这是一篇来自已证抗体库的有关大鼠 Foxp3的综述,是根据367篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Foxp3 抗体。
Foxp3 同义词: RGD1562112

赛默飞世尔
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3d). Biomedicines (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s6-2
赛默飞世尔 Foxp3抗体(Invitrogen, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s6-2). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Front Immunol (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(ThermoFisher, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3m
赛默飞世尔 Foxp3抗体(eBiosciences, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3m). Aging Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠; 图 s1l
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于免疫细胞化学在小鼠样本上 (图 s1l). Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience/Thermo Fisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Sci Adv (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 9b
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 9b). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于. Nature (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2j
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2j). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c, 5d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5c, 5d). BMC Biol (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 s7c
赛默飞世尔 Foxp3抗体(Invitrogen, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s7c). Cell Res (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2s1
赛默飞世尔 Foxp3抗体(ThermoFisher, 58-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2s1). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1s2a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1s2a). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(ThermoFisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7). Am J Physiol Endocrinol Metab (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6s1). elife (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(ThermoFisher Scientific, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7). Ann Biomed Eng (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s15e
赛默飞世尔 Foxp3抗体(Thermo Fisher, 53-5773-80)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s15e). Nat Commun (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4a
赛默飞世尔 Foxp3抗体(Thermo Fisher, 53-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Cell (2020) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1, 2, 3d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1, 2, 3d). JCI Insight (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7j
赛默飞世尔 Foxp3抗体(ThermoFisher, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 7j). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 s4p
  • 流式细胞仪; 小鼠; 1:100; 图 4b
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4p) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 4b). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 5b
赛默飞世尔 Foxp3抗体(eBioscience, 12577382)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5b). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 2j
赛默飞世尔 Foxp3抗体(eBioscience, FJK16S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2j). Cell Rep (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 e8b
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 e8b). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3j
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s3j). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Aging (Albany NY) (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4h
赛默飞世尔 Foxp3抗体(Thermo Fisher, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4h). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1d
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s1d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Science (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Immunother Cancer (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 3c
赛默飞世尔 Foxp3抗体(Thermo Fischer, 25-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3c). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:250; 图 3e, 3f, s6c, s6d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 3e, 3f, s6c, s6d). Science (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 2f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 2f). Nat Commun (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6c). Proc Natl Acad Sci U S A (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Exp Med (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s7a). Sci Adv (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2d, e5m
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2d, e5m). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3b
赛默飞世尔 Foxp3抗体(Thermo Fisher, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3h). J Exp Med (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 2e
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2e). elife (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s3d
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s3d). Cell (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunity (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 e1b, e1c, e1d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 e1b, e1c, e1d). Nature (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c, 4d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4c, 4d). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2d). Cell Rep (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioScience, 17577382)被用于被用于流式细胞仪在小鼠样本上 (图 4a). J Cyst Fibros (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 s3g
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773-82)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s3g). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3b, s5b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3b, s5b). JCI Insight (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Cell Mol Gastroenterol Hepatol (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a, 2c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a, 2c). Proc Natl Acad Sci U S A (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 s1b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 s1b). J Pathol (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s8a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s8a). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a, s5b
赛默飞世尔 Foxp3抗体(Thermo Fisher, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 s5a, s5b). J Clin Invest (2019) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s4c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s4c). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Blood (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2e
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2e). Immunity (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 s10a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-163)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10a). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 s10a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-163)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 s10a). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
  • 免疫印迹; 小鼠; 图 s4e
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1f) 和 被用于免疫印迹在小鼠样本上 (图 s4e). Immunity (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Eur J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:300; 图 s12c
赛默飞世尔 Foxp3抗体(Thermo Fisher Scientific, 53-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:300 (图 s12c). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6e). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Int J Obes (Lond) (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4d
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4d) 和 被用于免疫组化在小鼠样本上 (图 7a). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). Cell Rep (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Front Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4f). Science (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Nat Commun (2018) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 5c). Cell Metab (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3h
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 3h). Science (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 9c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 9c). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5a). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5f). J Exp Med (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 1:100; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1a). Nat Commun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4e). J Clin Invest (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Foxp3抗体(eBioscience, 115773)被用于被用于流式细胞仪在小鼠样本上 (图 3e). Br J Pharmacol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 2a). EMBO J (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 5b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 5b). Infect Immun (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBiosciences, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3b). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Sci Rep (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Cancer Res (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
  • 免疫组化; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b) 和 被用于免疫组化在小鼠样本上 (图 4f). Nature (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在大鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Science (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6d). Cell Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Eur J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 2d
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 2d) 和 被用于流式细胞仪在小鼠样本上 (图 2d). Stem Cells (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, 50-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Nature (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Allergy Clin Immunol (2018) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7b
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7b). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1c
  • 流式细胞仪; 小鼠; 图 2d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1c) 和 被用于流式细胞仪在小鼠样本上 (图 2d). Immunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Immunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 5i
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5i). Cell Metab (2017) ncbi
小鼠 单克隆(150D/E4)
  • 染色质免疫沉淀 ; 小鼠; 图 2b
赛默飞世尔 Foxp3抗体(eBioscience, 14-4774-82)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 2b). Cell Metab (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s7d). Oncotarget (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1d). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(150D/E4)
  • 免疫印迹; 人类; 图 2g
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于免疫印迹在人类样本上 (图 2g). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1h
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5d
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5d). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 6i
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6i). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1e
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 1e). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1b
赛默飞世尔 Foxp3抗体(ebioscience, 11?\5773?\82)被用于被用于流式细胞仪在小鼠样本上 (图 1b). Immun Inflamm Dis (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Foxp3抗体(eBioscience, 45-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 6e). PLoS ONE (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1,3
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 1,3). Oncoimmunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 3g
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3g). Nat Commun (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4h
赛默飞世尔 Foxp3抗体(eBiosciences, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4h). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 大鼠; 1:800; 图 st7
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 st7
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:800 (图 st7) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 st7). J Toxicol Pathol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2b
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2b). Sci Rep (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6a
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Ebioscience, 14-5773-82)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6a) 和 被用于流式细胞仪在小鼠样本上. J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Blood (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4c
赛默飞世尔 Foxp3抗体(eBioscience, 56-5773)被用于被用于流式细胞仪在小鼠样本上 (图 4c). J Clin Invest (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1g). J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4f
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4f). J Dermatol Sci (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1k
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1k). J Exp Med (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 1f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在大鼠样本上 (图 1f). Eur J Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠; 图 5d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Biol Chem (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 5l
赛默飞世尔 Foxp3抗体(eBiosciences, 61-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 5l). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). Mucosal Immunol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3f). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2c). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Nature (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2016) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5a
赛默飞世尔 Foxp3抗体(eBioscience, FJK 16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5a). Immunology (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2e
赛默飞世尔 Foxp3抗体(eBioscience, FKJ.16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2e). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1a
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2c). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3d). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1a). Circ Res (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 11C
  • 流式细胞仪; 小鼠; 图 12
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 11C) 和 被用于流式细胞仪在小鼠样本上 (图 12). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3c). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3e
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3e). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 1:100; 图 1
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Foxp3抗体(eBiosciences, 58-5773-82)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 1) 和 被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s7). Infect Immun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Foxp3抗体(eBiosciences, 12-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 s3). Immunol Cell Biol (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3a
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3a). J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). Clin Cancer Res (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 4). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 s4c
赛默飞世尔 Foxp3抗体(eBioscience, 13-5773)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 s4c). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 st1
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 st1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s6
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-80A)被用于被用于流式细胞仪在小鼠样本上 (图 s6). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2). Mol Med Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Clin Invest (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2e
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16-s)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK- 16s)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Science (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s8
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 s8). Sci Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 犬; 1:20; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12?C5773)被用于被用于流式细胞仪在犬样本上浓度为1:20 (图 2). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1f
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1f). Eur J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBiosciences, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 s2). Oncotarget (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 s5). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:50; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4b). Mol Med Rep (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s1). Cancer Immunol Immunother (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4h
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4h). Nat Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5c). Science (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(e-Bioscience, 35-5773)被用于被用于流式细胞仪在小鼠样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(150D/E4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
赛默飞世尔 Foxp3抗体(Ebioscience, 150D/E4)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). PLoS ONE (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). elife (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 大鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773)被用于被用于流式细胞仪在大鼠样本上 (图 5). Exp Ther Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4g
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4g). J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7a
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7a). J Exp Med (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1). Nat Commun (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫细胞化学; 小鼠; 1:150
赛默飞世尔 Foxp3抗体(eBiocience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫细胞化学在小鼠样本上浓度为1:150. Nature (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK.16a)被用于被用于流式细胞仪在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4, 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4, 5). PLoS Pathog (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(eBioscience, 48-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 7). Eur J Immunol (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Sci Rep (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, 25-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 4). Aging Cell (2016) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, 56-5773-80)被用于被用于流式细胞仪在小鼠样本上 (图 6). Oncotarget (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 3). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
  • 免疫组化; 小鼠; 图 6c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16a)被用于被用于流式细胞仪在小鼠样本上 (图 3) 和 被用于免疫组化在小鼠样本上 (图 6c). J Inflamm (Lond) (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:200; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 3). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 牛; 1:100; 图 1h
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16)被用于被用于免疫组化-石蜡切片在牛样本上浓度为1:100 (图 1h). Transbound Emerg Dis (2017) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:20; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 13-5773-80)被用于被用于免疫组化在小鼠样本上浓度为1:20 (图 2). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4b
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4b). Cancer Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Infect Immun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, JFK 16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Immunity (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 12-5773)被用于被用于流式细胞仪在小鼠样本上 (图 2). Int J Obes (Lond) (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 人类; 图 s8
赛默飞世尔 Foxp3抗体(ebiosciences, fjk-16s)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s8). Nat Biotechnol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:250; 图 4d
赛默飞世尔 Foxp3抗体(eBioscience, 14-5773)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). J Immunother Cancer (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 人类; 1:200
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在人类样本上浓度为1:200. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773)被用于被用于流式细胞仪在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6b
  • 免疫组化; 小鼠; 图 3b
赛默飞世尔 Foxp3抗体(eBioscience, FKJ-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6b) 和 被用于免疫组化在小鼠样本上 (图 3b). Transplantation (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). PLoS ONE (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, 150D/E4)被用于被用于流式细胞仪在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). PLoS Pathog (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:400; 图 s7
赛默飞世尔 Foxp3抗体(eBioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 s7). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. Nat Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠; 1:100; 图 5,6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 5,6). Nat Commun (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Bone Miner Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 s5
赛默飞世尔 Foxp3抗体(ebioscince, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5). Cancer Immunol Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Clin Invest (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2). PLoS Pathog (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK -16s)被用于被用于流式细胞仪在小鼠样本上. Sci Rep (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 5). Cell Res (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2) 和 被用于流式细胞仪在小鼠样本上. Immunology (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 表 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (表 1). J Neuroinflammation (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s5). Nat Immunol (2015) ncbi
小鼠 单克隆(150D/E4)
  • 流式细胞仪; 大鼠; 图 1
赛默飞世尔 Foxp3抗体(eBiosciences, 150D/E4)被用于被用于流式细胞仪在大鼠样本上 (图 1). Mol Vis (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于流式细胞仪在小鼠样本上. J Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Am Heart Assoc (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 人类
  • 流式细胞仪; pigs
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫细胞化学在人类样本上 和 被用于流式细胞仪在pigs 样本上. Dev Comp Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; pigs
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在pigs 样本上. Mol Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 1:25
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上浓度为1:25. Cytokine (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). J Heart Lung Transplant (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Clin Invest (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). Transpl Int (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫细胞化学在小鼠样本上. Immunol Cell Biol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
  • 免疫组化; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(Ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7) 和 被用于免疫组化在小鼠样本上 (图 7). Mucosal Immunol (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 3
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3) 和 被用于流式细胞仪在小鼠样本上 (图 5). Am J Pathol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Immunobiology (2015) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫印迹; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 85-17-5773-80)被用于被用于免疫印迹在小鼠样本上. J Mol Cell Cardiol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK- 16s)被用于被用于流式细胞仪在小鼠样本上. Proc Natl Acad Sci U S A (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上. Cancer Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16 s)被用于被用于流式细胞仪在小鼠样本上. Nanomedicine (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJL-16s)被用于被用于流式细胞仪在小鼠样本上. J Infect Dis (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Cancer Immunol Res (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(Ebioscience, 11-5773-82)被用于被用于流式细胞仪在小鼠样本上. Kidney Int (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, 17-5773-82)被用于被用于流式细胞仪在小鼠样本上. Ann Neurol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S9)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 犬; 1:400
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在犬样本上浓度为1:400. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). PLoS ONE (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 1:100
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. Nat Commun (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Virol Sin (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Immunology (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Invest Dermatol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Exp Med (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
  • 免疫组化; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫组化在小鼠样本上 (图 2). PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s2). J Invest Dermatol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 s3). PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(ebioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6). Eur J Immunol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 s4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Eur J Immunol (2013) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上 (图 6). J Exp Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 7
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 7). J Exp Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Evid Based Complement Alternat Med (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6). PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Cardiothorac Surg (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2012) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Nature (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). PLoS ONE (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-冰冻切片; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(Ebioscience, FJK-16S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1). PLoS ONE (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5, 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5, 6). J Exp Med (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, clone FJK16s)被用于被用于流式细胞仪在小鼠样本上. Brain Behav Immun (2011) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16a)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 2
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 2). J Immunol (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2010) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 人类; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在人类样本上 (图 1). Blood (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 6
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 6) 和 被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化在小鼠样本上 (图 4). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5c
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5c). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2009) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1d
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Clin Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Am J Pathol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 4). Blood (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 3
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16S)被用于被用于流式细胞仪在小鼠样本上 (图 3). Int J Parasitol (2008) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 8
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 8). J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Blood (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Mol Vis (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBiosciences, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. Parasite Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1a
赛默飞世尔 Foxp3抗体(eBioscience, FKJ-16S)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Immunol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). Blood (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 4B
赛默飞世尔 Foxp3抗体(eBioscience, FJK16)被用于被用于流式细胞仪在小鼠样本上 (图 4B). J Leukoc Biol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
  • 免疫印迹; 小鼠; 图 1B
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 1B). J Biol Chem (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 6C
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 6C). Hepatology (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-IGS)被用于被用于流式细胞仪在小鼠样本上. Int Immunopharmacol (2007) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 S1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 S1). J Exp Med (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Clin Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 5). J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于流式细胞仪在小鼠样本上 (图 6). Am J Pathol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2006) ncbi
大鼠 单克隆(FJK-16s)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Foxp3抗体(eBioscience, FJK-16s)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Immunol (2006) ncbi
BioLegend
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 1:100; 图 7a
BioLegend Foxp3抗体(Biolegend, 320012)被用于被用于流式细胞仪在人类样本上浓度为1:100 (图 7a). elife (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 4f
BioLegend Foxp3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上 (图 4f). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:500; 图 e2f
BioLegend Foxp3抗体(Biolegend, 320008)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 e2f). Nature (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:40; 图 6s1
BioLegend Foxp3抗体(Biolegend, 320007)被用于被用于流式细胞仪在小鼠样本上浓度为1:40 (图 6s1). elife (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 3b
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 3b). Int J Cancer (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 猕猴; 图 2g
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在猕猴样本上 (图 2g). J Virol (2019) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 3c
BioLegend Foxp3抗体(Biolegend, 320013)被用于被用于流式细胞仪在人类样本上 (图 3c). Biosci Rep (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 s2a
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 s2a). J Clin Invest (2018) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 1:50; 图 5b
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2017) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 4c). JCI Insight (2017) ncbi
小鼠 单克隆(150D)
  • 染色质免疫沉淀 ; 小鼠; 图 4
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于染色质免疫沉淀 在小鼠样本上 (图 4). Nat Immunol (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 5d
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 5d). Gastroenterology (2016) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 6
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上 (图 6). J Transl Med (2016) ncbi
小鼠 单克隆(150D)
  • 免疫印迹; 小鼠; 1:500; 图 4
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类
BioLegend Foxp3抗体(Biolegend, 320014)被用于被用于流式细胞仪在人类样本上. Mol Oncol (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠; 图 2
BioLegend Foxp3抗体(BioLegend, 320014)被用于被用于流式细胞仪在小鼠样本上 (图 2). Oncoimmunology (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 人类; 图 5
BioLegend Foxp3抗体(Biolegend, 150D)被用于被用于流式细胞仪在人类样本上 (图 5). J Cell Mol Med (2015) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 大鼠; 图 7
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于流式细胞仪在大鼠样本上 (图 7). Eur J Immunol (2015) ncbi
小鼠 单克隆(150D)
BioLegend Foxp3抗体(BioLegend, 150D)被用于. Nat Commun (2014) ncbi
小鼠 单克隆(150D)
  • 流式细胞仪; 小鼠
BioLegend Foxp3抗体(Biolegend, 320013)被用于被用于流式细胞仪在小鼠样本上. Exp Parasitol (2014) ncbi
小鼠 单克隆(150D)
  • 免疫细胞化学; 人类; 1:50
BioLegend Foxp3抗体(BioLegend, 150D)被用于被用于免疫细胞化学在人类样本上浓度为1:50. Nephrology (Carlton) (2014) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 1:50; 图 7a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, mAbcam22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 7a). Arthritis Res Ther (2020) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 表 1
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上 (表 1). Cell (2017) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 17.0 ug/ml; 图 1F
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为17.0 ug/ml (图 1F). PLoS ONE (2016) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫组化-石蜡切片; 人类; 20 ug/ml; 图 3b
  • 免疫印迹; 人类; 图 3f
艾博抗(上海)贸易有限公司 Foxp3抗体(abcam, ab22510)被用于被用于免疫组化-石蜡切片在人类样本上浓度为20 ug/ml (图 3b) 和 被用于免疫印迹在人类样本上 (图 3f). PLoS ONE (2015) ncbi
小鼠 单克隆(mAbcam 22510)
  • 免疫印迹; 人类; 图 1a
艾博抗(上海)贸易有限公司 Foxp3抗体(Abcam, ab22510)被用于被用于免疫印迹在人类样本上 (图 1a). Liver Int (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2A11G9)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫印迹; 小鼠; 1:500; 图 6a, 6b
圣克鲁斯生物技术 Foxp3抗体(Santa Cruz, sc-53,876)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a, 6b). BMC Nephrol (2019) ncbi
小鼠 单克隆(F-9)
  • 免疫组化-石蜡切片; 小鼠; 表 1
圣克鲁斯生物技术 Foxp3抗体(Santa Cruz, sc166212)被用于被用于免疫组化-石蜡切片在小鼠样本上 (表 1). Methods Mol Biol (2015) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 3f
Novus Biologicals Foxp3抗体(Novus, NB100-39002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 3f). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
Novus Biologicals Foxp3抗体(Novus Biologicals, NB100-39002)被用于. Nature (2015) ncbi
北京傲锐东源
domestic rabbit 多克隆(polyclonal)
  • 免疫印迹; 人类; 图 1i
北京傲锐东源 Foxp3抗体(Origene, TA319911)被用于被用于免疫印迹在人类样本上 (图 1i). Oncotarget (2016) ncbi
文章列表
  1. Ebelt N, Zuniga E, Marzagalli M, Zamloot V, Blazar B, Salgia R, et al. Salmonella-Based Therapy Targeting Indoleamine 2,3-Dioxygenase Restructures the Immune Contexture to Improve Checkpoint Blockade Efficacy. Biomedicines. 2020;8: pubmed 出版商
  2. Jensen I, Jensen S, Sjaastad F, Gibson Corley K, Dileepan T, Griffith T, et al. Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. elife. 2020;9: pubmed 出版商
  3. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  4. Fernandes R, Li C, Wang G, Yang X, Savvides C, Glassman C, et al. Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo. elife. 2020;9: pubmed 出版商
  5. Runyan C, Welch L, Lecuona E, Shigemura M, Amarelle L, Abdala Valencia H, et al. Impaired phagocytic function in CX3CR1+ tissue-resident skeletal muscle macrophages prevents muscle recovery after influenza A virus-induced pneumonia in old mice. Aging Cell. 2020;: pubmed 出版商
  6. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  7. Svensson M, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody K, et al. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. Sci Adv. 2020;6:eaba4353 pubmed 出版商
  8. Domingo Gonzalez R, Zanini F, Che X, Liu M, Jones R, Swift M, et al. Diverse homeostatic and immunomodulatory roles of immune cells in the developing mouse lung at single cell resolution. elife. 2020;9: pubmed 出版商
  9. Yamamoto K, Venida A, Yano J, Biancur D, Kakiuchi M, Gupta S, et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature. 2020;581:100-105 pubmed 出版商
  10. Hanaoka H, Nishimoto T, Okazaki Y, Takeuchi T, Kuwana M. A unique thymus-derived regulatory T cell subset associated with systemic lupus erythematosus. Arthritis Res Ther. 2020;22:88 pubmed 出版商
  11. Stebegg M, Bignon A, Hill D, Silva Cayetano A, Krueger C, Vanderleyden I, et al. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. elife. 2020;9: pubmed 出版商
  12. Zhang S, Liang W, Luo L, Sun S, Wang F. The role of T cell trafficking in CTLA-4 blockade-induced gut immunopathology. BMC Biol. 2020;18:29 pubmed 出版商
  13. Hu X, Deng Q, Ma L, Li Q, Chen Y, Liao Y, et al. Meningeal lymphatic vessels regulate brain tumor drainage and immunity. Cell Res. 2020;30:229-243 pubmed 出版商
  14. Aslan K, Turco V, Blobner J, Sonner J, Liuzzi A, Núñez N, et al. Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas. Nat Commun. 2020;11:931 pubmed 出版商
  15. Ferrer Font L, Mehta P, Harmos P, Schmidt A, Chappell S, Price K, et al. High-dimensional analysis of intestinal immune cells during helminth infection. elife. 2020;9: pubmed 出版商
  16. Lee J, Zhang J, Chung Y, Kim J, Kook C, Gonzalez Navajas J, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and -dependent signals inhibit Th2 and promote Th17 responses. elife. 2020;9: pubmed 出版商
  17. Liu Z, Wen J, Wu C, Hu C, Wang J, Bao Q, et al. MicroRNA-200a induces immunosuppression by promoting PTEN-mediated PD-L1 upregulation in osteosarcoma. Aging (Albany NY). 2020;12:1213-1236 pubmed 出版商
  18. Lawenius L, Scheffler J, Gustafsson K, Henning P, Nilsson K, Colldén H, et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss. Am J Physiol Endocrinol Metab. 2020;318:E480-E491 pubmed 出版商
  19. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  20. Poli D, Mattei G, Ucciferri N, Ahluwalia A. An Integrated In Vitro-In Silico Approach for Silver Nanoparticle Dosimetry in Cell Cultures. Ann Biomed Eng. 2020;48:1271-1280 pubmed 出版商
  21. Kimura S, Nakamura Y, Kobayashi N, Shiroguchi K, Kawakami E, Mutoh M, et al. Osteoprotegerin-dependent M cell self-regulation balances gut infection and immunity. Nat Commun. 2020;11:234 pubmed 出版商
  22. Lee J, Hall J, Kroehling L, Wu L, Najar T, Nguyen H, et al. Serum Amyloid A Proteins Induce Pathogenic Th17 Cells and Promote Inflammatory Disease. Cell. 2020;180:79-91.e16 pubmed 出版商
  23. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  24. Leylek R, Alcántara Hernández M, Lanzar Z, Lüdtke A, Perez O, Reizis B, et al. Integrated Cross-Species Analysis Identifies a Conserved Transitional Dendritic Cell Population. Cell Rep. 2019;29:3736-3750.e8 pubmed 出版商
  25. Li A, Herbst R, Canner D, Schenkel J, Smith O, Kim J, et al. IL-33 Signaling Alters Regulatory T Cell Diversity in Support of Tumor Development. Cell Rep. 2019;29:2998-3008.e8 pubmed 出版商
  26. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  27. Hang S, Paik D, Yao L, Kim E, Jamma T, Lu J, et al. Bile acid metabolites control TH17 and Treg cell differentiation. Nature. 2019;576:143-148 pubmed 出版商
  28. Martínez Fábregas J, Wilmes S, Wang L, Hafer M, Pohler E, Lokau J, et al. Kinetics of cytokine receptor trafficking determine signaling and functional selectivity. elife. 2019;8: pubmed 出版商
  29. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  30. Alspach E, Lussier D, Miceli A, Kizhvatov I, DuPage M, Luoma A, et al. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature. 2019;574:696-701 pubmed 出版商
  31. Benechet A, De Simone G, Di Lucia P, Cilenti F, Barbiera G, Le Bert N, et al. Dynamics and genomic landscape of CD8+ T cells undergoing hepatic priming. Nature. 2019;574:200-205 pubmed 出版商
  32. Wang P, Qi X, Xu G, Liu J, Guo J, Li X, et al. CCL28 promotes locomotor recovery after spinal cord injury via recruiting regulatory T cells. Aging (Albany NY). 2019;11:7402-7415 pubmed 出版商
  33. Wolf Y, Bartok O, Patkar S, Eli G, Cohen S, Litchfield K, et al. UVB-Induced Tumor Heterogeneity Diminishes Immune Response in Melanoma. Cell. 2019;179:219-235.e21 pubmed 出版商
  34. Fu D, Senouthai S, Wang J, You Y. Vasoactive intestinal peptide ameliorates renal injury in a pristane-induced lupus mouse model by modulating Th17/Treg balance. BMC Nephrol. 2019;20:350 pubmed 出版商
  35. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  36. Collins N, Han S, Enamorado M, Link V, Huang B, Moseman E, et al. The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell. 2019;178:1088-1101.e15 pubmed 出版商
  37. Rosshart S, Herz J, Vassallo B, Hunter A, Wall M, Badger J, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365: pubmed 出版商
  38. Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu L, Marchisio M, et al. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer. 2019;7:201 pubmed 出版商
  39. Leclerc M, Voilin E, Gros G, Corgnac S, de Montpreville V, Validire P, et al. Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by Neuropilin-1. Nat Commun. 2019;10:3345 pubmed 出版商
  40. Ansaldo E, Slayden L, Ching K, Koch M, Wolf N, Plichta D, et al. Akkermansia muciniphila induces intestinal adaptive immune responses during homeostasis. Science. 2019;364:1179-1184 pubmed 出版商
  41. Rosenbaum M, Gewies A, Pechloff K, Heuser C, Engleitner T, Gehring T, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10:2352 pubmed 出版商
  42. Di Pilato M, Kim E, Cadilha B, Prüßmann J, Nasrallah M, Seruggia D, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570:112-116 pubmed 出版商
  43. Sharma N, Vacher J, Allison J. TLR1/2 ligand enhances antitumor efficacy of CTLA-4 blockade by increasing intratumoral Treg depletion. Proc Natl Acad Sci U S A. 2019;116:10453-10462 pubmed 出版商
  44. Kotov J, Kotov D, Linehan J, Bardwell V, Gearhart M, Jenkins M. BCL6 corepressor contributes to Th17 cell formation by inhibiting Th17 fate suppressors. J Exp Med. 2019;216:1450-1464 pubmed 出版商
  45. Kawalkowska J, Ogbechi J, Venables P, Williams R. cIAP1/2 inhibition synergizes with TNF inhibition in autoimmunity by down-regulating IL-17A and inducing Tregs. Sci Adv. 2019;5:eaaw5422 pubmed 出版商
  46. Miao Y, Yang H, Levorse J, Yuan S, Polak L, Sribour M, et al. Adaptive Immune Resistance Emerges from Tumor-Initiating Stem Cells. Cell. 2019;177:1172-1186.e14 pubmed 出版商
  47. Esterházy D, Canesso M, Mesin L, Muller P, de Castro T, Lockhart A, et al. Compartmentalized gut lymph node drainage dictates adaptive immune responses. Nature. 2019;569:126-130 pubmed 出版商
  48. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  49. Visekruna A, Hartmann S, Sillke Y, Glauben R, Fischer F, Raifer H, et al. Intestinal development and homeostasis require activation and apoptosis of diet-reactive T cells. J Clin Invest. 2019;129:1972-1983 pubmed 出版商
  50. Xing S, Gai K, Li X, Shao P, Zeng Z, Zhao X, et al. Tcf1 and Lef1 are required for the immunosuppressive function of regulatory T cells. J Exp Med. 2019;: pubmed 出版商
  51. Anandagoda N, Willis J, Hertweck A, Roberts L, Jackson I, Gökmen M, et al. microRNA-142-mediated repression of phosphodiesterase 3B critically regulates peripheral immune tolerance. J Clin Invest. 2019;129:1257-1271 pubmed 出版商
  52. Han D, Liu J, Chen C, Dong L, Liu Y, Chang R, et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 2019;566:270-274 pubmed 出版商
  53. Lavoie S, Conway K, Lassen K, Jijon H, Pan H, Chun E, et al. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. elife. 2019;8: pubmed 出版商
  54. Contijoch E, Britton G, Yang C, Mogno I, Li Z, Ng R, et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. elife. 2019;8: pubmed 出版商
  55. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  56. Britton G, Contijoch E, Mogno I, Vennaro O, Llewellyn S, Ng R, et al. Microbiotas from Humans with Inflammatory Bowel Disease Alter the Balance of Gut Th17 and RORγt+ Regulatory T Cells and Exacerbate Colitis in Mice. Immunity. 2019;50:212-224.e4 pubmed 出版商
  57. Silva D, Yu S, Ulge U, Spangler J, Jude K, Labao Almeida C, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature. 2019;565:186-191 pubmed 出版商
  58. Maseda D, Banerjee A, Johnson E, Washington M, Kim H, Lau K, et al. mPGES-1-Mediated Production of PGE2 and EP4 Receptor Sensing Regulate T Cell Colonic Inflammation. Front Immunol. 2018;9:2954 pubmed 出版商
  59. Cornelissen L, Blanas A, van der Horst J, Kruijssen L, Zaal A, O Toole T, et al. Disruption of sialic acid metabolism drives tumor growth by augmenting CD8+ T cell apoptosis. Int J Cancer. 2019;144:2290-2302 pubmed 出版商
  60. Ding L, Kim H, Wang Q, Kearns M, Jiang T, Ohlson C, et al. PARP Inhibition Elicits STING-Dependent Antitumor Immunity in Brca1-Deficient Ovarian Cancer. Cell Rep. 2018;25:2972-2980.e5 pubmed 出版商
  61. Tordesillas L, Lozano Ojalvo D, Dunkin D, Mondoulet L, Agudo J, Merad M, et al. PDL2+ CD11b+ dermal dendritic cells capture topical antigen through hair follicles to prime LAP+ Tregs. Nat Commun. 2018;9:5238 pubmed 出版商
  62. Garić D, Tao S, Ahmed E, Youssef M, Kanagaratham C, Shah J, et al. Depletion of BAFF cytokine exacerbates infection in Pseudomonas aeruginosa infected mice. J Cyst Fibros. 2019;18:349-356 pubmed 出版商
  63. Fiore A, Ugel S, De Sanctis F, Sandri S, Fracasso G, Trovato R, et al. Induction of immunosuppressive functions and NF-κB by FLIP in monocytes. Nat Commun. 2018;9:5193 pubmed 出版商
  64. Sato Y, Bolzenius J, Eteleeb A, Su X, Maher C, Sehn J, et al. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade. JCI Insight. 2018;3: pubmed 出版商
  65. Kiyohara H, Sujino T, Teratani T, Miyamoto K, Arai M, Nomura E, et al. Toll-Like Receptor 7 Agonist-Induced Dermatitis Causes Severe Dextran Sulfate Sodium Colitis by Altering the Gut Microbiome and Immune Cells. Cell Mol Gastroenterol Hepatol. 2019;7:135-156 pubmed 出版商
  66. Atretkhany K, Mufazalov I, Dunst J, Kuchmiy A, Gogoleva V, Andruszewski D, et al. Intrinsic TNFR2 signaling in T regulatory cells provides protection in CNS autoimmunity. Proc Natl Acad Sci U S A. 2018;115:13051-13056 pubmed 出版商
  67. Aarts S, Seijkens T, Kusters P, Van Tiel C, Reiche M, den Toom M, et al. Macrophage CD40 signaling drives experimental autoimmune encephalomyelitis. J Pathol. 2019;247:471-480 pubmed 出版商
  68. Dong S, Harrington B, Hu E, Greene J, Lehman A, Tran M, et al. PI3K p110δ inactivation antagonizes chronic lymphocytic leukemia and reverses T cell immune suppression. J Clin Invest. 2019;129:122-136 pubmed 出版商
  69. Sharma D, Malik A, Guy C, Vogel P, Kanneganti T. TNF/TNFR axis promotes pyrin inflammasome activation and distinctly modulates pyrin inflammasomopathy. J Clin Invest. 2019;129:150-162 pubmed 出版商
  70. He Z, Zhang J, Huang Z, Du Q, Li N, Zhang Q, et al. Sumoylation of RORγt regulates TH17 differentiation and thymocyte development. Nat Commun. 2018;9:4870 pubmed 出版商
  71. Singh A, Khare P, Obaid A, Conlon K, Basrur V, Depinho R, et al. SUMOylation of ROR-γt inhibits IL-17 expression and inflammation via HDAC2. Nat Commun. 2018;9:4515 pubmed 出版商
  72. Humblet Baron S, Barber J, Roca C, Lenaerts A, Koni P, Liston A. Murine myeloproliferative disorder as a consequence of impaired collaboration between dendritic cells and CD4 T cells. Blood. 2018;: pubmed 出版商
  73. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  74. Hoang T, Harper J, Pino M, Wang H, Micci L, King C, et al. Bone Marrow-Derived CD4+ T Cells Are Depleted in Simian Immunodeficiency Virus-Infected Macaques and Contribute to the Size of the Replication-Competent Reservoir. J Virol. 2019;93: pubmed 出版商
  75. Zhao D, Kim Y, Jeong S, Greenson J, Chaudhry M, Hoepting M, et al. Survival signal REG3α prevents crypt apoptosis to control acute gastrointestinal graft-versus-host disease. J Clin Invest. 2018;128:4970-4979 pubmed 出版商
  76. Deason K, Troutman T, Jain A, Challa D, Mandraju R, Brewer T, et al. BCAP links IL-1R to the PI3K-mTOR pathway and regulates pathogenic Th17 cell differentiation. J Exp Med. 2018;215:2413-2428 pubmed 出版商
  77. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  78. Baens M, Stirparo R, Lampi Y, Verbeke D, Vandepoel R, Cools J, et al. Malt1 self-cleavage is critical for regulatory T cell homeostasis and anti-tumor immunity in mice. Eur J Immunol. 2018;48:1728-1738 pubmed 出版商
  79. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  80. Daenthanasanmak A, Wu Y, Iamsawat S, Nguyen H, Bastian D, Zhang M, et al. PIM-2 protein kinase negatively regulates T cell responses in transplantation and tumor immunity. J Clin Invest. 2018;128:2787-2801 pubmed 出版商
  81. Zhao S, Ding J, Wang S, Li C, Guo P, Zhang M, et al. Decreased expression of circulating Aire and increased Tfh/Tfr cells in myasthenia gravis patients. Biosci Rep. 2018;38: pubmed 出版商
  82. Kyung D, Sung H, Kim Y, Kim K, Cho S, Choi J, et al. Global transcriptome analysis identifies weight regain-induced activation of adaptive immune responses in white adipose tissue of mice. Int J Obes (Lond). 2018;42:755-764 pubmed 出版商
  83. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  84. Emmerson A, Trevelin S, Mongue Din H, Becker P, Ortiz C, Smyth L, et al. Nox2 in regulatory T cells promotes angiotensin II-induced cardiovascular remodeling. J Clin Invest. 2018;128:3088-3101 pubmed 出版商
  85. Georgiev H, Ravens I, Papadogianni G, Halle S, Malissen B, Loots G, et al. Shared and Unique Features Distinguishing Follicular T Helper and Regulatory Cells of Peripheral Lymph Node and Peyer's Patches. Front Immunol. 2018;9:714 pubmed 出版商
  86. Tanaka S, Pfleger C, Lai J, Roan F, Sun S, Ziegler S. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep. 2018;23:796-807 pubmed 出版商
  87. Varelias A, Bunting M, Ormerod K, Koyama M, Olver S, Straube J, et al. Recipient mucosal-associated invariant T cells control GVHD within the colon. J Clin Invest. 2018;128:1919-1936 pubmed 出版商
  88. Prado C, Gaiazzi M, Gonzalez H, Ugalde V, Figueroa A, Osorio Barrios F, et al. Dopaminergic Stimulation of Myeloid Antigen-Presenting Cells Attenuates Signal Transducer and Activator of Transcription 3-Activation Favouring the Development of Experimental Autoimmune Encephalomyelitis. Front Immunol. 2018;9:571 pubmed 出版商
  89. Kornberg M, Bhargava P, Kim P, Putluri V, Snowman A, Putluri N, et al. Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity. Science. 2018;360:449-453 pubmed 出版商
  90. Gaddis D, Padgett L, Wu R, McSkimming C, Romines V, Taylor A, et al. Apolipoprotein AI prevents regulatory to follicular helper T cell switching during atherosclerosis. Nat Commun. 2018;9:1095 pubmed 出版商
  91. Macdougall C, Wood E, Loschko J, Scagliotti V, Cassidy F, Robinson M, et al. Visceral Adipose Tissue Immune Homeostasis Is Regulated by the Crosstalk between Adipocytes and Dendritic Cell Subsets. Cell Metab. 2018;27:588-601.e4 pubmed 出版商
  92. Sockolosky J, Trotta E, Parisi G, Picton L, Su L, Le A, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037-1042 pubmed 出版商
  93. Kornete M, Marone R, Jeker L. Highly Efficient and Versatile Plasmid-Based Gene Editing in Primary T Cells. J Immunol. 2018;200:2489-2501 pubmed 出版商
  94. Kim I, Kim K, Lee E, Oh D, Park C, Park S, et al. Sox7 promotes high-grade glioma by increasing VEGFR2-mediated vascular abnormality. J Exp Med. 2018;215:963-983 pubmed 出版商
  95. Kotov D, Kotov J, Goldberg M, Jenkins M. Many Th Cell Subsets Have Fas Ligand-Dependent Cytotoxic Potential. J Immunol. 2018;200:2004-2012 pubmed 出版商
  96. Perry C, Muñoz Rojas A, Meeth K, Kellman L, Amezquita R, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018;215:877-893 pubmed 出版商
  97. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med. 2018;215:985-997 pubmed 出版商
  98. Hsieh W, Hsu T, Chang Y, Lai M. IL-6 receptor blockade corrects defects of XIAP-deficient regulatory T cells. Nat Commun. 2018;9:463 pubmed 出版商
  99. Wheeler D, Sariol A, Meyerholz D, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128:931-943 pubmed 出版商
  100. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  101. Ferdinand J, Richard A, Meylan F, Al Shamkhani A, Siegel R. Cleavage of TL1A Differentially Regulates Its Effects on Innate and Adaptive Immune Cells. J Immunol. 2018;200:1360-1369 pubmed 出版商
  102. Fontaine M, Vogel I, Van Eycke Y, Galuppo A, Ajouaou Y, Decaestecker C, et al. Regulatory T cells constrain the TCR repertoire of antigen-stimulated conventional CD4 T cells. EMBO J. 2018;37:398-412 pubmed 出版商
  103. Guimarães G, Gomes M, Campos P, Marinho F, de Assis N, Silveira T, et al. Immunoproteasome Subunits Are Required for CD8+ T Cell Function and Host Resistance to Brucella abortus Infection in Mice. Infect Immun. 2018;86: pubmed 出版商
  104. Bäcker V, Cheung F, Siveke J, Fandrey J, Winning S. Knockdown of myeloid cell hypoxia-inducible factor-1? ameliorates the acute pathology in DSS-induced colitis. PLoS ONE. 2017;12:e0190074 pubmed 出版商
  105. Burrack A, Malhotra D, Dileepan T, Osum K, Swanson L, Fife B, et al. Cutting Edge: Allograft Rejection Is Associated with Weak T Cell Responses to Many Different Graft Leukocyte-Derived Peptides. J Immunol. 2018;200:477-482 pubmed 出版商
  106. Maseda D, Johnson E, Nyhoff L, Baron B, Kojima F, Wilhelm A, et al. mPGES1-Dependent Prostaglandin E2 (PGE2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE2 Production. J Immunol. 2018;200:725-736 pubmed 出版商
  107. Mailer R, Gisterå A, Polyzos K, Ketelhuth D, Hansson G. Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Sci Rep. 2017;7:15655 pubmed 出版商
  108. Kwak J, Laskowski J, Li H, McSharry M, Sippel T, Bullock B, et al. Complement Activation via a C3a Receptor Pathway Alters CD4+ T Lymphocytes and Mediates Lung Cancer Progression. Cancer Res. 2018;78:143-156 pubmed 出版商
  109. Li B, Wang X, Choi I, Wang Y, Liu S, Pham A, et al. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J Clin Invest. 2017;127:3702-3716 pubmed 出版商
  110. Goel S, Decristo M, Watt A, BrinJones H, Sceneay J, Li B, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017;548:471-475 pubmed 出版商
  111. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  112. Kyratsous N, Bauer I, Zhang G, Pesic M, Bartholomäus I, Mues M, et al. Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A. 2017;114:E6381-E6389 pubmed 出版商
  113. Billerbeck E, Wolfisberg R, Fahnøe U, Xiao J, Quirk C, Luna J, et al. Mouse models of acute and chronic hepacivirus infection. Science. 2017;357:204-208 pubmed 出版商
  114. Sitrin J, Suto E, Wuster A, Eastham Anderson J, Kim J, Austin C, et al. The Ox40/Ox40 Ligand Pathway Promotes Pathogenic Th Cell Responses, Plasmablast Accumulation, and Lupus Nephritis in NZB/W F1 Mice. J Immunol. 2017;199:1238-1249 pubmed 出版商
  115. Zheng C, Zheng L, Yoo J, Guo H, Zhang Y, Guo X, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing. Cell. 2017;169:1342-1356.e16 pubmed 出版商
  116. Seifert H, Benedek G, Liang J, Nguyen H, Kent G, Vandenbark A, et al. Sex differences in regulatory cells in experimental stroke. Cell Immunol. 2017;318:49-54 pubmed 出版商
  117. Xie M, Koh B, Hollister K, Wu H, Sun J, Kaplan M, et al. Bcl6 promotes follicular helper T-cell differentiation and PD-1 expression in a Blimp1-independent manner in mice. Eur J Immunol. 2017;47:1136-1141 pubmed 出版商
  118. Hasan Z, Koizumi S, Sasaki D, Yamada H, Arakaki N, Fujihara Y, et al. JunB is essential for IL-23-dependent pathogenicity of Th17 cells. Nat Commun. 2017;8:15628 pubmed 出版商
  119. Li C, Leng Y, Zhao B, Gao C, Du F, Jin N, et al. Human iPSC-MSC-Derived Xenografts Modulate Immune Responses by Inhibiting the Cleavage of Caspases. Stem Cells. 2017;35:1719-1732 pubmed 出版商
  120. Tang A, Choi J, Kotzin J, Yang Y, Hong C, Hobson N, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305-310 pubmed 出版商
  121. Burton O, Tamayo J, Stranks A, Koleoglou K, Oettgen H. Allergen-specific IgG antibody signaling through FcγRIIb promotes food tolerance. J Allergy Clin Immunol. 2018;141:189-201.e3 pubmed 出版商
  122. Daley D, Mani V, Mohan N, Akkad N, Pandian G, Savadkar S, et al. NLRP3 signaling drives macrophage-induced adaptive immune suppression in pancreatic carcinoma. J Exp Med. 2017;214:1711-1724 pubmed 出版商
  123. Meinicke H, Bremser A, Brack M, Schrenk K, Pircher H, Izcue A. KLRG1 impairs regulatory T-cell competitive fitness in the gut. Immunology. 2017;152:65-73 pubmed 出版商
  124. Meinicke H, Bremser A, Brack M, Akeus P, Pearson C, Bullers S, et al. Tumour-associated changes in intestinal epithelial cells cause local accumulation of KLRG1+ GATA3+ regulatory T cells in mice. Immunology. 2017;152:74-88 pubmed 出版商
  125. Angelin A, Gil de Gómez L, Dahiya S, Jiao J, Guo L, Levine M, et al. Foxp3 Reprograms T Cell Metabolism to Function in Low-Glucose, High-Lactate Environments. Cell Metab. 2017;25:1282-1293.e7 pubmed 出版商
  126. Garg G, Nikolouli E, Hardtke Wolenski M, Toker A, Ohkura N, Beckstette M, et al. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells. Oncotarget. 2017;8:35542-35557 pubmed 出版商
  127. Fu G, Xu Q, Qiu Y, Jin X, Xu T, Dong S, et al. Suppression of Th17 cell differentiation by misshapen/NIK-related kinase MINK1. J Exp Med. 2017;214:1453-1469 pubmed 出版商
  128. Zemmour D, Pratama A, Loughhead S, Mathis D, Benoist C. Flicr, a long noncoding RNA, modulates Foxp3 expression and autoimmunity. Proc Natl Acad Sci U S A. 2017;114:E3472-E3480 pubmed 出版商
  129. Melis D, Carbone F, Minopoli G, La Rocca C, Perna F, De Rosa V, et al. Cutting Edge: Increased Autoimmunity Risk in Glycogen Storage Disease Type 1b Is Associated with a Reduced Engagement of Glycolysis in T Cells and an Impaired Regulatory T Cell Function. J Immunol. 2017;198:3803-3808 pubmed 出版商
  130. Bouziat R, Hinterleitner R, Brown J, Stencel Baerenwald J, Ikizler M, Mayassi T, et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science. 2017;356:44-50 pubmed 出版商
  131. Bruce D, Stefanski H, Vincent B, Dant T, Reisdorf S, Bommiasamy H, et al. Type 2 innate lymphoid cells treat and prevent acute gastrointestinal graft-versus-host disease. J Clin Invest. 2017;127:1813-1825 pubmed 出版商
  132. Liu Z, Ravindranathan R, Kalinski P, Guo Z, Bartlett D. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun. 2017;8:14754 pubmed 出版商
  133. Ansa Addo E, Zhang Y, Yang Y, Hussey G, Howley B, Salem M, et al. Membrane-organizing protein moesin controls Treg differentiation and antitumor immunity via TGF-β signaling. J Clin Invest. 2017;127:1321-1337 pubmed 出版商
  134. Fisher S, Aston W, Chee J, Khong A, Cleaver A, Solin J, et al. Transient Treg depletion enhances therapeutic anti-cancer vaccination. Immun Inflamm Dis. 2017;5:16-28 pubmed 出版商
  135. Komegae E, Souza T, Grund L, Lima C, Lopes Ferreira M. Multiple functional therapeutic effects of TnP: A small stable synthetic peptide derived from fish venom in a mouse model of multiple sclerosis. PLoS ONE. 2017;12:e0171796 pubmed 出版商
  136. Huang R, Francois A, McGray A, Miliotto A, Odunsi K. Compensatory upregulation of PD-1, LAG-3, and CTLA-4 limits the efficacy of single-agent checkpoint blockade in metastatic ovarian cancer. Oncoimmunology. 2017;6:e1249561 pubmed 出版商
  137. Zamarin D, Holmgaard R, Ricca J, Plitt T, Palese P, Sharma P, et al. Intratumoral modulation of the inducible co-stimulator ICOS by recombinant oncolytic virus promotes systemic anti-tumour immunity. Nat Commun. 2017;8:14340 pubmed 出版商
  138. Ying W, Wollam J, Ofrecio J, Bandyopadhyay G, El Ouarrat D, Lee Y, et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J Clin Invest. 2017;127:1019-1030 pubmed 出版商
  139. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  140. Zhang H, Qi Y, Yuan Y, Cai L, Xu H, Zhang L, et al. Paeoniflorin Ameliorates Experimental Autoimmune Encephalomyelitis via Inhibition of Dendritic Cell Function and Th17 Cell Differentiation. Sci Rep. 2017;7:41887 pubmed 出版商
  141. Ramjee V, Li D, Manderfield L, Liu F, Engleka K, Aghajanian H, et al. Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest. 2017;127:899-911 pubmed 出版商
  142. Asano T, Meguri Y, Yoshioka T, Kishi Y, Iwamoto M, Nakamura M, et al. PD-1 modulates regulatory T-cell homeostasis during low-dose interleukin-2 therapy. Blood. 2017;129:2186-2197 pubmed 出版商
  143. Berlato C, Khan M, Schioppa T, Thompson R, Maniati E, Montfort A, et al. A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer. J Clin Invest. 2017;127:801-813 pubmed 出版商
  144. Goverse G, Molenaar R, Macia L, Tan J, Erkelens M, Konijn T, et al. Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. J Immunol. 2017;198:2172-2181 pubmed 出版商
  145. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya E, et al. Anti-SIRPα antibodies as a potential new tool for cancer immunotherapy. JCI Insight. 2017;2:e89140 pubmed 出版商
  146. Mizutani H, Tamagawa Mineoka R, Minami Y, Yagita K, Katoh N. Constant light exposure impairs immune tolerance development in mice. J Dermatol Sci. 2017;86:63-70 pubmed 出版商
  147. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214:209-226 pubmed 出版商
  148. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  149. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  150. Aguilera T, Rafat M, Castellini L, Shehade H, Kariolis M, Hui A, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898 pubmed 出版商
  151. Hashimoto Hill S, Friesen L, Kim M, Kim C. Contraction of intestinal effector T cells by retinoic acid-induced purinergic receptor P2X7. Mucosal Immunol. 2017;10:912-923 pubmed 出版商
  152. Yokota Nakatsuma A, Ohoka Y, Takeuchi H, Song S, Iwata M. Beta 1-integrin ligation and TLR ligation enhance GM-CSF-induced ALDH1A2 expression in dendritic cells, but differentially regulate their anti-inflammatory properties. Sci Rep. 2016;6:37914 pubmed 出版商
  153. Hammer A, Yang G, Friedrich J, Kovacs A, Lee D, Grave K, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci U S A. 2016;113:14109-14114 pubmed
  154. Escalante N, Lemire P, Cruz Tleugabulova M, Prescott D, Mortha A, Streutker C, et al. The common mouse protozoa Tritrichomonas muris alters mucosal T cell homeostasis and colitis susceptibility. J Exp Med. 2016;213:2841-2850 pubmed
  155. Cummings R, Barbet G, Bongers G, Hartmann B, Gettler K, Muniz L, et al. Different tissue phagocytes sample apoptotic cells to direct distinct homeostasis programs. Nature. 2016;539:565-569 pubmed 出版商
  156. Shirakawa K, Yan X, Shinmura K, Endo J, Kataoka M, Katsumata Y, et al. Obesity accelerates T cell senescence in murine visceral adipose tissue. J Clin Invest. 2016;126:4626-4639 pubmed 出版商
  157. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  158. Shifrin N, Kissiov D, Ardolino M, Joncker N, Raulet D. Differential Role of Hematopoietic and Nonhematopoietic Cell Types in the Regulation of NK Cell Tolerance and Responsiveness. J Immunol. 2016;197:4127-4136 pubmed 出版商
  159. Kwong Chung C, Ronchi F, Geuking M. Detrimental effect of systemic antimicrobial CD4+ T-cell reactivity on gut epithelial integrity. Immunology. 2017;150:221-235 pubmed 出版商
  160. Massaad M, Zhou J, Tsuchimoto D, Chou J, Jabara H, Janssen E, et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J Clin Invest. 2016;126:4219-4236 pubmed 出版商
  161. Gerriets V, Kishton R, Johnson M, Cohen S, Siska P, Nichols A, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17:1459-1466 pubmed 出版商
  162. Klotz L, Kuzmanov I, Hucke S, Gross C, Posevitz V, Dreykluft A, et al. B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6182-E6191 pubmed
  163. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, et al. The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med. 2016;213:2437-2457 pubmed
  164. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  165. Butcher M, Filipowicz A, Waseem T, McGary C, Crow K, Magilnick N, et al. Atherosclerosis-Driven Treg Plasticity Results in Formation of a Dysfunctional Subset of Plastic IFN?+ Th1/Tregs. Circ Res. 2016;119:1190-1203 pubmed 出版商
  166. Uhde A, Herder V, Akram Khan M, Ciurkiewicz M, Schaudien D, Teich R, et al. Viral Infection of the Central Nervous System Exacerbates Interleukin-10 Receptor Deficiency-Mediated Colitis in SJL Mice. PLoS ONE. 2016;11:e0161883 pubmed 出版商
  167. Jou Y, Tsai Y, Lin C, Tung C, Shen C, Tsai H, et al. Foxp3 enhances HIF-1α target gene expression in human bladder cancer through decreasing its ubiquitin-proteasomal degradation. Oncotarget. 2016;7:65403-65417 pubmed 出版商
  168. Chopra M, Biehl M, Steinfatt T, Brandl A, Kums J, Amich J, et al. Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion. J Exp Med. 2016;213:1881-900 pubmed 出版商
  169. Lund A, Wagner M, Fankhauser M, Steinskog E, Broggi M, Spranger S, et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J Clin Invest. 2016;126:3389-402 pubmed 出版商
  170. Liu H, Jain R, Guan J, Vuong V, Ishido S, La Gruta N, et al. Ubiquitin ligase MARCH 8 cooperates with CD83 to control surface MHC II expression in thymic epithelium and CD4 T cell selection. J Exp Med. 2016;213:1695-703 pubmed 出版商
  171. Shi L, Fu T, Guan B, Chen J, Blando J, Allison J, et al. Interdependent IL-7 and IFN-? signalling in T-cell controls tumour eradication by combined ?-CTLA-4+?-PD-1 therapy. Nat Commun. 2016;7:12335 pubmed 出版商
  172. Pizzolla A, Oh D, Luong S, Prickett S, Henstridge D, Febbraio M, et al. High Fat Diet Inhibits Dendritic Cell and T Cell Response to Allergens but Does Not Impair Inhalational Respiratory Tolerance. PLoS ONE. 2016;11:e0160407 pubmed 出版商
  173. Cheng H, Gaddis D, Wu R, McSkimming C, Haynes L, Taylor A, et al. Loss of ABCG1 influences regulatory T cell differentiation and atherosclerosis. J Clin Invest. 2016;126:3236-46 pubmed 出版商
  174. Ferreirinha P, Pérez Cabezas B, Correia A, Miyazawa B, França A, Carvalhais V, et al. Poly-N-Acetylglucosamine Production by Staphylococcus epidermidis Cells Increases Their In Vivo Proinflammatory Effect. Infect Immun. 2016;84:2933-43 pubmed 出版商
  175. Alberdi M, Iglesias M, Tejedor S, Merino R, Lopez Rodriguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFN? expression by the transcription factor NFAT5. Immunol Cell Biol. 2017;95:56-67 pubmed 出版商
  176. Biton J, Khaleghparast Athari S, Thiolat A, Santinon F, Lemeiter D, Hervé R, et al. In Vivo Expansion of Activated Foxp3+ Regulatory T Cells and Establishment of a Type 2 Immune Response upon IL-33 Treatment Protect against Experimental Arthritis. J Immunol. 2016;197:1708-19 pubmed 出版商
  177. Seifert A, Zeng S, Zhang J, Kim T, Cohen N, Beckman M, et al. PD-1/PD-L1 Blockade Enhances T-cell Activity and Antitumor Efficacy of Imatinib in Gastrointestinal Stromal Tumors. Clin Cancer Res. 2017;23:454-465 pubmed 出版商
  178. Stifter K, Schuster C, Schlosser M, Boehm B, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep. 2016;6:29419 pubmed 出版商
  179. Riedel A, Shorthouse D, Haas L, Hall B, Shields J. Tumor-induced stromal reprogramming drives lymph node transformation. Nat Immunol. 2016;17:1118-27 pubmed 出版商
  180. Stadinski B, Shekhar K, Gomez Tourino I, Jung J, Sasaki K, Sewell A, et al. Hydrophobic CDR3 residues promote the development of self-reactive T cells. Nat Immunol. 2016;17:946-55 pubmed 出版商
  181. Brinkman C, Iwami D, Hritzo M, Xiong Y, Ahmad S, Simon T, et al. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat Commun. 2016;7:12021 pubmed 出版商
  182. Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H, et al. Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-?t ubiquitination. Nat Immunol. 2016;17:997-1004 pubmed 出版商
  183. Gu L, Deng W, Sun X, Zhou H, Xu Q. Rapamycin ameliorates CCl4-induced liver fibrosis in mice through reciprocal regulation of the Th17/Treg cell balance. Mol Med Rep. 2016;14:1153-61 pubmed 出版商
  184. Saha A, O Connor R, Thangavelu G, Lovitch S, Dandamudi D, Wilson C, et al. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. J Clin Invest. 2016;126:2642-60 pubmed 出版商
  185. Lim J, Im K, Lee E, Kim N, Nam Y, Jeon Y, et al. Enhanced immunoregulation of mesenchymal stem cells by IL-10-producing type 1 regulatory T cells in collagen-induced arthritis. Sci Rep. 2016;6:26851 pubmed 出版商
  186. Chu H, Khosravi A, Kusumawardhani I, Kwon A, Vasconcelos A, Cunha L, et al. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease. Science. 2016;352:1116-20 pubmed 出版商
  187. Brandstätter O, Schanz O, Vorac J, König J, Mori T, Maruyama T, et al. Balancing intestinal and systemic inflammation through cell type-specific expression of the aryl hydrocarbon receptor repressor. Sci Rep. 2016;6:26091 pubmed 出版商
  188. Guzera M, Szulc Dąbrowska L, Cywinska A, Archer J, Winnicka A. In Vitro Influence of Mycophenolic Acid on Selected Parameters of Stimulated Peripheral Canine Lymphocytes. PLoS ONE. 2016;11:e0154429 pubmed 出版商
  189. Ameratunga M, Asadi K, Lin X, Walkiewicz M, Murone C, Knight S, et al. PD-L1 and Tumor Infiltrating Lymphocytes as Prognostic Markers in Resected NSCLC. PLoS ONE. 2016;11:e0153954 pubmed 出版商
  190. Holmkvist P, Pool L, Hägerbrand K, Agace W, Rivollier A. IL-18R?-deficient CD4(+) T cells induce intestinal inflammation in the CD45RB(hi) transfer model of colitis despite impaired innate responsiveness. Eur J Immunol. 2016;46:1371-82 pubmed 出版商
  191. Seidel P, Remus M, Delacher M, Grigaravicius P, Reuss D, Frappart L, et al. Epidermal Nbn deletion causes premature hair loss and a phenotype resembling psoriasiform dermatitis. Oncotarget. 2016;7:23006-18 pubmed 出版商
  192. Du C, Duan Y, Wei W, Cai Y, Chai H, Lv J, et al. Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination. Nat Commun. 2016;7:11120 pubmed 出版商
  193. Yue Y, Li P, Song N, Li B, Li Z, Guo Y, et al. Genomic and immunologic factors associated with viral pathogenesis in a lethal EV71 infected neonatal mouse model. Mol Med Rep. 2016;13:4183-90 pubmed 出版商
  194. Sim C, Cho Y, Kim B, Baek I, Kim Y, Lee M. 2'-5' Oligoadenylate synthetase-like 1 (OASL1) deficiency in mice promotes an effective anti-tumor immune response by enhancing the production of type I interferons. Cancer Immunol Immunother. 2016;65:663-75 pubmed 出版商
  195. Mathewson N, Jenq R, Mathew A, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nat Immunol. 2016;17:505-513 pubmed 出版商
  196. Gomez de Agüero M, Ganal Vonarburg S, Fuhrer T, Rupp S, Uchimura Y, Li H, et al. The maternal microbiota drives early postnatal innate immune development. Science. 2016;351:1296-302 pubmed 出版商
  197. Apostolidis S, Rodríguez Rodríguez N, Suárez Fueyo A, Dioufa N, Ozcan E, Crispín J, et al. Phosphatase PP2A is requisite for the function of regulatory T cells. Nat Immunol. 2016;17:556-64 pubmed 出版商
  198. Tosiek M, Fiette L, El Daker S, Eberl G, Freitas A. IL-15-dependent balance between Foxp3 and RORγt expression impacts inflammatory bowel disease. Nat Commun. 2016;7:10888 pubmed 出版商
  199. Vermeulen J, Van Hecke W, Spliet W, Villacorta Hidalgo J, Fisch P, Broekhuizen R, et al. Pediatric Primitive Neuroectodermal Tumors of the Central Nervous System Differentially Express Granzyme Inhibitors. PLoS ONE. 2016;11:e0151465 pubmed 出版商
  200. Seifert L, Werba G, Tiwari S, Giao Ly N, Nguy S, Alothman S, et al. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice. Gastroenterology. 2016;150:1659-1672.e5 pubmed 出版商
  201. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Rea D, Barbieri A, et al. A novel multi-drug metronomic chemotherapy significantly delays tumor growth in mice. J Transl Med. 2016;14:58 pubmed 出版商
  202. Kabat A, Harrison O, Riffelmacher T, Moghaddam A, Pearson C, Laing A, et al. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. elife. 2016;5:e12444 pubmed 出版商
  203. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  204. Hu G, Yang S, Hu W, Wen Z, He D, Zeng L, et al. Effect of cold stress on immunity in rats. Exp Ther Med. 2016;11:33-42 pubmed
  205. Xiong Y, Ahmad S, Iwami D, Brinkman C, Bromberg J. T-bet Regulates Natural Regulatory T Cell Afferent Lymphatic Migration and Suppressive Function. J Immunol. 2016;196:2526-40 pubmed 出版商
  206. Lin C, Bradstreet T, Schwarzkopf E, Jarjour N, Chou C, Archambault A, et al. IL-1-induced Bhlhe40 identifies pathogenic T helper cells in a model of autoimmune neuroinflammation. J Exp Med. 2016;213:251-71 pubmed 出版商
  207. Aloulou M, Carr E, Gador M, Bignon A, Liblau R, Fazilleau N, et al. Follicular regulatory T cells can be specific for the immunizing antigen and derive from naive T cells. Nat Commun. 2016;7:10579 pubmed 出版商
  208. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  209. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  210. Yasuma K, Yasunaga J, Takemoto K, Sugata K, Mitobe Y, Takenouchi N, et al. HTLV-1 bZIP Factor Impairs Anti-viral Immunity by Inducing Co-inhibitory Molecule, T Cell Immunoglobulin and ITIM Domain (TIGIT). PLoS Pathog. 2016;12:e1005372 pubmed 出版商
  211. Carrascal J, Carrillo J, Arpa B, Egia Mendikute L, Rosell Mases E, Pujol Autonell I, et al. B-cell anergy induces a Th17 shift in a novel B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse. Eur J Immunol. 2016;46:593-608 pubmed 出版商
  212. Onodera T, Fukuhara A, Jang M, Shin J, Aoi K, Kikuta J, et al. Adipose tissue macrophages induce PPARγ-high FOXP3(+) regulatory T cells. Sci Rep. 2015;5:16801 pubmed 出版商
  213. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  214. Finkin S, Yuan D, Stein I, Taniguchi K, Weber A, Unger K, et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat Immunol. 2015;16:1235-44 pubmed 出版商
  215. Arriola Apelo S, Neuman J, Baar E, Syed F, Cummings N, Brar H, et al. Alternative rapamycin treatment regimens mitigate the impact of rapamycin on glucose homeostasis and the immune system. Aging Cell. 2016;15:28-38 pubmed 出版商
  216. Patel M, Jacobson B, Ji Y, Drees J, Tang S, Xiong K, et al. Vesicular stomatitis virus expressing interferon-β is oncolytic and promotes antitumor immune responses in a syngeneic murine model of non-small cell lung cancer. Oncotarget. 2015;6:33165-77 pubmed 出版商
  217. Ladell K, Hazenberg M, Fitch M, Emson C, McEvoy Hein Asgarian B, Mold J, et al. Continuous Antigenic Stimulation of DO11.10 TCR Transgenic Mice in the Presence or Absence of IL-1?: Possible Implications for Mechanisms of T Cell Depletion in HIV Disease. J Immunol. 2015;195:4096-105 pubmed 出版商
  218. Zanvit P, Konkel J, Jiao X, Kasagi S, Zhang D, Wu R, et al. Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nat Commun. 2015;6:8424 pubmed 出版商
  219. Min S, Yan M, Kim S, Ravikumar S, Kwon S, Vanarsa K, et al. Green Tea Epigallocatechin-3-Gallate Suppresses Autoimmune Arthritis Through Indoleamine-2,3-Dioxygenase Expressing Dendritic Cells and the Nuclear Factor, Erythroid 2-Like 2 Antioxidant Pathway. J Inflamm (Lond). 2015;12:53 pubmed 出版商
  220. Gao Y, Zhang M, Li J, Yang M, Liu Y, Guo X, et al. Circulating FoxP3+ Regulatory T and Interleukin17-Producing Th17 Cells Actively Influence HBV Clearance in De Novo Hepatitis B Virus Infected Patients after Orthotopic Liver Transplantation. PLoS ONE. 2015;10:e0137881 pubmed 出版商
  221. Xiao X, Shi X, Fan Y, Zhang X, Wu M, Lan P, et al. GITR subverts Foxp3(+) Tregs to boost Th9 immunity through regulation of histone acetylation. Nat Commun. 2015;6:8266 pubmed 出版商
  222. Poncini C, Ilarregui J, Batalla E, Engels S, Cerliani J, Cucher M, et al. Trypanosoma cruzi Infection Imparts a Regulatory Program in Dendritic Cells and T Cells via Galectin-1-Dependent Mechanisms. J Immunol. 2015;195:3311-24 pubmed 出版商
  223. Romero Palomo F, Risalde M, Gómez Villamandos J. Immunopathologic Changes in the Thymus of Calves Pre-infected with BVDV and Challenged with BHV-1. Transbound Emerg Dis. 2017;64:574-584 pubmed 出版商
  224. Baruch K, Rosenzweig N, Kertser A, Deczkowska A, Sharif A, Spinrad A, et al. Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer's disease pathology. Nat Commun. 2015;6:7967 pubmed 出版商
  225. Ngiow S, Young A, Jacquelot N, Yamazaki T, Enot D, Zitvogel L, et al. A Threshold Level of Intratumor CD8+ T-cell PD1 Expression Dictates Therapeutic Response to Anti-PD1. Cancer Res. 2015;75:3800-11 pubmed 出版商
  226. Redpath S, Van Der Werf N, MacDonald A, Maizels R, Taylor M. Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3+ Regulatory T Cells during Their Migratory Phase. Infect Immun. 2015;83:3881-9 pubmed 出版商
  227. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  228. Conde P, Rodriguez M, van der Touw W, Jimenez A, Burns M, Miller J, et al. DC-SIGN(+) Macrophages Control the Induction of Transplantation Tolerance. Immunity. 2015;42:1143-58 pubmed 出版商
  229. Khan I, Perrard X, Brunner G, Lui H, Sparks L, Smith S, et al. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond). 2015;39:1607-18 pubmed 出版商
  230. Castiglioni A, Corna G, Rigamonti E, Basso V, Vezzoli M, Monno A, et al. FOXP3+ T Cells Recruited to Sites of Sterile Skeletal Muscle Injury Regulate the Fate of Satellite Cells and Guide Effective Tissue Regeneration. PLoS ONE. 2015;10:e0128094 pubmed 出版商
  231. Chen H, Sun J, Huang Z, Hou H, Arcilla M, Rakhilin N, et al. Comprehensive models of human primary and metastatic colorectal tumors in immunodeficient and immunocompetent mice by chemokine targeting. Nat Biotechnol. 2015;33:656-60 pubmed 出版商
  232. Liao J, Ovenell K, Curtis E, Cecil D, Koehnlein M, Rastetter L, et al. Preservation of tumor-host immune interactions with luciferase-tagged imaging in a murine model of ovarian cancer. J Immunother Cancer. 2015;3:16 pubmed 出版商
  233. Wang Z, Wei M, Zhang H, Chen H, Germana S, Huang C, et al. Diphtheria-toxin based anti-human CCR4 immunotoxin for targeting human CCR4(+) cells in vivo. Mol Oncol. 2015;9:1458-70 pubmed 出版商
  234. Liechtenstein T, Perez Janices N, Blanco Luquin I, Goyvaerts C, Schwarze J, Dufait I, et al. Anti-melanoma vaccines engineered to simultaneously modulate cytokine priming and silence PD-L1 characterized using ex vivo myeloid-derived suppressor cells as a readout of therapeutic efficacy. Oncoimmunology. 2014;3:e945378 pubmed
  235. Holm J, Sorobetea D, Kiilerich P, Ramayo Caldas Y, Estellé J, Ma T, et al. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS ONE. 2015;10:e0125495 pubmed 出版商
  236. Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature. 2015;520:692-6 pubmed 出版商
  237. Dennis K, Saadalla A, Blatner N, Wang S, Venkateswaran V, Gounari F, et al. T-cell Expression of IL10 Is Essential for Tumor Immune Surveillance in the Small Intestine. Cancer Immunol Res. 2015;3:806-14 pubmed 出版商
  238. Li C, Li W, Xiao J, Jiao S, Teng F, Xue S, et al. ADAP and SKAP55 deficiency suppresses PD-1 expression in CD8+ cytotoxic T lymphocytes for enhanced anti-tumor immunotherapy. EMBO Mol Med. 2015;7:754-69 pubmed 出版商
  239. Lal G, Nakayama Y, Sethi A, Singh A, Burrell B, Kulkarni N, et al. Interleukin-10 From Marginal Zone Precursor B-Cell Subset Is Required for Costimulatory Blockade-Induced Transplantation Tolerance. Transplantation. 2015;99:1817-28 pubmed 出版商
  240. Romani R, Pirisinu I, Calvitti M, Pallotta M, Gargaro M, Bistoni G, et al. Stem cells from human amniotic fluid exert immunoregulatory function via secreted indoleamine 2,3-dioxygenase1. J Cell Mol Med. 2015;19:1593-605 pubmed 出版商
  241. Van Den Ham K, Shio M, Rainone A, Fournier S, Krawczyk C, Olivier M. Iron prevents the development of experimental cerebral malaria by attenuating CXCR3-mediated T cell chemotaxis. PLoS ONE. 2015;10:e0118451 pubmed 出版商
  242. Kim Y, Lim H, Jung H, Wetsel R, Chung Y. Regulation of autoimmune germinal center reactions in lupus-prone BXD2 mice by follicular helper T cells. PLoS ONE. 2015;10:e0120294 pubmed 出版商
  243. Wiesner D, Specht C, Lee C, Smith K, Mukaremera L, Lee S, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11:e1004701 pubmed 出版商
  244. Pratama A, Srivastava M, Williams N, Papa I, Lee S, Dinh X, et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun. 2015;6:6436 pubmed 出版商
  245. Wensveen F, Jelenčić V, Valentić S, Å estan M, Wensveen T, Theurich S, et al. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat Immunol. 2015;16:376-85 pubmed 出版商
  246. Hsiao H, Hsu T, Liu W, Hsieh W, Chou T, Wu Y, et al. Deltex1 antagonizes HIF-1α and sustains the stability of regulatory T cells in vivo. Nat Commun. 2015;6:6353 pubmed 出版商
  247. Buchwald Z, Yang C, Nellore S, Shashkova E, Davis J, Cline A, et al. A Bone Anabolic Effect of RANKL in a Murine Model of Osteoporosis Mediated Through FoxP3+ CD8 T Cells. J Bone Miner Res. 2015;30:1508-22 pubmed 出版商
  248. Valle A, Barbagiovanni G, Jofra T, Stabilini A, Pérol L, Baeyens A, et al. Heterogeneous CD3 expression levels in differing T cell subsets correlate with the in vivo anti-CD3-mediated T cell modulation. J Immunol. 2015;194:2117-27 pubmed 出版商
  249. Crncec I, Pathria P, Svinka J, Eferl R. Induction of colorectal cancer in mice and histomorphometric evaluation of tumors. Methods Mol Biol. 2015;1267:145-64 pubmed 出版商
  250. Franckaert D, Schlenner S, Heirman N, Gill J, Skogberg G, Ekwall O, et al. Premature thymic involution is independent of structural plasticity of the thymic stroma. Eur J Immunol. 2015;45:1535-47 pubmed 出版商
  251. Triplett T, Tucker C, Triplett K, Alderman Z, Sun L, Ling L, et al. STAT3 Signaling Is Required for Optimal Regression of Large Established Tumors in Mice Treated with Anti-OX40 and TGFβ Receptor Blockade. Cancer Immunol Res. 2015;3:526-35 pubmed 出版商
  252. Evans E, Jonason A, Bussler H, Torno S, Veeraraghavan J, Reilly C, et al. Antibody Blockade of Semaphorin 4D Promotes Immune Infiltration into Tumor and Enhances Response to Other Immunomodulatory Therapies. Cancer Immunol Res. 2015;3:689-701 pubmed 出版商
  253. Zhang Y, Wu B, Metelli A, Thaxton J, Hong F, Rachidi S, et al. GP96 is a GARP chaperone and controls regulatory T cell functions. J Clin Invest. 2015;125:859-69 pubmed 出版商
  254. Clouthier D, Zhou A, Wortzman M, Luft O, Levy G, Watts T. GITR intrinsically sustains early type 1 and late follicular helper CD4 T cell accumulation to control a chronic viral infection. PLoS Pathog. 2015;11:e1004517 pubmed 出版商
  255. Singh K, Hjort M, Thorvaldson L, Sandler S. Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep. 2015;5:7767 pubmed 出版商
  256. Hannani D, Vétizou M, Enot D, Rusakiewicz S, Chaput N, Klatzmann D, et al. Anticancer immunotherapy by CTLA-4 blockade: obligatory contribution of IL-2 receptors and negative prognostic impact of soluble CD25. Cell Res. 2015;25:208-24 pubmed 出版商
  257. Teixeira L, Moreira J, Melo J, Bezerra F, Marques R, Ferreirinha P, et al. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum. Immunology. 2015;145:242-57 pubmed 出版商
  258. Djukic M, Sostmann N, Bertsch T, Mecke M, Nessler S, Manig A, et al. Vitamin D deficiency decreases survival of bacterial meningoencephalitis in mice. J Neuroinflammation. 2015;12:208 pubmed 出版商
  259. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  260. Hildebrand A, Jarsch C, Kern Y, Böhringer D, Reinhard T, Schwartzkopff J. Subconjunctivally applied naïve Tregs support corneal graft survival in baby rats. Mol Vis. 2014;20:1749-57 pubmed
  261. Krishnamoorthy N, Burkett P, Dalli J, Abdulnour R, Colas R, Ramon S, et al. Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol. 2015;194:863-7 pubmed 出版商
  262. Yuan X, Dee M, Altman N, Malek T. IL-2Rβ-dependent signaling and CD103 functionally cooperate to maintain tolerance in the gut mucosa. J Immunol. 2015;194:1334-46 pubmed 出版商
  263. Ikeda T, Hirata S, Takamatsu K, Haruta M, Tsukamoto H, Ito T, et al. Suppression of Th1-mediated autoimmunity by embryonic stem cell-derived dendritic cells. PLoS ONE. 2014;9:e115198 pubmed 出版商
  264. Harmon E, Fronhofer V, Keller R, Feustel P, Zhu X, Xu H, et al. Anti-inflammatory immune skewing is atheroprotective: Apoe−/−FcγRIIb−/− mice develop fibrous carotid plaques. J Am Heart Assoc. 2014;3:e001232 pubmed 出版商
  265. Käser T, Mair K, Hammer S, Gerner W, Saalmüller A. Natural and inducible Tregs in swine: Helios expression and functional properties. Dev Comp Immunol. 2015;49:323-31 pubmed 出版商
  266. Rutz S, Kayagaki N, Phung Q, Eidenschenk C, Noubade R, Wang X, et al. Deubiquitinase DUBA is a post-translational brake on interleukin-17 production in T cells. Nature. 2015;518:417-21 pubmed 出版商
  267. Gerner W, Talker S, Koinig H, Sedlak C, Mair K, Saalmüller A. Phenotypic and functional differentiation of porcine αβ T cells: current knowledge and available tools. Mol Immunol. 2015;66:3-13 pubmed 出版商
  268. Lees J, Duffy S, Perera C, Moalem Taylor G. Depletion of Foxp3+ regulatory T cells increases severity of mechanical allodynia and significantly alters systemic cytokine levels following peripheral nerve injury. Cytokine. 2015;71:207-14 pubmed 出版商
  269. Hou J, Zhang Q, Fujino M, Cai S, Ito H, Takahashi K, et al. 5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant. 2015;34:254-63 pubmed 出版商
  270. Peters A, Burkett P, Sobel R, Buckley C, Watson S, Bettelli E, et al. Podoplanin negatively regulates CD4+ effector T cell responses. J Clin Invest. 2015;125:129-40 pubmed 出版商
  271. Uchiyama M, Jin X, Yin E, Shimokawa T, Niimi M. Treadmill exercise induces murine cardiac allograft survival and generates regulatory T cell. Transpl Int. 2015;28:352-62 pubmed 出版商
  272. Thauland T, Koguchi Y, Dustin M, Parker D. CD28-CD80 interactions control regulatory T cell motility and immunological synapse formation. J Immunol. 2014;193:5894-903 pubmed 出版商
  273. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  274. Lin W, Fan Z, Suo Y, Deng Y, Zhang M, Wang J, et al. The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol. 2015;93:99-110 pubmed 出版商
  275. Donaldson D, Bradford B, Artis D, Mabbott N. Reciprocal regulation of lymphoid tissue development in the large intestine by IL-25 and IL-23. Mucosal Immunol. 2015;8:582-95 pubmed 出版商
  276. ZasÅ‚ona Z, Przybranowski S, Wilke C, Van Rooijen N, Teitz Tennenbaum S, Osterholzer J, et al. Resident alveolar macrophages suppress, whereas recruited monocytes promote, allergic lung inflammation in murine models of asthma. J Immunol. 2014;193:4245-53 pubmed 出版商
  277. Burton B, Britton G, Fang H, Verhagen J, Smithers B, Sabatos Peyton C, et al. Sequential transcriptional changes dictate safe and effective antigen-specific immunotherapy. Nat Commun. 2014;5:4741 pubmed 出版商
  278. Kobayashi T, Hamaguchi Y, Hasegawa M, Fujimoto M, Takehara K, Matsushita T. B cells promote tumor immunity against B16F10 melanoma. Am J Pathol. 2014;184:3120-9 pubmed 出版商
  279. Kreiser S, Eckhardt J, Kuhnt C, Stein M, Krzyzak L, Seitz C, et al. Murine CD83-positive T cells mediate suppressor functions in vitro and in vivo. Immunobiology. 2015;220:270-9 pubmed 出版商
  280. Wu C, He S, Peng Y, Kushwaha K, Lin J, Dong J, et al. TSLPR deficiency attenuates atherosclerotic lesion development associated with the inhibition of TH17 cells and the promotion of regulator T cells in ApoE-deficient mice. J Mol Cell Cardiol. 2014;76:33-45 pubmed 出版商
  281. Penaloza MacMaster P, Kamphorst A, Wieland A, Araki K, Iyer S, West E, et al. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014;211:1905-18 pubmed 出版商
  282. Ishihara M, Seo N, Mitsui J, Muraoka D, Tanaka M, Mineno J, et al. Systemic CD8+ T cell-mediated tumoricidal effects by intratumoral treatment of oncolytic herpes simplex virus with the agonistic monoclonal antibody for murine glucocorticoid-induced tumor necrosis factor receptor. PLoS ONE. 2014;9:e104669 pubmed 出版商
  283. Denton A, Roberts E, Linterman M, Fearon D. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+ T cells. Proc Natl Acad Sci U S A. 2014;111:12139-44 pubmed 出版商
  284. Zhu Y, Knolhoff B, Meyer M, Nywening T, West B, Luo J, et al. CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res. 2014;74:5057-69 pubmed 出版商
  285. Zhang X, Gao L, Liang X, Guo M, Wang R, Pan Y, et al. HBV preS2 transactivates FOXP3 expression in malignant hepatocytes. Liver Int. 2015;35:1087-94 pubmed 出版商
  286. Knuschke T, Bayer W, Rotan O, Sokolova V, Wadwa M, Kirschning C, et al. Prophylactic and therapeutic vaccination with a nanoparticle-based peptide vaccine induces efficient protective immunity during acute and chronic retroviral infection. Nanomedicine. 2014;10:1787-98 pubmed 出版商
  287. Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, et al. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ?ureC::hly vaccine's superior protection against tuberculosis. J Infect Dis. 2014;210:1928-37 pubmed 出版商
  288. Pastille E, Bardini K, Fleissner D, Adamczyk A, Frede A, Wadwa M, et al. Transient ablation of regulatory T cells improves antitumor immunity in colitis-associated colon cancer. Cancer Res. 2014;74:4258-69 pubmed 出版商
  289. Chen Z, Ozbun L, Chong N, Wallecha A, Berzofsky J, Khleif S. Episomal expression of truncated listeriolysin O in LmddA-LLO-E7 vaccine enhances antitumor efficacy by preferentially inducing expansions of CD4+FoxP3- and CD8+ T cells. Cancer Immunol Res. 2014;2:911-22 pubmed 出版商
  290. Nandi B, Pai C, Huang Q, Prabhala R, Munshi N, Gold J. CCR6, the sole receptor for the chemokine CCL20, promotes spontaneous intestinal tumorigenesis. PLoS ONE. 2014;9:e97566 pubmed 出版商
  291. Sreedharan R, Chen S, Miller M, Haribhai D, Williams C, Van Why S. Mice with an absent stress response are protected against ischemic renal injury. Kidney Int. 2014;86:515-24 pubmed 出版商
  292. Smolarchuk C, Zhu L, Chan W, Anderson C. T cells generated in the absence of a thoracic thymus fail to establish homeostasis. Eur J Immunol. 2014;44:2263-73 pubmed 出版商
  293. Breuer J, Schwab N, Schneider Hohendorf T, Marziniak M, Mohan H, Bhatia U, et al. Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity. Ann Neurol. 2014;75:739-58 pubmed 出版商
  294. Pick J, Arra A, Lingel H, Hegel J, Huber M, Nishanth G, et al. CTLA-4 (CD152) enhances the Tc17 differentiation program. Eur J Immunol. 2014;44:2139-52 pubmed 出版商
  295. Rossi G, Pengo G, Caldin M, Palumbo Piccionello A, Steiner J, Cohen N, et al. Comparison of microbiological, histological, and immunomodulatory parameters in response to treatment with either combination therapy with prednisone and metronidazole or probiotic VSL#3 strains in dogs with idiopathic inflammatory bowel disease. PLoS ONE. 2014;9:e94699 pubmed 出版商
  296. Kuwahara M, Suzuki J, Tofukuji S, Yamada T, Kanoh M, Matsumoto A, et al. The Menin-Bach2 axis is critical for regulating CD4 T-cell senescence and cytokine homeostasis. Nat Commun. 2014;5:3555 pubmed 出版商
  297. Cochain C, Chaudhari S, Koch M, Wiendl H, Eckstein H, Zernecke A. Programmed cell death-1 deficiency exacerbates T cell activation and atherogenesis despite expansion of regulatory T cells in atherosclerosis-prone mice. PLoS ONE. 2014;9:e93280 pubmed 出版商
  298. Keswani T, Bhattacharyya A. Differential role of T regulatory and Th17 in Swiss mice infected with Plasmodium berghei ANKA and Plasmodium yoelii. Exp Parasitol. 2014;141:82-92 pubmed 出版商
  299. Samuelson E, Laird R, Papillion A, Tatum A, Princiotta M, Hayes S. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE. 2014;9:e92054 pubmed 出版商
  300. Berney Meyer L, Hung N, Slatter T, Schollum J, Kitching A, Walker R. Omeprazole-induced acute interstitial nephritis: a possible Th1-Th17-mediated injury?. Nephrology (Carlton). 2014;19:359-65 pubmed 出版商
  301. Fu H, Kishore M, Gittens B, Wang G, Coe D, Komarowska I, et al. Self-recognition of the endothelium enables regulatory T-cell trafficking and defines the kinetics of immune regulation. Nat Commun. 2014;5:3436 pubmed 出版商
  302. Mercadante A, Perobelli S, Alves A, Gonçalves Silva T, Mello W, Gomes Santos A, et al. Oral combined therapy with probiotics and alloantigen induces B cell-dependent long-lasting specific tolerance. J Immunol. 2014;192:1928-37 pubmed 出版商
  303. Joedicke J, Dietze K, Zelinskyy G, Dittmer U. The phenotype and activation status of regulatory T cells during Friend retrovirus infection. Virol Sin. 2014;29:48-60 pubmed 出版商
  304. Hu Y, Xiao H, Shi T, Oppenheim J, Chen X. Progranulin promotes tumour necrosis factor-induced proliferation of suppressive mouse CD4? Foxp3? regulatory T cells. Immunology. 2014;142:193-201 pubmed 出版商
  305. Chatterjee S, Eby J, Al Khami A, Soloshchenko M, Kang H, Kaur N, et al. A quantitative increase in regulatory T cells controls development of vitiligo. J Invest Dermatol. 2014;134:1285-1294 pubmed 出版商
  306. Cavnar M, Zeng S, Kim T, Sorenson E, Ocuin L, Balachandran V, et al. KIT oncogene inhibition drives intratumoral macrophage M2 polarization. J Exp Med. 2013;210:2873-86 pubmed 出版商
  307. Murphy K, Erickson J, Johnson C, Seiler C, Bedi J, Hu P, et al. CD8+ T cell-independent tumor regression induced by Fc-OX40L and therapeutic vaccination in a mouse model of glioma. J Immunol. 2014;192:224-33 pubmed 出版商
  308. Lee P, Puppi M, Schluns K, Yu Lee L, Dong C, Lacorazza H. The transcription factor E74-like factor 4 suppresses differentiation of proliferating CD4+ T cells to the Th17 lineage. J Immunol. 2014;192:178-88 pubmed 出版商
  309. Chopra M, Lang I, Salzmann S, Pachel C, Kraus S, Bäuerlein C, et al. Tumor necrosis factor induces tumor promoting and anti-tumoral effects on pancreatic cancer via TNFR1. PLoS ONE. 2013;8:e75737 pubmed 出版商
  310. Yockey L, Demehri S, Turkoz M, Turkoz A, Ahern P, Jassim O, et al. The absence of a microbiota enhances TSLP expression in mice with defective skin barrier but does not affect the severity of their allergic inflammation. J Invest Dermatol. 2013;133:2714-2721 pubmed 出版商
  311. Barron L, Smith A, El Kasmi K, Qualls J, Huang X, Cheever A, et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE. 2013;8:e61961 pubmed 出版商
  312. Billich A, Baumruker T, Beerli C, Bigaud M, Bruns C, Calzascia T, et al. Partial deficiency of sphingosine-1-phosphate lyase confers protection in experimental autoimmune encephalomyelitis. PLoS ONE. 2013;8:e59630 pubmed 出版商
  313. Redpath S, Van Der Werf N, Cervera A, MacDonald A, Gray D, Maizels R, et al. ICOS controls Foxp3(+) regulatory T-cell expansion, maintenance and IL-10 production during helminth infection. Eur J Immunol. 2013;43:705-15 pubmed 出版商
  314. Khan A, Fu H, Tan L, Harper J, Beutelspacher S, Larkin D, et al. Dendritic cell modification as a route to inhibiting corneal graft rejection by the indirect pathway of allorecognition. Eur J Immunol. 2013;43:734-46 pubmed 出版商
  315. Weiss J, Bilate A, Gobert M, Ding Y, Curotto de Lafaille M, Parkhurst C, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med. 2012;209:1723-42, S1 pubmed
  316. Hwang S, Song K, Lesourne R, Lee J, Pinkhasov J, Li L, et al. Reduced TCR signaling potential impairs negative selection but does not result in autoimmune disease. J Exp Med. 2012;209:1781-95 pubmed
  317. Jin X, Uchiyama M, Zhang Q, Hirai T, Niimi M. Inchingorei-san (TJ-117) and Artemisiae Capillaris Herba Induced Prolonged Survival of Fully Mismatched Cardiac Allografts and Generated Regulatory Cells in Mice. Evid Based Complement Alternat Med. 2012;2012:689810 pubmed 出版商
  318. Golias J, Schwarzer M, Wallner M, Kverka M, Kozakova H, Srůtková D, et al. Heat-induced structural changes affect OVA-antigen processing and reduce allergic response in mouse model of food allergy. PLoS ONE. 2012;7:e37156 pubmed 出版商
  319. Feng T, Cong Y, Alexander K, Elson C. Regulation of Toll-like receptor 5 gene expression and function on mucosal dendritic cells. PLoS ONE. 2012;7:e35918 pubmed 出版商
  320. Uchiyama M, Jin X, Zhang Q, Hirai T, Amano A, Bashuda H, et al. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells. J Cardiothorac Surg. 2012;7:26 pubmed 出版商
  321. Loebbermann J, Schnoeller C, Thornton H, Durant L, Sweeney N, Schuijs M, et al. IL-10 regulates viral lung immunopathology during acute respiratory syncytial virus infection in mice. PLoS ONE. 2012;7:e32371 pubmed 出版商
  322. Loebbermann J, Thornton H, Durant L, Sparwasser T, Webster K, Sprent J, et al. Regulatory T cells expressing granzyme B play a critical role in controlling lung inflammation during acute viral infection. Mucosal Immunol. 2012;5:161-72 pubmed 出版商
  323. Wollenberg I, Agua Doce A, Hernandez A, Almeida C, Oliveira V, Faro J, et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J Immunol. 2011;187:4553-60 pubmed 出版商
  324. Qian B, Li J, Zhang H, Kitamura T, Zhang J, Campion L, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature. 2011;475:222-5 pubmed 出版商
  325. Liu J, Zhang N, Li Q, Zhang W, Ke F, Leng Q, et al. Tumor-associated macrophages recruit CCR6+ regulatory T cells and promote the development of colorectal cancer via enhancing CCL20 production in mice. PLoS ONE. 2011;6:e19495 pubmed 出版商
  326. Goldstein J, Balderas R, Marodon G. Continuous activation of the CD122/STAT-5 signaling pathway during selection of antigen-specific regulatory T cells in the murine thymus. PLoS ONE. 2011;6:e19038 pubmed 出版商
  327. Wainwright D, Sengupta S, Han Y, Ulasov I, Lesniak M. The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma. PLoS ONE. 2010;5:e15390 pubmed 出版商
  328. Hubert S, Rissiek B, Klages K, Huehn J, Sparwasser T, Haag F, et al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J Exp Med. 2010;207:2561-8 pubmed 出版商
  329. Mandal M, Marzouk A, Donnelly R, Ponzio N. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun. 2011;25:863-71 pubmed 出版商
  330. Lin P, Sun L, Thibodeaux S, Ludwig S, Vadlamudi R, Hurez V, et al. B7-H1-dependent sex-related differences in tumor immunity and immunotherapy responses. J Immunol. 2010;185:2747-53 pubmed 出版商
  331. Tanaka S, Maeda S, Hashimoto M, Fujimori C, Ito Y, Teradaira S, et al. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J Immunol. 2010;185:2295-305 pubmed 出版商
  332. Cai S, Cao X, Hassan A, Fehniger T, Ley T. Granzyme B is not required for regulatory T cell-mediated suppression of graft-versus-host disease. Blood. 2010;115:1669-77 pubmed 出版商
  333. Blache C, Adriouch S, Calbo S, Drouot L, Dulauroy S, Arnoult C, et al. Cutting edge: CD4-independent development of functional FoxP3+ regulatory T cells. J Immunol. 2009;183:4182-6 pubmed 出版商
  334. Zelinskyy G, Dietze K, Hüsecken Y, Schimmer S, Nair S, Werner T, et al. The regulatory T-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic T-cell response. Blood. 2009;114:3199-207 pubmed 出版商
  335. Houot R, Goldstein M, Kohrt H, Myklebust J, Alizadeh A, Lin J, et al. Therapeutic effect of CD137 immunomodulation in lymphoma and its enhancement by Treg depletion. Blood. 2009;114:3431-8 pubmed 出版商
  336. Ellestad K, Tsutsui S, Noorbakhsh F, Warren K, Yong V, Pittman Q, et al. Early life exposure to lipopolysaccharide suppresses experimental autoimmune encephalomyelitis by promoting tolerogenic dendritic cells and regulatory T cells. J Immunol. 2009;183:298-309 pubmed 出版商
  337. Abboud G, Staumont Sallé D, Kanda A, Roumier T, Deruytter N, Lavogiez C, et al. Fc(epsilon)RI and FcgammaRIII/CD16 differentially regulate atopic dermatitis in mice. J Immunol. 2009;182:6517-26 pubmed 出版商
  338. Hamada H, Garcia Hernandez M, Reome J, Misra S, Strutt T, McKinstry K, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469-81 pubmed 出版商
  339. Sato K, Eizumi K, Fukaya T, Fujita S, Sato Y, Takagi H, et al. Naturally occurring regulatory dendritic cells regulate murine cutaneous chronic graft-versus-host disease. Blood. 2009;113:4780-9 pubmed 出版商
  340. Ribeiro de Almeida C, Heath H, Krpic S, Dingjan G, van Hamburg J, Bergen I, et al. Critical role for the transcription regulator CCCTC-binding factor in the control of Th2 cytokine expression. J Immunol. 2009;182:999-1010 pubmed
  341. Saito K, Torii M, Ma N, Tsuchiya T, Wang L, Hori T, et al. Differential regulatory function of resting and preactivated allergen-specific CD4+ CD25+ regulatory T cells in Th2-type airway inflammation. J Immunol. 2008;181:6889-97 pubmed
  342. Casiraghi F, Azzollini N, Cassis P, Imberti B, Morigi M, Cugini D, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol. 2008;181:3933-46 pubmed
  343. Reinwald S, Wiethe C, Westendorf A, Breloer M, Probst Kepper M, Fleischer B, et al. CD83 expression in CD4+ T cells modulates inflammation and autoimmunity. J Immunol. 2008;180:5890-7 pubmed
  344. Bommireddy R, Babcock G, Singh R, Doetschman T. TGFbeta1 deficiency does not affect the generation and maintenance of CD4+CD25+FOXP3+ putative Treg cells, but causes their numerical inadequacy and loss of regulatory function. Clin Immunol. 2008;127:206-13 pubmed 出版商
  345. Barron L, Knoechel B, Lohr J, Abbas A. Cutting edge: contributions of apoptosis and anergy to systemic T cell tolerance. J Immunol. 2008;180:2762-6 pubmed
  346. Rana S, Byrne S, MacDonald L, Chan C, Halliday G. Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol. 2008;172:993-1004 pubmed 出版商
  347. Ahonen C, Wasiuk A, Fuse S, Turk M, Ernstoff M, Suriawinata A, et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood. 2008;111:3116-25 pubmed 出版商
  348. Venanzi E, Gray D, Benoist C, Mathis D. Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol. 2007;179:5693-700 pubmed
  349. Cambos M, Belanger B, Jacques A, Roulet A, Scorza T. Natural regulatory (CD4+CD25+FOXP+) T cells control the production of pro-inflammatory cytokines during Plasmodium chabaudi adami infection and do not contribute to immune evasion. Int J Parasitol. 2008;38:229-38 pubmed
  350. Kang S, Lim H, Andrisani O, Broxmeyer H, Kim C. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol. 2007;179:3724-33 pubmed
  351. Yamazaki S, Bonito A, Spisek R, Dhodapkar M, Inaba K, Steinman R. Dendritic cells are specialized accessory cells along with TGF- for the differentiation of Foxp3+ CD4+ regulatory T cells from peripheral Foxp3 precursors. Blood. 2007;110:4293-302 pubmed
  352. Jiang L, Yang P, He H, Li B, Lin X, Hou S, et al. Increased expression of Foxp3 in splenic CD8+ T cells from mice with anterior chamber-associated immune deviation. Mol Vis. 2007;13:968-74 pubmed
  353. Walsh C, Smith P, Fallon P. Role for CTLA-4 but not CD25+ T cells during Schistosoma mansoni infection of mice. Parasite Immunol. 2007;29:293-308 pubmed
  354. Stephens G, Andersson J, Shevach E. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J Immunol. 2007;178:6901-11 pubmed
  355. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225-32 pubmed
  356. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  357. MacKenzie D, Schartner J, Lin J, Timmel A, Jennens Clough M, Fathman C, et al. GRAIL is up-regulated in CD4+ CD25+ T regulatory cells and is sufficient for conversion of T cells to a regulatory phenotype. J Biol Chem. 2007;282:9696-702 pubmed
  358. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45:475-85 pubmed
  359. Wang Z, Davies J. CD8 blockade promotes the expansion of antigen-specific CD4+ FOXP3+ regulatory T cells in vivo. Int Immunopharmacol. 2007;7:249-65 pubmed
  360. Lohr J, Knoechel B, Wang J, Villarino A, Abbas A. Role of IL-17 and regulatory T lymphocytes in a systemic autoimmune disease. J Exp Med. 2006;203:2785-91 pubmed
  361. Gebe J, Unrath K, Falk B, Ito K, Wen L, Daniels T, et al. Age-dependent loss of tolerance to an immunodominant epitope of glutamic acid decarboxylase in diabetic-prone RIP-B7/DR4 mice. Clin Immunol. 2006;121:294-304 pubmed
  362. Cassan C, Piaggio E, Zappulla J, Mars L, Couturier N, Bucciarelli F, et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T cells. J Immunol. 2006;177:1552-60 pubmed
  363. Hansen W, Loser K, Westendorf A, Bruder D, Pfoertner S, Siewert C, et al. G protein-coupled receptor 83 overexpression in naive CD4+CD25- T cells leads to the induction of Foxp3+ regulatory T cells in vivo. J Immunol. 2006;177:209-15 pubmed
  364. Leithäuser F, Meinhardt Krajina T, Fink K, Wotschke B, Moller P, Reimann J. Foxp3-expressing CD103+ regulatory T cells accumulate in dendritic cell aggregates of the colonic mucosa in murine transfer colitis. Am J Pathol. 2006;168:1898-909 pubmed
  365. Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Menard S, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer. J Immunol. 2006;176:6624-30 pubmed
  366. Robertson S, Messer R, Carmody A, Hasenkrug K. In vitro suppression of CD8+ T cell function by Friend virus-induced regulatory T cells. J Immunol. 2006;176:3342-9 pubmed
  367. Wohlfert E, Gorelik L, Mittler R, Flavell R, Clark R. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-beta sensitivity in vitro and in vivo. J Immunol. 2006;176:1316-20 pubmed