这是一篇来自已证抗体库的有关大鼠 表皮生长因子受体 (Egfr) 的综述,是根据285篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合表皮生长因子受体 抗体。
表皮生长因子受体 同义词: ERBB1; ErbB-1; Errp

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 7c
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上 (图 7c). Front Immunol (2022) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:1000; 图 7a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 3c). Am J Cancer Res (2022) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:10,000; 图 4b
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 4b). JCI Insight (2021) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化; 小鼠; 图 7b
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化在小鼠样本上 (图 7b). Sci Adv (2021) ncbi
domestic rabbit 单克隆(E235)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 3c
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab32077)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 3c). bioRxiv (2021) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 2
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 2). BMC Cancer (2020) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:1000; 图 4d
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(E235)
  • 免疫组化; 大鼠; 图 4h
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab32077)被用于被用于免疫组化在大鼠样本上 (图 4h). Cell Commun Signal (2020) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2c
  • 免疫细胞化学; 人类; 1:200; 图 2d
  • 免疫印迹; 人类; 1:1000; 图 s3
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2c), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫细胞化学; 人类; 1:100; 图 6c
  • 免疫印迹; 人类; 1:500; 图 6a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 6c) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 6a). Front Oncol (2019) ncbi
domestic rabbit 单克隆(E235)
  • 免疫印迹; 小鼠; 1:2000; 图 3d
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab32077)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab5652)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上 (图 3a). Theranostics (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化基因敲除验证; 小鼠; 图 9b
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化基因敲除验证在小鼠样本上 (图 9b). Cell Mol Gastroenterol Hepatol (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • mass cytometry; 人类; 图 3a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于mass cytometry在人类样本上 (图 3a). Cell (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:2000; 图 s5
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s5). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 3g
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上 (图 3g). J Mol Med (Berl) (2019) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化-石蜡切片; 人类; 图 1a
  • 免疫印迹; 人类; 图 1c
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 1c). Exp Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab5644)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Cancer Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab5644)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Res (2018) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫细胞化学; 人类; 图 s8
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫细胞化学在人类样本上 (图 s8). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab5644)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2017) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 2b
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, 1138-1)被用于被用于免疫印迹在人类样本上 (图 2b). Autophagy (2017) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化-石蜡切片; 人类; 图 4a
  • 免疫印迹; 人类; 图 4d
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 4d). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:1000; 图 8
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, EP38Y)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8). J Cell Sci (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫细胞化学; 小鼠; 图 s1
  • 免疫组化; 小鼠; 图 1
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫细胞化学在小鼠样本上 (图 s1) 和 被用于免疫组化在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 1:1000; 图 7c
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 5a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化-石蜡切片; 人类; 图 3a
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3a). Stem Cells Int (2016) ncbi
domestic rabbit 单克隆(E235)
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab32077)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 人类; 图 3
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 小鼠; 图 s8
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫印迹在小鼠样本上 (图 s8). Sci Rep (2015) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(AbCam, EP38Y)被用于被用于免疫印迹在小鼠样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(EP38Y)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司表皮生长因子受体抗体(Abcam, ab52894)被用于被用于免疫组化在人类样本上. EMBO J (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(A-10)
  • 免疫细胞化学; 人类; 图 4b
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫细胞化学在人类样本上 (图 4b). iScience (2022) ncbi
小鼠 单克隆(528)
  • proximity ligation assay; 人类; 图 1e
  • 免疫印迹; 人类; 图 5l
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-120)被用于被用于proximity ligation assay在人类样本上 (图 1e) 和 被用于免疫印迹在人类样本上 (图 5l). Cell Death Dis (2022) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 6a, 8i
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-373746)被用于被用于免疫印迹在人类样本上 (图 6a, 8i). J Exp Clin Cancer Res (2021) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 2c, 2d
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫印迹在人类样本上 (图 2c, 2d). Neoplasia (2021) ncbi
小鼠 单克隆(528)
  • 免疫印迹; 人类; 1:2000; 图 2a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-120)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nat Commun (2021) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 小鼠; 1:1000; 图 3c
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-373746)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). J Cancer (2020) ncbi
小鼠 单克隆(528)
  • 免疫组化; 人类; 图 s8f
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-120)被用于被用于免疫组化在人类样本上 (图 s8f). Cell (2020) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 10a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫印迹在人类样本上 (图 10a). J Virol (2019) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:1000; 图 5g
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, A-10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Cell Mol Life Sci (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 5g
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, A-10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5g). Cell Mol Life Sci (2019) ncbi
小鼠 单克隆(A-10)
  • 免疫细胞化学; 人类; 1:150; 图 s4i
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫细胞化学在人类样本上浓度为1:150 (图 s4i). Science (2018) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:660; 图 3a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, A-10)被用于被用于免疫印迹在人类样本上浓度为1:660 (图 3a). J Med Chem (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:660; 图 3a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, A-10)被用于被用于免疫印迹在人类样本上浓度为1:660 (图 3a). J Med Chem (2017) ncbi
小鼠 单克隆(R-1)
  • 流式细胞仪; 人类; 图 s4b
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-101)被用于被用于流式细胞仪在人类样本上 (图 s4b) 和 被用于免疫印迹在人类样本上 (图 5a). MBio (2017) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 大鼠; 图 13a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫印迹在大鼠样本上 (图 13a). Am J Pathol (2017) ncbi
小鼠 单克隆(E-8)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-374607)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 大鼠; 1:200; 图 5
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-373746)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5). J Immunol Res (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-377229)被用于被用于免疫印迹在人类样本上 (图 7c). EMBO J (2017) ncbi
小鼠 单克隆(R-1)
  • 免疫细胞化学; 人类; 1:250; 图 1a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-101)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 1a). J Cell Biol (2016) ncbi
小鼠 单克隆(C-2)
  • 免疫印迹; 人类; 1:2000; 图 s6a
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-377229)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s6a). Nat Cell Biol (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 1:1000; 图 4g
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, SC373746)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). J Biol Chem (2016) ncbi
小鼠 单克隆(528)
  • 流式细胞仪; 中国人仓鼠; 图 1
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, Sc-120)被用于被用于流式细胞仪在中国人仓鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(528)
  • 流式细胞仪; 仓鼠; 图 1d
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, Sc-120)被用于被用于流式细胞仪在仓鼠样本上 (图 1d). Cell Commun Signal (2016) ncbi
小鼠 单克隆(528)
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-120)被用于. J Cell Sci (2016) ncbi
小鼠 单克隆(528)
  • 免疫细胞化学; 人类; 1:100; 图 7b
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-120)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 7b). Oncotarget (2016) ncbi
小鼠 单克隆(R-1)
圣克鲁斯生物技术表皮生长因子受体抗体(santa Cruz, sc-101)被用于. PLoS Pathog (2016) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术表皮生长因子受体抗体(santa Cruz, sc-373746)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(R-1)
  • 免疫细胞化学; 人类; 1:100
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, R-1)被用于被用于免疫细胞化学在人类样本上浓度为1:100. Nature (2016) ncbi
小鼠 单克隆(R-1)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-101)被用于被用于免疫印迹在人类样本上 (图 1). BMC Cell Biol (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-373746)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Dis (2015) ncbi
小鼠 单克隆(528)
  • 流式细胞仪; 人类; 1:100; 图 3d
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-120)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 3d). Oncotarget (2015) ncbi
小鼠 单克隆(R-1)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-101)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(528)
  • 流式细胞仪; 小鼠; 图 5
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, SC-120)被用于被用于流式细胞仪在小鼠样本上 (图 5). Analyst (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术表皮生长因子受体抗体(Santa cruz, sc-373746)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(528)
  • 抑制或激活实验; 人类; 1:200
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz Biotechnology, sc-120)被用于被用于抑制或激活实验在人类样本上浓度为1:200. J Biol Chem (2015) ncbi
小鼠 单克隆(R-1)
  • 免疫沉淀; 人类; 图 5
  • 免疫细胞化学; 人类; 图 s3
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-101)被用于被用于免疫沉淀在人类样本上 (图 5) 和 被用于免疫细胞化学在人类样本上 (图 s3). J Cell Sci (2015) ncbi
小鼠 单克隆(A-10)
  • 免疫沉淀; 人类
  • 免疫印迹; 人类
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-373746)被用于被用于免疫沉淀在人类样本上 和 被用于免疫印迹在人类样本上. Am J Pathol (2014) ncbi
小鼠 单克隆(528)
  • 免疫沉淀; 人类
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, 528)被用于被用于免疫沉淀在人类样本上. Am J Reprod Immunol (2015) ncbi
小鼠 单克隆(528)
  • 免疫印迹; 人类
圣克鲁斯生物技术表皮生长因子受体抗体(Santa Cruz, sc-120)被用于被用于免疫印迹在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(R-1)
  • 免疫组化; 大鼠; 1:200
圣克鲁斯生物技术表皮生长因子受体抗体(Stemcells Inc, SC101)被用于被用于免疫组化在大鼠样本上浓度为1:200. Neuroreport (2014) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2b
赛默飞世尔表皮生长因子受体抗体(Thermofisher Scientific, 36?C9700)被用于被用于免疫细胞化学在人类样本上 (图 2b). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 6c
赛默飞世尔表皮生长因子受体抗体(Thermo Fisher Scientific, PA1-1110)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 6c). BMC Biol (2021) ncbi
小鼠 单克隆(111.6)
  • 免疫组化; 犬; 图 2f
赛默飞世尔表皮生长因子受体抗体(NeoMarkers, 111.6)被用于被用于免疫组化在犬样本上 (图 2f). Animals (Basel) (2021) ncbi
小鼠 单克隆(111.6)
  • 免疫细胞化学; 人类; 图 7a
赛默飞世尔表皮生长因子受体抗体(Thermo, MA5-13269)被用于被用于免疫细胞化学在人类样本上 (图 7a). elife (2020) ncbi
小鼠 单克隆(S.684.2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s2b
  • 免疫细胞化学; 人类; 1:200; 图 2e
赛默飞世尔表皮生长因子受体抗体(ThermoFisher, S.684.2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s2b) 和 被用于免疫细胞化学在人类样本上浓度为1:200 (图 2e). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 e11-7b
赛默飞世尔表皮生长因子受体抗体(Thermo Fisher Scientific, 44-788)被用于被用于免疫印迹在人类样本上 (图 e11-7b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1 ug/ml; 图 1c
赛默飞世尔表皮生长因子受体抗体(Thermo Fisher, PA1-1110)被用于被用于免疫印迹在人类样本上浓度为1 ug/ml (图 1c). Proc Natl Acad Sci U S A (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 s4i
赛默飞世尔表皮生长因子受体抗体(ThermoFischer Scientific, 36-9700)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s4i). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2a
赛默飞世尔表皮生长因子受体抗体(Thermo Fisher, 36-9700)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2a). Nat Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44-784G)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1c
赛默飞世尔表皮生长因子受体抗体(Invitrogen, PA1-1110)被用于被用于免疫细胞化学在人类样本上 (图 1c). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 3
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44788G)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 4a
  • 免疫印迹; 人类; 图 4d
赛默飞世尔表皮生长因子受体抗体(Thermo Fisher, 36-9700)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4a) 和 被用于免疫印迹在人类样本上 (图 4d). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44-794G)被用于被用于免疫印迹在人类样本上 (图 5b). MAbs (2017) ncbi
小鼠 单克隆(111.6)
  • 免疫组化; 人类; 图 3a
赛默飞世尔表皮生长因子受体抗体(Thermo Scientific, MS-378-PABX)被用于被用于免疫组化在人类样本上 (图 3a). PLoS ONE (2016) ncbi
小鼠 单克隆(111.6)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔表皮生长因子受体抗体(Thermo Scientific, MS-378-PABX)被用于被用于流式细胞仪在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44-788G)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44794G)被用于. Front Oncol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44788G)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(111.6)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 1
赛默飞世尔表皮生长因子受体抗体(Lab Vision, 111.6)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 1). Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔表皮生长因子受体抗体(Invitrogen, 44794G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔表皮生长因子受体抗体(Thermo Scientific, PA1-1110)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(111.6)
  • 酶联免疫吸附测定; 人类; 图 2
赛默飞世尔表皮生长因子受体抗体(Thermo Scientific, MS-378-PABX)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(111.6)
  • 免疫印迹; 人类
赛默飞世尔表皮生长因子受体抗体(Thermo Scientific Pierce, MA5-13269)被用于被用于免疫印迹在人类样本上. J Biochem (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔表皮生长因子受体抗体(Pierce, PA1-1110)被用于. ACS Chem Biol (2015) ncbi
小鼠 单克隆(111.6)
  • 免疫印迹; 人类
赛默飞世尔表皮生长因子受体抗体(Biosource, 111.6)被用于被用于免疫印迹在人类样本上. J Carcinog (2005) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4g). iScience (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:2000; 图 4g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4g). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 4h
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 4h). Cancers (Basel) (2022) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 s3a, s3b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 4407)被用于被用于免疫印迹在人类样本上 (图 s3a, s3b). Cell Oncol (Dordr) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2232)被用于被用于免疫印迹在人类样本上 (图 s3g). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2234)被用于被用于免疫印迹在人类样本上 (图 s3g). J Immunother Cancer (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在小鼠样本上 (图 1a) 和 被用于免疫印迹在人类样本上 (图 2b). Oncoimmunology (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 2b) 和 被用于免疫印迹在小鼠样本上 (图 1a). Oncoimmunology (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2232)被用于被用于免疫印迹在人类样本上 (图 4). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a, 1b, 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 1a, 1b, 1c). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a, 1b, 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在人类样本上 (图 1a, 1b, 1c). Cancers (Basel) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 s1
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 s1) 和 被用于免疫印迹在大鼠样本上 (图 s2). Front Med (Lausanne) (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 1a
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4c
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 1a), 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4c) 和 被用于免疫印迹在大鼠样本上 (图 6a). Front Med (Lausanne) (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 s4b). Oncoimmunology (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 5g
  • 免疫印迹; 人类; 1:400; 图 5f, s41a, s52b, s52c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 5g) 和 被用于免疫印迹在人类样本上浓度为1:400 (图 5f, s41a, s52b, s52c). Nat Commun (2022) ncbi
小鼠 单克隆(1H12)
  • proximity ligation assay; 人类; 图 1g
  • 免疫沉淀; 人类; 图 1h
  • 免疫印迹; 人类; 图 1h
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于proximity ligation assay在人类样本上 (图 1g), 被用于免疫沉淀在人类样本上 (图 1h) 和 被用于免疫印迹在人类样本上 (图 1h). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 8d
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 8d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cancer Cell Int (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:500; 图 9a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 9a). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 大鼠; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在大鼠样本上 (图 6a). Front Pharmacol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2235)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 4407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 4404)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2237)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7). Oncogenesis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上 (图 4d). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2231)被用于被用于免疫印迹在人类样本上 (图 4d). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 5d). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2646)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signalin, 3777)被用于被用于免疫印迹在人类样本上 (图 1c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 s6b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2237)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 s6b). Nucleic Acids Res (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 6a, 8d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 6a, 8d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 ev5b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev5b). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1l
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signalling, 2232L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1l). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 s6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在小鼠样本上 (图 s1a). Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2220)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Mol Oncol (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 3i). Sci Adv (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 6d, s10d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d, s10d). Clin Transl Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在小鼠样本上 (图 2b). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2231)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Sci (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上 (图 1a). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上 (图 1a). Signal Transduct Target Ther (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Commun Biol (2021) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 5j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5j). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2d, 2e, 2f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d, 2e, 2f). Biotechnol Rep (Amst) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Biotechnol Rep (Amst) (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫细胞化学; 小鼠; 图 5h
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling technology, 3777)被用于被用于免疫细胞化学在小鼠样本上 (图 5h) 和 被用于免疫印迹在小鼠样本上 (图 5d). Cell Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technologies, 2234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nature (2020) ncbi
小鼠 单克隆(1H12)
  • 免疫组化; 人类; 1:100; 图 2j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 1H12)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2j). Dev Cell (2020) ncbi
小鼠 单克隆(1H12)
  • 免疫组化; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫组化在小鼠样本上 (图 4f). Mol Cancer Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 3777)被用于被用于免疫印迹在人类样本上 (图 1f). FASEB Bioadv (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 s5b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5b). Theranostics (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s2c
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s2c) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Nat Commun (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 1s3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s3). elife (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Nature (2020) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 2a, 3f, 3k
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 3f, 3k). elife (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在人类样本上 (图 s1e). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在大鼠样本上 (图 1b). Cell (2019) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 9a
  • 免疫印迹; 人类; 1:1000; 图 1b, 8a, s14a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 9a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1b, 8a, s14a). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Mol Med Rep (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 4d
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c, 2i
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 4d) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c, 2i). Cell Metab (2019) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). elife (2019) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 4407S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Science (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Int J Oncol (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 s2). Breast Cancer Res (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在人类样本上 (图 1b). BMC Med Genomics (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s6f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在人类样本上 (图 s6f). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫印迹在小鼠样本上 (图 3c). J Exp Clin Cancer Res (2019) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:500; 图 5g
  • 免疫印迹; 大鼠; 1:500; 图 5g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, D7A5)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5g) 和 被用于免疫印迹在大鼠样本上浓度为1:500 (图 5g). Cell Mol Life Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 1c). elife (2018) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上 (图 1b). Proc Natl Acad Sci U S A (2018) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5a). Mol Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Mol Med Rep (2018) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 2b). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 8c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777T)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8c). Sci Transl Med (2017) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类; 图 7f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(cell signalling, 2646)被用于被用于免疫印迹在人类样本上 (图 7f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上 (图 1a). Mol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232L)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, D7A5)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 53A5)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(cell signalling, 4407)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2017) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在小鼠样本上 (图 1f). Science (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Physiol Rep (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2232)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 2234)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232S)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 2a
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407S)被用于被用于免疫印迹在人类样本上 (图 2a) 和 被用于免疫印迹在小鼠样本上 (图 2b). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signalling, 3777)被用于被用于免疫印迹在人类样本上 (图 1f). Cancer Lett (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Theranostics (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, D7A5)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Cancer (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 4a). Biomed Pharmacother (2017) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 4407)被用于被用于免疫印迹在人类样本上. FEBS Open Bio (2017) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2236)被用于被用于免疫印迹在人类样本上 (图 2f). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(New England Biolabs, 2234)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2235)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Santa Cruz / Cell Signaling Technology, SC-03 / 2232)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2231)被用于被用于免疫印迹在小鼠样本上 (图 1c). Exp Clin Endocrinol Diabetes (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 6a). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cancer Res Clin Oncol (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 53A5)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, D7A5)被用于被用于免疫印迹在小鼠样本上 (图 8b). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 s3). Neuroendocrinology (2018) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, D63B4)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫细胞化学; 人类; 1:100; 图 s6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 3777S)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 st1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 7b). Cancer Res (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 中国人仓鼠; 图 2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在中国人仓鼠样本上 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3C
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3C). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 4a). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 s6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 s6). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). Exp Ther Med (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化; 人类; 1:200; 图 s8c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s8c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在人类样本上 (图 3d). Breast Cancer Res (2016) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 6963)被用于被用于免疫印迹在人类样本上 (图 2a). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上 (图 2f). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫印迹在人类样本上 (图 2f). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(cell signalling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Gut (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在人类样本上 (图 1a). J Proteomics (2017) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 1a). J Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2237)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(cell signalling, 2231)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 s1
  • 免疫印迹; 人类; 1:500; 图 s4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2234)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signalling, D7A5)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signalling, 2234)被用于被用于免疫印迹在人类样本上 (图 5). Traffic (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4f
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 4f). Mol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2234)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2232)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Nat Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2234)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 4407S)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2235P)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2237P)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777P)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 单克隆(C24A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2641S)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2220S)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Tech, 3777)被用于被用于免疫印迹在人类样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 3777s)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上 (图 1). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Tech, 2220)被用于被用于免疫印迹在人类样本上 (图 4). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2232S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2234S)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3056)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上 (图 2a). Neoplasia (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上 (图 8). Oncogene (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫印迹在人类样本上 (图 1). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3h). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). elife (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 2 ug/ml; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232)被用于被用于流式细胞仪在人类样本上浓度为2 ug/ml (图 1). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4c). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2235)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4404)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2237)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类; 1:1000; 图 s3j
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 6963)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3j). Nat Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2232)被用于被用于免疫细胞化学在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 st12
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signalling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 st12). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫细胞化学; 人类; 图 1-s1c
  • 免疫印迹; 人类; 图 1-s2c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 3777)被用于被用于免疫细胞化学在人类样本上 (图 1-s1c) 和 被用于免疫印迹在人类样本上 (图 1-s2c). elife (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2235)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2236)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2220)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 1H12)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Tech, 2234)被用于被用于免疫印迹在小鼠样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777p)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Evid Based Complement Alternat Med (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在小鼠样本上 (图 4). Front Oncol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2231)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2238)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234s)被用于被用于免疫印迹在小鼠样本上 (图 6). Endocrinology (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Mol Cell (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, D7A5)被用于被用于免疫印迹在人类样本上 (图 1). Glycobiology (2016) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Tech, C74B9)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407S)被用于被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 1:2000; 图 3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2232)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2231)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
小鼠 单克隆(1H12)
  • 免疫细胞化学; 人类; 图 1
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signaling, 2236S)被用于被用于免疫细胞化学在人类样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 5). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 8543)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上. J Biomed Sci (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫印迹在人类样本上浓度为1:1000. Oncol Lett (2015) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上 (图 5). EBioMedicine (2015) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407L)被用于被用于免疫印迹在人类样本上 (图 s3). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类; 图 1c,2a,2b,2c,
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(CST, 6963)被用于被用于免疫印迹在人类样本上 (图 1c,2a,2b,2c,). Mol Cancer (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 6963)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(D63B4)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 6963)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Tech, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 6). Cancer Cell (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫组化-石蜡切片; 人类; 1:400
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400. World J Gastroenterol (2015) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 4407)被用于被用于免疫印迹在人类样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(53A5)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 53A5)被用于被用于免疫印迹在人类样本上 (图 1a). Oncogene (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signalling, 2236)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫沉淀; 人类
  • 免疫细胞化学; 人类; 1:50
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, D7A5)被用于被用于免疫沉淀在人类样本上, 被用于免疫细胞化学在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上. Nature (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2234)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2646)被用于被用于免疫印迹在人类样本上. J Diabetes (2016) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 仓鼠; 图 7a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在仓鼠样本上 (图 7a). J Biol Chem (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2232S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 大鼠; 1:500; 图 10
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 10). J Appl Toxicol (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上 (图 s1). Oncogene (2015) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2646)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technologies, 3777)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236S)被用于被用于免疫印迹在人类样本上 (图 4). Proc Natl Acad Sci U S A (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000; 图 4B
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4B). Environ Health Perspect (2015) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2646)被用于被用于免疫印迹在人类样本上. J Cancer Res Clin Oncol (2015) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 2236)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2236S)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 3777)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2014) ncbi
小鼠 单克隆(1H12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(cell signaling, 2236S)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, 2646)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上浓度为1:1000. Mol Oncol (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-自由浮动切片; 鸡
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling Technology, CST-3777)被用于被用于免疫组化-自由浮动切片在鸡样本上. Oncogene (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2014) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; 小鼠
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, 3777)被用于被用于免疫组化-石蜡切片在人类样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D7A5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell signal, 3777)被用于被用于免疫印迹在人类样本上浓度为1:1000. Cell Tissue Res (2013) ncbi
domestic rabbit 单克隆(C74B9)
  • 免疫细胞化学; 人类; 图 3a
赛信通(上海)生物试剂有限公司表皮生长因子受体抗体(Cell Signaling, C74B9)被用于被用于免疫细胞化学在人类样本上 (图 3a). Sci Signal (2012) ncbi
Biotrend
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫细胞化学; 大鼠; 1:250
Biotrend表皮生长因子受体抗体(Biotrend, BT 17-2090-07)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:250. J Comp Neurol (2008) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7f
西格玛奥德里奇表皮生长因子受体抗体(寰椎抗体, HPA018530)被用于被用于免疫印迹在人类样本上 (图 7f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3e
  • 免疫印迹; 人类; 1:1000; 图 1d
西格玛奥德里奇表皮生长因子受体抗体(Sigma, HPA018530)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 1d). J Cancer (2016) ncbi
碧迪BD
小鼠 单克隆(21/Mena)
  • 免疫组化-石蜡切片; 人类; 图 1a
碧迪BD表皮生长因子受体抗体(BD Bioscience, 610693)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1a). Oncoimmunology (2016) ncbi
小鼠 单克隆(21/Mena)
  • 免疫组化-石蜡切片; 人类; 1:1000; 表 1
碧迪BD表皮生长因子受体抗体(BD Biosciences, 610693)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (表 1). BMC Cancer (2015) ncbi
文章列表
  1. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  2. Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam S, et al. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience. 2022;25:104980 pubmed 出版商
  3. Du X, Yuan L, Yao Y, Yang Y, Zhou K, Wu X, et al. ITGB4 Deficiency in Airway Epithelium Aggravates RSV Infection and Increases HDM Sensitivity. Front Immunol. 2022;13:912095 pubmed 出版商
  4. Zhou S, Hassan A, Kungyal T, Tabari xe8 s S, Luna J, Siegel P, et al. CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel). 2022;14: pubmed 出版商
  5. Vignone D, Gonzalez Paz O, Fini I, Cellucci A, Auciello G, Battista M, et al. Modelling the Human Blood-Brain Barrier in Huntington Disease. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Shu W, Zhu X, Wang K, Cherepanoff S, Conway R, Madigan M, et al. The multi-kinase inhibitor afatinib serves as a novel candidate for the treatment of human uveal melanoma. Cell Oncol (Dordr). 2022;45:601-619 pubmed 出版商
  7. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  8. Melese E, Franks E, Cederberg R, Harbourne B, Shi R, Wadsworth B, et al. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. Oncoimmunology. 2022;11:2010905 pubmed 出版商
  9. Due S, Watson D, Bastian I, Eichelmann A, Hussey D. Oestrogen Receptor Isoforms May Represent a Therapeutic Target in Oesophageal Adenocarcinoma. Cancers (Basel). 2022;14: pubmed 出版商
  10. Lin T, Yang C, Chou H, Cheng C, Liu Y, Wang J, et al. EGFR Mutation-Harboring Lung Cancer Cells Produce CLEC11A with Endothelial Trophic and Tumor-Promoting Activities. Cancers (Basel). 2022;14: pubmed 出版商
  11. Wu X, Ren L, Yang Q, Song H, Tang Q, Zhang M, et al. Glucocorticoids Inhibit EGFR Signaling Activation in Podocytes in Anti-GBM Crescentic Glomerulonephritis. Front Med (Lausanne). 2022;9:697443 pubmed 出版商
  12. Tapia Galisteo A, S xe1 nchez Rodr xed guez x, Aguilar Sope xf1 a O, Harwood S, Narbona J, Ferreras Gutierrez M, et al. Trispecific T-cell engagers for dual tumor-targeting of colorectal cancer. Oncoimmunology. 2022;11:2034355 pubmed 出版商
  13. Castillo P, Aisagbonhi O, Saenz C, ElShamy W. Novel insights linking BRCA1-IRIS role in mammary gland development to formation of aggressive PABCs: the case for longer breastfeeding. Am J Cancer Res. 2022;12:396-426 pubmed
  14. Tan J, Li H, Ji C, Zhang L, Zhao C, Tang L, et al. Electron transfer-triggered imaging of EGFR signaling activity. Nat Commun. 2022;13:594 pubmed 出版商
  15. Shen M, Zhang R, Jia W, Zhu Z, Zhao L, Huang G, et al. RNA-binding protein p54nrb/NONO potentiates nuclear EGFR-mediated tumorigenesis of triple-negative breast cancer. Cell Death Dis. 2022;13:42 pubmed 出版商
  16. Li P, Li L, Li Z, Wang S, Li R, Zhao W, et al. Annexin A1 promotes the progression of bladder cancer via regulating EGFR signaling pathway. Cancer Cell Int. 2022;22:7 pubmed 出版商
  17. Humeres C, Shinde A, Hanna A, Alex L, Hern xe1 ndez S, Li R, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 2022;132: pubmed 出版商
  18. Shi Y, Hu Y, Wang Y, Ma X, Tang L, Tao M, et al. Blockade of Autophagy Prevents the Development and Progression of Peritoneal Fibrosis. Front Pharmacol. 2021;12:724141 pubmed 出版商
  19. Lo Cascio C, McNamara J, Melendez E, Lewis E, Dufault M, Sanai N, et al. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight. 2021;6: pubmed 出版商
  20. Wang Y, Liu I, Chen K, Wu H. NOTCH1 signaling promotes protein stability of HER3 through the AKT pathway in squamous cell carcinoma of head and neck. Oncogenesis. 2021;10:59 pubmed 出版商
  21. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  22. Wang Y, Liu X, Hu G, Hu C, Gao Y, Huo M, et al. EGFR-IL-6 Signaling Axis Mediated the Inhibitory Effect of Methylseleninic Acid on Esophageal Squamous Cell Carcinoma. Front Pharmacol. 2021;12:719785 pubmed 出版商
  23. Coudert L, Osseni A, Gangloff Y, Schaeffer L, Leblanc P. The ESCRT-0 subcomplex component Hrs/Hgs is a master regulator of myogenesis via modulation of signaling and degradation pathways. BMC Biol. 2021;19:153 pubmed 出版商
  24. Shang P, Stepicheva N, Teel K, McCauley A, Fitting C, Hose S, et al. βA3/A1-crystallin regulates apical polarity and EGFR endocytosis in retinal pigmented epithelial cells. Commun Biol. 2021;4:850 pubmed 出版商
  25. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  26. Wang Q, Tao C, Hannan A, Yoon S, Min X, Peregrin J, et al. Lacrimal gland budding requires PI3K-dependent suppression of EGF signaling. Sci Adv. 2021;7: pubmed 出版商
  27. Torres A, Rodríguez Escribà M, Marcet Houben M, Santos Vieira H, Camacho N, Catena H, et al. Human tRNAs with inosine 34 are essential to efficiently translate eukarya-specific low-complexity proteins. Nucleic Acids Res. 2021;49:7011-7034 pubmed 出版商
  28. Zhu J, Cai T, Zhou J, Du W, Zeng Y, Liu T, et al. CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer. J Exp Clin Cancer Res. 2021;40:192 pubmed 出版商
  29. Xu H, Yang X, Xuan X, Wu D, Zhang J, Xu X, et al. STAMBP promotes lung adenocarcinoma metastasis by regulating the EGFR/MAPK signaling pathway. Neoplasia. 2021;23:607-623 pubmed 出版商
  30. Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra G, Franchin G, et al. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 2021;13:e12872 pubmed 出版商
  31. Tripathi P, Guo H, Dreser A, Yamoah A, Sechi A, Jesse C, et al. Pathomechanisms of ALS8: altered autophagy and defective RNA binding protein (RBP) homeostasis due to the VAPB P56S mutation. Cell Death Dis. 2021;12:466 pubmed 出版商
  32. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  33. Wang Z, Goto Y, Allevato M, Wu V, Saddawi Konefka R, Gilardi M, et al. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat Commun. 2021;12:2383 pubmed 出版商
  34. Wang X, Zhang H, Sapio R, Yang J, Wong J, Zhang X, et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat Commun. 2021;12:2259 pubmed 出版商
  35. Gangoso E, Southgate B, Bradley L, Rus S, Gálvez Cancino F, McGivern N, et al. Glioblastomas acquire myeloid-affiliated transcriptional programs via epigenetic immunoediting to elicit immune evasion. Cell. 2021;184:2454-2470.e26 pubmed 出版商
  36. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  37. Levi M, Muscatello L, Brunetti B, Benazzi C, Parenti F, Gobbo F, et al. High Intrinsic Expression of P-glycoprotein and Breast Cancer Resistance Protein in Canine Mammary Carcinomas Regardless of Immunophenotype and Outcome. Animals (Basel). 2021;11: pubmed 出版商
  38. Hoesl C, Frohlich T, Posch C, Kneitz H, Goebeler M, Schneider M, et al. The transmembrane protein LRIG1 triggers melanocytic tumor development following chemically induced skin carcinogenesis. Mol Oncol. 2021;15:2140-2155 pubmed 出版商
  39. Kitamura Y, Kanaya N, Moleirinho S, Du W, Reinshagen C, Attia N, et al. Anti-EGFR VHH-armed death receptor ligand-engineered allogeneic stem cells have therapeutic efficacy in diverse brain metastatic breast cancers. Sci Adv. 2021;7: pubmed 出版商
  40. He Y, Kan W, Li Y, Hao Y, Huang A, Gu H, et al. A potent and selective small molecule inhibitor of myoferlin attenuates colorectal cancer progression. Clin Transl Med. 2021;11:e289 pubmed 出版商
  41. Kashyap R, Balzano M, Lechat B, Lambaerts K, Egea Jimenez A, Lembo F, et al. Syntenin-knock out reduces exosome turnover and viral transduction. Sci Rep. 2021;11:4083 pubmed 出版商
  42. Isomura H, Taguchi A, Kajino T, Asai N, Nakatochi M, Kato S, et al. Conditional Ror1 knockout reveals crucial involvement in lung adenocarcinoma development and identifies novel HIF-1α regulator. Cancer Sci. 2021;: pubmed 出版商
  43. Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol. 2021;4:114 pubmed 出版商
  44. Ni W, Chen Z, Zhou X, Yang R, Yu M, Lu J, et al. Targeting Notch and EGFR signaling in human mucoepidermoid carcinoma. Signal Transduct Target Ther. 2021;6:27 pubmed 出版商
  45. Andrews M, Mukhtar T, Eze U, Simoneau C, Perez Y, Mostajo Radji M, et al. Tropism of SARS-CoV-2 for Developing Human Cortical Astrocytes. bioRxiv. 2021;: pubmed 出版商
  46. Hu X, Villodre E, Larson R, Rahal O, Wang X, Gong Y, et al. Decorin-mediated suppression of tumorigenesis, invasion, and metastasis in inflammatory breast cancer. Commun Biol. 2021;4:72 pubmed 出版商
  47. Zheng Q, Dong H, Mo J, Zhang Y, Huang J, Ouyang S, et al. A novel STAT3 inhibitor W2014-S regresses human non-small cell lung cancer xenografts and sensitizes EGFR-TKI acquired resistance. Theranostics. 2021;11:824-840 pubmed 出版商
  48. Wang Q, Gavin W, Masiello N, Tran K, Laible G, Shepherd P. Cetuximab produced from a goat mammary gland expression system is equally efficacious as innovator cetuximab in animal cancer models. Biotechnol Rep (Amst). 2020;28:e00533 pubmed 出版商
  49. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  50. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  51. Dabelsteen S, Pallesen E, Marinova I, Nielsen M, Adamopoulou M, Rømer T, et al. Essential Functions of Glycans in Human Epithelia Dissected by a CRISPR-Cas9-Engineered Human Organotypic Skin Model. Dev Cell. 2020;54:669-684.e7 pubmed 出版商
  52. Du Z, Dong J, Li M, Zhang J, Bi J, Ren Y, et al. Overexpression of Platelet-Derived Growth Factor Receptor Α D842V Mutants Prevents Liver Regeneration and Chemically Induced Hepatocarcinogenesis via Inhibition of MET and EGFR. J Cancer. 2020;11:4614-4624 pubmed 出版商
  53. Izumi H, Wang Z, Goto Y, Ando T, Wu X, Zhang X, et al. Pathway-Specific Genome Editing of PI3K/mTOR Tumor Suppressor Genes Reveals that PTEN Loss Contributes to Cetuximab Resistance in Head and Neck Cancer. Mol Cancer Ther. 2020;19:1562-1571 pubmed 出版商
  54. Mahameed M, Boukeileh S, Obiedat A, Darawshi O, Dipta P, Rimon A, et al. Pharmacological induction of selective endoplasmic reticulum retention as a strategy for cancer therapy. Nat Commun. 2020;11:1304 pubmed 出版商
  55. Chew H, De Lima P, Gonzalez Cruz J, Banushi B, Echejoh G, Hu L, et al. Endocytosis Inhibition in Humans to Improve Responses to ADCC-Mediating Antibodies. Cell. 2020;180:895-914.e27 pubmed 出版商
  56. Howell M, Green R, Khalil R, Foran E, Quarni W, Nair R, et al. Lung cancer cells survive epidermal growth factor receptor tyrosine kinase inhibitor exposure through upregulation of cholesterol synthesis. FASEB Bioadv. 2020;2:90-105 pubmed 出版商
  57. Padthaisong S, Thanee M, Namwat N, Phetcharaburanin J, Klanrit P, Khuntikeo N, et al. A panel of protein kinase high expression is associated with postoperative recurrence in cholangiocarcinoma. BMC Cancer. 2020;20:154 pubmed 出版商
  58. Hu D, Chen H, Lou L, Zhang H, Yang G. SKA3 promotes lung adenocarcinoma metastasis through the EGFR-PI3K-Akt axis. Biosci Rep. 2020;40: pubmed 出版商
  59. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  60. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  61. Chen X, Wang K, Guo W, Li L, Yu P, Sun X, et al. UCH-L1-mediated Down-regulation of Estrogen Receptor α Contributes to Insensitivity to Endocrine Therapy for Breast Cancer. Theranostics. 2020;10:1833-1848 pubmed 出版商
  62. Meng X, Zhao Y, Han B, Zha C, Zhang Y, Li Z, et al. Dual functionalized brain-targeting nanoinhibitors restrain temozolomide-resistant glioma via attenuating EGFR and MET signaling pathways. Nat Commun. 2020;11:594 pubmed 出版商
  63. Zhao J, Li X, Liu L, Cao J, Goscinski M, Fan H, et al. Oncogenic Role of Guanylate Binding Protein 1 in Human Prostate Cancer. Front Oncol. 2019;9:1494 pubmed 出版商
  64. Lyashenko E, Niepel M, Dixit P, Lim S, Sorger P, Vitkup D. Receptor-based mechanism of relative sensing and cell memory in mammalian signaling networks. elife. 2020;9: pubmed 出版商
  65. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  66. Zeng H, Castillo Cabrera J, Manser M, Lu B, Yang Z, Strande V, et al. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. elife. 2019;8: pubmed 出版商
  67. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  68. Lundby A, Franciosa G, Emdal K, Refsgaard J, Gnosa S, Bekker Jensen D, et al. Oncogenic Mutations Rewire Signaling Pathways by Switching Protein Recruitment to Phosphotyrosine Sites. Cell. 2019;179:543-560.e26 pubmed 出版商
  69. Wang C, Vegna S, Jin H, Benedict B, Lieftink C, Ramirez C, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019;: pubmed 出版商
  70. Sang Y, Li Y, Zhang Y, Alvarez A, Yu B, Zhang W, et al. CDK5-dependent phosphorylation and nuclear translocation of TRIM59 promotes macroH2A1 ubiquitination and tumorigenicity. Nat Commun. 2019;10:4013 pubmed 出版商
  71. Wang K, Zhu T, Zhao R. Filamin A regulates EGFR/ERK/Akt signaling and affects colorectal cancer cell growth and migration. Mol Med Rep. 2019;20:3671-3678 pubmed 出版商
  72. Nagpal A, Redvers R, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21:94 pubmed 出版商
  73. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  74. Du F, Qiao C, Li X, Chen Z, Liu H, Wu S, et al. Forkhead box K2 promotes human colorectal cancer metastasis by upregulating ZEB1 and EGFR. Theranostics. 2019;9:3879-3902 pubmed 出版商
  75. Wen H, Gao S, Wang Y, Ray M, Magnuson M, Wright C, et al. Myeloid cell-derived HB-EGF Drives Tissue Recovery After Pancreatitis. Cell Mol Gastroenterol Hepatol. 2019;: pubmed 出版商
  76. Larsen M, Pérez Verdaguer M, Schmidt B, Bruchez M, Watkins S, Sorkin A. Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis. elife. 2019;8: pubmed 出版商
  77. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  78. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  79. Liu X, Chen H, Hou Y, Ma X, Ye M, Huang R, et al. Adaptive EGF expression sensitizes pancreatic cancer cells to ionizing radiation through activation of the cyclin D1/P53/PARP pathway. Int J Oncol. 2019;54:1466-1480 pubmed 出版商
  80. Fearnley G, Young K, Edgar J, Antrobus R, Hay I, Liang W, et al. The homophilic receptor PTPRK selectively dephosphorylates multiple junctional regulators to promote cell-cell adhesion. elife. 2019;8: pubmed 出版商
  81. Drews K, Calgi M, Harrison W, Drews C, Costa Pinheiro P, Shaw J, et al. Glucosylceramidase Maintains Influenza Virus Infection by Regulating Endocytosis. J Virol. 2019;93: pubmed 出版商
  82. Quinney K, Frankel E, Shankar R, Kasberg W, Luong P, Audhya A. Growth factor stimulation promotes multivesicular endosome biogenesis by prolonging recruitment of the late-acting ESCRT machinery. Proc Natl Acad Sci U S A. 2019;116:6858-6867 pubmed 出版商
  83. Pergu R, Dagar S, Kumar H, Kumar R, Bhattacharya J, Mylavarapu S. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J Biol Chem. 2019;294:7177-7193 pubmed 出版商
  84. Greer Y, Gilbert S, Gril B, Narwal R, Peacock Brooks D, Tice D, et al. MEDI3039, a novel highly potent tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptor 2 agonist, causes regression of orthotopic tumors and inhibits outgrowth of metastatic triple-negative breast cancer. Breast Cancer Res. 2019;21:27 pubmed 出版商
  85. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  86. Nava M, Dutta P, Zemke N, Farias Eisner R, Vadgama J, Wu Y. Transcriptomic and ChIP-sequence interrogation of EGFR signaling in HER2+ breast cancer cells reveals a dynamic chromatin landscape and S100 genes as targets. BMC Med Genomics. 2019;12:32 pubmed 出版商
  87. Kubli S, Bassi C, Roux C, Wakeham A, Göbl C, Zhou W, et al. AhR controls redox homeostasis and shapes the tumor microenvironment in BRCA1-associated breast cancer. Proc Natl Acad Sci U S A. 2019;116:3604-3613 pubmed 出版商
  88. Xie C, Zhu J, Wang X, Chen J, Geng S, Wu J, et al. Tobacco smoke induced hepatic cancer stem cell-like properties through IL-33/p38 pathway. J Exp Clin Cancer Res. 2019;38:39 pubmed 出版商
  89. Wintgens J, Wichert S, Popovic L, Rossner M, Wehr M. Monitoring activities of receptor tyrosine kinases using a universal adapter in genetically encoded split TEV assays. Cell Mol Life Sci. 2019;76:1185-1199 pubmed 出版商
  90. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97:127-140 pubmed 出版商
  91. Unni A, Harbourne B, Oh M, Wild S, Ferrarone J, Lockwood W, et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. elife. 2018;7: pubmed 出版商
  92. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  93. Liang C, Ma Y, Yong L, Yang C, Wang P, Liu X, et al. Y-box binding protein-1 promotes tumorigenesis and progression via the epidermal growth factor receptor/AKT pathway in spinal chordoma. Cancer Sci. 2019;110:166-179 pubmed 出版商
  94. Gut G, Herrmann M, Pelkmans L. Multiplexed protein maps link subcellular organization to cellular states. Science. 2018;361: pubmed 出版商
  95. Fan P, Narzisi G, Jayaprakash A, Venturini E, Robine N, Smibert P, et al. YES1 amplification is a mechanism of acquired resistance to EGFR inhibitors identified by transposon mutagenesis and clinical genomics. Proc Natl Acad Sci U S A. 2018;115:E6030-E6038 pubmed 出版商
  96. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  97. Park J, Kim I, Choi J, Lim H, Shin J, Kim Y, et al. AHNAK Loss in Mice Promotes Type II Pneumocyte Hyperplasia and Lung Tumor Development. Mol Cancer Res. 2018;16:1287-1298 pubmed 出版商
  98. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  99. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  100. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  101. Oldrini B, Hsieh W, Erdjument Bromage H, Codega P, Carro M, Curiel García A, et al. EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer. Nat Commun. 2017;8:2035 pubmed 出版商
  102. Yu R, Longo J, van Leeuwen J, Mullen P, Ba Alawi W, Haibe Kains B, et al. Statin-Induced Cancer Cell Death Can Be Mechanistically Uncoupled from Prenylation of RAS Family Proteins. Cancer Res. 2018;78:1347-1357 pubmed 出版商
  103. Zeng L, Kang R, Zhu S, Wang X, Cao L, Wang H, et al. ALK is a therapeutic target for lethal sepsis. Sci Transl Med. 2017;9: pubmed 出版商
  104. Mai W, Gosa L, Daniëls V, Ta L, Tsang J, Higgins B, et al. Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma. Nat Med. 2017;23:1342-1351 pubmed 出版商
  105. Liu S, Liu H, Johnston A, Hanna Addams S, Reynoso E, Xiang Y, et al. MLKL forms disulfide bond-dependent amyloid-like polymers to induce necroptosis. Proc Natl Acad Sci U S A. 2017;114:E7450-E7459 pubmed 出版商
  106. Baumann C, Ullrich A, Torka R. GAS6-expressing and self-sustaining cancer cells in 3D spheroids activate the PDK-RSK-mTOR pathway for survival and drug resistance. Mol Oncol. 2017;11:1430-1447 pubmed 出版商
  107. Laviolette L, Mermoud J, Calvo I, Olson N, Boukhali M, Steinlein O, et al. Negative regulation of EGFR signalling by the human folliculin tumour suppressor protein. Nat Commun. 2017;8:15866 pubmed 出版商
  108. ElHady A, Abdel Halim M, Abadi A, Engel M. Development of Selective Clk1 and -4 Inhibitors for Cellular Depletion of Cancer-Relevant Proteins. J Med Chem. 2017;60:5377-5391 pubmed 出版商
  109. Vaishnavi A, Schubert L, Rix U, Marek L, Le A, Keysar S, et al. EGFR Mediates Responses to Small-Molecule Drugs Targeting Oncogenic Fusion Kinases. Cancer Res. 2017;77:3551-3563 pubmed 出版商
  110. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  111. Bi P, Ramirez Martinez A, Li H, Cannavino J, McAnally J, Shelton J, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356:323-327 pubmed 出版商
  112. Setty B, Pillay Smiley N, Pool C, Jin Y, Liu Y, Nelin L. Hypoxia-induced proliferation of HeLa cells depends on epidermal growth factor receptor-mediated arginase II induction. Physiol Rep. 2017;5: pubmed 出版商
  113. Solis N, Swidergall M, Bruno V, Gaffen S, Filler S. The Aryl Hydrocarbon Receptor Governs Epithelial Cell Invasion during Oropharyngeal Candidiasis. MBio. 2017;8: pubmed 出版商
  114. Lee H, Kim M, Baek M, Morales L, Jang I, Slaga T, et al. Targeted disruption of TC-PTP in the proliferative compartment augments STAT3 and AKT signaling and skin tumor development. Sci Rep. 2017;7:45077 pubmed 出版商
  115. Manzanares M, Usui A, Campbell D, Dumur C, Maldonado G, Fausther M, et al. Transforming Growth Factors α and β Are Essential for Modeling Cholangiocarcinoma Desmoplasia and Progression in a Three-Dimensional Organotypic Culture Model. Am J Pathol. 2017;187:1068-1092 pubmed 出版商
  116. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  117. Shizu R, Osabe M, Perera L, Moore R, Sueyoshi T, Negishi M. Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Mol Cell Biol. 2017;37: pubmed 出版商
  118. Li K, Mo C, Gong D, Chen Y, Huang Z, Li Y, et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of β-catenin. Cancer Lett. 2017;400:194-202 pubmed 出版商
  119. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics. 2017;7:664-676 pubmed 出版商
  120. Peiris D, Spector A, Lomax Browne H, Azimi T, Ramesh B, Loizidou M, et al. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors. Sci Rep. 2017;7:43006 pubmed 出版商
  121. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  122. Dong Q, Fu L, Zhao Y, Tan S, Wang E. Derlin-1 overexpression confers poor prognosis in muscle invasive bladder cancer and contributes to chemoresistance and invasion through PI3K/AKT and ERK/MMP signaling. Oncotarget. 2017;8:17059-17069 pubmed 出版商
  123. Duhachek Muggy S, Qi Y, Wise R, Alyahya L, Li H, Hodge J, et al. Metalloprotease-disintegrin ADAM12 actively promotes the stem cell-like phenotype in claudin-low breast cancer. Mol Cancer. 2017;16:32 pubmed 出版商
  124. Melchionna R, Iapicca P, Di Modugno F, Trono P, Sperduti I, Fassan M, et al. The pattern of hMENA isoforms is regulated by TGF-?1 in pancreatic cancer and may predict patient outcome. Oncoimmunology. 2016;5:e1221556 pubmed 出版商
  125. Xu J, Zhang X, Wang H, Ge S, Gao T, Song L, et al. HCRP1 downregulation promotes hepatocellular carcinoma cell migration and invasion through the induction of EGFR activation and epithelial-mesenchymal transition. Biomed Pharmacother. 2017;88:421-429 pubmed 出版商
  126. Ma K, Fu W, Tang M, Zhang C, Hou T, Li R, et al. PTK2-mediated degradation of ATG3 impedes cancer cells susceptible to DNA damage treatment. Autophagy. 2017;13:579-591 pubmed 出版商
  127. Cao H, Yu S, Chen D, Jing C, Wang Z, Ma R, et al. Liver X receptor agonist T0901317 reverses resistance of A549 human lung cancer cells to EGFR-TKI treatment. FEBS Open Bio. 2017;7:35-43 pubmed 出版商
  128. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  129. Li J, Liu B, Shi Y, Xie K, Yin H, Yan L, et al. CXCL4 Contributes to the Pathogenesis of Chronic Liver Allograft Dysfunction. J Immunol Res. 2016;2016:9276986 pubmed 出版商
  130. Kozlova N, Wottawa M, Katschinski D, Kristiansen G, Kietzmann T. Hypoxia-inducible factor prolyl hydroxylase 2 (PHD2) is a direct regulator of epidermal growth factor receptor (EGFR) signaling in breast cancer. Oncotarget. 2017;8:9885-9898 pubmed 出版商
  131. Khelwatty S, Essapen S, Bagwan I, Green M, Seddon A, Modjtahedi H. The impact of co-expression of wild-type EGFR and its ligands determined by immunohistochemistry for response to treatment with cetuximab in patients with metastatic colorectal cancer. Oncotarget. 2017;8:7666-7677 pubmed 出版商
  132. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  133. Tian X, Ye M, Cao Y, Wang C. Losartan Improves Palmitate-Induced Insulin Resistance in 3T3-L1 Adipocytes Through Upregulation of Src Phosphorylation. Exp Clin Endocrinol Diabetes. 2017;125:136-140 pubmed 出版商
  134. Li C, Luo X, Zhao S, Siu G, Liang Y, Chan H, et al. COPI-TRAPPII activates Rab18 and regulates its lipid droplet association. EMBO J. 2017;36:441-457 pubmed 出版商
  135. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  136. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  137. Kneissl J, Hartmann A, Pfarr N, Erlmeier F, Lorber T, Keller S, et al. Influence of the HER receptor ligand system on sensitivity to cetuximab and trastuzumab in gastric cancer cell lines. J Cancer Res Clin Oncol. 2017;143:573-600 pubmed 出版商
  138. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  139. Lee H, Khan S, Khaliqdina S, Altintas M, Grahammer F, Zhao J, et al. Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem. 2017;292:732-747 pubmed 出版商
  140. Zhang Y, Yang J, Ding M, Li L, Lu Z, Zhang Q, et al. Tumor-penetration and antitumor efficacy of cetuximab are enhanced by co-administered iRGD in a murine model of human NSCLC. Oncol Lett. 2016;12:3241-3249 pubmed
  141. Scharaw S, Iskar M, Ori A, Boncompain G, Laketa V, Poser I, et al. The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol. 2016;215:543-558 pubmed
  142. Reuther C, Heinzle V, Nölting S, Herterich S, Hahner S, Halilovic E, et al. The HDM2 (MDM2) Inhibitor NVP-CGM097 Inhibits Tumor Cell Proliferation and Shows Additive Effects with 5-Fluorouracil on the p53-p21-Rb-E2F1 Cascade in the p53wild type Neuroendocrine Tumor Cell Line GOT1. Neuroendocrinology. 2018;106:1-19 pubmed 出版商
  143. Amessou M, Ebrahim A, Dilly A, Joseph M, Tabolina M, Chukkapalli S, et al. Spatio-temporal regulation of EGFR signaling by the Eps15 homology domain-containing protein 3 (EHD3). Oncotarget. 2016;7:79203-79216 pubmed 出版商
  144. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  145. Parrales A, Ranjan A, Iyer S, Padhye S, Weir S, Roy A, et al. DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway. Nat Cell Biol. 2016;18:1233-1243 pubmed 出版商
  146. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  147. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  148. Kang S, Wang Y, Reder N, Liu J. Multiplexed Molecular Imaging of Biomarker-Targeted SERS Nanoparticles on Fresh Tissue Specimens with Channel-Compressed Spectrometry. PLoS ONE. 2016;11:e0163473 pubmed 出版商
  149. Truong D, Puleo J, Llave A, Mouneimne G, Kamm R, Nikkhah M. Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment. Sci Rep. 2016;6:34094 pubmed 出版商
  150. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  151. Horn T, Ferretti S, Ebel N, Tam A, Ho S, Harbinski F, et al. High-Order Drug Combinations Are Required to Effectively Kill Colorectal Cancer Cells. Cancer Res. 2016;76:6950-6963 pubmed
  152. Hang Q, Isaji T, Hou S, Zhou Y, Fukuda T, Gu J. N-Glycosylation of integrin ?5 acts as a switch for EGFR-mediated complex formation of integrin ?5?1 to ?6?4. Sci Rep. 2016;6:33507 pubmed 出版商
  153. Edinger N, Lebendiker M, Klein S, Zigler M, Langut Y, Levitzki A. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF. PLoS ONE. 2016;11:e0162321 pubmed 出版商
  154. Xu J, Xiong G, Cao Z, Huang H, Wang T, You L, et al. PIM-1 contributes to the malignancy of pancreatic cancer and displays diagnostic and prognostic value. J Exp Clin Cancer Res. 2016;35:133 pubmed 出版商
  155. Kimani S, Kumar S, Davra V, Chang Y, Kasikara C, Geng K, et al. Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase. Cell Commun Signal. 2016;14:19 pubmed 出版商
  156. Mair B, Konopka T, Kerzendorfer C, Sleiman K, Salic S, Serra V, et al. Gain- and Loss-of-Function Mutations in the Breast Cancer Gene GATA3 Result in Differential Drug Sensitivity. PLoS Genet. 2016;12:e1006279 pubmed 出版商
  157. Jiang M, Qiu J, Zhang L, Lu D, Long M, Chen L, et al. Changes in tension regulates proliferation and migration of fibroblasts by remodeling expression of ECM proteins. Exp Ther Med. 2016;12:1542-1550 pubmed
  158. Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed 出版商
  159. Jaako K, Waniek A, Parik K, Klimaviciusa L, Aonurm Helm A, Noortoots A, et al. Prolyl endopeptidase is involved in the degradation of neural cell adhesion molecules in vitro. J Cell Sci. 2016;129:3792-3802 pubmed
  160. Sun M, Cai J, Anderson R, Sun Y. Type I ? Phosphatidylinositol Phosphate 5-Kinase i5 Controls the Ubiquitination and Degradation of the Tumor Suppressor Mitogen-inducible Gene 6. J Biol Chem. 2016;291:21461-21473 pubmed
  161. LAW M, Ferreira R, Davis B, Higgins P, Kim J, Castellano R, et al. CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Res. 2016;18:80 pubmed 出版商
  162. Im J, Yoon S, Kim B, Ban H, Won K, Chung K, et al. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes ?-catenin-mediated invasion. Biochim Biophys Acta. 2016;1859:1449-1458 pubmed 出版商
  163. Carino A, Graziosi L, D Amore C, Cipriani S, Marchianò S, Marino E, et al. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget. 2016;7:61021-61035 pubmed 出版商
  164. Zhang Y, Velez Delgado A, Mathew E, Li D, Mendez F, Flannagan K, et al. Myeloid cells are required for PD-1/PD-L1 checkpoint activation and the establishment of an immunosuppressive environment in pancreatic cancer. Gut. 2017;66:124-136 pubmed 出版商
  165. Deblois G, Smith H, Tam I, Gravel S, Caron M, Savage P, et al. ERR? mediates metabolic adaptations driving lapatinib resistance in breast cancer. Nat Commun. 2016;7:12156 pubmed 出版商
  166. Grassi M, Palma C, Thomé C, Lanfredi G, Poersch A, Faça V. Proteomic analysis of ovarian cancer cells during epithelial-mesenchymal transition (EMT) induced by epidermal growth factor (EGF) reveals mechanisms of cell cycle control. J Proteomics. 2017;151:2-11 pubmed 出版商
  167. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  168. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  169. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  170. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  171. Chamberland J, Antonow L, Dias Santos M, Ritter B. NECAP2 controls clathrin coat recruitment to early endosomes for fast endocytic recycling. J Cell Sci. 2016;129:2625-37 pubmed 出版商
  172. He F, Wei L, Luo W, Liao Z, Li B, Zhou X, et al. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget. 2016;7:37000-37012 pubmed 出版商
  173. Currier M, Lee S, Stobart C, Hotard A, Villenave R, Meng J, et al. EGFR Interacts with the Fusion Protein of Respiratory Syncytial Virus Strain 2-20 and Mediates Infection and Mucin Expression. PLoS Pathog. 2016;12:e1005622 pubmed 出版商
  174. Rapiteanu R, Davis L, Williamson J, Timms R, Paul Luzio J, Lehner P. A Genetic Screen Identifies a Critical Role for the WDR81-WDR91 Complex in the Trafficking and Degradation of Tetherin. Traffic. 2016;17:940-58 pubmed 出版商
  175. Lin S, Choe J, Du P, Triboulet R, Gregory R. The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell. 2016;62:335-345 pubmed 出版商
  176. Jahani Asl A, Yin H, Soleimani V, Haque T, Luchman H, Chang N, et al. Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat Neurosci. 2016;19:798-806 pubmed 出版商
  177. Hatanaka M, Higashi Y, Kawai K, Su J, Zeng W, Chen X, et al. CD147-targeted siRNA in A375 malignant melanoma cells induces the phosphorylation of EGFR and downregulates cdc25C and MEK phosphorylation. Oncol Lett. 2016;11:2424-2428 pubmed
  178. Jadwin J, Oh D, Curran T, Ogiue Ikeda M, Jia L, White F, et al. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. elife. 2016;5:e11835 pubmed 出版商
  179. Phelps Polirer K, Abt M, Smith D, Yeh E. Co-Targeting of JNK and HUNK in Resistant HER2-Positive Breast Cancer. PLoS ONE. 2016;11:e0153025 pubmed 出版商
  180. Huang M, Liu T, Ma P, Mitteer R, Zhang Z, Kim H, et al. c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. J Clin Invest. 2016;126:1801-14 pubmed 出版商
  181. Mancini M, Lien E, Toker A. Oncogenic AKT1(E17K) mutation induces mammary hyperplasia but prevents HER2-driven tumorigenesis. Oncotarget. 2016;7:17301-13 pubmed 出版商
  182. Wen Y, Li H, Zeng Y, Wen W, Pendleton K, Lui V, et al. MAPK1E322K mutation increases head and neck squamous cell carcinoma sensitivity to erlotinib through enhanced secretion of amphiregulin. Oncotarget. 2016;7:23300-11 pubmed 出版商
  183. Meng Y, Zheng L, Yang Y, Wang H, Dong J, Wang C, et al. A monoclonal antibody targeting ErbB2 domain III inhibits ErbB2 signaling and suppresses the growth of ErbB2-overexpressing breast tumors. Oncogenesis. 2016;5:e211 pubmed 出版商
  184. Ezawa I, Sawai Y, Kawase T, Okabe A, Tsutsumi S, Ichikawa H, et al. Novel p53 target gene FUCA1 encodes a fucosidase and regulates growth and survival of cancer cells. Cancer Sci. 2016;107:734-45 pubmed 出版商
  185. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  186. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  187. SaygideÄŸer Kont Y, Minas T, Jones H, Hour S, Çelik H, Temel I, et al. Ezrin Enhances EGFR Signaling and Modulates Erlotinib Sensitivity in Non-Small Cell Lung Cancer Cells. Neoplasia. 2016;18:111-20 pubmed 出版商
  188. Haven B, Heilig E, Donham C, Settles M, Vasilevsky N, Owen K. Registered report: A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. elife. 2016;5: pubmed 出版商
  189. Wang Y, Kang S, Khan A, Ruttner G, Leigh S, Murray M, et al. Quantitative molecular phenotyping with topically applied SERS nanoparticles for intraoperative guidance of breast cancer lumpectomy. Sci Rep. 2016;6:21242 pubmed 出版商
  190. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  191. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  192. Nakazawa M, Eisinger Mathason T, Sadri N, Ochocki J, Gade T, Amin R, et al. Epigenetic re-expression of HIF-2α suppresses soft tissue sarcoma growth. Nat Commun. 2016;7:10539 pubmed 出版商
  193. Hayashi H, Al Mamun A, Sakima M, Sato M. Activator of G-protein signaling 8 is involved in VEGF-mediated signal processing during angiogenesis. J Cell Sci. 2016;129:1210-22 pubmed 出版商
  194. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  195. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  196. Evans M, Sauer S, Nath S, Robinson T, Morse M, Devi G. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity. Cell Death Dis. 2016;7:e2073 pubmed 出版商
  197. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  198. Ketel K, Krauss M, Nicot A, Puchkov D, Wieffer M, Müller R, et al. A phosphoinositide conversion mechanism for exit from endosomes. Nature. 2016;529:408-12 pubmed 出版商
  199. Lin A, Li C, Xing Z, Hu Q, Liang K, Han L, et al. The LINK-A lncRNA activates normoxic HIF1? signalling in triple-negative breast cancer. Nat Cell Biol. 2016;18:213-24 pubmed 出版商
  200. Salova A, Belyaeva T, Leontieva E, Zlobina M, Kharchenko M, Kornilova E. Quantum dots implementation as a label for analysis of early stages of EGF receptor endocytosis: a comparative study on cultured cells. Oncotarget. 2016;7:6029-47 pubmed 出版商
  201. Hessmann E, Zhang J, Chen N, Hasselluhn M, Liou G, Storz P, et al. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells Int. 2016;2016:5272498 pubmed 出版商
  202. Roshan A, Murai K, Fowler J, Simons B, Nikolaidou Neokosmidou V, Jones P. Human keratinocytes have two interconvertible modes of proliferation. Nat Cell Biol. 2016;18:145-56 pubmed 出版商
  203. Baumdick M, Brüggemann Y, Schmick M, Xouri G, Sabet O, Davis L, et al. EGF-dependent re-routing of vesicular recycling switches spontaneous phosphorylation suppression to EGFR signaling. elife. 2015;4: pubmed 出版商
  204. Chen J, Chen Y, Yen C, Chen W, Huang W. HBx sensitizes hepatocellular carcinoma cells to lapatinib by up-regulating ErbB3. Oncotarget. 2016;7:473-89 pubmed 出版商
  205. Safavi S, Järnum S, Vannas C, Udhane S, Jonasson E, Tomić T, et al. HSP90 inhibition blocks ERBB3 and RET phosphorylation in myxoid/round cell liposarcoma and causes massive cell death in vitro and in vivo. Oncotarget. 2016;7:433-45 pubmed 出版商
  206. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  207. Ponti D, Bastianelli D, Rosa P, Pacini L, Ibrahim M, Rendina E, et al. The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions. BMC Cell Biol. 2015;16:27 pubmed 出版商
  208. Gao L, Jiang Y, Mu L, Liu Y, Wang F, Wang P, et al. Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep. 2015;5:16284 pubmed 出版商
  209. Oprea T, Sklar L, Agola J, Guo Y, Silberberg M, Roxby J, et al. Novel Activities of Select NSAID R-Enantiomers against Rac1 and Cdc42 GTPases. PLoS ONE. 2015;10:e0142182 pubmed 出版商
  210. Chen S, Chen Y, Chen B, Cai Y, Zou Z, Wang J, et al. Plumbagin Ameliorates CCl 4 -Induced Hepatic Fibrosis in Rats via the Epidermal Growth Factor Receptor Signaling Pathway. Evid Based Complement Alternat Med. 2015;2015:645727 pubmed 出版商
  211. Majumder P, Chakrabarti O. Mahogunin regulates fusion between amphisomes/MVBs and lysosomes via ubiquitination of TSG101. Cell Death Dis. 2015;6:e1970 pubmed 出版商
  212. Nikonova A, Deneka A, Eckman L, Kopp M, Hensley H, Egleston B, et al. Opposing Effects of Inhibitors of Aurora-A and EGFR in Autosomal-Dominant Polycystic Kidney Disease. Front Oncol. 2015;5:228 pubmed 出版商
  213. Hirano T, Yasuda H, Tani T, Hamamoto J, Oashi A, Ishioka K, et al. In vitro modeling to determine mutation specificity of EGFR tyrosine kinase inhibitors against clinically relevant EGFR mutants in non-small-cell lung cancer. Oncotarget. 2015;6:38789-803 pubmed 出版商
  214. Dong Y, Hou W, Li Y, Liu D, Hao G, Zhang H, et al. Unexpected requirement for a binding partner of the syntaxin family in phagocytosis by murine testicular Sertoli cells. Cell Death Differ. 2016;23:787-800 pubmed 出版商
  215. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  216. Liu F, Hon G, Villa G, Turner K, Ikegami S, Yang H, et al. EGFR Mutation Promotes Glioblastoma through Epigenome and Transcription Factor Network Remodeling. Mol Cell. 2015;60:307-18 pubmed 出版商
  217. Kuo H, Hsu H, Chen Y, Chang Y, Liu F, Wu C. Galectin-3 modulates the EGFR signalling-mediated regulation of Sox2 expression via c-Myc in lung cancer. Glycobiology. 2016;26:155-65 pubmed 出版商
  218. Donzelli S, Mori F, Bellissimo T, Sacconi A, Casini B, Frixa T, et al. Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget. 2015;6:35183-201 pubmed 出版商
  219. Mehner C, Oberg A, Kalli K, Nassar A, Hockla A, Pendlebury D, et al. Serine protease inhibitor Kazal type 1 (SPINK1) drives proliferation and anoikis resistance in a subset of ovarian cancers. Oncotarget. 2015;6:35737-54 pubmed 出版商
  220. Panvichian R, Tantiwetrueangdet A, Sornmayura P, Leelaudomlipi S. Missense Mutations in Exons 18-24 of EGFR in Hepatocellular Carcinoma Tissues. Biomed Res Int. 2015;2015:171845 pubmed 出版商
  221. Cecchetti S, Bortolomai I, Ferri R, Mercurio L, Canevari S, Podo F, et al. Inhibition of Phosphatidylcholine-Specific Phospholipase C Interferes with Proliferation and Survival of Tumor Initiating Cells in Squamous Cell Carcinoma. PLoS ONE. 2015;10:e0136120 pubmed 出版商
  222. Bollu L, Katreddy R, Blessing A, Pham N, Zheng B, Wu X, et al. Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 2015;6:34992-5003 pubmed 出版商
  223. Kitatani K, Usui T, Sriraman S, Toyoshima M, Ishibashi M, Shigeta S, et al. Ceramide limits phosphatidylinositol-3-kinase C2β-controlled cell motility in ovarian cancer: potential of ceramide as a metastasis-suppressor lipid. Oncogene. 2016;35:2801-12 pubmed 出版商
  224. Vennin C, Spruyt N, Dahmani F, Julien S, Bertucci F, Finetti P, et al. H19 non coding RNA-derived miR-675 enhances tumorigenesis and metastasis of breast cancer cells by downregulating c-Cbl and Cbl-b. Oncotarget. 2015;6:29209-23 pubmed 出版商
  225. Valley C, Arndt Jovin D, Karedla N, Steinkamp M, Chizhik A, Hlavacek W, et al. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer. Mol Biol Cell. 2015;26:4087-99 pubmed 出版商
  226. Wu Y, Deng W, Klinke D. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140:6631-42 pubmed 出版商
  227. Fu Y, Cruz Monserrate Z, Helen Lin H, Chung Y, Ji B, Lin S, et al. Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep. 2015;5:13347 pubmed 出版商
  228. Morancho B, Martínez Barriocanal Ã, Villanueva J, Arribas J. Role of ADAM17 in the non-cell autonomous effects of oncogene-induced senescence. Breast Cancer Res. 2015;17:106 pubmed 出版商
  229. Tang Y, Ye M, Du Y, Qiu X, Lv X, Yang W, et al. EGFR signaling upregulates surface expression of the GluN2B-containing NMDA receptor and contributes to long-term potentiation in the hippocampus. Neuroscience. 2015;304:109-21 pubmed 出版商
  230. Li W, Qiu Y, Zhang H, Tian X, Fang W. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway. PLoS ONE. 2015;10:e0133165 pubmed 出版商
  231. Lin C, Pan C, Wang C, Liu S, Hsiao L, Yang C. Tumor necrosis factor-alpha induces VCAM-1-mediated inflammation via c-Src-dependent transactivation of EGF receptors in human cardiac fibroblasts. J Biomed Sci. 2015;22:53 pubmed 出版商
  232. Yao X, Wu Y, Zhu M, Qian H, Chen Y. Nitric oxide/cyclic guanosine monophosphate inducers sodium nitroprusside and L-arginine inhibit the proliferation of gastric cancer cells via the activation of type II cyclic guanosine monophosphate-dependent protein kinase. Oncol Lett. 2015;10:479-484 pubmed
  233. Forse C, Agarwal S, Pinnaduwage D, Gertler F, Condeelis J, Lin J, et al. Menacalc, a quantitative method of metastasis assessment, as a prognostic marker for axillary node-negative breast cancer. BMC Cancer. 2015;15:483 pubmed 出版商
  234. Yang L, Li Y, Bhattacharya A, Zhang Y. Inhibition of ERBB2-overexpressing Tumors by Recombinant Human Prolidase and Its Enzymatically Inactive Mutant. EBioMedicine. 2015;2:396-405 pubmed
  235. Ma S, Yin N, Qi X, Pfister S, Zhang M, Ma R, et al. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget. 2015;6:13320-33 pubmed
  236. Min H, Yun H, Lee J, Lee H, Cho J, Jang H, et al. Targeting the insulin-like growth factor receptor and Src signaling network for the treatment of non-small cell lung cancer. Mol Cancer. 2015;14:113 pubmed 出版商
  237. Chen C, Kim K, Lau L. The matricellular protein CCN1 suppresses hepatocarcinogenesis by inhibiting compensatory proliferation. Oncogene. 2016;35:1314-23 pubmed 出版商
  238. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  239. Teng Y, Radde B, Litchfield L, Ivanova M, Prough R, Clark B, et al. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells. J Biol Chem. 2015;290:15799-811 pubmed 出版商
  240. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  241. Chien P, Lin C, Hsiao L, Yang C. c-Src/Pyk2/EGFR/PI3K/Akt/CREB-activated pathway contributes to human cardiomyocyte hypertrophy: Role of COX-2 induction. Mol Cell Endocrinol. 2015;409:59-72 pubmed 出版商
  242. Ferreira R, Law M, Jahn S, Davis B, Heldermon C, Reinhard M, et al. Novel agents that downregulate EGFR, HER2, and HER3 in parallel. Oncotarget. 2015;6:10445-59 pubmed
  243. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  244. Hoekstra E, Kodach L, Das A, Ruela de Sousa R, Ferreira C, Hardwick J, et al. Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer. Oncotarget. 2015;6:8300-12 pubmed
  245. Wang Y, Han A, Chen E, Singh R, Chichester C, Moore R, et al. The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 2015;46:1924-34 pubmed 出版商
  246. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  247. Wei Z, Yu D, Bi Y, Cao Y. A disintegrin and metalloprotease 17 promotes microglial cell survival via epidermal growth factor receptor signalling following spinal cord injury. Mol Med Rep. 2015;12:63-70 pubmed 出版商
  248. Sinha L, Wang Y, Yang C, Khan A, Brankov J, Liu J, et al. Quantification of the binding potential of cell-surface receptors in fresh excised specimens via dual-probe modeling of SERS nanoparticles. Sci Rep. 2015;5:8582 pubmed 出版商
  249. Isidro R, Cruz M, Isidro A, Baez A, Arroyo A, González Marqués W, et al. Immunohistochemical expression of SP-NK-1R-EGFR pathway and VDR in colonic inflammation and neoplasia. World J Gastroenterol. 2015;21:1749-58 pubmed 出版商
  250. Rayavarapu R, Heiden B, Pagani N, Shaw M, Shuff S, Zhang S, et al. The role of multicellular aggregation in the survival of ErbB2-positive breast cancer cells during extracellular matrix detachment. J Biol Chem. 2015;290:8722-33 pubmed 出版商
  251. Greenall S, Donoghue J, van Sinderen M, Dubljevic V, Budiman S, Devlin M, et al. EGFRvIII-mediated transactivation of receptor tyrosine kinases in glioma: mechanism and therapeutic implications. Oncogene. 2015;34:5277-87 pubmed 出版商
  252. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  253. Fillmore C, Xu C, Desai P, Berry J, Rowbotham S, Lin Y, et al. EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors. Nature. 2015;520:239-42 pubmed 出版商
  254. Yun H, Kim H, Ga I, Oh H, Ho D, Kim J, et al. An early endosome regulator, Rab5b, is an LRRK2 kinase substrate. J Biochem. 2015;157:485-95 pubmed 出版商
  255. Yoo J, Kim T, Kong S, Lee J, Choi W, Kim K, et al. Role of Mig-6 in hepatic glucose metabolism. J Diabetes. 2016;8:86-97 pubmed 出版商
  256. Liu Z, Leng E, Gunasekaran K, Pentony M, Shen M, Howard M, et al. A novel antibody engineering strategy for making monovalent bispecific heterodimeric IgG antibodies by electrostatic steering mechanism. J Biol Chem. 2015;290:7535-62 pubmed 出版商
  257. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  258. Pino M, Verstraeten S. Tl(I) and Tl(III) alter the expression of EGF-dependent signals and cyclins required for pheochromocytoma (PC12) cell-cycle resumption and progression. J Appl Toxicol. 2015;35:952-69 pubmed 出版商
  259. Kumar S, Das S, Rachagani S, Kaur S, Joshi S, Johansson S, et al. NCOA3-mediated upregulation of mucin expression via transcriptional and post-translational changes during the development of pancreatic cancer. Oncogene. 2015;34:4879-89 pubmed 出版商
  260. Smithline Z, Nikonova A, Hensley H, Cai K, Egleston B, Proia D, et al. Inhibiting heat shock protein 90 (HSP90) limits the formation of liver cysts induced by conditional deletion of Pkd1 in mice. PLoS ONE. 2014;9:e114403 pubmed 出版商
  261. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  262. Peng H, Kaplan N, Yang W, Getsios S, Lavker R. FIH-1 disrupts an LRRK1/EGFR complex to positively regulate keratinocyte migration. Am J Pathol. 2014;184:3262-71 pubmed 出版商
  263. Hong Y, Kim J, Pectasides E, Fox C, Hong S, Ma Q, et al. Src mutation induces acquired lapatinib resistance in ERBB2-amplified human gastroesophageal adenocarcinoma models. PLoS ONE. 2014;9:e109440 pubmed 出版商
  264. Tan L, Wang J, Tanizaki J, Huang Z, Aref A, Rusan M, et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc Natl Acad Sci U S A. 2014;111:E4869-77 pubmed 出版商
  265. Li N, Ramil C, Lim R, Lin Q. A genetically encoded alkyne directs palladium-mediated protein labeling on live mammalian cell surface. ACS Chem Biol. 2015;10:379-84 pubmed 出版商
  266. Young O, Tang Z, Niven Fairchild T, Tadesse S, Krikun G, Norwitz E, et al. Toll-like receptor-mediated responses by placental Hofbauer cells (HBCs): a potential pro-inflammatory role for fetal M2 macrophages. Am J Reprod Immunol. 2015;73:22-35 pubmed 出版商
  267. Gao X, Yu L, Moore A, Kissling G, Waalkes M, Dixon D. Cadmium and proliferation in human uterine leiomyoma cells: evidence of a role for EGFR/MAPK pathways but not classical estrogen receptor pathways. Environ Health Perspect. 2015;123:331-6 pubmed 出版商
  268. Holland W, Chinn D, Lara P, Gandara D, Mack P. Effects of AKT inhibition on HGF-mediated erlotinib resistance in non-small cell lung cancer cell lines. J Cancer Res Clin Oncol. 2015;141:615-26 pubmed 出版商
  269. De Santis R, Rosi A, Anastasi A, Chiapparino C, Albertoni C, Leoni B, et al. Efficacy of aerosol therapy of lung cancer correlates with EGFR paralysis induced by AvidinOX-anchored biotinylated Cetuximab. Oncotarget. 2014;5:9239-55 pubmed
  270. Hamdollah Zadeh M, Amin E, Hoareau Aveilla C, Domingo E, Symonds K, Ye X, et al. Alternative splicing of TIA-1 in human colon cancer regulates VEGF isoform expression, angiogenesis, tumour growth and bevacizumab resistance. Mol Oncol. 2015;9:167-78 pubmed 出版商
  271. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  272. Czaplinska D, Turczyk L, Grudowska A, Mieszkowska M, Lipinska A, Skladanowski A, et al. Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. Biochim Biophys Acta. 2014;1843:2461-70 pubmed 出版商
  273. Wang J, Mikse O, Liao R, Li Y, Tan L, Jänne P, et al. Ligand-associated ERBB2/3 activation confers acquired resistance to FGFR inhibition in FGFR3-dependent cancer cells. Oncogene. 2015;34:2167-77 pubmed 出版商
  274. Tjin Tham Sjin R, Lee K, Walter A, Dubrovskiy A, Sheets M, Martin T, et al. In vitro and in vivo characterization of irreversible mutant-selective EGFR inhibitors that are wild-type sparing. Mol Cancer Ther. 2014;13:1468-79 pubmed 出版商
  275. Zhang L, Castanaro C, Luan B, Yang K, Fan L, Fairhurst J, et al. ERBB3/HER2 signaling promotes resistance to EGFR blockade in head and neck and colorectal cancer models. Mol Cancer Ther. 2014;13:1345-55 pubmed 出版商
  276. Stratmann A, Fecher D, Wangorsch G, Göttlich C, Walles T, Walles H, et al. Establishment of a human 3D lung cancer model based on a biological tissue matrix combined with a Boolean in silico model. Mol Oncol. 2014;8:351-65 pubmed 出版商
  277. Gowing G, Shelley B, Staggenborg K, Hurley A, Avalos P, Victoroff J, et al. Glial cell line-derived neurotrophic factor-secreting human neural progenitors show long-term survival, maturation into astrocytes, and no tumor formation following transplantation into the spinal cord of immunocompromised rats. Neuroreport. 2014;25:367-72 pubmed 出版商
  278. Chen Z, Chen J, Gu Y, Hu C, Li J, Lin S, et al. Aberrantly activated AREG-EGFR signaling is required for the growth and survival of CRTC1-MAML2 fusion-positive mucoepidermoid carcinoma cells. Oncogene. 2014;33:3869-77 pubmed 出版商
  279. Brouxhon S, Kyrkanides S, Teng X, O Banion M, Clarke R, Byers S, et al. Soluble-E-cadherin activates HER and IAP family members in HER2+ and TNBC human breast cancers. Mol Carcinog. 2014;53:893-906 pubmed 出版商
  280. Sigurdsson V, Ingthorsson S, Hilmarsdottir B, Gustafsdottir S, Franzdóttir S, Arason A, et al. Expression and functional role of sprouty-2 in breast morphogenesis. PLoS ONE. 2013;8:e60798 pubmed 出版商
  281. Fong G, Backman L, Andersson G, Scott A, Danielson P. Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway. Cell Tissue Res. 2013;351:465-75 pubmed 出版商
  282. Yamashita M, Chattopadhyay S, Fensterl V, Saikia P, Wetzel J, Sen G. Epidermal growth factor receptor is essential for Toll-like receptor 3 signaling. Sci Signal. 2012;5:ra50 pubmed 出版商
  283. Restivo G, Nguyen B, Dziunycz P, Ristorcelli E, Ryan R, Özuysal Ö, et al. IRF6 is a mediator of Notch pro-differentiation and tumour suppressive function in keratinocytes. EMBO J. 2011;30:4571-85 pubmed 出版商
  284. Lennerz J, Rühle V, Ceppa E, Neuhuber W, Bunnett N, Grady E, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribu. J Comp Neurol. 2008;507:1277-99 pubmed 出版商
  285. Pangburn H, Kraus H, Ahnen D, Rice P. Sulindac metabolites inhibit epidermal growth factor receptor activation and expression. J Carcinog. 2005;4:16 pubmed