这是一篇来自已证抗体库的有关大鼠 Gap43的综述,是根据37篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gap43 抗体。
Gap43 同义词: Basp2

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EP890Y)
  • 免疫印迹; 大鼠; 图 6b
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫印迹在大鼠样本上 (图 6b). Front Pharmacol (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3c
  • 免疫印迹; 小鼠; 图 3a
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab16053)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 3a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-冰冻切片; 大鼠; 图 2i
  • 免疫印迹; 大鼠; 图 2k
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab219582)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2i) 和 被用于免疫印迹在大鼠样本上 (图 2k). Sci Rep (2021) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫细胞化学; 人类; 1:200; 图 6c
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6c). Theranostics (2020) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8d
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8d). PLoS ONE (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2s2d
  • 免疫印迹; 小鼠; 图 3e, 3s3b
  • 免疫组化-石蜡切片; 人类; 图 3s2b
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab16053)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2s2d), 被用于免疫印迹在小鼠样本上 (图 3e, 3s3b) 和 被用于免疫组化-石蜡切片在人类样本上 (图 3s2b). elife (2019) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 单克隆(EP890Y)
  • 其他; 小鼠; 1:50; 图 3e
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于其他在小鼠样本上浓度为1:50 (图 3e). Cell (2019) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫沉淀; 人类; 图 4b
  • 免疫印迹; 人类; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫沉淀在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上浓度为1:10,000 (图 5a). J Neurochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab16053)被用于被用于免疫细胞化学在人类样本上. Front Mol Neurosci (2017) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫印迹; 小鼠; 图 8g
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, EP890Y)被用于被用于免疫印迹在小鼠样本上 (图 8g). Exp Neurol (2016) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-冰冻切片; 小鼠; 1:800
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800. Dev Neurobiol (2016) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, 75810)被用于被用于免疫印迹在人类样本上. FEBS J (2015) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫细胞化学; 人类; 1:500; 表 1
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). Stem Cells Dev (2015) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-冰冻切片; 小鼠; 1:250
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Comp Neurol (2015) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫印迹; 人类; 图 7e
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫印迹在人类样本上 (图 7e). Mol Cell Proteomics (2013) ncbi
domestic rabbit 单克隆(EP890Y)
  • 免疫组化-冰冻切片; 鸡; 1:1000
艾博抗(上海)贸易有限公司 Gap43抗体(Abcam, ab75810)被用于被用于免疫组化-冰冻切片在鸡样本上浓度为1:1000. Oncogenesis (2012) ncbi
圣克鲁斯生物技术
小鼠 单克隆(B-5)
  • 免疫组化; 小鼠; 1:100; 图 7e
圣克鲁斯生物技术 Gap43抗体(Santa Cruz, sc17790)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 7e). Neuropharmacology (2018) ncbi
小鼠 单克隆(7B10)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5d
  • 免疫印迹; 大鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Gap43抗体(SantaCruz, sc-33705)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Mol Med Rep (2017) ncbi
小鼠 单克隆(7B10)
  • 免疫细胞化学; 大鼠; 1:50; 图 7
  • 免疫组化; 大鼠; 1:50; 图 3
圣克鲁斯生物技术 Gap43抗体(SANTA CRUZ, Sc-33705)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 7) 和 被用于免疫组化在大鼠样本上浓度为1:50 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
圣克鲁斯生物技术 Gap43抗体(SantaCruz, sc-17790)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Nat Med (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫印迹; 小鼠; 图 11
  • 免疫印迹; 大鼠; 图 9
圣克鲁斯生物技术 Gap43抗体(Santa Cruz, sc-17790)被用于被用于免疫印迹在小鼠样本上 (图 11) 和 被用于免疫印迹在大鼠样本上 (图 9). PLoS ONE (2016) ncbi
小鼠 单克隆(B-5)
  • 免疫组化-冰冻切片; 大鼠; 1:50
  • 免疫组化-冰冻切片; 人类; 1:50
圣克鲁斯生物技术 Gap43抗体(Santa Cruz Biotechnology, sc-17790)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 和 被用于免疫组化-冰冻切片在人类样本上浓度为1:50. J Neurochem (2015) ncbi
赛默飞世尔
小鼠 单克隆(7B10)
  • 免疫印迹; 大鼠; 1:2000; 图 6
赛默飞世尔 Gap43抗体(Zymed, 33-5000)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 6). PLoS ONE (2009) ncbi
小鼠 单克隆(7B10)
  • 免疫组化; 小鼠; 图 3
赛默飞世尔 Gap43抗体(Zymed, 33-5000)被用于被用于免疫组化在小鼠样本上 (图 3). J Comp Neurol (2009) ncbi
小鼠 单克隆(7B10)
  • 免疫组化-石蜡切片; domestic rabbit; 1:500; 图 4
赛默飞世尔 Gap43抗体(ZYMED, 33-5000)被用于被用于免疫组化-石蜡切片在domestic rabbit样本上浓度为1:500 (图 4). Hand Surg (2005) ncbi
小鼠 单克隆(7B10)
  • 免疫组化; 小鼠
赛默飞世尔 Gap43抗体(Zymed, 7B10)被用于被用于免疫组化在小鼠样本上. J Biol Chem (2003) ncbi
小鼠 单克隆(7B10)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
赛默飞世尔 Gap43抗体(Zymed, 7B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3). J Neurosci Res (2002) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫组化; 小鼠; 1:250; 图 1n
Novus Biologicals Gap43抗体(Novus, NBP1-92714)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 1n). Mol Biol Cell (2022) ncbi
家羊 多克隆
  • 免疫印迹; 大鼠; 1:2000; 图 4c
Novus Biologicals Gap43抗体(Novus Biologicals, NBP1-41123)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 4c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆(6H12)
  • 免疫细胞化学; 人类; 1:40; 表 1
Novus Biologicals Gap43抗体(Novus Biologicals, NB300-143)被用于被用于免疫细胞化学在人类样本上浓度为1:40 (表 1). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆(6H12)
Novus Biologicals Gap43抗体(Novus, NB300-143)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆(6H12)
  • 免疫印迹; 牛
  • 免疫印迹; 犬; 1:2000; 图 7
Novus Biologicals Gap43抗体(Novus, NB300-143)被用于被用于免疫印迹在牛样本上 和 被用于免疫印迹在犬样本上浓度为1:2000 (图 7). J Comp Neurol (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D9C8)
  • 免疫组化; 小鼠; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gap43抗体(Cell Signaling, 8945S)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5c). Proc Natl Acad Sci U S A (2022) ncbi
domestic rabbit 单克隆(D9C8)
  • 免疫组化; 大鼠; 1:200; 图 5b
赛信通(上海)生物试剂有限公司 Gap43抗体(Cell Signaling, 8945)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 5b). Cell Biosci (2021) ncbi
domestic rabbit 单克隆(D9C8)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Gap43抗体(Cell Signaling Technology, 8945S)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
碧迪BD
小鼠 单克隆(31/GAP-43/Neuromodulin)
  • 免疫印迹; 人类; 1:3000; 图 3d
碧迪BD Gap43抗体(BD Biosciences, 612262)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 3d). Oncogene (2017) ncbi
文章列表
  1. Gao J, Liu J, Yao M, Zhang W, Yang B, Wang G. Panax notoginseng Saponins Stimulates Neurogenesis and Neurological Restoration After Microsphere-Induced Cerebral Embolism in Rats Partially Via mTOR Signaling. Front Pharmacol. 2022;13:889404 pubmed 出版商
  2. Powers R, Daza R, Koehler A, Courchet J, Calabrese B, Hevner R, et al. Growth cone macropinocytosis of neurotrophin receptor and neuritogenesis are regulated by neuron navigator 1. Mol Biol Cell. 2022;33:ar64 pubmed 出版商
  3. Xie H, Heier C, Meng X, Bakiri L, Pototschnig I, Tang Z, et al. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc Natl Acad Sci U S A. 2022;119: pubmed 出版商
  4. Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, et al. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation. 2021;18:234 pubmed 出版商
  5. Yang M, Jian L, Fan W, Chen X, Zou H, Huang Y, et al. Axon regeneration after optic nerve injury in rats can be improved via PirB knockdown in the retina. Cell Biosci. 2021;11:158 pubmed 出版商
  6. Rahmati M, Taherabadi S. The effects of exercise training on Kinesin and GAP-43 expression in skeletal muscle fibers of STZ-induced diabetic rats. Sci Rep. 2021;11:9535 pubmed 出版商
  7. Huang C, Lu S, Huang T, Huang B, Sun H, Yang S, et al. FGF9 induces functional differentiation to Schwann cells from human adipose derived stem cells. Theranostics. 2020;10:2817-2831 pubmed 出版商
  8. Yagura K, Ohtaki H, Tsumuraya T, Sato A, Miyamoto K, Kawada N, et al. The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury. PLoS ONE. 2020;15:e0230080 pubmed 出版商
  9. Yang D, Qu F, Cai H, Chuang C, Lim J, Jahchan N, et al. Axon-like protrusions promote small cell lung cancer migration and metastasis. elife. 2019;8: pubmed 出版商
  10. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  11. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  12. Andrew R, Fisher K, Heesom K, Kellett K, Hooper N. Quantitative interaction proteomics reveals differences in the interactomes of amyloid precursor protein isoforms. J Neurochem. 2019;149:399-412 pubmed 出版商
  13. Sanna M, Mello T, Masini E, Galeotti N. Activation of ERK/CREB pathway in noradrenergic neurons contributes to hypernociceptive phenotype in H4 receptor knockout mice after nerve injury. Neuropharmacology. 2018;128:340-350 pubmed 出版商
  14. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  15. Huang T, Song J, Zheng F, Pang H, Zhao Y, Gu H, et al. Protection of FK506 against neuronal apoptosis and axonal injury following experimental diffuse axonal injury. Mol Med Rep. 2017;15:3001-3010 pubmed 出版商
  16. Van de Bittner G, Riley M, Cao L, Ehses J, Herrick S, Ricq E, et al. Nasal neuron PET imaging quantifies neuron generation and degeneration. J Clin Invest. 2017;127:681-694 pubmed 出版商
  17. Liu W, Huang K, Lu M, Huang H, Chen C, Cheng Y, et al. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene. 2017;36:2715-2723 pubmed 出版商
  18. He Q, Xiong L, Liu F, He X, Feng G, Shang F, et al. MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep. 2016;6:35205 pubmed 出版商
  19. Choi Y, Maki T, Mandeville E, Koh S, Hayakawa K, Arai K, et al. Dual effects of carbon monoxide on pericytes and neurogenesis in traumatic brain injury. Nat Med. 2016;22:1335-1341 pubmed 出版商
  20. McKillop W, York E, Rubinger L, Liu T, Ossowski N, Xu K, et al. Conditional Sox9 ablation improves locomotor recovery after spinal cord injury by increasing reactive sprouting. Exp Neurol. 2016;283:1-15 pubmed 出版商
  21. Makani V, Jang Y, Christopher K, Judy W, Eckstein J, Hensley K, et al. BBB-Permeable, Neuroprotective, and Neurotrophic Polysaccharide, Midi-GAGR. PLoS ONE. 2016;11:e0149715 pubmed 出版商
  22. de Souza C, Nivison Smith L, Christie D, Polkinghorne P, McGhee C, Kalloniatis M, et al. Macromolecular markers in normal human retina and applications to human retinal disease. Exp Eye Res. 2016;150:135-48 pubmed 出版商
  23. Janmaat C, de Rooij K, Locher H, de Groot S, de Groot J, Frijns J, et al. Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE. 2015;10:e0145235 pubmed 出版商
  24. Smolek T, Madari A, Farbáková J, Kandrac O, Jadhav S, Cente M, et al. Tau hyperphosphorylation in synaptosomes and neuroinflammation are associated with canine cognitive impairment. J Comp Neurol. 2016;524:874-95 pubmed 出版商
  25. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  26. Goss G, Chaudhari N, Hare J, Nwojo R, Seidler B, Saur D, et al. Differentiation potential of individual olfactory c-Kit+ progenitors determined via multicolor lineage tracing. Dev Neurobiol. 2016;76:241-51 pubmed 出版商
  27. Inoue M, Hur J, Kihara T, Teranishi Y, Yamamoto N, Ishikawa T, et al. Human brain proteins showing neuron-specific interactions with γ-secretase. FEBS J. 2015;282:2587-99 pubmed 出版商
  28. Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, et al. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem. 2015;133:134-43 pubmed 出版商
  29. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296-311 pubmed 出版商
  30. Goldstein B, Goss G, Hatzistergos K, Rangel E, Seidler B, Saur D, et al. Adult c-Kit(+) progenitor cells are necessary for maintenance and regeneration of olfactory neurons. J Comp Neurol. 2015;523:15-31 pubmed 出版商
  31. Han M, Jiao S, Jia J, Chen Y, Chen C, Gucek M, et al. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics. 2013;12:3719-31 pubmed 出版商
  32. Carter R, Mullassery D, See V, Theocharatos S, Pizer B, Losty P, et al. Exploitation of chick embryo environments to reprogram MYCN-amplified neuroblastoma cells to a benign phenotype, lacking detectable MYCN expression. Oncogenesis. 2012;1:e24 pubmed 出版商
  33. Madinier A, Bertrand N, Mossiat C, Prigent Tessier A, Beley A, Marie C, et al. Microglial involvement in neuroplastic changes following focal brain ischemia in rats. PLoS ONE. 2009;4:e8101 pubmed 出版商
  34. Watanabe Y, Inoue K, Okuyama Yamamoto A, Nakai N, Nakatani J, Nibu K, et al. Fezf1 is required for penetration of the basal lamina by olfactory axons to promote olfactory development. J Comp Neurol. 2009;515:565-84 pubmed 出版商
  35. Kazuo Ikeda K, Masaki Matsuda M, Daisuke Yamauchi D, Katsuro Tomita K, Shigenori Tanaka S. Gradual nerve elongation affects nerve cell bodies and neuro-muscular junctions. Hand Surg. 2005;10:7-15 pubmed
  36. Xu P, Yoshioka K, Yoshimura D, Tominaga Y, Nishioka T, Ito M, et al. In vitro development of mouse embryonic stem cells lacking JNK/stress-activated protein kinase-associated protein 1 (JSAP1) scaffold protein revealed its requirement during early embryonic neurogenesis. J Biol Chem. 2003;278:48422-33 pubmed
  37. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed