. Myosin Vb mediated plasma membrane homeostasis regulates peridermal cell size and maintains tissue homeostasis in the zebrafish epidermis. PLoS Genet. 2014;10:e1004614 pubmed 出版商
  465. Wögenstein K, Szabo S, Lunova M, Wiche G, Haybaeck J, Strnad P, et al. Epiplakin deficiency aggravates murine caerulein-induced acute pancreatitis and favors the formation of acinar keratin granules. PLoS ONE. 2014;9:e108323 pubmed 出版商
  466. Cao Y, Slaney C, Bidwell B, Parker B, Johnstone C, Rautela J, et al. BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Res. 2014;74:5091-102 pubmed 出版商
  467. Wainwright E, Svingen T, Ng E, Wicking C, Koopman P. Primary cilia function regulates the length of the embryonic trunk axis and urogenital field in mice. Dev Biol. 2014;395:342-54 pubmed 出版商
  468. Rubashkin M, Cassereau L, Bainer R, DuFort C, Yui Y, Ou G, et al. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 2014;74:4597-611 pubmed 出版商
  469. Li J, Liu J, Li P, Mao X, Li W, Yang J, et al. Loss of LKB1 disrupts breast epithelial cell polarity and promotes breast cancer metastasis and invasion. J Exp Clin Cancer Res. 2014;33:70 pubmed 出版商
  470. Zorin V, Komlev V, Zorina A, Khromova N, Solovieva E, Fedotov A, et al. Octacalcium phosphate ceramics combined with gingiva-derived stromal cells for engineered functional bone grafts. Biomed Mater. 2014;9:055005 pubmed 出版商
  471. Kreft M, Jerman U, Lasič E, LaniÅ¡nik Rižner T, Hevir Kene N, Peternel L, et al. The characterization of the human nasal epithelial cell line RPMI 2650 under different culture conditions and their optimization for an appropriate in vitro nasal model. Pharm Res. 2015;32:665-79 pubmed 出版商
  472. Ishii H, Saitoh M, Sakamoto K, Kondo T, Katoh R, Tanaka S, et al. Epithelial splicing regulatory proteins 1 (ESRP1) and 2 (ESRP2) suppress cancer cell motility via different mechanisms. J Biol Chem. 2014;289:27386-99 pubmed 出版商
  473. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  474. Crespi A, Bertoni A, Ferrari I, Padovano V, Della Mina P, Berti E, et al. POF1B localizes to desmosomes and regulates cell adhesion in human intestinal and keratinocyte cell lines. J Invest Dermatol. 2015;135:192-201 pubmed 出版商
  475. Balaji K, French C, Miller J, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic. 2014;15:1206-18 pubmed 出版商
  476. Ohta H, Sunden Y, Yokoyama N, Osuga T, Lim S, Tamura Y, et al. Expression of apical junction complex proteins in duodenal mucosa of dogs with inflammatory bowel disease. Am J Vet Res. 2014;75:746-51 pubmed 出版商
  477. Pidoux G, Gerbaud P, Dompierre J, Lygren B, Solstad T, Evain Brion D, et al. A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci. 2014;127:4172-85 pubmed 出版商
  478. Stodden G, Lindberg M, King M, Paquet M, MacLean J, Mann J, et al. Loss of Cdh1 and Trp53 in the uterus induces chronic inflammation with modification of tumor microenvironment. Oncogene. 2015;34:2471-82 pubmed 出版商
  479. Owens P, Pickup M, Novitskiy S, Giltnane J, Gorska A, Hopkins C, et al. Inhibition of BMP signaling suppresses metastasis in mammary cancer. Oncogene. 2015;34:2437-49 pubmed 出版商
  480. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  481. Dolega M, Wagh J, Gerbaud S, Kermarrec F, Alcaraz J, Martin D, et al. Facile bench-top fabrication of enclosed circular microchannels provides 3D confined structure for growth of prostate epithelial cells. PLoS ONE. 2014;9:e99416 pubmed 出版商
  482. Enjoji S, Ohama T, Sato K. Regulation of epithelial cell tight junctions by protease-activated receptor 2. J Vet Med Sci. 2014;76:1225-9 pubmed
  483. Bassagañas S, Carvalho S, Dias A, Pérez Garay M, Ortiz M, Figueras J, et al. Pancreatic cancer cell glycosylation regulates cell adhesion and invasion through the modulation of ?2?1 integrin and E-cadherin function. PLoS ONE. 2014;9:e98595 pubmed 出版商
  484. Elliott V, Rychahou P, Zaytseva Y, Evers B. Activation of c-Met and upregulation of CD44 expression are associated with the metastatic phenotype in the colorectal cancer liver metastasis model. PLoS ONE. 2014;9:e97432 pubmed 出版商
  485. Durak O, de Anda F, Singh K, Leussis M, Petryshen T, Sklar P, et al. Ankyrin-G regulates neurogenesis and Wnt signaling by altering the subcellular localization of ?-catenin. Mol Psychiatry. 2015;20:388-97 pubmed 出版商
  486. Jung S, Ohk J, Jeong D, Li C, Lee S, Duan J, et al. Distinct regulatory effect of the p34SEI-1 oncoprotein on cancer metastasis in HER2/neu-positive and -negative cells. Int J Oncol. 2014;45:189-96 pubmed 出版商
  487. Rossi G, Pengo G, Caldin M, Palumbo Piccionello A, Steiner J, Cohen N, et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2014;9:e94699 pubmed 出版商
  488. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  489. Chen D, Sun Y, Yuan Y, Han Z, Zhang P, Zhang J, et al. miR-100 induces epithelial-mesenchymal transition but suppresses tumorigenesis, migration and invasion. PLoS Genet. 2014;10:e1004177 pubmed 出版商
  490. Peitsch W, Doerflinger Y, Fischer Colbrie R, Huck V, Bauer A, Utikal J, et al. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS ONE. 2014;9:e89491 pubmed 出版商
  491. Piao H, Yuan Y, Wang M, Sun Y, Liang H, Ma L. ?-catenin acts as a tumour suppressor in E-cadherin-negative basal-like breast cancer by inhibiting NF-?B signalling. Nat Cell Biol. 2014;16:245-54 pubmed 出版商
  492. Hilliard S, Yao X, El Dahr S. Mdm2 is required for maintenance of the nephrogenic niche. Dev Biol. 2014;387:1-14 pubmed 出版商
  493. Weng W, Yin J, Zhang Y, Qiu J, Wang X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol. 2014;44:812-8 pubmed 出版商
  494. Moore R, Tao W, Meng Y, Smith E, Xu X. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol Open. 2014;3:121-8 pubmed 出版商
  495. Miura S, Hamada S, Masamune A, Satoh K, Shimosegawa T. CUB-domain containing protein 1 represses the epithelial phenotype of pancreatic cancer cells. Exp Cell Res. 2014;321:209-18 pubmed 出版商
  496. Balko J, Giltnane J, Wang K, Schwarz L, Young C, Cook R, et al. Molecular profiling of the residual disease of triple-negative breast cancers after neoadjuvant chemotherapy identifies actionable therapeutic targets. Cancer Discov. 2014;4:232-45 pubmed 出版商
  497. Christensen I, Gyldenholm T, Damkier H, Praetorius J. Polarization of membrane associated proteins in the choroid plexus epithelium from normal and slc4a10 knockout mice. Front Physiol. 2013;4:344 pubmed 出版商
  498. Takasato M, Er P, Becroft M, Vanslambrouck J, Stanley E, Elefanty A, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118-26 pubmed 出版商
  499. Luo W, Yao K. Cancer stem cell characteristics, ALDH1 expression in the invasive front of nasopharyngeal carcinoma. Virchows Arch. 2014;464:35-43 pubmed 出版商
  500. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  501. Richter J, Pieper R, Zakrzewski S, Gunzel D, Schulzke J, Van Kessel A. Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon. Br J Nutr. 2014;111:1040-9 pubmed 出版商
  502. Dawes L, Sugiyama Y, Lovicu F, Harris C, Shelley E, McAvoy J. Interactions between lens epithelial and fiber cells reveal an intrinsic self-assembly mechanism. Dev Biol. 2014;385:291-303 pubmed 出版商
  503. Wu H, Balsbaugh J, Chandler H, Georgilis A, Zullow H, Shabanowitz J, et al. Mitogen-activated protein kinase signaling mediates phosphorylation of polycomb ortholog Cbx7. J Biol Chem. 2013;288:36398-408 pubmed 出版商
  504. McLaughlin N, Wang F, Saifudeen Z, El Dahr S. In situ histone landscape of nephrogenesis. Epigenetics. 2014;9:222-35 pubmed 出版商
  505. Zheng Q, Wang X, Wen Q, Zhang Y, Chen S, Zhang J, et al. Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction. 2014;147:45-52 pubmed 出版商
  506. Bray K, Gillette M, Young J, Loughran E, Hwang M, Sears J, et al. Cdc42 overexpression induces hyperbranching in the developing mammary gland by enhancing cell migration. Breast Cancer Res. 2013;15:R91 pubmed
  507. Findlay V, Moretz R, Wang C, Vaena S, Bandurraga S, Ashenafi M, et al. Slug expression inhibits calcitriol-mediated sensitivity to radiation in colorectal cancer. Mol Carcinog. 2014;53 Suppl 1:E130-9 pubmed 出版商
  508. Kumar M, Allison D, Baranova N, Wamsley J, Katz A, Bekiranov S, et al. NF-?B regulates mesenchymal transition for the induction of non-small cell lung cancer initiating cells. PLoS ONE. 2013;8:e68597 pubmed 出版商
  509. Stewart C, Wang Y, Bonilla Claudio M, Martin J, Gonzalez G, Taketo M, et al. CTNNB1 in mesenchyme regulates epithelial cell differentiation during Müllerian duct and postnatal uterine development. Mol Endocrinol. 2013;27:1442-54 pubmed 出版商
  510. Yin Y, Betsuyaku T, Garbow J, Miao J, Govindan R, Ornitz D. Rapid induction of lung adenocarcinoma by fibroblast growth factor 9 signaling through FGF receptor 3. Cancer Res. 2013;73:5730-41 pubmed 出版商
  511. Chen J, Erikson D, Piltonen T, Meyer M, Barragan F, McIntire R, et al. Coculturing human endometrial epithelial cells and stromal fibroblasts alters cell-specific gene expression and cytokine production. Fertil Steril. 2013;100:1132-43 pubmed 出版商
  512. Chang C, Chen C, Wu M, Chen Y, Chen C, Sheu S, et al. Active Component of Antrodia cinnamomea Mycelia Targeting Head and Neck Cancer Initiating Cells through Exaggerated Autophagic Cell Death. Evid Based Complement Alternat Med. 2013;2013:946451 pubmed 出版商
  513. Sangar F, Schreurs A, Umana Diaz C, Claperon A, Desbois Mouthon C, Calmel C, et al. Involvement of small ArfGAP1 (SMAP1), a novel Arf6-specific GTPase-activating protein, in microsatellite instability oncogenesis. Oncogene. 2014;33:2758-67 pubmed 出版商
  514. Garcia Murillas I, Sharpe R, Pearson A, Campbell J, Natrajan R, Ashworth A, et al. An siRNA screen identifies the GNAS locus as a driver in 20q amplified breast cancer. Oncogene. 2014;33:2478-86 pubmed 出版商
  515. Gillette M, Bray K, Blumenthaler A, Vargo Gogola T. P190B RhoGAP overexpression in the developing mammary epithelium induces TGF?-dependent fibroblast activation. PLoS ONE. 2013;8:e65105 pubmed 出版商
  516. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PLoS ONE. 2013;8:e62757 pubmed 出版商
  517. Boehlke C, Kotsis F, Buchholz B, Powelske C, Eckardt K, Walz G, et al. Kif3a guides microtubular dynamics, migration and lumen formation of MDCK cells. PLoS ONE. 2013;8:e62165 pubmed 出版商
  518. Xiao H, Shen H, Liu W, Xiong R, Li P, Meng G, et al. Adenosine A2A receptor: a target for regulating renal interstitial fibrosis in obstructive nephropathy. PLoS ONE. 2013;8:e60173 pubmed 出版商
  519. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  520. Reginensi A, Scott R, Gregorieff A, Bagherie Lachidan M, Chung C, Lim D, et al. Yap- and Cdc42-dependent nephrogenesis and morphogenesis during mouse kidney development. PLoS Genet. 2013;9:e1003380 pubmed 出版商
  521. Dawes L, Sugiyama Y, Tanedo A, Lovicu F, McAvoy J. Wnt-frizzled signaling is part of an FGF-induced cascade that promotes lens fiber differentiation. Invest Ophthalmol Vis Sci. 2013;54:1582-90 pubmed 出版商
  522. Shukla S, Sharma H, Abbas A, MacLennan G, Fu P, Danielpour D, et al. Upregulation of SATB1 is associated with prostate cancer aggressiveness and disease progression. PLoS ONE. 2013;8:e53527 pubmed 出版商
  523. Queen K, Shi M, Zhang F, Cvek U, Scott R. Epstein-Barr virus-induced epigenetic alterations following transient infection. Int J Cancer. 2013;132:2076-86 pubmed 出版商
  524. Spiller C, Feng C, Jackson A, Gillis A, Rolland A, Looijenga L, et al. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development. 2012;139:4123-32 pubmed 出版商
  525. Wu C, Tang S, Wang P, Lee H, Ko J. Nickel-induced epithelial-mesenchymal transition by reactive oxygen species generation and E-cadherin promoter hypermethylation. J Biol Chem. 2012;287:25292-302 pubmed 出版商
  526. O Mahony F, Faratian D, Varley J, Nanda J, Theodoulou M, Riddick A, et al. The use of automated quantitative analysis to evaluate epithelial-to-mesenchymal transition associated proteins in clear cell renal cell carcinoma. PLoS ONE. 2012;7:e31557 pubmed 出版商
  527. Ohta H, Yamaguchi T, Rajapakshage B, Murakami M, Sasaki N, Nakamura K, et al. Expression and subcellular localization of apical junction proteins in canine duodenal and colonic mucosa. Am J Vet Res. 2011;72:1046-51 pubmed 出版商
  528. Eckert M, Lwin T, Chang A, Kim J, Danis E, Ohno Machado L, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372-86 pubmed 出版商
  529. Pigors M, Kiritsi D, Krümpelmann S, Wagner N, He Y, Podda M, et al. Lack of plakoglobin leads to lethal congenital epidermolysis bullosa: a novel clinico-genetic entity. Hum Mol Genet. 2011;20:1811-9 pubmed 出版商
  530. Gladden A, Hebert A, Schneeberger E, McClatchey A. The NF2 tumor suppressor, Merlin, regulates epidermal development through the establishment of a junctional polarity complex. Dev Cell. 2010;19:727-39 pubmed 出版商