这是一篇来自已证抗体库的有关大鼠 Gfap的综述,是根据653篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gfap 抗体。
赛默飞世尔
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:300; 图 5f
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5f). Ann Neurol (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化基因敲除验证; 小鼠; 1:100; 图 2c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:100 (图 2c). Int J Mol Sci (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2c). Transl Psychiatry (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6, s8
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6, s8). Brain Pathol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Gfap抗体(Invitrogen, PA5-16291)被用于被用于免疫组化在小鼠样本上 (图 2a). Aging Cell (2021) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 1s1i
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 1s1i). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 3f
赛默飞世尔 Gfap抗体(Thermo Fisher, PA5-16291)被用于被用于免疫细胞化学在小鼠样本上 (图 3f). Aging (Albany NY) (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 6h
赛默飞世尔 Gfap抗体(ThermoFisher, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 6h). Theranostics (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 1, 2, 3, 4
赛默飞世尔 Gfap抗体(Invitrogen, #14-9892-82)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 1, 2, 3, 4). Neurol Res Int (2020) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 大鼠; 1:500-1:1000; 图 4i, 4j, s4b
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500-1:1000 (图 4i, 4j, s4b). Cell Rep (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:100; 图 s4b
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:100 (图 s4b). Nature (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1a). elife (2019) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 小鼠; 1:300; 图 s18a
赛默飞世尔 Gfap抗体(Thermo Fisher, MA5-15086)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s18a). J Clin Invest (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 e5b
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 e5b). Nature (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
赛默飞世尔 Gfap抗体(Thermo Fisher Scientific, 14-9892-82)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). Neuron (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 2a
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 2a). Cell (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 2d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 2d). Int J Mol Sci (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1c
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Thermo Fisher, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1c) 和 被用于免疫印迹在小鼠样本上 (图 1d). J Neurochem (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 1d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 1d). Dev Cell (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:250; 图 1a
  • 免疫组化; 小鼠; 1:1000; 图 1c
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在人类样本上浓度为1:250 (图 1a) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 1c). J Exp Med (2018) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a, 5c
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a, 5c). J Neurovirol (2018) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; 小鼠; 图 s1b
赛默飞世尔 Gfap抗体(Thermo, MA5-12023)被用于被用于免疫细胞化学在小鼠样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1b
赛默飞世尔 Gfap抗体(ThermoFischer, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1b). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 S2G
赛默飞世尔 Gfap抗体(invitrogen, PA1-10019)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 S2G). PLoS ONE (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 12a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 12a). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 图 7a
赛默飞世尔 Gfap抗体(ThermoFisher, PA1-10004)被用于被用于免疫组化在小鼠样本上 (图 7a). Cell Stem Cell (2017) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 5e
赛默飞世尔 Gfap抗体(Invitrogen, MA5-12023)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 5e). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1f). Nature (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:500; 图 s1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫细胞化学; Epinephelus; 图 1a
赛默飞世尔 Gfap抗体(Thermo Fisher Scientific, MA5-12023)被用于被用于免疫细胞化学在Epinephelus样本上 (图 1a). Dev Comp Immunol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). J Vis Exp (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8m
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化在小鼠样本上 (图 8m). J Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 6d
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 6d). PLoS ONE (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 4a
赛默飞世尔 Gfap抗体(生活技术, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 4a). Glia (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (表 1). J Neurovirol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:5000; 图 5a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 5a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
赛默飞世尔 Gfap抗体(ThermoFisher Scientific, PA3-16727)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 图 1g
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上 (图 1g). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 2
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 2). J Neuroinflammation (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 7b
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 7b). Neuroimage (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol Commun (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:500; 图 1f
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). Science (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 表 1
赛默飞世尔 Gfap抗体(Thermo Fisher, PA1-9565)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (表 1). J Comp Neurol (2019) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 3a
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3a). Biol Cell (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化; 小鼠; 1:2000; 图 2C
赛默飞世尔 Gfap抗体(Thermo, MA5-12023)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2C). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000; 表 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (表 1). J Comp Neurol (2017) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s2). Nature (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 1
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上 (图 1). Proteomics (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 4
赛默飞世尔 Gfap抗体(Thermo Scientific, PA1-10004)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 4). J Neurochem (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 4
赛默飞世尔 Gfap抗体(Thermo Scientific, MS-1376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
赛默飞世尔 Gfap抗体(Thermo Fisher, MA5-12023)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4). Oncol Lett (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2). J Neuroinflammation (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6
  • 免疫印迹; 小鼠; 图 4
赛默飞世尔 Gfap抗体(Pierce, PA3-16727)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6) 和 被用于免疫印迹在小鼠样本上 (图 4). J Neurochem (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3). Neuroscience (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 3f
赛默飞世尔 Gfap抗体(Invitrogen, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3f). Sci Rep (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1c
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1c). Neurobiol Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 7
赛默飞世尔 Gfap抗体(Pierce, PA1-10019)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 7). Neuroscience (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:6000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:6000 (图 1). J Neurochem (2016) ncbi
小鼠 单克隆(S.880.0)
  • 免疫细胞化学; 人类; 图 7
赛默飞世尔 Gfap抗体(生活技术, MA5-15086)被用于被用于免疫细胞化学在人类样本上 (图 7). Sci Rep (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a). Mol Neurobiol (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫细胞化学在小鼠样本上. Biochem J (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(Thermo Scientific, RB-087-A)被用于. Neural Dev (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3
  • 免疫印迹; 小鼠; 1:5000; 图 7
赛默飞世尔 Gfap抗体(Thermo Scientific, MA5-12023)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 7). Anesthesiology (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:200
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200. Ann Clin Transl Neurol (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:2000. J Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:300
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300. Glia (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Nat Neurosci (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; ready-to-use
赛默飞世尔 Gfap抗体(LabVision, RB-087-R7)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为ready-to-use. Nutr Neurosci (2016) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Genes Cancer (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 人类; 1:1000
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫细胞化学在人类样本上浓度为1:1000. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(Lab Vision, RB-087-R7)被用于. Korean J Parasitol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gfap抗体(thermo, pa3-16727)被用于. Biochim Biophys Acta (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Stroke (2015) ncbi
小鼠 单克隆(S.880.0)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Millipore, MA5-15086)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Curr Gene Ther (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Acta Neuropathol (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Thermo, ASTRO6)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). PLoS ONE (2015) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 s1c
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s1c). EMBO Mol Med (2015) ncbi
小鼠 单克隆(ASTRO6)
  • 免疫组化-石蜡切片; 大鼠
赛默飞世尔 Gfap抗体(Lab Vision, MS-1376-P)被用于被用于免疫组化-石蜡切片在大鼠样本上. Int J Stem Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5). PLoS ONE (2014) ncbi
小鼠 单克隆(S.880.0)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Gfap抗体(Thermo Sci., MA5-15086)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. J Neurosci Res (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s1). Stem Cells Dev (2014) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Invitrogen, 12-0300)被用于. J Immunol (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Genes Cells (2014) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(生活技术, 13-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 1). Neurobiol Dis (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). J Virol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1). PLoS ONE (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:250; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 2). Endocrinology (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 s1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 s1). Neurosci Lett (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 2
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Neuropathol Appl Neurobiol (2013) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 2
赛默飞世尔 Gfap抗体(Invitrogen, 130300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 2). J Neuroimmunol (2012) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上 (图 5). Adv Funct Mater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:200; 图 4
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:200 (图 4). Biomaterials (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 人类; 1:400
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在人类样本上浓度为1:400. Am J Pathol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:200; 图 7
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 7). Acta Biomater (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠; 图 5
赛默飞世尔 Gfap抗体(Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 5). J Virol (2011) ncbi
大鼠 单克隆(2.2B10)
  • 免疫印迹; 小鼠; 图 s1
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫印迹在小鼠样本上 (图 s1). Biol Psychiatry (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100; 图 1
赛默飞世尔 Gfap抗体(Invitrogen, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Glia (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 大鼠; 1:1000; 图 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 2). J Comp Neurol (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:200; 图 s4
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4). Pigment Cell Melanoma Res (2010) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-冰冻切片; 小鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gfap抗体(Zymed/Invitrogen, 2.2B10)被用于被用于免疫组化-冰冻切片在小鼠样本上 和 被用于免疫细胞化学在小鼠样本上. J Neurosci (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 豚鼠; 1:100-1:200
  • 免疫组化; 人类; 1:100-1:200
赛默飞世尔 Gfap抗体(Zytomed, 13-0300)被用于被用于免疫组化在豚鼠样本上浓度为1:100-1:200 和 被用于免疫组化在人类样本上浓度为1:100-1:200. J Comp Neurol (2008) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 图 8
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上 (图 8). J Virol (2007) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 2
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 2). Glia (2006) ncbi
大鼠 单克隆(2.2B10)
  • 免疫沉淀; 小鼠
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫沉淀在小鼠样本上. J Comp Neurol (2005) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:3000; 表 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:3000 (表 1). Exp Neurol (2004) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:10,000; 图 1
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Glia (2003) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-自由浮动切片; 小鼠; 1:10000
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:10000 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Oncogene (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化-石蜡切片; 小鼠; 1:2; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2 (图 3). J Neurosci Res (2002) ncbi
大鼠 单克隆(2.2B10)
  • 免疫组化; 小鼠; 1:100
赛默飞世尔 Gfap抗体(Zymed, 13-0300)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (1999) ncbi
大鼠 单克隆(2.2B10)
  • 免疫细胞化学; 小鼠; 图 3
赛默飞世尔 Gfap抗体(Zymed, 2.2B10)被用于被用于免疫细胞化学在小鼠样本上 (图 3). Neuroreport (1998) ncbi
大鼠 单克隆(2.2B10)
赛默飞世尔 Gfap抗体(Zymed, clone 2.2B10(1))被用于. J Neuropathol Exp Neurol (1996) ncbi
艾博抗(上海)贸易有限公司
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Fluids Barriers CNS (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4i
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4i). Int J Ophthalmol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 5d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 5d). Transl Vis Sci Technol (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4a). Mol Brain (2021) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 大鼠; 1:100; 图 3c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 3c). Cell Death Discov (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2c). J Neuroinflammation (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 图 1h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上 (图 1h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 4h). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:2000; 图 3d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3d). Mol Brain (2021) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1a). Sci Rep (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 4f). Brain Behav Immun (2021) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab134436)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5c). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5). Sci Rep (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2c). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). IBRO Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3c). Acta Neuropathol Commun (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:200. Nat Commun (2020) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 小鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Millipore, Ab68428)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Front Behav Neurosci (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样本上浓度为1:500. Biol Proced Online (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2e
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2e) 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2b). Front Cell Dev Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1b). Front Cell Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2a). Cancer Genomics Proteomics (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 1c). Science (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
domestic goat 多克隆
  • 免疫组化; 大鼠; 图 4f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在大鼠样本上 (图 4f). Cell Commun Signal (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7a). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Biosci Rep (2020) ncbi
domestic rabbit 单克隆(EP672Y)
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 5f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab33922)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 5f). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4a). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3
  • 免疫印迹; 大鼠; 1:5000; 图 2e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2e). Sci Rep (2020) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3b). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3b). Sci Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 s8c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 s8c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 4c-f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4c-f). CNS Neurosci Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 10b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 10b). Neurochem Res (2020) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 5a). Aging (Albany NY) (2020) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 s7c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 s7c). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:300; 图 s3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s3b). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 5c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 5c). Braz J Med Biol Res (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1b). Epilepsy Behav (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3a). Biosci Rep (2019) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 s1m
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 s1m). Cell Stem Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 6a
  • 免疫印迹; 小鼠; 图 6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 6a) 和 被用于免疫印迹在小鼠样本上 (图 6b). Aging (Albany NY) (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s6b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6b). Sci Adv (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s13a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s13a). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:200; 图 1k
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 1k). Nat Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 4h
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 4h). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在大鼠样本上 (图 s1). Front Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 3e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 3e). Transl Psychiatry (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:400; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 4674)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 2d). Nat Commun (2019) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5a). Invest Ophthalmol Vis Sci (2019) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 2a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:2000; 图 1d2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1d2). J Histochem Cytochem (2019) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1f). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 s4e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s4e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6e). Front Aging Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在人类样本上 (图 3a). Biochem Biophys Res Commun (2018) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 2). Epilepsia (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1d). elife (2018) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:3000; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:3000 (图 1b). J Histochem Cytochem (2018) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1e). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1e). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 图 2
  • 免疫组化-自由浮动切片; 人类; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (图 2) 和 被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000 (图 4). Neurosci Res (2018) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:8000; 图 3a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:8000 (图 3a). Neuropharmacology (2018) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 3b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 3b). Neuropharmacology (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1a). Am J Physiol Gastrointest Liver Physiol (2018) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2017) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:500; 图 5g
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 5g). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 4b
艾博抗(上海)贸易有限公司 Gfap抗体(Millipore, AB7260)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 4b). Biochem Biophys Res Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1c). Oncol Lett (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1600; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1600 (图 2a). Invest Ophthalmol Vis Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Sigma, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1b). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化; 大鼠; 1:200; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 6). Glia (2017) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:200; 图 4a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a). J Headache Pain (2017) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 图 1t
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上 (图 1t). Proteomics (2017) ncbi
domestic rabbit 单克隆(EP672Y)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 7f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab33922)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 7f). Ann Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 1f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在人类样本上浓度为1:500 (图 1f). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, AB7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1c). Mol Psychiatry (2018) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2d). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 大鼠; 1:2000; 图 6
  • 免疫印迹; 大鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2000 (图 6) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 1c). PLoS ONE (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-自由浮动切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab4648)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2f). Neuroimage (2017) ncbi
domestic goat 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 7g
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 7g) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 4d). Sci Rep (2016) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 图 s4d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫细胞化学在人类样本上 (图 s4d). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 和 被用于免疫细胞化学在人类样本上. Mol Med Rep (2016) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 2). Cell Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:50; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 7260)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 1). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫印迹; 小鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). J Neuroinflammation (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:600; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, Ab53554)被用于被用于免疫组化在小鼠样本上浓度为1:600 (表 1). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化-冰冻切片; 小鼠; 图 8
艾博抗(上海)贸易有限公司 Gfap抗体(Epitomics, 2301-1)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). Mol Vis (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 4). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100; 图 2
  • 免疫印迹; 小鼠; 1:100; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:100 (图 2). Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(EP672Y)
  • 免疫细胞化学; 人类; 1:500; 图 1g
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab33922)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1g). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). Dev Neurobiol (2017) ncbi
domestic goat 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1s1
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, 54554)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1s1). elife (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫组化; 大鼠; 1:50; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(AbCam, Ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3) 和 被用于免疫组化在大鼠样本上浓度为1:50 (图 4). Neuroscience (2016) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 6). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:500; 图 9d
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在black ferret样本上浓度为1:500 (图 9d). Shock (2016) ncbi
domestic goat 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 1b
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 1b). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:5000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1034Y)
  • 免疫组化; 小鼠; 1:250; 图 s2f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab68428)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s2f). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 1g
  • 免疫细胞化学; 小鼠; 1:2000; 图 1l
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 1g) 和 被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 1l). Nat Commun (2016) ncbi
鸡 多克隆
  • 流式细胞仪; 大鼠; 图 6
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 1). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:5000; 图 3
  • 免疫印迹; 大鼠; 1:20,000; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(abcam, ab7260)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:5000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:20,000 (图 3). Mol Med Rep (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5f
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 5f). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 ev1c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 ev1c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫印迹在小鼠样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab16997)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 1). Mol Med Rep (2016) ncbi
domestic goat 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab53554)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4674)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). Cell Mol Gastroenterol Hepatol (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 小鼠; 1:500; 图 2
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2). Mol Ther (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 人类; 1:100; 图 2c
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, 2A5)被用于被用于免疫组化在人类样本上浓度为1:100 (图 2c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4). Gene Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 s10
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab7260)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s10). Brain (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫组化-冰冻切片; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 4). Mol Pain (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫细胞化学; 人类; 1:100; 图 3
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). PLoS ONE (2015) ncbi
小鼠 单克隆(2A5)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Gfap抗体(Abcam, ab4648)被用于被用于免疫组化在大鼠样本上浓度为1:200. BMC Neurosci (2013) ncbi
圣克鲁斯生物技术
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:75; 图 7c
  • 免疫印迹; 小鼠; 1:3000; 图 7c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 7c). J Neuroinflammation (2020) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-冰冻切片; 小鼠; 图 s2
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 s2). Cell Death Dis (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 大鼠; 1:500; 图 5f
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 5f). Int J Mol Med (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 6c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 6c). Sci Rep (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 人类; 1:300; 图 10d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:300 (图 10d). Brain Struct Funct (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, SC-33673)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). Front Neurosci (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 图 5g
  • 免疫印迹; 小鼠; 图 5e
圣克鲁斯生物技术 Gfap抗体(Santa, sc-33,673)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5g) 和 被用于免疫印迹在小鼠样本上 (图 5e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 1:200; 图 5a
圣克鲁斯生物技术 Gfap抗体(SCB, sc-33673)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 5a). Aging Cell (2019) ncbi
小鼠 单克隆(1.BB.807)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, SC-71143)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Aging Cell (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 6a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 6a). J Comp Neurol (2019) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology Inc, sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7). Glia (2018) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 3j
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3j). Biomed Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 小鼠; 图 5d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫印迹在小鼠样本上 (图 5d). Sci Rep (2017) ncbi
小鼠 单克隆(52)
  • 免疫组化; 大鼠; 1:1000; 图 3a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-135921)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 3a). Mol Med Rep (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 人类; 图 s1d
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-33673)被用于被用于免疫印迹在人类样本上 (图 s1d). Oncotarget (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:50; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 9
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 9). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫组化-石蜡切片; 小鼠; 图 s4f
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotech, sc-166458)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4f). Nat Biotechnol (2016) ncbi
小鼠 单克隆(GA-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-58766)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4n
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4n). Exp Neurol (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 3
  • 免疫印迹; 小鼠; 1:200; 图 3
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 3) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 3). Transl Psychiatry (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Neuron (2016) ncbi
小鼠 单克隆(2A5)
  • 免疫印迹; 犬; 1:1000; 图 6
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-65343)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 6). Stem Cell Res Ther (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 7a
圣克鲁斯生物技术 Gfap抗体(SantaCruz, sc-33673)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 7a). Toxicology (2016) ncbi
小鼠 单克隆(GF5)
  • 免疫组化; 小鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-51908)被用于被用于免疫组化在小鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术 Gfap抗体(santa Cruz, sc-33673)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, G3893)被用于被用于免疫细胞化学在小鼠样本上. J Clin Invest (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:400. Neurobiol Aging (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 大鼠; 1:300; 图 7a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:300 (图 7a). Restor Neurol Neurosci (2015) ncbi
小鼠 单克隆(GA-5)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-58766)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neuroinflammation (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 小鼠; 1:40; 图 5a
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, Sc-33673)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:40 (图 5a). J Neuroinflammation (2014) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 大鼠; 1:200
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166458)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Mol Cell Biol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫细胞化学; 大鼠; 1:300
  • 免疫印迹; 大鼠; 1:400
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 和 被用于免疫印迹在大鼠样本上浓度为1:400. Cell Mol Neurobiol (2014) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 人类; 1:300; 图 5
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc-33673)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:300 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 人类
圣克鲁斯生物技术 Gfap抗体(Santa Cruz, sc33673)被用于被用于免疫组化在人类样本上. Mol Psychiatry (2013) ncbi
小鼠 单克隆(F-2)
  • 免疫细胞化学; 小鼠
圣克鲁斯生物技术 Gfap抗体(Santa Cruz Biotechnology, sc-166481)被用于被用于免疫细胞化学在小鼠样本上. Mediators Inflamm (2012) ncbi
BioLegend
小鼠 单克隆(2E1.E9)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4e
BioLegend Gfap抗体(BioLegend, 644701)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4e). Nat Commun (2021) ncbi
小鼠 单克隆(2E1.E9)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5a
  • 免疫印迹; 小鼠; 1:3000; 图 4n
BioLegend Gfap抗体(BioLegend, 644702)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5a) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4n). J Neuroinflammation (2020) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1b, 3f
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1b, 3f). Sci Adv (2020) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 人类; 1:400; 图 4b
BioLegend Gfap抗体(BioLegend, 644706)被用于被用于流式细胞仪在人类样本上浓度为1:400 (图 4b). Epilepsy Behav (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 小鼠; 1:400; 图 1a
BioLegend Gfap抗体(BioLegend, 644704)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 1a). PLoS Biol (2019) ncbi
鸡 多克隆(Poly28294)
  • 免疫细胞化学基因敲除验证; 小鼠; 1:1500; 图 8b
  • 免疫细胞化学; 大鼠; 1:1500; 图 1a
BioLegend Gfap抗体(Biolegend, 829401)被用于被用于免疫细胞化学基因敲除验证在小鼠样本上浓度为1:1500 (图 8b) 和 被用于免疫细胞化学在大鼠样本上浓度为1:1500 (图 1a). Glia (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 3d
BioLegend Gfap抗体(BioLegend, 644704)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 3d). Nat Commun (2019) ncbi
小鼠 单克隆(2E1.E9)
  • 流式细胞仪; 人类; 图 1e
BioLegend Gfap抗体(Biolegend, 644710)被用于被用于流式细胞仪在人类样本上 (图 1e). Brain Behav Immun (2019) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5b
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5b). J Exp Med (2018) ncbi
小鼠 单克隆(SMI 25)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-25)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 24)
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-24)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (表 1), 被用于免疫印迹在人类样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
小鼠 单克隆(SMI 23)
  • 免疫细胞化学; 小鼠; 1:400; 表 1
  • 免疫印迹; 小鼠; 1:5000; 表 1
  • 免疫细胞化学; 人类; 1:400; 表 1
  • 免疫印迹; 人类; 1:5000; 表 1
BioLegend Gfap抗体(BioLegend, SMI-23)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (表 1), 被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1), 被用于免疫细胞化学在人类样本上浓度为1:400 (表 1) 和 被用于免疫印迹在人类样本上浓度为1:5000 (表 1). PLoS ONE (2017) ncbi
domestic rabbit 多克隆(Poly28400)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend Gfap抗体(Covance, PRB-571C)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 26)
BioLegend Gfap抗体(Biolegend, SMI26)被用于. Mol Biol Cell (2016) ncbi
小鼠 单克隆(SMI 25)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 4
BioLegend Gfap抗体(Covance, SMI-25R)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 4). Mol Neurodegener (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 st1
BioLegend Gfap抗体(BioLegend, 835301)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 26)
  • 免疫组化; 小鼠; 1:1000; 图 1
BioLegend Gfap抗体(Sternberger Monoclonals, SMI-26)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 小鼠; 图 1
BioLegend Gfap抗体(Covance, SMI-22R-100)被用于被用于免疫组化在小鼠样本上 (图 1). Mol Biol Cell (2015) ncbi
小鼠 单克隆(SMI 22)
  • 免疫印迹; 小鼠
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫印迹在小鼠样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1000
BioLegend Gfap抗体(Covance, SMI-22R)被用于被用于免疫组化在大鼠样本上浓度为1:1000. PLoS ONE (2013) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化-石蜡切片; 人类; 1:3000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:3000. J Comp Neurol (2012) ncbi
小鼠 单克隆(SMI 22)
  • 免疫组化; 大鼠; 1:1,000
BioLegend Gfap抗体(Sternberger Monoclonals, SMI 22)被用于被用于免疫组化在大鼠样本上浓度为1:1,000. J Comp Neurol (2006) ncbi
Synaptic Systems
小鼠 单克隆(134B1)
  • 免疫组化-石蜡切片; 小鼠; 1:300; 图 7f
Synaptic Systems Gfap抗体(Synaptic Systems, 173 011)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:300 (图 7f). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:3000; 图 1b
Synaptic Systems Gfap抗体(Synaptic Systems, 173002)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1b). EMBO J (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s3b
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s3b). Cell (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 图 5d
  • 免疫印迹; 小鼠; 图 5e
Synaptic Systems Gfap抗体(Synaptic systems, 173004)被用于被用于免疫组化在小鼠样本上 (图 5d) 和 被用于免疫印迹在小鼠样本上 (图 5e). Glia (2017) ncbi
小鼠 单克隆(134B1)
  • 免疫细胞化学; 小鼠; 1:2000; 图 7
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 7). Histochem Cell Biol (2016) ncbi
豚鼠 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 1
Synaptic Systems Gfap抗体(SYnaptic SYstems, 173 004)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 1). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:500; 图 3
Synaptic Systems Gfap抗体(Synaptic Systems, 173 004)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3). Nature (2016) ncbi
小鼠 单克隆(134B1)
  • 免疫组化; 小鼠; 图 6
  • 免疫组化; 人类; 图 6
Synaptic Systems Gfap抗体(Synaptic Systems, 173011)被用于被用于免疫组化在小鼠样本上 (图 6) 和 被用于免疫组化在人类样本上 (图 6). Stem Cell Res Ther (2015) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫组化; 小鼠; 1:1500; 图 s3a
EnCor Biotechnology Gfap抗体(EnCor, CPCA-GFAP)被用于被用于免疫组化在小鼠样本上浓度为1:1500 (图 s3a). PLoS ONE (2021) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6a
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, CPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Comp Neurol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 表 2
EnCor Biotechnology Gfap抗体(Encore, RPCA-GFAP)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (表 2). Glia (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5a
EnCor Biotechnology Gfap抗体(Encor, RPCA-GFAP)被用于被用于免疫细胞化学在小鼠样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆
  • 免疫组化-石蜡切片; 国内马; 图 3
EnCor Biotechnology Gfap抗体(EnCor-Biotechnology, 5C10)被用于被用于免疫组化-石蜡切片在国内马样本上 (图 3). Peerj (2016) ncbi
小鼠 单克隆
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
EnCor Biotechnology Gfap抗体(EnCor Biotechnology, MCA-5C10)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 1:5000
EnCor Biotechnology Gfap抗体(EnCor Biotechnology Inc, MCA5C10)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. J Neurochem (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 2a
Novus Biologicals Gfap抗体(Novus, NB300-141)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 2a). Cells (2021) ncbi
domestic rabbit 多克隆
Novus Biologicals Gfap抗体(Novus Biologic, NB300-141)被用于. Sci Rep (2015) ncbi
亚诺法生技股份有限公司
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 0.57 ug/ml
亚诺法生技股份有限公司 Gfap抗体(Abnova, MAB11287)被用于被用于免疫组化在小鼠样本上浓度为0.57 ug/ml. J Biol Chem (2015) ncbi
赛信通(上海)生物试剂有限公司
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 1b
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3655)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 1b). J Neuroinflammation (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4b). Mol Brain (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4d). Front Mol Neurosci (2021) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 s5a
  • 免疫印迹; 小鼠; 1:1000; 图 2e, 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 s5a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e, 4b). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(GA5)
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670S)被用于. Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 4c, 4e
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 4c, 4e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:1000; 图 s3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, D1F4Q)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s3a). elife (2020) ncbi
小鼠 单克隆(GA5)
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technologies, 3670S)被用于. J Virol (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:500; 图 7a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7a). J Clin Invest (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:100; 图 2d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2d). Mol Pain (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 4a
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signalling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4b). Acta Neuropathol Commun (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(ell Signaling Technology, 3656s)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 3a). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 3b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 3b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 41-2
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, #3670)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 41-2). Eneuro (2020) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫细胞化学; 小鼠; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 12389)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 5a). PLoS ONE (2020) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 1e
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 1e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3657)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 5b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5d
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:3000; 图 3g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3g). J Exp Med (2019) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling technology, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2c). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 大鼠; 1:200; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1d). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 大鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2d). Cell Death Differ (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 1g
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1g). Cell (2018) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 5c
  • 免疫印迹; 大鼠; 图 2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 5c) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Biol Chem (2018) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化-冰冻切片; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4a). Epilepsia (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c) 和 被用于免疫印迹在小鼠样本上 (图 1a). J Neurosci (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 2j
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 2j). J Pain (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上 (图 1c). Redox Biol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 犬; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:2500; 图 st8
  • 免疫组化-冰冻切片; 大鼠; 1:2500; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:2500; 图 st8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化-冰冻切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-石蜡切片在犬样本上浓度为1:2500 (图 st8), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2500 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2500 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). PLoS ONE (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 图 3gb
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上 (图 3gb) 和 被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100; 图 1d
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1d). Nat Commun (2017) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s2b). J Exp Med (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 表 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:250; 图 s5b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670P)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 s5b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:400; 图 s5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400 (图 s5). PLoS Genet (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫细胞化学; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫细胞化学在人类样本上 (图 6b). Oncogene (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2c). Neurobiol Dis (2017) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s1a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s1a). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 8152)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫组化; 小鼠; 1:200; 图 S1c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 S1c). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(D1F4Q)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 12389)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Invest Ophthalmol Vis Sci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:200; 图 8
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 36705)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Hum Mol Genet (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:500; 图 s1
  • 免疫印迹; 人类; 1:1000; 图 s1
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 s1). Mol Cell Endocrinol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-石蜡切片; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gfap抗体(cell signalling, GA5)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1). Oncotarget (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 1
  • 免疫印迹; 小鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠; 图 7
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上 (图 7). J Neurosci (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:2000; 图 1s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1s2). elife (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:1000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3c). Am J Pathol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s22
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling, 3670)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s22). Nat Biotechnol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 人类; 1:100; 图 4
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 4). Nature (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 图 3e
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化在大鼠样本上 (图 3e) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Int J Mol Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫印迹在小鼠样本上浓度为1:500. FASEB J (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gfap抗体(CST, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Brain (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Mol Cancer (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). BMC Complement Altern Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signalling Technology, 3670S)被用于被用于免疫细胞化学在小鼠样本上. Neuromolecular Med (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 大鼠; 图 4h
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3657)被用于被用于免疫细胞化学在大鼠样本上 (图 4h). J Cell Biol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670S)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. Mol Neurobiol (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 图 7c
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于免疫组化在小鼠样本上 (图 7c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:300; 图 5
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, GA5)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 5). Cereb Cortex (2016) ncbi
小鼠 单克隆(GA5)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, clone GA5)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(GA5)
  • 流式细胞仪; 小鼠; 1:500; 图 s2
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s2) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Commun (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 大鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, GA5)被用于被用于免疫组化在大鼠样本上浓度为1:200. Exp Mol Pathol (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3655)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Neurosci (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling, 3670)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Int J Oral Maxillofac Surg (2015) ncbi
小鼠 单克隆(GA5)
  • 免疫细胞化学; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, #3670)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Neurochem Int (2014) ncbi
小鼠 单克隆(GA5)
  • 免疫组化; 小鼠; 1:300
赛信通(上海)生物试剂有限公司 Gfap抗体(Cell Signaling Technology, 3670S)被用于被用于免疫组化在小鼠样本上浓度为1:300. Mol Neurobiol (2014) ncbi
西格玛奥德里奇
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma- Aldrich, G3893)被用于被用于免疫印迹在人类样本上 (图 4a). Aging Dis (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 图 5g
西格玛奥德里奇 Gfap抗体(Sigma, C9205)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 5g). Ann Neurol (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 2d). EMBO Mol Med (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1f
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1f). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 3
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-A-5)被用于被用于免疫组化在小鼠样本上 (图 3). Front Cell Dev Biol (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:500; 图 3g
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3g). Int J Mol Sci (2021) ncbi
小鼠 单克隆(G-A-5)
  • 酶联免疫吸附测定; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA-5)被用于被用于酶联免疫吸附测定在小鼠样本上. Alzheimers Res Ther (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1k
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1k). Sci Rep (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 7a
西格玛奥德里奇 Gfap抗体(SigmaAldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 7a). Arthritis Res Ther (2021) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类; 1:1000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). NPJ Parkinsons Dis (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:300; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 4a). Front Immunol (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500; 图 2c
  • 免疫印迹; 小鼠; 1:1000; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Transl Psychiatry (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图 12
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 12). elife (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4h1
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, C-9205)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4h1). J Neurosci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:750; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:750 (图 2d). Theranostics (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 5d
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 2b
西格玛奥德里奇 Gfap抗体(Merck, G9269)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 5d) 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 2b). J Neuroinflammation (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 1:400; 图 4b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4b). PLoS ONE (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:100; 图 1f
  • 免疫印迹; 大鼠; 1:1000; 图 2b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 1f) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Mol Vis (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; black ferret; 图 3b
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在black ferret样本上 (图 3b). Mol Brain (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 1e
西格玛奥德里奇 Gfap抗体(Sigma, 63893)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1e). Front Cell Neurosci (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4e
西格玛奥德里奇 Gfap抗体(Sigma, G3893-100UL)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4e). Mol Brain (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:500; 图 6e
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6e). Cell Stem Cell (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 图 s1g
西格玛奥德里奇 Gfap抗体(Millipore-Sigma, G3893)被用于被用于免疫印迹在大鼠样本上 (图 s1g). Sci Rep (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:760; 图 3d
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:760 (图 3d). elife (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 2h
西格玛奥德里奇 Gfap抗体(Sigma Aldrich, G9269)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2h). Nat Commun (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:500; 图 1b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Cell Rep (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:2500; 图 5c
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:2500 (图 5c). J Neuroinflammation (2020) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 家羊; 图 3c
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在家羊样本上 (图 3c). Stem Cell Res Ther (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2c
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2c). J Comp Neurol (2020) ncbi
小鼠 单克隆(G-A-5)
  • 流式细胞仪; 小鼠; 图 6a, b, c
西格玛奥德里奇 Gfap抗体(MilliporeSigma, GA5)被用于被用于流式细胞仪在小鼠样本上 (图 6a, b, c). JCI Insight (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:300; 图 3a, 4s2b
  • 免疫印迹; 人类; 1:3000; 图 2b, 2d, 3s1a, 4e
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3a, 4s2b) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 2b, 2d, 3s1a, 4e). elife (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 图 e2a
西格玛奥德里奇 Gfap抗体(Sigma, 63893)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 e2a). Nature (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:200; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 2d). Sci Rep (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s4). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). J Cell Mol Med (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:400; 图 2c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 (图 2c). Nature (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 4c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 4c). J Comp Neurol (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400; 图 3s1c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 3s1c). elife (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; pigs ; 1:500; 图 5a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在pigs 样本上浓度为1:500 (图 5a). Nature (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Gfap抗体(Enzo, Sigma Cat. No. G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Proc Natl Acad Sci U S A (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 s3a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s3a). Front Mol Neurosci (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5f
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5f). Nat Commun (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:800; 图 2c
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:800 (图 2c). Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 5
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 5). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 图 2f
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫印迹在小鼠样本上 (图 2f). J Biol Chem (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:500; 图 2d
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2d). Glia (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; African green monkey; 1:400; 图 5a
西格玛奥德里奇 Gfap抗体(Millipore Sigma, G3893)被用于被用于免疫组化-冰冻切片在African green monkey样本上浓度为1:400 (图 5a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1500; 图 10a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1500 (图 10a). J Neurosci (2018) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 大鼠; 1:400; 图 3f
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:400 (图 3f). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 4e-j
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4e-j). Cereb Cortex (2019) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 3a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:200; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4). J Histochem Cytochem (2018) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:250; 图 4d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4d). J Neurochem (2018) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma, G-6171)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4a). Mol Biol Cell (2018) ncbi
domestic goat 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2g
西格玛奥德里奇 Gfap抗体(Sigma, SAB2500462)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2g). J Exp Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 1b
  • 免疫组化; 小鼠; 图 s3d
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1b) 和 被用于免疫组化在小鼠样本上 (图 s3d). Science (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; jirds; 1:400; 表 1
西格玛奥德里奇 Gfap抗体(Sigma, G-3893)被用于被用于免疫组化在jirds样本上浓度为1:400 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:400
  • 免疫细胞化学; 人类; 1:400; 图 e1b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:400 和 被用于免疫细胞化学在人类样本上浓度为1:400 (图 e1b). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 图 2a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:1000; 图 8f
  • 免疫组化; 小鼠; 1:1000; 图 5c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000 (图 8f) 和 被用于免疫组化在小鼠样本上浓度为1:1000 (图 5c). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:1000; 图 1b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1b). Cell Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 图 1k
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 1k). Front Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:200; 图 8i
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8i). Sci Rep (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 图 3c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3c). Front Aging Neurosci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 4f
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 4f). FASEB J (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 1D
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 1D). elife (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 5d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 5d). Nature (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G3896)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 1). Int J Mol Sci (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 s2d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上 (图 s2d). Cell Stem Cell (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5a
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5a). Hum Mol Genet (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:400; 图 5
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 5). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:1000; 表 1
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (表 1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:300; 图 s2a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s2a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:1000; 图 s3b
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在斑马鱼样本上浓度为1:1000 (图 s3b). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500; 图 4c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 4c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; African green monkey; 1:2000; 图 5
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在African green monkey样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:10,000; 图 2f
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000 (图 2f). Mol Pharm (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 2c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 2c). Brain Struct Funct (2017) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2e
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2e). Neurobiol Aging (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Gallot's lizard; 1:500; 图 1i
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在Gallot's lizard样本上浓度为1:500 (图 1i). J Comp Neurol (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 7c
  • 免疫组化; 小鼠; 1:500; 图 4a
  • 免疫印迹; 小鼠; 1:500; 图 1a
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫组化在人类样本上浓度为1:500 (图 7c), 被用于免疫组化在小鼠样本上浓度为1:500 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 1a). Neuroscience (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4d
  • 免疫印迹; 小鼠; 1:2000; 图 6c
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6c). Dis Model Mech (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s6
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s6). Cell Death Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2). Front Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 3e
西格玛奥德里奇 Gfap抗体(SIGMA, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Science (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 5a
西格玛奥德里奇 Gfap抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5a). Brain (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上. ACS Nano (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 图 1a
  • 免疫印迹; 大鼠; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1a) 和 被用于免疫印迹在大鼠样本上 (图 4a). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1). J Proteome Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:100; 图 6
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 1e, 1f. 1g, 1h
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上 (图 1e, 1f. 1g, 1h). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2a
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫印迹在大鼠样本上 (图 2a). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 s1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6). Neurobiol Dis (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
  • 免疫印迹; 小鼠; 1:1000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic goat 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 s4
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, SAB2500462)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 5c
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上 (图 5c). J Mol Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 5b
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 7
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 7). Acta Neuropathol Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于被用于免疫印迹在小鼠样本上 (图 3). J Neurosci (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 图 s1
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样本上 (图 s1). F1000Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:500; 图 s2
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 图 6
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上 (图 6). elife (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:10,000; 图 s4
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:10,000 (图 s4). Front Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400; 图 4d
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 4d). Stem Cells Int (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 3a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3a). Gene Ther (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100; 图 8
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 3
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Brain Behav (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 图 1c, 1d
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上 (图 1c, 1d). J Virol (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000; 图 5
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). J Biol Chem (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 6
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 5a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 5a). J Neuroinflammation (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500; 图 6
西格玛奥德里奇 Gfap抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 6). Neuropharmacology (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:3000; 图 1
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 1). Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 图 7
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 7). J Neurosci Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 4f
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 4f). Mol Med Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500; 表 1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (表 1). J Neurosci Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma Aldrich, G9269)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Glia (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1). BMC Biol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Oxid Med Cell Longev (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, cat# G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. EMBO J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000. J Neuroimmunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 大鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G389)被用于被用于免疫印迹在大鼠样本上浓度为1:400. J Proteome Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400; 表 2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:400 (表 2). Eur J Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Glia (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:600; 图 1
西格玛奥德里奇 Gfap抗体(Sigma, G393)被用于被用于免疫细胞化学在大鼠样本上浓度为1:600 (图 1). Front Cell Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于. J Neurochem (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 图 5
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫组化在人类样本上 (图 5). J Neuroinflammation (2015) ncbi
domestic goat 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, SAB2500462)被用于. J Immunol (2015) ncbi
小鼠 单克隆(G-A-5)
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于. Am J Pathol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Cell Tissue Res (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 大鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:400. Mol Neurobiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 图 6
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:250; 图 3d
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3d). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s2). Stem Cell Reports (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Cell Death Differ (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4g
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4g). BMC Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上. Brain Struct Funct (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 日本大米鱼; 1:1000; 图 2
  • 免疫印迹; 日本大米鱼; 1:1000; 图 2
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在日本大米鱼样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在日本大米鱼样本上浓度为1:1000 (图 2). PLoS Genet (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:1000; 图 1
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1). J Immunol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. J Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 5
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 5). Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在大鼠样本上. Brain Behav (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:200; 图 s4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s4). Sci Rep (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样本上浓度为1:500. Neuropharmacology (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 4). Sci Rep (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于. Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
  • 酶联免疫吸附测定; 大鼠
  • 免疫印迹; 大鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma Chemical, G9269)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200, 被用于酶联免疫吸附测定在大鼠样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 Gfap抗体(SIGMA, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:5000. J Cell Physiol (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G9269)被用于. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500. Cell Biol Int Rep (2010) (2013) ncbi
小鼠 单克隆(G-A-5)
  • proximity ligation assay; 大鼠; 1:500; 图 5i
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 5a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于proximity ligation assay在大鼠样本上浓度为1:500 (图 5i) 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 5a). Exp Eye Res (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000
西格玛奥德里奇 Gfap抗体(SIGMA, G3893)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:5000; 表 1
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:5000 (表 1). Brain Behav Immun (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:400. Front Behav Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:2000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:5000
西格玛奥德里奇 Gfap抗体(Sigma Aldrich, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:5000. Gene Ther (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:3000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:3000. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:600
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样本上浓度为1:600. J Neuroinflammation (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000. J Comp Neurol (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:100
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Neurobiol Aging (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在人类样本上. Ann Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:2000; 图 4
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 4). Stem Cells Dev (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:500
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, Clone G-A-5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500. J Immunol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在人类样本上浓度为1:1000 和 被用于免疫组化在大鼠样本上浓度为1:1000. Int J Clin Exp Pathol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1600
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1600. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:5000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:5000. J Chem Neuroanat (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Dis (2014) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Gfap抗体(Sigma, G9269)被用于. Cereb Cortex (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:20
  • 免疫组化-冰冻切片; 小鼠; 1:20
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:20 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:600
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:600. J Vis Exp (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000; 图 s7
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s7). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:1000; 图 2b3
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 2b3). J Mol Neurosci (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Alzheimers Dis (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma, G-3893)被用于被用于免疫组化在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Neuroscience (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图 4a
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 4a). Nat Neurosci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; domestic rabbit
  • 免疫组化; pigs ; 1:400
  • 免疫组化; 人类; 1:400
  • 免疫组化; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在domestic rabbit样本上, 被用于免疫组化在pigs 样本上浓度为1:400, 被用于免疫组化在人类样本上浓度为1:400 和 被用于免疫组化在大鼠样本上. Exp Eye Res (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 人类; 1:400
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在人类样本上浓度为1:400. J Proteomics (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2). Brain Struct Funct (2015) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Front Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Stem Cells (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 人类; 1:15,000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在人类样本上浓度为1:15,000. Neurobiol Aging (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Apteronotus leptorhynchus; 图 3
西格玛奥德里奇 Gfap抗体(Sigma, G-A-5)被用于被用于免疫组化在Apteronotus leptorhynchus样本上 (图 3). Dev Neurobiol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
  • 免疫印迹; 大鼠; 1:2000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000 和 被用于免疫印迹在大鼠样本上浓度为1:2000. J Neurol Sci (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:100. Glia (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 人类; 1:1000
  • 免疫组化-自由浮动切片; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:1000 和 被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 人类
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:50000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G6171)被用于被用于免疫组化在小鼠样本上浓度为1:50000. Hippocampus (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:500. Nat Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1000
  • 免疫印迹; 小鼠; 1:2000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:1000 和 被用于免疫印迹在小鼠样本上浓度为1:2000. J Comp Neurol (2014) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Nat Med (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫印迹; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫印迹在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 猕猴; 1:200
西格玛奥德里奇 Gfap抗体(Sigma, GA5)被用于被用于免疫组化-冰冻切片在猕猴样本上浓度为1:200. J Neuroinflammation (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:500
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 和 被用于免疫细胞化学在小鼠样本上. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:800
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800. PLoS ONE (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 人类; 1:20,000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:20,000. J Chem Neuroanat (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G 3893)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Comp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA5)被用于被用于免疫组化在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫细胞化学在小鼠样本上. EMBO J (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; pigs
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-石蜡切片在pigs 样本上. Reprod Sci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类; 1:75
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:75. Cell Tissue Res (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 人类; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, GA5)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:1000. Dev Neurosci (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000. Glia (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; domestic rabbit
  • 免疫印迹; domestic rabbit
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇 Gfap抗体(Sigma, G6171)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上, 被用于免疫印迹在domestic rabbit样本上 和 被用于免疫组化-冰冻切片在人类样本上. Exp Neurol (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000. Neuroscience (2013) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400. J Histochem Cytochem (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Neurosci (2012) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 人类
  • 免疫组化-石蜡切片; 人类
  • 免疫组化-冰冻切片; African green monkey
  • 免疫组化-石蜡切片; African green monkey
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在人类样本上, 被用于免疫组化-石蜡切片在人类样本上, 被用于免疫组化-冰冻切片在African green monkey样本上 和 被用于免疫组化-石蜡切片在African green monkey样本上. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; African green monkey; 1:100
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在African green monkey样本上浓度为1:100. J Comp Neurol (2011) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:400. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100. J Comp Neurol (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 2). Neuroscience (2010) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; Trachemys dorbigni; 1:500
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在Trachemys dorbigni样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 大鼠; 1:2500
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:2500. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:400. J Comp Neurol (2009) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 和 被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 斑马鱼; 1:100
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:100. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 大鼠; 1:600
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G3893)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:600. J Comp Neurol (2008) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:1,000
西格玛奥德里奇 Gfap抗体(Sigma-Aldrich, G-3893)被用于被用于免疫组化在小鼠样本上浓度为1:1,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 小鼠; 1:300
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在小鼠样本上浓度为1:300. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-石蜡切片; 小鼠; 1:200
  • 免疫组化-石蜡切片; 人类; 1:200
  • 免疫组化-石蜡切片; 大鼠; 1:200
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200, 被用于免疫组化-石蜡切片在人类样本上浓度为1:200 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. J Comp Neurol (2007) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化; 大鼠; 1:400
  • 免疫组化; 小鼠; 1:400
西格玛奥德里奇 Gfap抗体(Sigma, G3893)被用于被用于免疫组化在大鼠样本上浓度为1:400 和 被用于免疫组化在小鼠样本上浓度为1:400. J Comp Neurol (2006) ncbi
小鼠 单克隆(G-A-5)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
西格玛奥德里奇 Gfap抗体(Sigma, GA5)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. J Comp Neurol (2005) ncbi
碧迪BD
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 2a
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 2a). J Neuroinflammation (2021) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s1b
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s1b). Nat Commun (2021) ncbi
小鼠 单克隆(1B4)
  • 其他; 人类; 1:200
碧迪BD Gfap抗体(BD Biosciences, 1B4)被用于被用于其他在人类样本上浓度为1:200. elife (2020) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 s6b
碧迪BD Gfap抗体(BD, 556329)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 s6b). Nat Neurosci (2019) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 人类; 图 s7a
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s7a). Neurosurgery (2018) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 s4a
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). J Cell Sci (2017) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 st8
  • 免疫组化-石蜡切片; 犬; 1:100; 图 st8
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 st8
碧迪BD Gfap抗体(BD Biosciences, 556329)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 st8), 被用于免疫组化-石蜡切片在犬样本上浓度为1:100 (图 st8) 和 被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 st8). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 2e
碧迪BD Gfap抗体(BD, 1B4)被用于被用于流式细胞仪在小鼠样本上 (图 2e). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
碧迪BD Gfap抗体(BD Pharmingen, 556327)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Pharmacol Biochem Behav (2017) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 人类; 1:100; 图 s8
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 s8). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠; 1:2000; 图 3
  • 免疫印迹; 大鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD, 556327)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3). Alzheimers Res Ther (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:2000; 图 3
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 3). PLoS ONE (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 1:50; 图 4
碧迪BD Gfap抗体(BD Biosciences, 561483)被用于被用于流式细胞仪在小鼠样本上浓度为1:50 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫印迹; 人类; 1:500; 图 6
碧迪BD Gfap抗体(BD Pharmingen, 556330)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Glia (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-石蜡切片; 小鼠; 0.01 ug/ml; 图 4
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为0.01 ug/ml (图 4). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 小鼠; 图 4, 7
碧迪BD Gfap抗体(BD Pharmingen, 561483)被用于被用于流式细胞仪在小鼠样本上 (图 4, 7). Nat Neurosci (2016) ncbi
小鼠 单克隆(2E1)
  • 免疫组化; 小鼠; 1:1000; 图 5
碧迪BD Gfap抗体(BD Pharmingen, 556329)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5). Eneuro (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s2
碧迪BD Gfap抗体(BD Biosciences, 1B4)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s2). Neuropharmacology (2016) ncbi
小鼠 单克隆(1B4)
  • 流式细胞仪; 人类; 图 4
碧迪BD Gfap抗体(Becton-Dickinson, 561449)被用于被用于流式细胞仪在人类样本上 (图 4). Int J Oncol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
  • 免疫细胞化学; 小鼠
碧迪BD Gfap抗体(BD Biosciences, 1B4)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a) 和 被用于免疫细胞化学在小鼠样本上. Hepatology (2016) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 大鼠
碧迪BD Gfap抗体(BD Pharmagen, Clon 4a11, Ref. 55632)被用于被用于免疫组化在大鼠样本上. J Neuroendocrinol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫组化; 大鼠; 1 ug/ml
碧迪BD Gfap抗体(BD Pharmingen, 556328)被用于被用于免疫组化在大鼠样本上浓度为1 ug/ml. Neurogastroenterol Motil (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化; 小鼠; 1:200; 图 8
碧迪BD Gfap抗体(BD Biosciences, 556330)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 8). Neurotherapeutics (2015) ncbi
小鼠 单克隆(2E1)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(1B4)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:1000
碧迪BD Gfap抗体(BD Pharmingen, 55632)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(52/GFAP)
  • 免疫细胞化学; 大鼠; 1:500; 图 11
碧迪BD Gfap抗体(BD Biosciences, 610565)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 11). Pain (2014) ncbi
小鼠 单克隆(4A11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
碧迪BD Gfap抗体(BD Pharmigen, 556327)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200. J Comp Neurol (2010) ncbi
Developmental Studies Hybridoma Bank
小鼠 单克隆(8-1E7)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3a
Developmental Studies Hybridoma Bank Gfap抗体(DSHB, 8-1E7)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3a). J Clin Med (2020) ncbi
文章列表
  1. Kettwig M, Ternka K, Wendland K, Krüger D, Zampar S, Schob C, et al. Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy. Nat Commun. 2021;12:6530 pubmed 出版商
  2. He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang J, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS. 2021;18:44 pubmed 出版商
  3. Xiao Y, Liang J, Gao M, Sun J, Liu Y, Chen J, et al. Deletion of prominin-1 in mice results in disrupted photoreceptor outer segment protein homeostasis. Int J Ophthalmol. 2021;14:1334-1344 pubmed 出版商
  4. Sil S, Singh S, Chemparathy D, Chivero E, Gordon L, Buch S. Astrocytes & Astrocyte derived Extracellular Vesicles in Morphine Induced Amyloidopathy: Implications for Cognitive Deficits in Opiate Abusers. Aging Dis. 2021;12:1389-1408 pubmed 出版商
  5. Weigelt C, Fuchs H, Schonberger T, Stierstorfer B, Strobel B, Lamla T, et al. AAV-Mediated Expression of Human VEGF, TNF-α, and IL-6 Induces Retinal Pathology in Mice. Transl Vis Sci Technol. 2021;10:15 pubmed 出版商
  6. Mayweather B, Buchanan S, Rubin L. GDF11 expressed in the adult brain negatively regulates hippocampal neurogenesis. Mol Brain. 2021;14:134 pubmed 出版商
  7. Blot F, Krijnen W, den Hoedt S, Osório C, White J, Mulder M, et al. Sphingolipid metabolism governs Purkinje cell patterned degeneration in Atxn1[82Q]/+ mice. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  8. Villanueva E, Tresse E, Liu Y, Duarte J, Jimenez Duran G, Ejlerskov P, et al. Neuronal TNFα, Not α-Syn, Underlies PDD-Like Disease Progression in IFNβ-KO Mice. Ann Neurol. 2021;90:789-807 pubmed 出版商
  9. Serpe C, Monaco L, Relucenti M, Iovino L, Familiari P, Scavizzi F, et al. Microglia-Derived Small Extracellular Vesicles Reduce Glioma Growth by Modifying Tumor Cell Metabolism and Enhancing Glutamate Clearance through miR-124. Cells. 2021;10: pubmed 出版商
  10. Ishikura T, Kinoshita M, Shimizu M, Yasumizu Y, Motooka D, Okuzaki D, et al. Anti-AQP4 autoantibodies promote ATP release from astrocytes and induce mechanical pain in rats. J Neuroinflammation. 2021;18:181 pubmed 出版商
  11. Soldati C, Lopez Fabuel I, Wanderlingh L, García Macia M, Monfregola J, Esposito A, et al. Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Mol Med. 2021;13:e13742 pubmed 出版商
  12. Xiao X, Li W, Rong D, Xu Z, Zhang Z, Ye H, et al. Human umbilical cord mesenchymal stem cells-derived extracellular vesicles facilitate the repair of spinal cord injury via the miR-29b-3p/PTEN/Akt/mTOR axis. Cell Death Discov. 2021;7:212 pubmed 出版商
  13. Miyajima H, Itokazu T, Tanabe S, Yamashita T. Interleukin-17A regulates ependymal cell proliferation and functional recovery after spinal cord injury in mice. Cell Death Dis. 2021;12:766 pubmed 出版商
  14. Zhang H, Ben Zablah Y, Liu A, Lee D, Zhang H, Meng Y, et al. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice. Mol Brain. 2021;14:121 pubmed 出版商
  15. Kilicarslan I, Zanetti L, Novelli E, Schwarzer C, Strettoi E, Koschak A. Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Sci Rep. 2021;11:15146 pubmed 出版商
  16. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  17. Umans R, Pollock C, Mills W, Clark K, Pan Y, Sontheimer H. Using Zebrafish to Elucidate Glial-Vascular Interactions During CNS Development. Front Cell Dev Biol. 2021;9:654338 pubmed 出版商
  18. Gaja Capdevila N, Hernández N, Zamanillo D, Vela J, Merlos M, Navarro X, et al. Neuroprotective Effects of Sigma 1 Receptor Ligands on Motoneuron Death after Spinal Root Injury in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  19. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  20. Yoneshige A, Hagiyama M, Takashima Y, Ueno S, Inoue T, Kimura R, et al. Elevated Hydrostatic Pressure Causes Retinal Degeneration Through Upregulating Lipocalin-2. Front Cell Dev Biol. 2021;9:664327 pubmed 出版商
  21. MacLean M, Juranek J, Cuddapah S, López Díez R, Ruiz H, Hu J, et al. Microglia RAGE exacerbates the progression of neurodegeneration within the SOD1G93A murine model of amyotrophic lateral sclerosis in a sex-dependent manner. J Neuroinflammation. 2021;18:139 pubmed 出版商
  22. Asahina M, Fujinawa R, Hirayama H, Tozawa R, Kajii Y, Suzuki T. Reversibility of motor dysfunction in the rat model of NGLY1 deficiency. Mol Brain. 2021;14:91 pubmed 出版商
  23. Martini T, Ripperger J, Stalin J, Kores A, Stumpe M, Albrecht U. Deletion of the clock gene Period2 (Per2) in glial cells alters mood-related behavior in mice. Sci Rep. 2021;11:12242 pubmed 出版商
  24. Polinski N, Martinez T, Gorodinsky A, Gareus R, Sasner M, Herberth M, et al. Decreased glucocerebrosidase activity and substrate accumulation of glycosphingolipids in a novel GBA1 D409V knock-in mouse model. PLoS ONE. 2021;16:e0252325 pubmed 出版商
  25. Moyon S, Frawley R, Maréchal D, Huang D, Marshall Phelps K, Kegel L, et al. TET1-mediated DNA hydroxymethylation regulates adult remyelination in mice. Nat Commun. 2021;12:3359 pubmed 出版商
  26. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  27. Vicente Rodríguez M, Singh N, Turkheimer F, Peris Yague A, Randall K, Veronese M, et al. Resolving the cellular specificity of TSPO imaging in a rat model of peripherally-induced neuroinflammation. Brain Behav Immun. 2021;96:154-167 pubmed 出版商
  28. Haan N, Westacott L, Carter J, Owen M, Gray W, Hall J, et al. Haploinsufficiency of the schizophrenia and autism risk gene Cyfip1 causes abnormal postnatal hippocampal neurogenesis through microglial and Arp2/3 mediated actin dependent mechanisms. Transl Psychiatry. 2021;11:313 pubmed 出版商
  29. Shin S, Zhou H, He C, Wei Y, Wang Y, Shingu T, et al. Qki activates Srebp2-mediated cholesterol biosynthesis for maintenance of eye lens transparency. Nat Commun. 2021;12:3005 pubmed 出版商
  30. Tournissac M, Vu T, Vrabic N, Hozer C, Tremblay C, Mélançon K, et al. Repurposing beta-3 adrenergic receptor agonists for Alzheimer's disease: beneficial effects in a mouse model. Alzheimers Res Ther. 2021;13:103 pubmed 出版商
  31. Steubler V, Erdinger S, Back M, Ludewig S, Fässler D, Richter M, et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. EMBO J. 2021;40:e107471 pubmed 出版商
  32. Sahu M, Pazos Boubeta Y, Steinzeig A, Kaurinkoski K, Palmisano M, Borowecki O, et al. Depletion of TrkB Receptors From Adult Serotonergic Neurons Increases Brain Serotonin Levels, Enhances Energy Metabolism and Impairs Learning and Memory. Front Mol Neurosci. 2021;14:616178 pubmed 出版商
  33. Seol B, Kim Y, Cho Y. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  34. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  35. Grissi M, Boudot C, Assem M, Candellier A, Lando M, Poirot Leclercq S, et al. Metformin prevents stroke damage in non-diabetic female mice with chronic kidney disease. Sci Rep. 2021;11:7464 pubmed 出版商
  36. Garcia Mesa Y, Xu H, Vance P, Gruenewald A, Garza R, Midkiff C, et al. Dimethyl Fumarate, an Approved Multiple Sclerosis Treatment, Reduces Brain Oxidative Stress in SIV-Infected Rhesus Macaques: Potential Therapeutic Repurposing for HIV Neuroprotection. Antioxidants (Basel). 2021;10: pubmed 出版商
  37. Higgins N, Greenslade J, Wu J, Miranda E, Galliciotti G, Monteiro M. Serpin neuropathology in the P497S UBQLN2 mouse model of ALS/FTD. Brain Pathol. 2021;:e12948 pubmed 出版商
  38. Kutsyr O, Maestre Carballa L, Lluesma Gomez M, Martinez Garcia M, Cuenca N, Lax P. Retinitis pigmentosa is associated with shifts in the gut microbiome. Sci Rep. 2021;11:6692 pubmed 出版商
  39. Kerr G, To B, White I, Millecamps M, Beier F, Grol M, et al. Diet-induced obesity leads to behavioral indicators of pain preceding structural joint damage in wild-type mice. Arthritis Res Ther. 2021;23:93 pubmed 出版商
  40. Niu M, Zhao F, Bondelid K, Siedlak S, Torres S, Fujioka H, et al. VPS35 D620N knockin mice recapitulate cardinal features of Parkinson's disease. Aging Cell. 2021;20:e13347 pubmed 出版商
  41. Ferreira N, Gonçalves N, Jan A, Jensen N, van der Laan A, Mohseni S, et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. Acta Neuropathol Commun. 2021;9:31 pubmed 出版商
  42. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  43. Kano M, Takanashi M, Oyama G, Yoritaka A, Hatano T, Shiba Fukushima K, et al. Reduced astrocytic reactivity in human brains and midbrain organoids with PRKN mutations. NPJ Parkinsons Dis. 2020;6:33 pubmed 出版商
  44. Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim S, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol. 2020;11:566279 pubmed 出版商
  45. Zahedi K, Brooks M, Barone S, Rahmati N, Murray Stewart T, Dunworth M, et al. Ablation of polyamine catabolic enzymes provokes Purkinje cell damage, neuroinflammation, and severe ataxia. J Neuroinflammation. 2020;17:301 pubmed 出版商
  46. Morales Garcia J, Calleja Conde J, Lopez Moreno J, Alonso Gil S, Sanz Sancristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331 pubmed 出版商
  47. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  48. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  49. Ueno H, Shimada A, Suemitsu S, Murakami S, Kitamura N, Wani K, et al. Alpha-pinene and dizocilpine (MK-801) attenuate kindling development and astrocytosis in an experimental mouse model of epilepsy. IBRO Rep. 2020;9:102-114 pubmed 出版商
  50. Suzuki G, Imura S, Hosokawa M, Katsumata R, Nonaka T, Hisanaga S, et al. α-synuclein strains that cause distinct pathologies differentially inhibit proteasome. elife. 2020;9: pubmed 出版商
  51. Garcia Mesa Y, Garza R, Diaz Ortiz M, Gruenewald A, Bastien B, Lobrovich R, et al. Regional Brain Recovery from Acute Synaptic Injury in Simian Immunodeficiency Virus-Infected Rhesus Macaques Associates with Heme Oxygenase Isoform Expression. J Virol. 2020;94: pubmed 出版商
  52. Tang S, Fesharaki Zadeh A, Takahashi H, Nies S, Smith L, Luo A, et al. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun. 2020;8:96 pubmed 出版商
  53. Leelatian N, Sinnaeve J, Mistry A, Barone S, Brockman A, Diggins K, et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. elife. 2020;9: pubmed 出版商
  54. Chen T, Lennon V, Liu Y, Bosco D, Li Y, Yi M, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025-4038 pubmed 出版商
  55. Shi Z, Pelletier N, Wong J, Li B, Sdrulla A, Madden C, et al. Leptin increases sympathetic nerve activity via induction of its own receptor in the paraventricular nucleus. elife. 2020;9: pubmed 出版商
  56. Shin S, Itson Zoske B, Cai Y, Qiu C, Pan B, Stucky C, et al. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain. 2020;16:1744806920925425 pubmed 出版商
  57. Kang L, Yu H, Yang X, Zhu Y, Bai X, Wang R, et al. Neutrophil extracellular traps released by neutrophils impair revascularization and vascular remodeling after stroke. Nat Commun. 2020;11:2488 pubmed 出版商
  58. Jia Y, Wininger K, Ho A, Peyton L, Baker M, Choi D. Astrocytic Glutamate Transporter 1 (GLT1) Deficiency Reduces Anxiety- and Depression-Like Behaviors in Mice. Front Behav Neurosci. 2020;14:57 pubmed 出版商
  59. Mishra P, Boutej H, Soucy G, Bareil C, Kumar S, Picher Martel V, et al. Transmission of ALS pathogenesis by the cerebrospinal fluid. Acta Neuropathol Commun. 2020;8:65 pubmed 出版商
  60. Salido E, Ramamurthy V. Proteoglycan IMPG2 Shapes the Interphotoreceptor Matrix and Modulates Vision. J Neurosci. 2020;40:4059-4072 pubmed 出版商
  61. Lee D, Kam M, Lee S, Lee H, Lee D. Peroxiredoxin 5 deficiency exacerbates iron overload-induced neuronal death via ER-mediated mitochondrial fission in mouse hippocampus. Cell Death Dis. 2020;11:204 pubmed 出版商
  62. Touahri Y, Dixit R, Kofoed R, Miloska K, Park E, Raeisossadati R, et al. Focused ultrasound as a novel strategy for noninvasive gene delivery to retinal Müller glia. Theranostics. 2020;10:2982-2999 pubmed 出版商
  63. Morse S, Boltersdorf T, Harriss B, Chan T, Baxan N, Jung H, et al. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound. Theranostics. 2020;10:2659-2674 pubmed 出版商
  64. Mecha M, Yanguas Casás N, Feliú A, Mestre L, Carrillo Salinas F, Riecken K, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation. 2020;17:88 pubmed 出版商
  65. Kwiecien J, Dabrowski W, Dabrowska Bouta B, Sulkowski G, Oakden W, Kwiecien Delaney C, et al. Prolonged inflammation leads to ongoing damage after spinal cord injury. PLoS ONE. 2020;15:e0226584 pubmed 出版商
  66. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  67. Mashkaryan V, Siddiqui T, Popova S, Cosacak M, Bhattarai P, Brandt K, et al. Type 1 Interleukin-4 Signaling Obliterates Mouse Astroglia in vivo but Not in vitro. Front Cell Dev Biol. 2020;8:114 pubmed 出版商
  68. Deng C, Chen S, Li X, Luo H, Zhang Q, Hu P, et al. Role of the PGE2 receptor in ischemia-reperfusion injury of the rat retina. Mol Vis. 2020;26:36-47 pubmed
  69. Yoshino M, Saito K, Kawasaki K, Horiike T, Shinmyo Y, Kawasaki H. The origin and development of subcortical U-fibers in gyrencephalic ferrets. Mol Brain. 2020;13:37 pubmed 出版商
  70. Kjell J, Gotz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci. 2020;14:32 pubmed 出版商
  71. Xing Z, Zhang L, Zhang Y, Sun X, Sun X, Yu H, et al. DIP2B Interacts With α-Tubulin to Regulate Axon Outgrowth. Front Cell Neurosci. 2020;14:29 pubmed 出版商
  72. Famakin B, Tsymbalyuk O, Tsymbalyuk N, Ivanova S, Woo S, Kwon M, et al. HMGB1 is a Potential Mediator of Astrocytic TLR4 Signaling Activation following Acute and Chronic Focal Cerebral Ischemia. Neurol Res Int. 2020;2020:3929438 pubmed 出版商
  73. Li J, Tao T, Xu J, Liu Z, Zou Z, Jin M. HIF‑1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia‑reperfusion injury in a rat MCAO model. Int J Mol Med. 2020;45:1027-1036 pubmed 出版商
  74. Sterpka A, Yang J, Strobel M, Zhou Y, Pauplis C, Chen X. Diverged morphology changes of astrocytic and neuronal primary cilia under reactive insults. Mol Brain. 2020;13:28 pubmed 出版商
  75. Sardari M, Dzyubenko E, Schmermund B, Yin D, Qi Y, Kleinschnitz C, et al. Dose-Dependent Microglial and Astrocytic Responses Associated With Post-ischemic Neuroprotection After Lipopolysaccharide-Induced Sepsis-Like State in Mice. Front Cell Neurosci. 2020;14:26 pubmed 出版商
  76. Martinelli C, Gabriele F, Manai F, Ciccone R, Novara F, Sauta E, et al. The Search for Molecular Markers in a Gene-Orphan Case Study of a Pediatric Spinal Cord Pilocytic Astrocytoma. Cancer Genomics Proteomics. 2020;17:117-130 pubmed 出版商
  77. Sun Y, Guo Y, Feng X, Jia M, Ai N, Dong Y, et al. The behavioural and neuropathologic sexual dimorphism and absence of MIP-3α in tau P301S mouse model of Alzheimer's disease. J Neuroinflammation. 2020;17:72 pubmed 出版商
  78. Hu C, Wang W, Brind Amour J, Singh P, Reeves G, Lorincz M, et al. Vertebrate diapause preserves organisms long term through Polycomb complex members. Science. 2020;367:870-874 pubmed 出版商
  79. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  80. Moreno Rodríguez M, Perez S, Nadeem M, Malek Ahmadi M, Mufson E. Frontal cortex chitinase and pentraxin neuroinflammatory alterations during the progression of Alzheimer's disease. J Neuroinflammation. 2020;17:58 pubmed 出版商
  81. Ayanlaja A, Ji G, Wang J, Gao Y, Cheng B, Kanwore K, et al. Doublecortin undergo nucleocytoplasmic transport via the RanGTPase signaling to promote glioma progression. Cell Commun Signal. 2020;18:24 pubmed 出版商
  82. Angel A, Volkman R, Royal T, Offen D. Caspase-6 Knockout in the 5xFAD Model of Alzheimer's Disease Reveals Favorable Outcome on Memory and Neurological Hallmarks. Int J Mol Sci. 2020;21: pubmed 出版商
  83. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  84. Liu Y, Zhang S, Li X, Liu E, Wang X, Zhou Q, et al. Peripheral inflammation promotes brain tau transmission via disrupting blood-brain barrier. Biosci Rep. 2020;40: pubmed 出版商
  85. Chen K, Gu H, Zhu L, Feng D. A New Model of Repetitive Traumatic Brain Injury in Mice. Front Neurosci. 2019;13:1417 pubmed 出版商
  86. Kjell J, Fischer Sternjak J, Thompson A, Friess C, Sticco M, Salinas F, et al. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell. 2020;26:277-293.e8 pubmed 出版商
  87. Torres Mejía E, Trumbach D, Kleeberger C, Dornseifer U, Orschmann T, Bäcker T, et al. Sox2 controls Schwann cell self-organization through fibronectin fibrillogenesis. Sci Rep. 2020;10:1984 pubmed 出版商
  88. Lyu C, Lyu G, Mulder J, Uhlen M, Cai X, Hokfelt T, et al. Expression and regulation of FRMD6 in mouse DRG neurons and spinal cord after nerve injury. Sci Rep. 2020;10:1880 pubmed 出版商
  89. Viana G, Priestman D, Platt F, Khan S, Tomatsu S, Pshezhetsky A. Brain Pathology in Mucopolysaccharidoses (MPS) Patients with Neurological Forms. J Clin Med. 2020;9: pubmed 出版商
  90. Wang T, Wu C, Ouzounov D, Gu W, Xia F, Kim M, et al. Quantitative analysis of 1300-nm three-photon calcium imaging in the mouse brain. elife. 2020;9: pubmed 出版商
  91. Carminati E, Buffolo F, Rocchi A, Michetti C, Cesca F, Benfenati F. Mild Inactivation of RE-1 Silencing Transcription Factor (REST) Reduces Susceptibility to Kainic Acid-Induced Seizures. Front Cell Neurosci. 2019;13:580 pubmed 出版商
  92. Ballabio C, Anderle M, Gianesello M, Lago C, Miele E, Cardano M, et al. Modeling medulloblastoma in vivo and with human cerebellar organoids. Nat Commun. 2020;11:583 pubmed 出版商
  93. Dobolyi A, Bagó A, Palkovits M, Nemeria N, Jordan F, Doczi J, et al. Exclusive neuronal detection of KGDHC-specific subunits in the adult human brain cortex despite pancellular protein lysine succinylation. Brain Struct Funct. 2020;225:639-667 pubmed 出版商
  94. Guyot A, Leuxe C, Disdier C, Oumata N, Costa N, Roux G, et al. A Small Compound Targeting Prohibitin with Potential Interest for Cognitive Deficit Rescue in Aging mice and Tau Pathology Treatment. Sci Rep. 2020;10:1143 pubmed 出版商
  95. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  96. Udovin L, Kobiec T, Herrera M, Toro Urrego N, Kusnier C, Kolliker Frers R, et al. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front Neurosci. 2019;13:1345 pubmed 出版商
  97. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  98. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  99. Yue D, Zhao J, Chen H, Guo M, Chen C, Zhou Y, et al. MicroRNA-7, synergizes with RORα, negatively controls the pathology of brain tissue inflammation. J Neuroinflammation. 2020;17:28 pubmed 出版商
  100. Wang S, Zhang Q, Tiwari S, Lichinchi G, Yau E, Hui H, et al. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep. 2020;30:969-983.e4 pubmed 出版商
  101. Findlay A, McKie L, Keighren M, Clementson Mobbs S, Sanchez Pulido L, Wells S, et al. Fam151b, the mouse homologue of C.elegans menorin gene, is essential for retinal function. Sci Rep. 2020;10:437 pubmed 出版商
  102. Linker K, Elabd M, Tawadrous P, Cano M, Green K, Wood M, et al. Microglial activation increases cocaine self-administration following adolescent nicotine exposure. Nat Commun. 2020;11:306 pubmed 出版商
  103. Li C, Chen W, Wang J, Xia M, Jia Z, Guo C, et al. Nicotinamide riboside rescues angiotensin II-induced cerebral small vessel disease in mice. CNS Neurosci Ther. 2020;26:438-447 pubmed 出版商
  104. Tang X, Yan K, Wang Y, Wang Y, Chen H, Xu J, et al. Activation of PPAR-β/δ Attenuates Brain Injury by Suppressing Inflammation and Apoptosis in a Collagenase-Induced Intracerebral Hemorrhage Mouse Model. Neurochem Res. 2020;45:837-850 pubmed 出版商
  105. Bartolomé F, Antequera D, de la Cueva M, Rubio Fernández M, Castro N, Pascual C, et al. Endothelial-specific deficiency of megalin in the brain protects mice against high-fat diet challenge. J Neuroinflammation. 2020;17:22 pubmed 出版商
  106. Evonuk K, Doyle R, Moseley C, Thornell I, Adler K, Bingaman A, et al. Reduction of AMPA receptor activity on mature oligodendrocytes attenuates loss of myelinated axons in autoimmune neuroinflammation. Sci Adv. 2020;6:eaax5936 pubmed 出版商
  107. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  108. Han C, Liu Y, Sui Y, Chen N, Du T, Jiang Y, et al. Integrated transcriptome expression profiling reveals a novel lncRNA associated with L-DOPA-induced dyskinesia in a rat model of Parkinson's disease. Aging (Albany NY). 2020;12:718-739 pubmed 出版商
  109. Smith H, Freeman O, Butcher A, Holmqvist S, Humoud I, Schätzl T, et al. Astrocyte Unfolded Protein Response Induces a Specific Reactivity State that Causes Non-Cell-Autonomous Neuronal Degeneration. Neuron. 2020;: pubmed 出版商
  110. Malhotra A, Castillo Melendez M, Allison B, Sutherland A, Nitsos I, Pham Y, et al. Neurovascular effects of umbilical cord blood-derived stem cells in growth-restricted newborn lambs : UCBCs for perinatal brain injury. Stem Cell Res Ther. 2020;11:17 pubmed 出版商
  111. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  112. Wang X, Deng Y, Gao Y, Dong Y, Wang F, Guan Z, et al. Activation of α7 nAChR by PNU-282987 improves synaptic and cognitive functions through restoring the expression of synaptic-associated proteins and the CaM-CaMKII-CREB signaling pathway. Aging (Albany NY). 2020;12:543-570 pubmed 出版商
  113. Tzameret A, Piontkewitz Y, Nitzan A, Rudoler N, Bruzel M, Zilberstein Y, et al. Mild carotid stenosis creates gradual, progressive, lifelong brain, and eye damage: An experimental laboratory rat model. J Comp Neurol. 2020;528:1672-1682 pubmed 出版商
  114. Ocasio J, Babcock B, Malawsky D, Weir S, Loo L, Simon J, et al. scRNA-seq in medulloblastoma shows cellular heterogeneity and lineage expansion support resistance to SHH inhibitor therapy. Nat Commun. 2019;10:5829 pubmed 出版商
  115. Raphael I, Gomez Rivera F, Raphael R, Robinson R, Nalawade S, Forsthuber T. TNFR2 limits proinflammatory astrocyte functions during EAE induced by pathogenic DR2b-restricted T cells. JCI Insight. 2019;4: pubmed 出版商
  116. Yu T, Zhao C, Hou S, Zhou W, Wang B, Chen Y. Exosomes secreted from miRNA-29b-modified mesenchymal stem cells repaired spinal cord injury in rats. Braz J Med Biol Res. 2019;52:e8735 pubmed 出版商
  117. Streeter K, Sunshine M, Brant J, Sandoval A, Maden M, Fuller D. Molecular and histologic outcomes following spinal cord injury in spiny mice, Acomys cahirinus. J Comp Neurol. 2020;528:1535-1547 pubmed 出版商
  118. Wall C, Rose C, Adrian M, Zeng Y, Kirkpatrick D, Bingol B. PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Rep. 2019;29:3280-3292.e7 pubmed 出版商
  119. Rocktäschel P, Sen A, Cader M. High glucose concentrations mask cellular phenotypes in a stem cell model of tuberous sclerosis complex. Epilepsy Behav. 2019;101:106581 pubmed 出版商
  120. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  121. Battaglia R, Beltran A, Delic S, Dumitru R, Robinson J, Kabiraj P, et al. Site-specific phosphorylation and caspase cleavage of GFAP are new markers of Alexander disease severity. elife. 2019;8: pubmed 出版商
  122. Li J, Liu Z, Wang L, Xu H, Wang Y. Thousand and one kinase 1 protects MCAO-induced cerebral ischemic stroke in rats by decreasing apoptosis and pro-inflammatory factors. Biosci Rep. 2019;39: pubmed 出版商
  123. Faraco G, Hochrainer K, Segarra S, Schaeffer S, Santisteban M, Menon A, et al. Dietary salt promotes cognitive impairment through tau phosphorylation. Nature. 2019;: pubmed 出版商
  124. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  125. di Meco A, Pratico D. Early-life exposure to high-fat diet influences brain health in aging mice. Aging Cell. 2019;18:e13040 pubmed 出版商
  126. Martin Hurtado A, Martin Morales R, Robledinos Antón N, Blanco R, Palacios Blanco I, Lastres Becker I, et al. NRF2-dependent gene expression promotes ciliogenesis and Hedgehog signaling. Sci Rep. 2019;9:13896 pubmed 出版商
  127. Blomfield I, Rocamonde B, Masdeu M, Mulugeta E, Vaga S, van den Berg D, et al. Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. elife. 2019;8: pubmed 出版商
  128. Zhou C, Sun X, Hu Y, Song J, Dong S, Kong D, et al. Genomic deletion of TLR2 induces aggravated white matter damage and deteriorated neurobehavioral functions in mouse models of Alzheimer's disease. Aging (Albany NY). 2019;11:7257-7273 pubmed 出版商
  129. Kim J, Cho J, Kim S, Kang H, Kim D, Kim V, et al. Brain somatic mutations in MTOR reveal translational dysregulations underlying intractable focal epilepsy. J Clin Invest. 2019;129:4207-4223 pubmed 出版商
  130. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature. 2019;573:75-82 pubmed 出版商
  131. Rossaert E, Pollari E, Jaspers T, Van Helleputte L, Jarpe M, Van Damme P, et al. Restoration of histone acetylation ameliorates disease and metabolic abnormalities in a FUS mouse model. Acta Neuropathol Commun. 2019;7:107 pubmed 出版商
  132. Cammalleri M, Dal Monte M, Locri F, Pecci V, De Rosa M, Pavone V, et al. The urokinase-type plasminogen activator system as drug target in retinitis pigmentosa: New pre-clinical evidence in the rd10 mouse model. J Cell Mol Med. 2019;23:5176-5192 pubmed 出版商
  133. Wegmann S, Bennett R, Delorme L, Robbins A, Hu M, McKenzie D, et al. Experimental evidence for the age dependence of tau protein spread in the brain. Sci Adv. 2019;5:eaaw6404 pubmed 出版商
  134. Zhang Q, Zhu W, Xu F, Dai X, Shi L, Cai W, et al. The interleukin-4/PPARγ signaling axis promotes oligodendrocyte differentiation and remyelination after brain injury. PLoS Biol. 2019;17:e3000330 pubmed 出版商
  135. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  136. Naughton M, McMahon J, Healy S, FitzGerald U. Profile of the unfolded protein response in rat cerebellar cortical development. J Comp Neurol. 2019;527:2910-2924 pubmed 出版商
  137. Alexander J, Guan J, Li B, Maliskova L, Song M, Shen Y, et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. elife. 2019;8: pubmed 出版商
  138. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  139. Li J, Khankan R, Caneda C, Godoy M, Haney M, Krawczyk M, et al. Astrocyte-to-astrocyte contact and a positive feedback loop of growth factor signaling regulate astrocyte maturation. Glia. 2019;67:1571-1597 pubmed 出版商
  140. Vrselja Z, Daniele S, Silbereis J, Talpo F, Morozov Y, Sousa A, et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature. 2019;568:336-343 pubmed 出版商
  141. Yang J, Vitery M, Chen J, Osei Owusu J, Chu J, Qiu Z. Glutamate-Releasing SWELL1 Channel in Astrocytes Modulates Synaptic Transmission and Promotes Brain Damage in Stroke. Neuron. 2019;102:813-827.e6 pubmed 出版商
  142. Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler R, Zhang S, et al. Senolytic therapy alleviates Aβ-associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719-728 pubmed 出版商
  143. Nieto González J, Gómez Sánchez L, Mavillard F, Linares Clemente P, Rivero M, Valenzuela Villatoro M, et al. Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein-α. Proc Natl Acad Sci U S A. 2019;116:8000-8009 pubmed 出版商
  144. Rodriques S, Stickels R, Goeva A, Martin C, Murray E, Vanderburg C, et al. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463-1467 pubmed 出版商
  145. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  146. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  147. Martorell A, Paulson A, Suk H, Abdurrob F, Drummond G, Guan W, et al. Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition. Cell. 2019;177:256-271.e22 pubmed 出版商
  148. Hlavac N, VandeVord P. Astrocyte Mechano-Activation by High-Rate Overpressure Involves Alterations in Structural and Junctional Proteins. Front Neurol. 2019;10:99 pubmed 出版商
  149. Upadhyay A, Hosseinibarkooie S, Schneider S, Kaczmarek A, Torres Benito L, Mendoza Ferreira N, et al. Neurocalcin Delta Knockout Impairs Adult Neurogenesis Whereas Half Reduction Is Not Pathological. Front Mol Neurosci. 2019;12:19 pubmed 出版商
  150. Carballo Carbajal I, Laguna A, Romero Gimenez J, Cuadros T, Bove J, Martinez Vicente M, et al. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun. 2019;10:973 pubmed 出版商
  151. Zhu C, Li B, Frontzek K, Liu Y, Aguzzi A. SARM1 deficiency up-regulates XAF1, promotes neuronal apoptosis, and accelerates prion disease. J Exp Med. 2019;216:743-756 pubmed 出版商
  152. Song C, Zhang J, Qi S, Liu Z, Zhang X, Zheng Y, et al. Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell. 2019;18:e12941 pubmed 出版商
  153. Kalamakis G, Brune D, Ravichandran S, Bolz J, Fan W, Ziebell F, et al. Quiescence Modulates Stem Cell Maintenance and Regenerative Capacity in the Aging Brain. Cell. 2019;: pubmed 出版商
  154. Wenzel H, Murray K, Haify S, Hunsaker M, Schwartzer J, Kim K, et al. Astroglial-targeted expression of the fragile X CGG repeat premutation in mice yields RAN translation, motor deficits and possible evidence for cell-to-cell propagation of FXTAS pathology. Acta Neuropathol Commun. 2019;7:27 pubmed 出版商
  155. Joy M, Ben Assayag E, Shabashov Stone D, Liraz Zaltsman S, Mazzitelli J, Arenas M, et al. CCR5 Is a Therapeutic Target for Recovery after Stroke and Traumatic Brain Injury. Cell. 2019;176:1143-1157.e13 pubmed 出版商
  156. Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, et al. Morphological characteristics of p75 neurotrophin receptor-positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol. 2019;527:2047-2060 pubmed 出版商
  157. Körner A, Schlegel M, Kaussen T, Gudernatsch V, Hansmann G, Schumacher T, et al. Sympathetic nervous system controls resolution of inflammation via regulation of repulsive guidance molecule A. Nat Commun. 2019;10:633 pubmed 出版商
  158. Amal H, Gong G, Gjoneska E, Lewis S, Wishnok J, Tsai L, et al. S-nitrosylation of E3 ubiquitin-protein ligase RNF213 alters non-canonical Wnt/Ca+2 signaling in the P301S mouse model of tauopathy. Transl Psychiatry. 2019;9:44 pubmed 出版商
  159. Rosenzweig N, Dvir Szternfeld R, Tsitsou Kampeli A, Keren Shaul H, Ben Yehuda H, Weill Raynal P, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10:465 pubmed 出版商
  160. Andrew R, de Rossi P, Nguyen P, Kowalski H, Recupero A, Guerbette T, et al. Reduction of the expression of the late-onset Alzheimer's disease (AD) risk-factor BIN1 does not affect amyloid pathology in an AD mouse model. J Biol Chem. 2019;294:4477-4487 pubmed 出版商
  161. Piantanida A, Acosta L, Brocardo L, Capurro C, Greer C, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol. 2019;527:1278-1289 pubmed 出版商
  162. Jassim A, Inman D. Evidence of Hypoxic Glial Cells in a Model of Ocular Hypertension. Invest Ophthalmol Vis Sci. 2019;60:1-15 pubmed 出版商
  163. Nazareth L, Chen M, Shelper T, Shah M, Tello Velasquez J, Walkden H, et al. Novel insights into the glia limitans of the olfactory nervous system. J Comp Neurol. 2019;527:1228-1244 pubmed 出版商
  164. Stojic A, Bojcevski J, Williams S, Bas Orth C, Nessler S, Linington C, et al. Preclinical stress originates in the rat optic nerve head during development of autoimmune optic neuritis. Glia. 2019;67:512-524 pubmed 出版商
  165. Ko S, Price J, Blatch G, Nurgali K. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem. 2019;67:335-349 pubmed 出版商
  166. Falcone C, Wolf Ochoa M, Amina S, Hong T, Vakilzadeh G, Hopkins W, et al. Cortical interlaminar astrocytes across the therian mammal radiation. J Comp Neurol. 2019;527:1654-1674 pubmed 出版商
  167. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  168. Hill J, Zuluaga Ramirez V, Gajghate S, Winfield M, Sriram U, Rom S, et al. Activation of GPR55 induces neuroprotection of hippocampal neurogenesis and immune responses of neural stem cells following chronic, systemic inflammation. Brain Behav Immun. 2019;76:165-181 pubmed 出版商
  169. Lund H, Pieber M, Parsa R, Han J, Grommisch D, Ewing E, et al. Competitive repopulation of an empty microglial niche yields functionally distinct subsets of microglia-like cells. Nat Commun. 2018;9:4845 pubmed 出版商
  170. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  171. Betlazar C, Harrison Brown M, Middleton R, Banati R, Liu G. Cellular Sources and Regional Variations in the Expression of the Neuroinflammatory Marker Translocator Protein (TSPO) in the Normal Brain. Int J Mol Sci. 2018;19: pubmed 出版商
  172. Wang L, Wang J, Jin T, Zhou Y, Chen Q. FoxG1 facilitates proliferation and inhibits differentiation by downregulating FoxO/Smad signaling in glioblastoma. Biochem Biophys Res Commun. 2018;504:46-53 pubmed 出版商
  173. Weidner L, Kannan P, Mitsios N, Kang S, Hall M, Theodore W, et al. The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia. 2018;59:1507-1517 pubmed 出版商
  174. Pratt D, Dominah G, Lobel G, Obungu A, Lynes J, Sanchez V, et al. Programmed Death Ligand 1 Is a Negative Prognostic Marker in Recurrent Isocitrate Dehydrogenase-Wildtype Glioblastoma. Neurosurgery. 2018;: pubmed 出版商
  175. Sato J, Horibe S, Kawauchi S, Sasaki N, Hirata K, Rikitake Y. Involvement of aquaporin-4 in laminin-enhanced process formation of mouse astrocytes in 2D culture: Roles of dystroglycan and α-syntrophin in aquaporin-4 expression. J Neurochem. 2018;147:495-513 pubmed 出版商
  176. Zhao C, Dong C, Frah M, Deng Y, Marie C, Zhang F, et al. Dual Requirement of CHD8 for Chromatin Landscape Establishment and Histone Methyltransferase Recruitment to Promote CNS Myelination and Repair. Dev Cell. 2018;45:753-768.e8 pubmed 出版商
  177. Giera S, Luo R, Ying Y, Ackerman S, Jeong S, Stoveken H, et al. Microglial transglutaminase-2 drives myelination and myelin repair via GPR56/ADGRG1 in oligodendrocyte precursor cells. elife. 2018;7: pubmed 出版商
  178. Kukreja L, Shahidehpour R, Kim G, Keegan J, Sadleir K, Russell T, et al. Differential Neurotoxicity Related to Tetracycline Transactivator and TDP-43 Expression in Conditional TDP-43 Mouse Model of Frontotemporal Lobar Degeneration. J Neurosci. 2018;38:6045-6062 pubmed 出版商
  179. Reichenbach N, Delekate A, Breithausen B, Keppler K, Poll S, Schulte T, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an Alzheimer's disease model. J Exp Med. 2018;215:1649-1663 pubmed 出版商
  180. Liu J, Modo M. Quantification of the Extracellular Matrix Molecule Thrombospondin 1 and Its Pericellular Association in the Brain Using a Semiautomated Computerized Approach. J Histochem Cytochem. 2018;66:643-662 pubmed 出版商
  181. Hamdan H, Patyal P, Kockara N, Wight P. The wmN1 enhancer region in intron 1 is required for expression of human PLP1. Glia. 2018;66:1763-1774 pubmed 出版商
  182. Zhu B, Carmichael R, Solabre Valois L, Wilkinson K, Henley J. The transcription factor MEF2A plays a key role in the differentiation/maturation of rat neural stem cells into neurons. Biochem Biophys Res Commun. 2018;500:645-649 pubmed 出版商
  183. Leeman D, Hebestreit K, Ruetz T, Webb A, McKay A, Pollina E, et al. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018;359:1277-1283 pubmed 出版商
  184. Kim J, Choi Y, Ahn M, Jung K, Shin T. Olfactory Dysfunction in Autoimmune Central Nervous System Neuroinflammation. Mol Neurobiol. 2018;55:8499-8508 pubmed 出版商
  185. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  186. Dias D, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlen M, et al. Reducing Pericyte-Derived Scarring Promotes Recovery after Spinal Cord Injury. Cell. 2018;173:153-165.e22 pubmed 出版商
  187. Zukor K, Wang H, Siddharthan V, Julander J, Morrey J. Zika virus-induced acute myelitis and motor deficits in adult interferon ??/? receptor knockout mice. J Neurovirol. 2018;24:273-290 pubmed 出版商
  188. Hu X, Das B, Hou H, He W, Yan R. BACE1 deletion in the adult mouse reverses preformed amyloid deposition and improves cognitive functions. J Exp Med. 2018;215:927-940 pubmed 出版商
  189. Xu M, Han X, Liu R, Li Y, Qi C, Yang Z, et al. PDK1 Deficit Impairs the Development of the Dentate Gyrus in Mice. Cereb Cortex. 2019;29:1185-1198 pubmed 出版商
  190. Zhang R, Wu Y, Xie F, Zhong Y, Wang Y, Xu M, et al. RGMa mediates reactive astrogliosis and glial scar formation through TGF?1/Smad2/3 signaling after stroke. Cell Death Differ. 2018;25:1503-1516 pubmed 出版商
  191. He L, Yu K, Lu F, Wang J, Wu L, Zhao C, et al. Transcriptional Regulator ZEB2 Is Essential for Bergmann Glia Development. J Neurosci. 2018;38:1575-1587 pubmed 出版商
  192. Wang Y, Lin Y, Wu Y, Yao Z, Tang J, Shen L, et al. Expression and Cellular Localization of IFITM1 in Normal and Injured Rat Spinal Cords. J Histochem Cytochem. 2018;66:175-187 pubmed 出版商
  193. Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, et al. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell. 2018;172:409-422.e21 pubmed 出版商
  194. Watanabe S, Komine O, Endo F, Wakasugi K, Yamanaka K. Intracerebroventricular administration of Cystatin C ameliorates disease in SOD1-linked amyotrophic lateral sclerosis mice. J Neurochem. 2018;145:80-89 pubmed 出版商
  195. Sun G, Yang S, Cao G, Wang Q, Hao J, Wen Q, et al. γδ T cells provide the early source of IFN-γ to aggravate lesions in spinal cord injury. J Exp Med. 2018;215:521-535 pubmed 出版商
  196. Watanabe Matsumoto S, Moriwaki Y, Okuda T, Ohara S, Yamanaka K, Abe Y, et al. Dissociation of blood-brain barrier disruption and disease manifestation in an aquaporin-4-deficient mouse model of amyotrophic lateral sclerosis. Neurosci Res. 2018;133:48-57 pubmed 出版商
  197. Ito K, Noguchi A, Uosaki Y, Taga T, Arakawa H, Takizawa T. Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes. Mol Biol Cell. 2018;29:209-219 pubmed 出版商
  198. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  199. Zou J, Zhang B, Gutmann D, Wong M. Postnatal reduction of tuberous sclerosis complex 1 expression in astrocytes and neurons causes seizures in an age-dependent manner. Epilepsia. 2017;58:2053-2063 pubmed 出版商
  200. Curry D, Young M, Tran A, Daoud G, Howell L. Separating the agony from ecstasy: R(-)-3,4-methylenedioxymethamphetamine has prosocial and therapeutic-like effects without signs of neurotoxicity in mice. Neuropharmacology. 2018;128:196-206 pubmed 出版商
  201. Xie Z, Enkhjargal B, Wu L, Zhou K, Sun C, Hu X, et al. Exendin-4 attenuates neuronal death via GLP-1R/PI3K/Akt pathway in early brain injury after subarachnoid hemorrhage in rats. Neuropharmacology. 2018;128:142-151 pubmed 出版商
  202. Brown I, Gulbransen B. The antioxidant glutathione protects against enteric neuron death in situ, but its depletion is protective during colitis. Am J Physiol Gastrointest Liver Physiol. 2018;314:G39-G52 pubmed 出版商
  203. Khrimian L, Obri A, Ramos Brossier M, Rousseaud A, Moriceau S, Nicot A, et al. Gpr158 mediates osteocalcin's regulation of cognition. J Exp Med. 2017;214:2859-2873 pubmed 出版商
  204. Zhao T, Hong Y, Yin P, Li S, Li X. Differential HspBP1 expression accounts for the greater vulnerability of neurons than astrocytes to misfolded proteins. Proc Natl Acad Sci U S A. 2017;114:E7803-E7811 pubmed 出版商
  205. Salazar S, Gallardo C, Kaufman A, Herber C, Haas L, Robinson S, et al. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic Alzheimer's Disease. J Neurosci. 2017;37:9207-9221 pubmed 出版商
  206. Yang Y, Yang S, Guo J, Cui Y, Tang B, Li X, et al. Synergistic Toxicity of Polyglutamine-Expanded TATA-Binding Protein in Glia and Neuronal Cells: Therapeutic Implications for Spinocerebellar Ataxia 17. J Neurosci. 2017;37:9101-9115 pubmed 出版商
  207. Piwecka M, Glažar P, Hernández Miranda L, Memczak S, Wolf S, Rybak Wolf A, et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science. 2017;357: pubmed 出版商
  208. Lin N, Messing A, Perng M. Characterization of a panel of monoclonal antibodies recognizing specific epitopes on GFAP. PLoS ONE. 2017;12:e0180694 pubmed 出版商
  209. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  210. Hammoum I, Benlarbi M, Dellaa A, Szabó K, Dékány B, Csaba D, et al. Study of retinal neurodegeneration and maculopathy in diabetic Meriones shawi: A particular animal model with human-like macula. J Comp Neurol. 2017;525:2890-2914 pubmed 出版商
  211. Harder J, Braine C, Williams P, Zhu X, MacNicoll K, Sousa G, et al. Early immune responses are independent of RGC dysfunction in glaucoma with complement component C3 being protective. Proc Natl Acad Sci U S A. 2017;114:E3839-E3848 pubmed 出版商
  212. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  213. Dwyer C, Scudder S, Lin Y, Dozier L, Phan D, Allen N, et al. Neurodevelopmental Changes in Excitatory Synaptic Structure and Function in the Cerebral Cortex of Sanfilippo Syndrome IIIA Mice. Sci Rep. 2017;7:46576 pubmed 出版商
  214. Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017;6:435-440 pubmed 出版商
  215. Wizeman J, Mohan R. Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis. Biochem Biophys Res Commun. 2017;487:134-139 pubmed 出版商
  216. Li J, Barrero C, Merali S, Pratico D. Five lipoxygenase hypomethylation mediates the homocysteine effect on Alzheimer's phenotype. Sci Rep. 2017;7:46002 pubmed 出版商
  217. Sosunov A, McKhann G, Goldman J. The origin of Rosenthal fibers and their contributions to astrocyte pathology in Alexander disease. Acta Neuropathol Commun. 2017;5:27 pubmed 出版商
  218. Bryukhovetskiy I, Lyakhova I, Mischenko P, Milkina E, Zaitsev S, Khotimchenko Y, et al. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol Lett. 2017;13:738-746 pubmed 出版商
  219. Yungher B, Ribeiro M, Park K. Regenerative Responses and Axon Pathfinding of Retinal Ganglion Cells in Chronically Injured Mice. Invest Ophthalmol Vis Sci. 2017;58:1743-1750 pubmed 出版商
  220. Zhou Y, Chen S, Liu D, Manyande A, Zhang W, Yang S, et al. The Role of Spinal GABAB Receptors in Cancer-Induced Bone Pain in Rats. J Pain. 2017;18:933-946 pubmed 出版商
  221. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, et al. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. 2017;18:2622-2634 pubmed 出版商
  222. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  223. Huang H, Liu Y, Wang L, Li W. Age-related macular degeneration phenotypes are associated with increased tumor necrosis-alpha and subretinal immune cells in aged Cxcr5 knockout mice. PLoS ONE. 2017;12:e0173716 pubmed 出版商
  224. Jongbloets B, Lemstra S, Schellino R, Broekhoven M, Parkash J, Hellemons A, et al. Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nat Commun. 2017;8:14666 pubmed 出版商
  225. Gardenal E, Chiarini A, Armato U, Dal Pra I, Verkhratsky A, Rodriguez J. Increased Calcium-Sensing Receptor Immunoreactivity in the Hippocampus of a Triple Transgenic Mouse Model of Alzheimer's Disease. Front Neurosci. 2017;11:81 pubmed 出版商
  226. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  227. Subashini C, Dhanesh S, Chen C, Riya P, Meera V, Divya T, et al. Wnt5a is a crucial regulator of neurogenesis during cerebellum development. Sci Rep. 2017;7:42523 pubmed 出版商
  228. Benford H, Bolborea M, Pollatzek E, Lossow K, Hermans Borgmeyer I, Liu B, et al. A sweet taste receptor-dependent mechanism of glucosensing in hypothalamic tanycytes. Glia. 2017;65:773-789 pubmed 出版商
  229. Zheng T, Pu J, Chen Y, Mao Y, Guo Z, Pan H, et al. Plasma Exosomes Spread and Cluster Around ?-Amyloid Plaques in an Animal Model of Alzheimer's Disease. Front Aging Neurosci. 2017;9:12 pubmed 出版商
  230. Kuipers H, Yoon J, van Horssen J, Han M, Bollyky P, Palmer T, et al. Phosphorylation of αB-crystallin supports reactive astrogliosis in demyelination. Proc Natl Acad Sci U S A. 2017;114:E1745-E1754 pubmed 出版商
  231. Qian Q, Liu Q, Zhou D, Pan H, Liu Z, He F, et al. Brain-specific ablation of Efr3a promotes adult hippocampal neurogenesis via the brain-derived neurotrophic factor pathway. FASEB J. 2017;31:2104-2113 pubmed 出版商
  232. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  233. Barca Mayo O, Pons Espinal M, Follert P, Armirotti A, Berdondini L, De Pietri Tonelli D. Astrocyte deletion of Bmal1 alters daily locomotor activity and cognitive functions via GABA signalling. Nat Commun. 2017;8:14336 pubmed 出版商
  234. Zhu Y, Lyapichev K, Lee D, Motti D, Ferraro N, Zhang Y, et al. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury. J Neurosci. 2017;37:2362-2376 pubmed 出版商
  235. Grove M, Kim H, Santerre M, Krupka A, Han S, Zhai J, et al. YAP/TAZ initiate and maintain Schwann cell myelination. elife. 2017;6: pubmed 出版商
  236. Guimarães Camboa N, Cattaneo P, Sun Y, Moore Morris T, Gu Y, Dalton N, et al. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. Cell Stem Cell. 2017;20:345-359.e5 pubmed 出版商
  237. Mellott T, Huleatt O, Shade B, Pender S, Liu Y, Slack B, et al. Perinatal Choline Supplementation Reduces Amyloidosis and Increases Choline Acetyltransferase Expression in the Hippocampus of the APPswePS1dE9 Alzheimer's Disease Model Mice. PLoS ONE. 2017;12:e0170450 pubmed 出版商
  238. Zhang C, Mukherjee S, Tucker Burden C, Ross J, Chau M, Kong J, et al. TRIM8 regulates stemness in glioblastoma through PIAS3-STAT3. Mol Oncol. 2017;11:280-294 pubmed 出版商
  239. Liddelow S, Guttenplan K, Clarke L, Bennett F, Bohlen C, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541:481-487 pubmed 出版商
  240. Rotoli D, Pérez Rodríguez N, Morales M, Maeso M, Avila J, Mobasheri A, et al. IQGAP1 in Podosomes/Invadosomes Is Involved in the Progression of Glioblastoma Multiforme Depending on the Tumor Status. Int J Mol Sci. 2017;18: pubmed 出版商
  241. Kang Y, Balter B, Csizmadia E, Haas B, Sharma H, Bronson R, et al. Contribution of classical end-joining to PTEN inactivation in p53-mediated glioblastoma formation and drug-resistant survival. Nat Commun. 2017;8:14013 pubmed 出版商
  242. Zhu J, Cifuentes H, Reynolds J, Lamba D. Immunosuppression via Loss of IL2rγ Enhances Long-Term Functional Integration of hESC-Derived Photoreceptors in the Mouse Retina. Cell Stem Cell. 2017;20:374-384.e5 pubmed 出版商
  243. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  244. Chiang Y, Wu Y, Chi S. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Dev Comp Immunol. 2017;70:19-26 pubmed 出版商
  245. Kim J, Lee J, Sun W. Isolation and Culture of Adult Neural Stem Cells from the Mouse Subcallosal Zone. J Vis Exp. 2016;: pubmed 出版商
  246. Zhao B, Pan Y, Xu H, Song X. Hyperbaric oxygen attenuates neuropathic pain and reverses inflammatory signaling likely via the Kindlin-1/Wnt-10a signaling pathway in the chronic pain injury model in rats. J Headache Pain. 2017;18:1 pubmed 出版商
  247. Zhong L, Zhou J, Chen X, Liu J, Liu Z, Chen Y, et al. Quantitative proteomics reveals EVA1A-related proteins involved in neuronal differentiation. Proteomics. 2017;17: pubmed 出版商
  248. Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, et al. Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med. 2017;214:547-563 pubmed 出版商
  249. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  250. Hooper A, Alamilla J, Venier R, Gillespie D, Igdoura S. Neuronal pentraxin 1 depletion delays neurodegeneration and extends life in Sandhoff disease mice. Hum Mol Genet. 2017;26:661-673 pubmed 出版商
  251. Li M, Li Z, Yao Y, Jin W, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A. 2017;114:E396-E405 pubmed 出版商
  252. Sun C, Zhang J, Chen L, Liu T, Xu G, Li C, et al. IL-17 contributed to the neuropathic pain following peripheral nerve injury by promoting astrocyte proliferation and secretion of proinflammatory cytokines. Mol Med Rep. 2017;15:89-96 pubmed 出版商
  253. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  254. Gray J, Rubin T, Kogan J, Marrocco J, Weidmann J, Lindkvist S, et al. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice. Mol Psychiatry. 2018;23:904-913 pubmed 出版商
  255. Wang A, Jensen E, Rexach J, Vinters H, Hsieh Wilson L. Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A. 2016;113:15120-15125 pubmed 出版商
  256. Wang S, Jacquemyn J, Murru S, Martinelli P, Barth E, Langer T, et al. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying. PLoS Genet. 2016;12:e1006463 pubmed 出版商
  257. Retallack H, Di Lullo E, Arias C, Knopp K, Laurie M, Sandoval Espinosa C, et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc Natl Acad Sci U S A. 2016;113:14408-14413 pubmed
  258. Ji B, Kaneko H, Minamimoto T, Inoue H, Takeuchi H, Kumata K, et al. Multimodal Imaging for DREADD-Expressing Neurons in Living Brain and Their Application to Implantation of iPSC-Derived Neural Progenitors. J Neurosci. 2016;36:11544-11558 pubmed
  259. Marco E, Ballesta J, Irala C, Hernández M, Serrano M, Mela V, et al. Sex-dependent influence of chronic mild stress (CMS) on voluntary alcohol consumption; study of neurobiological consequences. Pharmacol Biochem Behav. 2017;152:68-80 pubmed 出版商
  260. Hurtado Alvarado G, Dominguez Salazar E, Velazquez Moctezuma J, Gómez González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS ONE. 2016;11:e0167236 pubmed 出版商
  261. Song D, Wilson B, Zhao L, Bhuyan R, Bandyopadhyay M, Lyubarsky A, et al. Retinal Pre-Conditioning by CD59a Knockout Protects against Light-Induced Photoreceptor Degeneration. PLoS ONE. 2016;11:e0166348 pubmed 出版商
  262. Sareddy G, Viswanadhapalli S, Surapaneni P, Suzuki T, Brenner A, Vadlamudi R. Novel KDM1A inhibitors induce differentiation and apoptosis of glioma stem cells via unfolded protein response pathway. Oncogene. 2017;36:2423-2434 pubmed 出版商
  263. Schober A, Gagarkin D, Chen Y, Gao G, Jacobson L, Mongin A. Recombinant Adeno-Associated Virus Serotype 6 (rAAV6) Potently and Preferentially Transduces Rat Astrocytes In vitro and In vivo. Front Cell Neurosci. 2016;10:262 pubmed
  264. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y12 receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65:375-387 pubmed 出版商
  265. Lajko M, Cardona H, Taylor J, Shah R, Farrow K, Fawzi A. Hyperoxia-Induced Proliferative Retinopathy: Early Interruption of Retinal Vascular Development with Severe and Irreversible Neurovascular Disruption. PLoS ONE. 2016;11:e0166886 pubmed 出版商
  266. Hübner N, Mechling A, Lee H, Reisert M, Bienert T, Hennig J, et al. The connectomics of brain demyelination: Functional and structural patterns in the cuprizone mouse model. Neuroimage. 2017;146:1-18 pubmed 出版商
  267. Zha J, Liu X, Zhu J, Liu S, Lu S, Xu P, et al. A scFv antibody targeting common oligomeric epitope has potential for treating several amyloidoses. Sci Rep. 2016;6:36631 pubmed 出版商
  268. Bassett E, Tokarew N, Allemano E, Mazerolle C, Morin K, Mears A, et al. Norrin/Frizzled4 signalling in the preneoplastic niche blocks medulloblastoma initiation. elife. 2016;5: pubmed 出版商
  269. Fröhlich D, Suchowerska A, Spencer Z, von Jonquieres G, Klugmann C, Bongers A, et al. In vivocharacterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiol Dis. 2017;97:24-35 pubmed 出版商
  270. Roche S, Wyse Jackson A, Gomez Vicente V, Lax P, Ruiz Lopez A, Byrne A, et al. Progesterone Attenuates Microglial-Driven Retinal Degeneration and Stimulates Protective Fractalkine-CX3CR1 Signaling. PLoS ONE. 2016;11:e0165197 pubmed 出版商
  271. Mokalled M, Patra C, Dickson A, Endo T, Stainier D, Poss K. Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science. 2016;354:630-634 pubmed
  272. Healy S, McMahon J, Owens P, FitzGerald U. Significant glial alterations in response to iron loading in a novel organotypic hippocampal slice culture model. Sci Rep. 2016;6:36410 pubmed 出版商
  273. Tirosh I, Venteicher A, Hebert C, Escalante L, Patel A, Yizhak K, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma. Nature. 2016;539:309-313 pubmed 出版商
  274. Lin N, Huang Y, Opal P, Goldman R, Messing A, Perng M. The role of gigaxonin in the degradation of the glial-specific intermediate filament protein GFAP. Mol Biol Cell. 2016;27:3980-3990 pubmed
  275. Menzel L, Kleber L, Friedrich C, Hummel R, Dangel L, Winter J, et al. Progranulin protects against exaggerated axonal injury and astrogliosis following traumatic brain injury. Glia. 2017;65:278-292 pubmed 出版商
  276. Zukor K, Wang H, Hurst B, Siddharthan V, van Wettere A, Pilowsky P, et al. Phrenic nerve deficits and neurological immunopathology associated with acute West Nile virus infection in mice and hamsters. J Neurovirol. 2017;23:186-204 pubmed 出版商
  277. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  278. Bryukhovetskiy I, Dyuizen I, Shevchenko V, Bryukhovetskiy A, Mischenko P, Milkina E, et al. Hematopoietic stem cells as a tool for the treatment of glioblastoma multiforme. Mol Med Rep. 2016;14:4511-4520 pubmed 出版商
  279. Koyanagi S, Kusunose N, Taniguchi M, Akamine T, Kanado Y, Ozono Y, et al. Glucocorticoid regulation of ATP release from spinal astrocytes underlies diurnal exacerbation of neuropathic mechanical allodynia. Nat Commun. 2016;7:13102 pubmed 出版商
  280. Alvarez Saavedra M, De Repentigny Y, Yang D, O Meara R, Yan K, Hashem L, et al. Voluntary Running Triggers VGF-Mediated Oligodendrogenesis to Prolong the Lifespan of Snf2h-Null Ataxic Mice. Cell Rep. 2016;17:862-875 pubmed 出版商
  281. He J, Xiang Z, Zhu X, Ai Z, Shen J, Huang T, et al. Neuroprotective Effects of 7, 8-dihydroxyflavone on Midbrain Dopaminergic Neurons in MPP+-treated Monkeys. Sci Rep. 2016;6:34339 pubmed 出版商
  282. Hofmann K, Lamberz C, Piotrowitz K, Offermann N, But D, Scheller A, et al. Tanycytes and a differential fatty acid metabolism in the hypothalamus. Glia. 2017;65:231-249 pubmed 出版商
  283. Mendonça M, Soares E, de Jesus M, Ceragioli H, Batista Ã, Nyúl Tóth Ã, et al. PEGylation of Reduced Graphene Oxide Induces Toxicity in Cells of the Blood-Brain Barrier: An in Vitro and in Vivo Study. Mol Pharm. 2016;13:3913-3924 pubmed
  284. Wizeman J, Nicholas A, Ishigami A, Mohan R. Citrullination of glial intermediate filaments is an early response in retinal injury. Mol Vis. 2016;22:1137-1155 pubmed
  285. Khoutorsky A, Sorge R, Prager Khoutorsky M, Pawlowski S, Longo G, Jafarnejad S, et al. eIF2? phosphorylation controls thermal nociception. Proc Natl Acad Sci U S A. 2016;113:11949-11954 pubmed
  286. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  287. Biró L, Toth M, Sipos E, Bruzsik B, Tulogdi A, Bendahan S, et al. Structural and functional alterations in the prefrontal cortex after post-weaning social isolation: relationship with species-typical and deviant aggression. Brain Struct Funct. 2017;222:1861-1875 pubmed 出版商
  288. Draheim T, Liessem A, Scheld M, Wilms F, Weißflog M, Denecke B, et al. Activation of the astrocytic Nrf2/ARE system ameliorates the formation of demyelinating lesions in a multiple sclerosis animal model. Glia. 2016;64:2219-2230 pubmed 出版商
  289. Lauritzen K, Hasan Olive M, Regnell C, Kleppa L, Scheibye Knudsen M, Gjedde A, et al. A ketogenic diet accelerates neurodegeneration in mice with induced mitochondrial DNA toxicity in the forebrain. Neurobiol Aging. 2016;48:34-47 pubmed 出版商
  290. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  291. Zhang S, Wang P, Ren L, Hu C, Bi J. Protective effect of melatonin on soluble A?1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther. 2016;8:40 pubmed 出版商
  292. Lang D, Romero Alemán M, Dobson B, Santos E, Monzon Mayor M. Nogo-A does not inhibit retinal axon regeneration in the lizard Gallotia galloti. J Comp Neurol. 2017;525:936-954 pubmed 出版商
  293. Zhang L, Hua Q, Tang K, Shi C, Xie X, Zhang R. CXCR4 activation promotes differentiation of human embryonic stem cells to neural stem cells. Neuroscience. 2016;337:88-97 pubmed 出版商
  294. Bryukhovetskiy I, Manzhulo I, Mischenko P, Milkina E, Dyuizen I, Bryukhovetskiy A, et al. Cancer stem cells and microglia in the processes of glioblastoma multiforme invasive growth. Oncol Lett. 2016;12:1721-1728 pubmed
  295. Griffith C, Xie M, Qiu W, Sharp A, Ma C, Pan A, et al. Aberrant expression of the pore-forming KATP channel subunit Kir6.2 in hippocampal reactive astrocytes in the 3xTg-AD mouse model and human Alzheimer's disease. Neuroscience. 2016;336:81-101 pubmed 出版商
  296. Caporali P, Bruno F, Palladino G, Dragotto J, Petrosini L, Mangia F, et al. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis. Acta Neuropathol Commun. 2016;4:94 pubmed 出版商
  297. Barron A, Tokunaga M, Zhang M, Ji B, Suhara T, Higuchi M. Assessment of neuroinflammation in a mouse model of obesity and β-amyloidosis using PET. J Neuroinflammation. 2016;13:221 pubmed 出版商
  298. Mao S, Li X, Wang J, Ding X, Zhang C, Li L. miR-17-92 facilitates neuronal differentiation of transplanted neural stem/precursor cells under neuroinflammatory conditions. J Neuroinflammation. 2016;13:208 pubmed 出版商
  299. Cheng Z, Zhu W, Cao K, Wu F, Li J, Wang G, et al. Anti-Inflammatory Mechanism of Neural Stem Cell Transplantation in Spinal Cord Injury. Int J Mol Sci. 2016;17: pubmed 出版商
  300. Fitzgerald P, Sun N, Shibata B, Hess J. Expression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium. Mol Vis. 2016;22:970-89 pubmed
  301. Dhillon R, Parker J, Syed Y, Edgley S, Young A, Fawcett J, et al. Axonal plasticity underpins the functional recovery following surgical decompression in a rat model of cervical spondylotic myelopathy. Acta Neuropathol Commun. 2016;4:89 pubmed 出版商
  302. Hillis J, Davies J, Mundim M, Al Dalahmah O, Szele F. Cuprizone demyelination induces a unique inflammatory response in the subventricular zone. J Neuroinflammation. 2016;13:190 pubmed 出版商
  303. Badea A, Kane L, Anderson R, Qi Y, Foster M, Cofer G, et al. The fornix provides multiple biomarkers to characterize circuit disruption in a mouse model of Alzheimer's disease. Neuroimage. 2016;142:498-511 pubmed 出版商
  304. Wolf H, Damme M, Stroobants S, D Hooge R, Beck H, Hermans Borgmeyer I, et al. A mouse model for fucosidosis recapitulates storage pathology and neurological features of the milder form of the human disease. Dis Model Mech. 2016;9:1015-28 pubmed 出版商
  305. Saggu R, Schumacher T, Gerich F, Rakers C, Tai K, Delekate A, et al. Astroglial NF-kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia. Acta Neuropathol Commun. 2016;4:76 pubmed 出版商
  306. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  307. Palibrk V, Suganthan R, Scheffler K, Wang W, BjørÃ¥s M, Bøe S. PML regulates neuroprotective innate immunity and neuroblast commitment in a hypoxic-ischemic encephalopathy model. Cell Death Dis. 2016;7:e2320 pubmed 出版商
  308. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  309. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  310. Senzacqua M, Severi I, Perugini J, Acciarini S, Cinti S, Giordano A. Action of Administered Ciliary Neurotrophic Factor on the Mouse Dorsal Vagal Complex. Front Neurosci. 2016;10:289 pubmed 出版商
  311. Li H, Li H, Hao Y, Jiao Y, Li Z, Yue H, et al. Differential long non?coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Mol Med Rep. 2016;14:2067-76 pubmed 出版商
  312. Nott A, Cheng J, Gao F, Lin Y, Gjoneska E, Ko T, et al. Histone deacetylase 3 associates with MeCP2 to regulate FOXO and social behavior. Nat Neurosci. 2016;19:1497-1505 pubmed 出版商
  313. Urbán N, van den Berg D, Forget A, Andersen J, Demmers J, Hunt C, et al. Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science. 2016;353:292-5 pubmed 出版商
  314. Achuta V, Grym H, Putkonen N, Louhivuori V, Kärkkäinen V, Koistinaho J, et al. Metabotropic glutamate receptor 5 responses dictate differentiation of neural progenitors to NMDA-responsive cells in fragile X syndrome. Dev Neurobiol. 2017;77:438-453 pubmed 出版商
  315. Akopian A, Kumar S, Ramakrishnan H, Viswanathan S, Bloomfield S. Amacrine cells coupled to ganglion cells via gap junctions are highly vulnerable in glaucomatous mouse retinas. J Comp Neurol. 2019;527:159-173 pubmed 出版商
  316. Walker W, Oehler A, Edinger A, Wagner K, Gunn T. Oligodendroglial deletion of ESCRT-I component TSG101 causes spongiform encephalopathy. Biol Cell. 2016;108:324-337 pubmed 出版商
  317. Liu S, Li Q, Zhang M, Mao Ying Q, Hu L, Wu G, et al. Curcumin ameliorates neuropathic pain by down-regulating spinal IL-1β via suppressing astroglial NALP1 inflammasome and JAK2-STAT3 signalling. Sci Rep. 2016;6:28956 pubmed 出版商
  318. Tillberg P, Chen F, Piatkevich K, Zhao Y, Yu C, English B, et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol. 2016;34:987-92 pubmed 出版商
  319. Shiihashi G, Ito D, Yagi T, Nihei Y, Ebine T, Suzuki N. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice. Brain. 2016;139:2380-94 pubmed 出版商
  320. Su X, Tan Q, Parikh B, Tan A, Mehta M, Sia Wey Y, et al. Characterization of Fatty Acid Binding Protein 7 (FABP7) in the Murine Retina. Invest Ophthalmol Vis Sci. 2016;57:3397-408 pubmed 出版商
  321. Bramini M, Sacchetti S, Armirotti A, Rocchi A, Vazquez E, León Castellanos V, et al. Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca(2+) Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano. 2016;10:7154-71 pubmed 出版商
  322. Park K, Luo X, Mooney S, Yungher B, Belin S, Wang C, et al. Retinal ganglion cell survival and axon regeneration after optic nerve injury in naked mole-rats. J Comp Neurol. 2017;525:380-388 pubmed 出版商
  323. Krusche B, Ottone C, Clements M, Johnstone E, Goetsch K, Lieven H, et al. EphrinB2 drives perivascular invasion and proliferation of glioblastoma stem-like cells. elife. 2016;5: pubmed 出版商
  324. Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, et al. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol. 2016;146:489-512 pubmed 出版商
  325. Mavlyutov T, Duellman T, Kim H, Epstein M, Leese C, Davletov B, et al. Sigma-1 receptor expression in the dorsal root ganglion: Reexamination using a highly specific antibody. Neuroscience. 2016;331:148-57 pubmed 出版商
  326. Vasek M, Garber C, Dorsey D, Durrant D, Bollman B, Soung A, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature. 2016;534:538-43 pubmed 出版商
  327. Vernay A, Therreau L, Blot B, Risson V, Dirrig Grosch S, Waegaert R, et al. A transgenic mouse expressing CHMP2Bintron5 mutant in neurons develops histological and behavioural features of amyotrophic lateral sclerosis and frontotemporal dementia. Hum Mol Genet. 2016;25:3341-3360 pubmed 出版商
  328. Ure K, Lu H, Wang W, Ito Ishida A, Wu Z, He L, et al. Restoration of Mecp2 expression in GABAergic neurons is sufficient to rescue multiple disease features in a mouse model of Rett syndrome. elife. 2016;5: pubmed 出版商
  329. Villarreal A, Rosciszewski G, Murta V, Cadena V, Usach V, Dodes Traian M, et al. Isolation and Characterization of Ischemia-Derived Astrocytes (IDAs) with Ability to Transactivate Quiescent Astrocytes. Front Cell Neurosci. 2016;10:139 pubmed 出版商
  330. Cerman E, Akkoç T, Eraslan M, Sahin O, Ozkara S, Vardar Aker F, et al. Retinal Electrophysiological Effects of Intravitreal Bone Marrow Derived Mesenchymal Stem Cells in Streptozotocin Induced Diabetic Rats. PLoS ONE. 2016;11:e0156495 pubmed 出版商
  331. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  332. Kizuka Y, Nakano M, Miura Y, Taniguchi N. Epigenetic regulation of neural N-glycomics. Proteomics. 2016;16:2854-2863 pubmed 出版商
  333. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  334. Auderset L, Cullen C, Young K. Low Density Lipoprotein-Receptor Related Protein 1 Is Differentially Expressed by Neuronal and Glial Populations in the Developing and Mature Mouse Central Nervous System. PLoS ONE. 2016;11:e0155878 pubmed 出版商
  335. Ávila Rodriguez M, Garcia Segura L, Hidalgo Lanussa O, Baez E, Gonzalez J, Barreto G. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol. 2016;433:35-46 pubmed 出版商
  336. Ko A, Hyun H, Min S, Kim J. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus. Front Cell Neurosci. 2016;10:124 pubmed 出版商
  337. Singh V, Singh M, Gorantla S, Poluektova L, Maggirwar S. Smoothened Agonist Reduces Human Immunodeficiency Virus Type-1-Induced Blood-Brain Barrier Breakdown in Humanized Mice. Sci Rep. 2016;6:26876 pubmed 出版商
  338. Morales I, Sánchez A, Rodriguez Sabate C, Rodriguez M. The astrocytic response to the dopaminergic denervation of the striatum. J Neurochem. 2016;139:81-95 pubmed 出版商
  339. Nagaoka A, Takehara H, Hayashi Takagi A, Noguchi J, Ishii K, Shirai F, et al. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo. Sci Rep. 2016;6:26651 pubmed 出版商
  340. Agostoni E, Michelazzi S, Maurutto M, Carnemolla A, Ciani Y, Vatta P, et al. Effects of Pin1 Loss in Hdh(Q111) Knock-in Mice. Front Cell Neurosci. 2016;10:110 pubmed 出版商
  341. Heaven M, Flint D, Randall S, Sosunov A, Wilson L, Barnes S, et al. Composition of Rosenthal Fibers, the Protein Aggregate Hallmark of Alexander Disease. J Proteome Res. 2016;15:2265-82 pubmed 出版商
  342. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  343. Hochmeister S, Engel O, Adzemovic M, Pekar T, Kendlbacher P, Zeitelhofer M, et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE. 2016;11:e0154797 pubmed 出版商
  344. Szalay G, Martinecz B, Lénárt N, Kornyei Z, Orsolits B, Judák L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun. 2016;7:11499 pubmed 出版商
  345. Yang Y, Fang J, Li D, Wang L, Ji N, Zhang J. Recurrent intracranial neurenteric cyst with malignant transformation: A case report and literature review. Oncol Lett. 2016;11:3395-3402 pubmed
  346. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  347. Funk L, Hackett A, Bunge M, Lee J. Tumor necrosis factor superfamily member APRIL contributes to fibrotic scar formation after spinal cord injury. J Neuroinflammation. 2016;13:87 pubmed 出版商
  348. Srinivasan K, Friedman B, Larson J, Lauffer B, Goldstein L, Appling L, et al. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun. 2016;7:11295 pubmed 出版商
  349. Bouvier D, Jones E, Quesseveur G, Davoli M, A Ferreira T, Quirion R, et al. High Resolution Dissection of Reactive Glial Nets in Alzheimer's Disease. Sci Rep. 2016;6:24544 pubmed 出版商
  350. Hamanoue M, Morioka K, Ohsawa I, Ohsawa K, Kobayashi M, Tsuburaya K, et al. Cell-permeable p38?MAP kinase promotes migration of adult neural stem/progenitor cells. Sci Rep. 2016;6:24279 pubmed 出版商
  351. Bubenheimer R, Brown I, Fried D, McClain J, Gulbransen B. Sirtuin-3 Is Expressed by Enteric Neurons but It Does not Play a Major Role in Their Regulation of Oxidative Stress. Front Cell Neurosci. 2016;10:73 pubmed 出版商
  352. Fuente Martín E, García Cáceres C, Argente Arizón P, Diaz F, Granado M, Freire Regatillo A, et al. Ghrelin Regulates Glucose and Glutamate Transporters in Hypothalamic Astrocytes. Sci Rep. 2016;6:23673 pubmed 出版商
  353. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  354. Chen C, Liu Y, Hua M, Li X, Ji C, Ma D. Neuropathy correlated with imbalanced Foxp3/IL-17 in bone marrow microenvironment of patients with acute myeloid leukemia. Oncotarget. 2016;7:24455-65 pubmed 出版商
  355. Nagao M, Ogata T, Sawada Y, Gotoh Y. Zbtb20 promotes astrocytogenesis during neocortical development. Nat Commun. 2016;7:11102 pubmed 出版商
  356. Yousuf M, Tan C, Torres Altoro M, Lu F, Plautz E, Zhang S, et al. Involvement of aberrant cyclin-dependent kinase 5/p25 activity in experimental traumatic brain injury. J Neurochem. 2016;138:317-27 pubmed 出版商
  357. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  358. Smeester B, O Brien E, Michlitsch K, Lee J, Beitz A. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice. Neuroscience. 2016;324:344-54 pubmed 出版商
  359. Anastasiadou S, Knöll B. The multiple sclerosis drug fingolimod (FTY720) stimulates neuronal gene expression, axonal growth and regeneration. Exp Neurol. 2016;279:243-260 pubmed 出版商
  360. Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph K, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging (Albany NY). 2016;8:382-93 pubmed
  361. Zhao C, Deng Y, Liu L, Yu K, Zhang L, Wang H, et al. Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation. Nat Commun. 2016;7:10883 pubmed 出版商
  362. Ramani M, Mylvaganam S, Krawczyk M, Wang L, Zoidl C, Brien J, et al. Differential expression of astrocytic connexins in a mouse model of prenatal alcohol exposure. Neurobiol Dis. 2016;91:83-93 pubmed 出版商
  363. Wang W, Jossin Y, Chai G, Lien W, Tissir F, Goffinet A. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat Commun. 2016;7:10936 pubmed 出版商
  364. Xu A, Zheng G, Wang Z, Chen X, Jiang Q. Neuroprotective effects of Ilexonin A following transient focal cerebral ischemia in rats. Mol Med Rep. 2016;13:2957-66 pubmed 出版商
  365. Kabra D, Pfuhlmann K, García Cáceres C, Schriever S, Casquero García V, Kebede A, et al. Hypothalamic leptin action is mediated by histone deacetylase 5. Nat Commun. 2016;7:10782 pubmed 出版商
  366. Ma Y, Matsuwaki T, Yamanouchi K, Nishihara M. Glucocorticoids Suppress the Protective Effect of Cyclooxygenase-2-Related Signaling on Hippocampal Neurogenesis Under Acute Immune Stress. Mol Neurobiol. 2017;54:1953-1966 pubmed 出版商
  367. Matsumoto M, Nakamachi T, Watanabe J, Sugiyama K, Ohtaki H, Murai N, et al. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Is Involved in Adult Mouse Hippocampal Neurogenesis After Stroke. J Mol Neurosci. 2016;59:270-9 pubmed 出版商
  368. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  369. Hinrich A, Jodelka F, Chang J, Brutman D, Bruno A, Briggs C, et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO Mol Med. 2016;8:328-45 pubmed 出版商
  370. Liu R, Li S, Garcia E, Glubrecht D, Poon H, Easaw J, et al. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64:963-76 pubmed 出版商
  371. Ma Y, Guo H, Zhang L, Tao L, Yin A, Liu Z, et al. Estrogen replacement therapy-induced neuroprotection against brain ischemia-reperfusion injury involves the activation of astrocytes via estrogen receptor β. Sci Rep. 2016;6:21467 pubmed 出版商
  372. Lasiene J, Komine O, Fujimori Tonou N, Powers B, Endo F, Watanabe S, et al. Neuregulin 1 confers neuroprotection in SOD1-linked amyotrophic lateral sclerosis mice via restoration of C-boutons of spinal motor neurons. Acta Neuropathol Commun. 2016;4:15 pubmed 出版商
  373. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  374. Sreekanthreddy P, Gromnicova R, Davies H, Phillips J, Romero I, Male D. A three-dimensional model of the human blood-brain barrier to analyse the transport of nanoparticles and astrocyte/endothelial interactions. F1000Res. 2015;4:1279 pubmed 出版商
  375. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  376. Lauretti E, Di Meco A, Merali S, Praticò D. Chronic behavioral stress exaggerates motor deficit and neuroinflammation in the MPTP mouse model of Parkinson's disease. Transl Psychiatry. 2016;6:e733 pubmed 出版商
  377. Delcambre G, Liu J, Herrington J, Vallario K, Long M. Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj. 2016;4:e1601 pubmed 出版商
  378. Li Y, Liu J, Gao D, Wei J, Yuan H, Niu X, et al. Age-related changes in hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep. 2016;13:2552-60 pubmed 出版商
  379. Furman J, Sompol P, Kraner S, Pleiss M, Putman E, Dunkerson J, et al. Blockade of Astrocytic Calcineurin/NFAT Signaling Helps to Normalize Hippocampal Synaptic Function and Plasticity in a Rat Model of Traumatic Brain Injury. J Neurosci. 2016;36:1502-15 pubmed 出版商
  380. Wang C, Zhang F, Jiang S, Siedlak S, Shen L, Perry G, et al. Estrogen receptor-? is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep. 2016;6:20352 pubmed 出版商
  381. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  382. Tokuda E, Brännström T, Andersen P, Marklund S. Low autophagy capacity implicated in motor system vulnerability to mutant superoxide dismutase. Acta Neuropathol Commun. 2016;4:6 pubmed 出版商
  383. Hackett A, Lee D, Dawood A, Rodriguez M, Funk L, Tsoulfas P, et al. STAT3 and SOCS3 regulate NG2 cell proliferation and differentiation after contusive spinal cord injury. Neurobiol Dis. 2016;89:10-22 pubmed 出版商
  384. Kuhn P, Colombo A, Schusser B, Dreymueller D, Wetzel S, Schepers U, et al. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. elife. 2016;5: pubmed 出版商
  385. Watanabe Y, Müller M, von Engelhardt J, Sprengel R, Seeburg P, Monyer H. Age-Dependent Degeneration of Mature Dentate Gyrus Granule Cells Following NMDA Receptor Ablation. Front Mol Neurosci. 2015;8:87 pubmed 出版商
  386. Kovacs G, Szabo V, Pirity M. Absence of Rybp Compromises Neural Differentiation of Embryonic Stem Cells. Stem Cells Int. 2016;2016:4034620 pubmed 出版商
  387. Kuipers H, Rieck M, Gurevich I, Nagy N, Butte M, Negrin R, et al. Hyaluronan synthesis is necessary for autoreactive T-cell trafficking, activation, and Th1 polarization. Proc Natl Acad Sci U S A. 2016;113:1339-44 pubmed 出版商
  388. Kang S, Murphy R, Hwang S, Lee S, Harburg D, Krueger N, et al. Bioresorbable silicon electronic sensors for the brain. Nature. 2016;530:71-6 pubmed 出版商
  389. Brown I, McClain J, Watson R, Patel B, Gulbransen B. Enteric glia mediate neuron death in colitis through purinergic pathways that require connexin-43 and nitric oxide. Cell Mol Gastroenterol Hepatol. 2016;2:77-91 pubmed
  390. Kanda H, Kanao M, Liu S, Yi H, Iida T, Levitt R, et al. HSV vector-mediated GAD67 suppresses neuropathic pain induced by perineural HIV gp120 in rats through inhibition of ROS and Wnt5a. Gene Ther. 2016;23:340-8 pubmed 出版商
  391. Liu Q, Sanai N, Jin W, La Cava A, Van Kaer L, Shi F. Neural stem cells sustain natural killer cells that dictate recovery from brain inflammation. Nat Neurosci. 2016;19:243-52 pubmed 出版商
  392. Ruegsegger C, Stucki D, Steiner S, Angliker N, Radecke J, Keller E, et al. Impaired mTORC1-Dependent Expression of Homer-3 Influences SCA1 Pathophysiology. Neuron. 2016;89:129-46 pubmed 出版商
  393. Vacca V, Marinelli S, Pieroni L, Urbani A, Luvisetto S, Pavone F. 17beta-estradiol counteracts neuropathic pain: a behavioural, immunohistochemical, and proteomic investigation on sex-related differences in mice. Sci Rep. 2016;6:18980 pubmed 出版商
  394. Choudhury S, Harris A, Cabral D, Keeler A, Sapp E, Ferreira J, et al. Widespread Central Nervous System Gene Transfer and Silencing After Systemic Delivery of Novel AAV-AS Vector. Mol Ther. 2016;24:726-35 pubmed 出版商
  395. Platt T, Beckett T, Kohler K, Niedowicz D, Murphy M. Obesity, diabetes, and leptin resistance promote tau pathology in a mouse model of disease. Neuroscience. 2016;315:162-74 pubmed 出版商
  396. Sharpe M, Baskin D. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget. 2016;7:3379-93 pubmed 出版商
  397. Khoutorsky A, Bonin R, Sorge R, Gkogkas C, Pawlowski S, Jafarnejad S, et al. Translational control of nociception via 4E-binding protein 1. elife. 2015;4: pubmed 出版商
  398. Gilkes J, Bloom M, Heldermon C. Mucopolysaccharidosis IIIB confers enhanced neonatal intracranial transduction by AAV8 but not by 5, 9 or rh10. Gene Ther. 2016;23:263-71 pubmed 出版商
  399. Hristova M, Rocha Ferreira E, Fontana X, Thei L, Buckle R, Christou M, et al. Inhibition of Signal Transducer and Activator of Transcription 3 (STAT3) reduces neonatal hypoxic-ischaemic brain damage. J Neurochem. 2016;136:981-94 pubmed 出版商
  400. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  401. Chao C, Kan D, Lo T, Lu K, Chien C. Induction of neural differentiation in rat C6 glioma cells with taxol. Brain Behav. 2015;5:e00414 pubmed 出版商
  402. Higuchi A, Kao S, Ling Q, Chen Y, Li H, Alarfaj A, et al. Long-term xeno-free culture of human pluripotent stem cells on hydrogels with optimal elasticity. Sci Rep. 2015;5:18136 pubmed 出版商
  403. Pfefferkorn C, Kallfass C, Lienenklaus S, Spanier J, Kalinke U, Rieder M, et al. Abortively Infected Astrocytes Appear To Represent the Main Source of Interferon Beta in the Virus-Infected Brain. J Virol. 2016;90:2031-8 pubmed 出版商
  404. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  405. Scandaglia M, Benito E, Morenilla Palao C, Fiorenza A, Del Blanco B, Coca Y, et al. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly. Sci Rep. 2015;5:17470 pubmed 出版商
  406. Hashimoto M, Murata K, Ishida J, Kanou A, Kasuya Y, Fukamizu A. Severe Hypomyelination and Developmental Defects Are Caused in Mice Lacking Protein Arginine Methyltransferase 1 (PRMT1) in the Central Nervous System. J Biol Chem. 2016;291:2237-45 pubmed 出版商
  407. Kim Y, Jo S, Kim W, Kweon O. Antioxidant and anti-inflammatory effects of intravenously injected adipose derived mesenchymal stem cells in dogs with acute spinal cord injury. Stem Cell Res Ther. 2015;6:229 pubmed 出版商
  408. Grishchuk Y, Stember K, Matsunaga A, Olivares A, CRUZ N, King V, et al. Retinal Dystrophy and Optic Nerve Pathology in the Mouse Model of Mucolipidosis IV. Am J Pathol. 2016;186:199-209 pubmed 出版商
  409. Zhang L, Mabwi H, Palange N, Jia R, Ma J, Bah F, et al. Expression Patterns and Potential Biological Roles of Dip2a. PLoS ONE. 2015;10:e0143284 pubmed 出版商
  410. Dahlke C, Saberi D, Ott B, Brand Saberi B, Schmitt John T, Theiss C. Inflammation and neuronal death in the motor cortex of the wobbler mouse, an ALS animal model. J Neuroinflammation. 2015;12:215 pubmed 出版商
  411. Park S, Brenner D, Shin G, Morgan C, Copits B, Chung H, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol. 2015;33:1280-1286 pubmed 出版商
  412. Sabogal Guáqueta A, Osorio E, Cardona Gómez G. Linalool reverses neuropathological and behavioral impairments in old triple transgenic Alzheimer's mice. Neuropharmacology. 2016;102:111-20 pubmed 出版商
  413. Sikora J, Leddy J, Gulinello M, Walkley S. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech. 2016;9:13-23 pubmed 出版商
  414. Wang S, Hsu J, Ko C, Chiu N, Kan W, Lai M, et al. Astrocytic CCAAT/Enhancer-Binding Protein Delta Contributes to Glial Scar Formation and Impairs Functional Recovery After Spinal Cord Injury. Mol Neurobiol. 2016;53:5912-5927 pubmed 出版商
  415. Matschke V, Theiss C, Hollmann M, Schulze Bahr E, Lang F, Seebohm G, et al. NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes. Front Cell Neurosci. 2015;9:387 pubmed 出版商
  416. Baranowska Bosiacka I, Listos J, Gutowska I, Machoy Mokrzynska A, Kolasa Wołosiuk A, Tarnowski M, et al. Effects of perinatal exposure to lead (Pb) on purine receptor expression in the brain and gliosis in rats tolerant to morphine analgesia. Toxicology. 2016;339:19-33 pubmed 出版商
  417. Kizuka Y, Nakano M, Kitazume S, Saito T, Saido T, Taniguchi N. Bisecting GlcNAc modification stabilizes BACE1 protein under oxidative stress conditions. Biochem J. 2016;473:21-30 pubmed 出版商
  418. Hauser D, Primiani C, Langston R, Kumaran R, Cookson M. The Polg Mutator Phenotype Does Not Cause Dopaminergic Neurodegeneration in DJ-1-Deficient Mice. Eneuro. 2015;2: pubmed 出版商
  419. Gupte R, Kadunganattil S, Shepherd A, Merrill R, Planer W, Bruchas M, et al. Convergent phosphomodulation of the major neuronal dendritic potassium channel Kv4.2 by pituitary adenylate cyclase-activating polypeptide. Neuropharmacology. 2016;101:291-308 pubmed 出版商
  420. Watamura N, Toba J, Yoshii A, Nikkuni M, Ohshima T. Colocalization of phosphorylated forms of WAVE1, CRMP2, and tau in Alzheimer's disease model mice: Involvement of Cdk5 phosphorylation and the effect of ATRA treatment. J Neurosci Res. 2016;94:15-26 pubmed 出版商
  421. Werner A, Iwasaki S, McGourty C, Medina Ruiz S, Teerikorpi N, Fedrigo I, et al. Cell-fate determination by ubiquitin-dependent regulation of translation. Nature. 2015;525:523-7 pubmed 出版商
  422. Wu H, Yang S, Dai J, Qiu Y, Miao Y, Zhang X. Combination of early and delayed ischemic postconditioning enhances brain-derived neurotrophic factor production by upregulating the ERK-CREB pathway in rats with focal ischemia. Mol Med Rep. 2015;12:6427-34 pubmed 出版商
  423. Yamamuro S, Sano E, Okamoto Y, Ochiai Y, Ohta T, Ogino A, et al. Antitumorigenic effect of interferon-β by inhibition of undifferentiated glioblastoma cells. Int J Oncol. 2015;47:1647-54 pubmed 出版商
  424. Hua Z, Emiliani F, Nathans J. Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. Neural Dev. 2015;10:21 pubmed 出版商
  425. Hirata H, Umemori J, Yoshioka H, Koide T, Watanabe K, Shimoda Y. Cell adhesion molecule contactin-associated protein 3 is expressed in the mouse basal ganglia during early postnatal stages. J Neurosci Res. 2016;94:74-89 pubmed 出版商
  426. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  427. James R, Hillis J, Adorján I, Gration B, Mundim M, Iqbal A, et al. Loss of galectin-3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia. 2016;64:105-21 pubmed 出版商
  428. Chen B, Tao J, Lin Y, Lin R, Liu W, Chen L. Electro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway. Int J Mol Med. 2015;36:1215-22 pubmed 出版商
  429. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  430. Bellesi M, de Vivo L, Tononi G, Cirelli C. Effects of sleep and wake on astrocytes: clues from molecular and ultrastructural studies. BMC Biol. 2015;13:66 pubmed 出版商
  431. Izuo N, Nojiri H, Uchiyama S, Noda Y, Kawakami S, Kojima S, et al. Brain-Specific Superoxide Dismutase 2 Deficiency Causes Perinatal Death with Spongiform Encephalopathy in Mice. Oxid Med Cell Longev. 2015;2015:238914 pubmed 出版商
  432. Garwood C, Ratcliffe L, Morgan S, Simpson J, Owens H, Vazquez Villaseñor I, et al. Insulin and IGF1 signalling pathways in human astrocytes in vitro and in vivo; characterisation, subcellular localisation and modulation of the receptors. Mol Brain. 2015;8:51 pubmed 出版商
  433. Mughal A, Grieg Z, Skjellegrind H, Fayzullin A, Lamkhannat M, Joel M, et al. Knockdown of NAT12/NAA30 reduces tumorigenic features of glioblastoma-initiating cells. Mol Cancer. 2015;14:160 pubmed 出版商
  434. Shimada M, Dumitrache L, Russell H, McKinnon P. Polynucleotide kinase-phosphatase enables neurogenesis via multiple DNA repair pathways to maintain genome stability. EMBO J. 2015;34:2465-80 pubmed 出版商
  435. Khadem F, Gao X, Mou Z, Jia P, Movassagh H, Onyilagha C, et al. Hepatic stellate cells regulate liver immunity to visceral leishmaniasis through P110δ-dependent induction and expansion of regulatory T cells in mice. Hepatology. 2016;63:620-32 pubmed 出版商
  436. Fredriksson L, Stevenson T, Su E, Ragsdale M, Moore S, Craciun S, et al. Identification of a neurovascular signaling pathway regulating seizures in mice. Ann Clin Transl Neurol. 2015;2:722-38 pubmed 出版商
  437. Qiu H, Xu Y, Jin G, Yang J, Liu M, Li S, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain. 2015;11:46 pubmed 出版商
  438. Zhang P, Ha T, Larouche M, Swanson D, Goldowitz D. Kruppel-Like Factor 4 Regulates Granule Cell Pax6 Expression and Cell Proliferation in Early Cerebellar Development. PLoS ONE. 2015;10:e0134390 pubmed 出版商
  439. Miyamoto Y, Torii T, Takada S, Ohno N, Saitoh Y, Nakamura K, et al. Involvement of the Tyro3 receptor and its intracellular partner Fyn signaling in Schwann cell myelination. Mol Biol Cell. 2015;26:3489-503 pubmed 出版商
  440. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  441. Alme M, Nystad A, Bø L, Myhr K, Vedeler C, Wergeland S, et al. Fingolimod does not enhance cerebellar remyelination in the cuprizone model. J Neuroimmunol. 2015;285:180-6 pubmed 出版商
  442. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  443. Cheng C, Lin J, Tang N, Kao S, Hsieh C. Electroacupuncture at different frequencies (5Hz and 25Hz) ameliorates cerebral ischemia-reperfusion injury in rats: possible involvement of p38 MAPK-mediated anti-apoptotic signaling pathways. BMC Complement Altern Med. 2015;15:241 pubmed 出版商
  444. Chen Y, Huang W, Séjourné J, Clipperton Allen A, Page D. Pten Mutations Alter Brain Growth Trajectory and Allocation of Cell Types through Elevated β-Catenin Signaling. J Neurosci. 2015;35:10252-67 pubmed 出版商
  445. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  446. Song C, Wang J, Mo C, Mu S, Jiang X, Li X, et al. Use of Ferritin Expression, Regulated by Neural Cell-Specific Promoters in Human Adipose Tissue-Derived Mesenchymal Stem Cells, to Monitor Differentiation with Magnetic Resonance Imaging In Vitro. PLoS ONE. 2015;10:e0132480 pubmed 出版商
  447. Michinaga S, Seno N, Fuka M, Yamamoto Y, Minami S, Kimura A, et al. Improvement of cold injury-induced mouse brain edema by endothelin ETB antagonists is accompanied by decreases in matrixmetalloproteinase 9 and vascular endothelial growth factor-A. Eur J Neurosci. 2015;42:2356-70 pubmed 出版商
  448. Puntambekar S, Hinton D, Yin X, Savarin C, Bergmann C, Trapp B, et al. Interleukin-10 is a critical regulator of white matter lesion containment following viral induced demyelination. Glia. 2015;63:2106-2120 pubmed 出版商
  449. Schachtrup C, Ryu J, Mammadzada K, Khan A, Carlton P, Perez A, et al. Nuclear pore complex remodeling by p75(NTR) cleavage controls TGF-β signaling and astrocyte functions. Nat Neurosci. 2015;18:1077-80 pubmed 出版商
  450. Rao M, Nelms B, Dong L, Salinas Rios V, Rutlin M, Gershon M, et al. Enteric glia express proteolipid protein 1 and are a transcriptionally unique population of glia in the mammalian nervous system. Glia. 2015;63:2040-2057 pubmed 出版商
  451. Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández D, Fritz E, et al. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci. 2015;9:203 pubmed 出版商
  452. Kwon J, NABINGER S, Vega Z, Sahu S, Alluri R, Abdul Sater Z, et al. Pathophysiological role of microRNA-29 in pancreatic cancer stroma. Sci Rep. 2015;5:11450 pubmed 出版商
  453. Chounlamountry K, Boyer B, Pénalba V, François Bellan A, Bosler O, Kessler J, et al. Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation. J Neurochem. 2015;134:857-64 pubmed 出版商
  454. Perriard G, Mathias A, Enz L, Canales M, Schluep M, Gentner M, et al. Interleukin-22 is increased in multiple sclerosis patients and targets astrocytes. J Neuroinflammation. 2015;12:119 pubmed 出版商
  455. O Brien E, Smeester B, Michlitsch K, Lee J, Beitz A. Colocalization of aromatase in spinal cord astrocytes: differences in expression and relationship to mechanical and thermal hyperalgesia in murine models of a painful and a non-painful bone tumor. Neuroscience. 2015;301:235-45 pubmed 出版商
  456. Evonuk K, Baker B, Doyle R, Moseley C, Sestero C, Johnston B, et al. Inhibition of System Xc(-) Transporter Attenuates Autoimmune Inflammatory Demyelination. J Immunol. 2015;195:450-463 pubmed 出版商
  457. Balzamino B, Esposito G, Marino R, Keller F, Micera A. NGF Expression in Reelin-Deprived Retinal Cells: A Potential Neuroprotective Effect. Neuromolecular Med. 2015;17:314-25 pubmed 出版商
  458. Haley S, O Hara B, Nelson C, Brittingham F, Henriksen K, Stopa E, et al. Human polyomavirus receptor distribution in brain parenchyma contrasts with receptor distribution in kidney and choroid plexus. Am J Pathol. 2015;185:2246-58 pubmed 出版商
  459. Jiang J, Zhang Z, Yuan X, Poo M. Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol. 2015;209:759-74 pubmed 出版商
  460. Guo Y, Wang D, Qiao T, Yang C, Su Q, Gao G, et al. A Single Injection of Recombinant Adeno-Associated Virus into the Lumbar Cistern Delivers Transgene Expression Throughout the Whole Spinal Cord. Mol Neurobiol. 2016;53:3235-3248 pubmed 出版商
  461. Morita S, Furube E, Mannari T, Okuda H, Tatsumi K, Wanaka A, et al. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain. Cell Tissue Res. 2016;363:497-511 pubmed 出版商
  462. Chen Y, Zhang J, Shen L, Qi Q, Cheng X, Zhong Z, et al. Schwann cells induce Proliferation and Migration of Oligodendrocyte Precursor Cells Through Secretion of PDGF-AA and FGF-2. J Mol Neurosci. 2015;56:999-1008 pubmed 出版商
  463. Requejo C, Ruiz Ortega J, Bengoetxea H, Garcia Blanco A, Herrán E, Aristieta A, et al. Topographical Distribution of Morphological Changes in a Partial Model of Parkinson's Disease--Effects of Nanoencapsulated Neurotrophic Factors Administration. Mol Neurobiol. 2015;52:846-58 pubmed 出版商
  464. Di Cristofori A, Ferrero S, Bertolini I, Gaudioso G, Russo M, Berno V, et al. The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget. 2015;6:17514-31 pubmed
  465. Ozacmak V, Sayan Ozacmak H, Barut F. Chronic treatment with resveratrol, a natural polyphenol found in grapes, alleviates oxidative stress and apoptotic cell death in ovariectomized female rats subjected to chronic cerebral hypoperfusion. Nutr Neurosci. 2016;19:176-86 pubmed 出版商
  466. Yufune S, Satoh Y, Takamatsu I, Ohta H, Kobayashi Y, Takaenoki Y, et al. Transient Blockade of ERK Phosphorylation in the Critical Period Causes Autistic Phenotypes as an Adult in Mice. Sci Rep. 2015;5:10252 pubmed 出版商
  467. Bhatt D, Puig K, Gorr M, Wold L, Combs C. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE. 2015;10:e0127102 pubmed 出版商
  468. Wilkinson D, Bethell G, Shukla R, Kenny S, Edgar D. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease. PLoS ONE. 2015;10:e0125724 pubmed 出版商
  469. López Gallardo M, Antón Fernández A, Llorente R, Mela V, Llorente Berzal A, Prada C, et al. Neonatal Treatment with a Pegylated Leptin Antagonist Induces Sexually Dimorphic Effects on Neurones and Glial Cells, and on Markers of Synaptic Plasticity in the Developing Rat Hippocampal Formation. J Neuroendocrinol. 2015;27:658-69 pubmed 出版商
  470. Bedogni F, Cobolli Gigli C, Pozzi D, Rossi R, Scaramuzza L, Rossetti G, et al. Defects During Mecp2 Null Embryonic Cortex Development Precede the Onset of Overt Neurological Symptoms. Cereb Cortex. 2016;26:2517-2529 pubmed 出版商
  471. Fujikawa Y, Tominaga K, Tanaka F, Tanigawa T, Watanabe T, Fujiwara Y, et al. Enteric glial cells are associated with stress-induced colonic hyper-contraction in maternally separated rats. Neurogastroenterol Motil. 2015;27:1010-23 pubmed 出版商
  472. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  473. Milenkovic A, Brandl C, Milenkovic V, Jendryke T, Sirianant L, Wanitchakool P, et al. Bestrophin 1 is indispensable for volume regulation in human retinal pigment epithelium cells. Proc Natl Acad Sci U S A. 2015;112:E2630-9 pubmed 出版商
  474. Niu W, Zang T, Smith D, Vue T, Zou Y, Bachoo R, et al. SOX2 reprograms resident astrocytes into neural progenitors in the adult brain. Stem Cell Reports. 2015;4:780-94 pubmed 出版商
  475. Jimenez Blasco D, Santofimia Castaño P, Gonzalez A, Almeida A, Bolaños J. Astrocyte NMDA receptors' activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ. 2015;22:1877-89 pubmed 出版商
  476. Raha Chowdhury R, Raha A, Forostyak S, Zhao J, Stott S, Bomford A. Expression and cellular localization of hepcidin mRNA and protein in normal rat brain. BMC Neurosci. 2015;16:24 pubmed 出版商
  477. Rivera P, Bindila L, Pastor A, Pérez Martín M, Pavón F, Serrano A, et al. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci. 2015;9:98 pubmed 出版商
  478. Samhan Arias A, López Sánchez C, Marques da Silva D, Lagoa R, García López V, García Martínez V, et al. High expression of cytochrome b 5 reductase isoform 3/cytochrome b 5 system in the cerebellum and pyramidal neurons of adult rat brain. Brain Struct Funct. 2016;221:2147-62 pubmed 出版商
  479. Uemura N, Koike M, Ansai S, Kinoshita M, Ishikawa Fujiwara T, Matsui H, et al. Viable neuronopathic Gaucher disease model in Medaka (Oryzias latipes) displays axonal accumulation of alpha-synuclein. PLoS Genet. 2015;11:e1005065 pubmed 出版商
  480. Fausther M, Goree J, Lavoie Ã, Graham A, Sévigny J, Dranoff J. Establishment and characterization of rat portal myofibroblast cell lines. PLoS ONE. 2015;10:e0121161 pubmed 出版商
  481. Shin C, Grossmann A, Holmen S, Robinson J. The BRAF kinase domain promotes the development of gliomas in vivo. Genes Cancer. 2015;6:9-18 pubmed
  482. Smeyne M, Sladen P, Jiao Y, Dragatsis I, Smeyne R. HIF1α is necessary for exercise-induced neuroprotection while HIF2α is needed for dopaminergic neuron survival in the substantia nigra pars compacta. Neuroscience. 2015;295:23-38 pubmed 出版商
  483. Koh H, Chang C, Jeon S, Yoon H, Ahn Y, Kim H, et al. The HIF-1/glial TIM-3 axis controls inflammation-associated brain damage under hypoxia. Nat Commun. 2015;6:6340 pubmed 出版商
  484. Crouch E, Liu C, Silva Vargas V, Doetsch F. Regional and stage-specific effects of prospectively purified vascular cells on the adult V-SVZ neural stem cell lineage. J Neurosci. 2015;35:4528-39 pubmed 出版商
  485. Cuadrado E, Michailidou I, van Bodegraven E, Jansen M, Sluijs J, Geerts D, et al. Phenotypic variation in Aicardi-Goutières syndrome explained by cell-specific IFN-stimulated gene response and cytokine release. J Immunol. 2015;194:3623-33 pubmed 出版商
  486. Boulay A, Mazeraud A, Cisternino S, Saubaméa B, Mailly P, Jourdren L, et al. Immune quiescence of the brain is set by astroglial connexin 43. J Neurosci. 2015;35:4427-39 pubmed 出版商
  487. Tokuda E, Watanabe S, Okawa E, Ono S. Regulation of Intracellular Copper by Induction of Endogenous Metallothioneins Improves the Disease Course in a Mouse Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2015;12:461-76 pubmed 出版商
  488. Tennakoon A, Izawa T, Wijesundera K, Katou Ichikawa C, Tanaka M, Golbar H, et al. Analysis of glial fibrillary acidic protein (GFAP)-expressing ductular cells in a rat liver cirrhosis model induced by repeated injections of thioacetamide (TAA). Exp Mol Pathol. 2015;98:476-85 pubmed 出版商
  489. Eid M, El Kowrany S, Othman A, El Gendy D, Saied E. Immunopathological changes in the brain of immunosuppressed mice experimentally infected with Toxocara canis. Korean J Parasitol. 2015;53:51-8 pubmed 出版商
  490. Romero J, Hanschmann E, Gellert M, Eitner S, Holubiec M, Blanco Calvo E, et al. Thioredoxin 1 and glutaredoxin 2 contribute to maintain the phenotype and integrity of neurons following perinatal asphyxia. Biochim Biophys Acta. 2015;1850:1274-85 pubmed 出版商
  491. Nakadate K. Developmental changes in the flotillin-1 expression pattern of the rat visual cortex. Neuroscience. 2015;292:101-11 pubmed 出版商
  492. Özkucur N, Quinn K, Pang J, DU C, Georgakoudi I, Miller E, et al. Membrane potential depolarization causes alterations in neuron arrangement and connectivity in cocultures. Brain Behav. 2015;5:24-38 pubmed 出版商
  493. Kawabori M, Kacimi R, Kauppinen T, Calosing C, Kim J, Hsieh C, et al. Triggering receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates phagocytic activities of microglia and exacerbates ischemic damage in experimental stroke. J Neurosci. 2015;35:3384-96 pubmed 出版商
  494. Chen Roetling J, Song W, Schipper H, Regan C, Regan R. Astrocyte overexpression of heme oxygenase-1 improves outcome after intracerebral hemorrhage. Stroke. 2015;46:1093-8 pubmed 出版商
  495. Xu H, Rösler T, Carlsson T, de Andrade A, Fiala O, Höllerhage M, et al. Tau silencing by siRNA in the P301S mouse model of tauopathy. Curr Gene Ther. 2014;14:343-51 pubmed
  496. Arulmoli J, Pathak M, McDonnell L, Nourse J, Tombola F, Earthman J, et al. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci Rep. 2015;5:8499 pubmed 出版商
  497. Sabogal Guáqueta A, Muñoz Manco J, Ramírez Pineda J, Lamprea Rodriguez M, Osorio E, Cardona Gómez G. The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology. 2015;93:134-45 pubmed 出版商
  498. Nagai J, Kitamura Y, Owada K, Yamashita N, Takei K, Goshima Y, et al. Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation. Sci Rep. 2015;5:8269 pubmed 出版商
  499. Cantoni C, Bollman B, Licastro D, Xie M, Mikesell R, Schmidt R, et al. TREM2 regulates microglial cell activation in response to demyelination in vivo. Acta Neuropathol. 2015;129:429-47 pubmed 出版商
  500. Li W, Garringer H, GOODWIN C, Richine B, Acton A, Vanduyn N, et al. Systemic and cerebral iron homeostasis in ferritin knock-out mice. PLoS ONE. 2015;10:e0117435 pubmed 出版商
  501. Orr A, Hsiao E, Wang M, Ho K, Kim D, Wang X, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. Nat Neurosci. 2015;18:423-34 pubmed 出版商
  502. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  503. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer's disease. EMBO Mol Med. 2015;7:175-89 pubmed 出版商
  504. Nakayama D, Iwata H, Teshirogi C, Ikegaya Y, Matsuki N, Nomura H. Long-delayed expression of the immediate early gene Arc/Arg3.1 refines neuronal circuits to perpetuate fear memory. J Neurosci. 2015;35:819-30 pubmed 出版商
  505. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  506. Long P, Tighe S, Driscoll H, Fortner K, Viapiano M, Jaworski D. Acetate supplementation as a means of inducing glioblastoma stem-like cell growth arrest. J Cell Physiol. 2015;230:1929-43 pubmed 出版商
  507. Matsuzaki K, Katakura M, Inoue T, Hara T, Hashimoto M, Shido O. Aging attenuates acquired heat tolerance and hypothalamic neurogenesis in rats. J Comp Neurol. 2015;523:1190-201 pubmed 出版商
  508. Jendresen C, Cui H, Zhang X, Vlodavsky I, Nilsson L, Li J. Overexpression of heparanase lowers the amyloid burden in amyloid-β precursor protein transgenic mice. J Biol Chem. 2015;290:5053-64 pubmed 出版商
  509. Wan C, O Carroll S, Kim S, Green C, Nicholson L. Spatiotemporal changes in Cx30 and Cx43 expression during neuronal differentiation of P19 EC and NT2/D1 cells. Cell Biol Int Rep (2010). 2013;20:13-23 pubmed
  510. Caminos E, Vaquero C, Martinez Galan J. Relationship between rat retinal degeneration and potassium channel KCNQ5 expression. Exp Eye Res. 2015;131:1-11 pubmed 出版商
  511. Maltecca F, Baseggio E, Consolato F, Mazza D, Podini P, Young S, et al. Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest. 2015;125:263-74 pubmed 出版商
  512. Kamel Ismail Z, Morcos M, Eldin Mohammad M, Gamal Aboulkhair A. Enhancement of Neural Stem Cells after Induction of Depression in Male Albino Rats (A histological & Immunohistochemical Study). Int J Stem Cells. 2014;7:70-8 pubmed 出版商
  513. Ceber M, Mihmanli A, Kilic U, Sener U, Yuksek A, Durak M, et al. Changes in expression of Slit1 and its receptor Robo2 in trigeminal ganglion and inferior alveolar nerve following inferior alveolar nerve axotomy in adult rats: a pilot study. Int J Oral Maxillofac Surg. 2015;44:518-27 pubmed 出版商
  514. Lauretti E, di Meco A, Chu J, Praticò D. Modulation of AD neuropathology and memory impairments by the isoprostane F2α is mediated by the thromboxane receptor. Neurobiol Aging. 2015;36:812-20 pubmed 出版商
  515. Paniagua Torija B, Arevalo Martin A, Molina Holgado E, Molina Holgado F, Garcia Ovejero D. Spinal cord injury induces a long-lasting upregulation of interleukin-1β in astrocytes around the central canal. Neuroscience. 2015;284:283-9 pubmed 出版商
  516. Almolda B, de Labra C, Barrera I, Gruart A, Delgado Garcia J, Villacampa N, et al. Alterations in microglial phenotype and hippocampal neuronal function in transgenic mice with astrocyte-targeted production of interleukin-10. Brain Behav Immun. 2015;45:80-97 pubmed 出版商
  517. Petravicz J, Boyt K, McCarthy K. Astrocyte IP3R2-dependent Ca(2+) signaling is not a major modulator of neuronal pathways governing behavior. Front Behav Neurosci. 2014;8:384 pubmed 出版商
  518. Wu C, Hung T, Chen C, Ke C, Lee C, Wang P, et al. Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling. PLoS ONE. 2014;9:e113397 pubmed 出版商
  519. Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed 出版商
  520. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  521. Nardai S, Dobolyi A, Pál G, Skopál J, Pintér N, Lakatos K, et al. Selegiline promotes NOTCH-JAGGED signaling in astrocytes of the peri-infarct region and improves the functional integrity of the neurovascular unit in a rat model of focal ischemia. Restor Neurol Neurosci. 2015;33:1-14 pubmed 出版商
  522. Scholze A, Foo L, Mulinyawe S, Barres B. BMP signaling in astrocytes downregulates EGFR to modulate survival and maturation. PLoS ONE. 2014;9:e110668 pubmed 出版商
  523. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  524. Pamies D, Bal Price A, Fabbri M, Gribaldo L, Scelfo B, Harris G, et al. Silencing of PNPLA6, the neuropathy target esterase (NTE) codifying gene, alters neurodifferentiation of human embryonal carcinoma stem cells (NT2). Neuroscience. 2014;281:54-67 pubmed 出版商
  525. Young D, Fong D, Lawlor P, Wu A, Mouravlev A, McRae M, et al. Adenosine kinase, glutamine synthetase and EAAT2 as gene therapy targets for temporal lobe epilepsy. Gene Ther. 2014;21:1029-40 pubmed 出版商
  526. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  527. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  528. Quintas C, Pinho D, Pereira C, Saraiva L, Gonçalves J, Queiroz G. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation. 2014;11:141 pubmed 出版商
  529. Lowe M, Faull R, Christie D, Waldvogel H. Distribution of the creatine transporter throughout the human brain reveals a spectrum of creatine transporter immunoreactivity. J Comp Neurol. 2015;523:699-725 pubmed 出版商
  530. Marinelli S, Eleuteri C, Vacca V, Strimpakos G, Mattei E, Severini C, et al. Effects of age-related loss of P/Q-type calcium channels in a mice model of peripheral nerve injury. Neurobiol Aging. 2015;36:352-64 pubmed 出版商
  531. Ginet V, Pittet M, Rummel C, Osterheld M, Meuli R, Clarke P, et al. Dying neurons in thalamus of asphyxiated term newborns and rats are autophagic. Ann Neurol. 2014;76:695-711 pubmed 出版商
  532. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  533. Curto G, Nieto Estévez V, Hurtado Chong A, Valero J, Gómez C, Alonso J, et al. Pax6 is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb. Stem Cells Dev. 2014;23:2813-30 pubmed 出版商
  534. de Bock L, Somers K, Fraussen J, Hendriks J, van Horssen J, Rouwette M, et al. Sperm-associated antigen 16 is a novel target of the humoral autoimmune response in multiple sclerosis. J Immunol. 2014;193:2147-56 pubmed 出版商
  535. Kawase S, Kuwako K, Imai T, Renault Mihara F, Yaguchi K, Itohara S, et al. Regulatory factor X transcription factors control Musashi1 transcription in mouse neural stem/progenitor cells. Stem Cells Dev. 2014;23:2250-61 pubmed 出版商
  536. Meng X, Wei D, Li J, Kang J, Wu C, Ma L, et al. Astrocytic expression of cannabinoid type 1 receptor in rat and human sclerotic hippocampi. Int J Clin Exp Pathol. 2014;7:2825-37 pubmed
  537. Dela Cruz J, Schmidt Kastner R, Stevens J, Steinbusch H, Rutten B. Differential distribution of hypoxia-inducible factor 1-beta (ARNT or ARNT2) in mouse substantia nigra and ventral tegmental area. J Chem Neuroanat. 2014;61-62:64-71 pubmed 出版商
  538. McKinstry S, Karadeniz Y, Worthington A, Hayrapetyan V, Ozlu M, Serafin Molina K, et al. Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J Neurosci. 2014;34:9455-72 pubmed 出版商
  539. Dowie M, Grimsey N, Hoffman T, Faull R, Glass M. Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington's disease brain. J Chem Neuroanat. 2014;59-60:62-71 pubmed 出版商
  540. König H, Coughlan K, Kinsella S, Breen B, Prehn J. The BCL-2 family protein Bid is critical for pro-inflammatory signaling in astrocytes. Neurobiol Dis. 2014;70:99-107 pubmed 出版商
  541. Vasistha N, García Moreno F, Arora S, Cheung A, Arnold S, Robertson E, et al. Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cereb Cortex. 2015;25:3290-302 pubmed 出版商
  542. Huang L, Zhu G, Deng Y, Jiang W, Fang M, Chen C, et al. Hypertonic saline alleviates cerebral edema by inhibiting microglia-derived TNF-? and IL-1?-induced Na-K-Cl Cotransporter up-regulation. J Neuroinflammation. 2014;11:102 pubmed 出版商
  543. Inada C, Niu Y, Matsumoto K, Le X, Fujiwara H. Possible involvement of VEGF signaling system in rescuing effect of endogenous acetylcholine on NMDA-induced long-lasting hippocampal cell damage in organotypic hippocampal slice cultures. Neurochem Int. 2014;75:39-47 pubmed 出版商
  544. Sajjan S, Holsinger R, Fok S, Ebrahimkhani S, Rollo J, Banati R, et al. Up-regulation of matrix metallopeptidase 12 in motor neurons undergoing synaptic stripping. Neuroscience. 2014;274:331-40 pubmed 出版商
  545. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  546. Neher M, Rich M, Keene C, Weckbach S, Bolden A, Losacco J, et al. Deficiency of complement receptors CR2/CR1 in Cr2?/? mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation. 2014;11:95 pubmed 出版商
  547. Paez Gonzalez P, Asrican B, Rodriguez E, Kuo C. Identification of distinct ChAT? neurons and activity-dependent control of postnatal SVZ neurogenesis. Nat Neurosci. 2014;17:934-42 pubmed 出版商
  548. Alvarez A, Field M, Bushnev S, Longo M, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells. J Mol Neurosci. 2015;55:7-20 pubmed 出版商
  549. Cekanaviciute E, Dietrich H, Axtell R, Williams A, Egusquiza R, Wai K, et al. Astrocytic TGF-? signaling limits inflammation and reduces neuronal damage during central nervous system Toxoplasma infection. J Immunol. 2014;193:139-49 pubmed 出版商
  550. Fu Y, Rusznák Z, Kwok J, Kim W, Paxinos G. Age-dependent alterations of the hippocampal cell composition and proliferative potential in the hA?PPSwInd-J20 mouse. J Alzheimers Dis. 2014;41:1177-92 pubmed 出版商
  551. Sharp K, Yee K, Steward O. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury. Exp Neurol. 2014;257:186-204 pubmed 出版商
  552. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  553. Tse K, Chow K, Leung W, Wong Y, Wise H. Lipopolysaccharide differentially modulates expression of cytokines and cyclooxygenases in dorsal root ganglion cells via Toll-like receptor-4 dependent pathways. Neuroscience. 2014;267:241-51 pubmed 出版商
  554. Pannasch U, Freche D, Dallérac G, Ghezali G, Escartin C, Ezan P, et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci. 2014;17:549-58 pubmed 出版商
  555. Balaratnasingam C, Kang M, Yu P, Chan G, Morgan W, Cringle S, et al. Comparative quantitative study of astrocytes and capillary distribution in optic nerve laminar regions. Exp Eye Res. 2014;121:11-22 pubmed 出版商
  556. Fathi A, Hatami M, Vakilian H, Han C, Chen Y, Baharvand H, et al. Quantitative proteomics analysis highlights the role of redox hemostasis and energy metabolism in human embryonic stem cell differentiation to neural cells. J Proteomics. 2014;101:1-16 pubmed 出版商
  557. Fragoso Y, Stoney P, Shearer K, Sementilli A, Nanescu S, Sementilli P, et al. Expression in the human brain of retinoic acid induced 1, a protein associated with neurobehavioural disorders. Brain Struct Funct. 2015;220:1195-203 pubmed 出版商
  558. Karki P, Webb A, Smith K, Johnson J, Lee K, Son D, et al. Yin Yang 1 is a repressor of glutamate transporter EAAT2, and it mediates manganese-induced decrease of EAAT2 expression in astrocytes. Mol Cell Biol. 2014;34:1280-9 pubmed 出版商
  559. Chou V, Ko N, Holman T, Manning Bog A. Gene-environment interaction models to unmask susceptibility mechanisms in Parkinson's disease. J Vis Exp. 2014;:e50960 pubmed 出版商
  560. Severi I, Perugini J, Mondini E, Smorlesi A, Frontini A, Cinti S, et al. Opposite effects of a high-fat diet and calorie restriction on ciliary neurotrophic factor signaling in the mouse hypothalamus. Front Neurosci. 2013;7:263 pubmed 出版商
  561. Maire C, Ramkissoon S, Hayashi M, Haidar S, Ramkissoon L, diTomaso E, et al. Pten loss in Olig2 expressing neural progenitor cells and oligodendrocytes leads to interneuron dysplasia and leukodystrophy. Stem Cells. 2014;32:313-26 pubmed 出版商
  562. Coppieters N, Dieriks B, Lill C, Faull R, Curtis M, Dragunow M. Global changes in DNA methylation and hydroxymethylation in Alzheimer's disease human brain. Neurobiol Aging. 2014;35:1334-44 pubmed 出版商
  563. Traniello I, Sîrbulescu R, Ilieş I, Zupanc G. Age-related changes in stem cell dynamics, neurogenesis, apoptosis, and gliosis in the adult brain: a novel teleost fish model of negligible senescence. Dev Neurobiol. 2014;74:514-30 pubmed 出版商
  564. Gao X, Zhang J, Zhang J, Zou H, Liu J. Identification of rat respiratory mucosa stem cells and comparison of the early neural differentiation potential with the bone marrow mesenchymal stem cells in vitro. Cell Mol Neurobiol. 2014;34:257-68 pubmed 出版商
  565. Nakajima T, Yanagihara M, Nishii H. Temporal and regional patterns of Smad activation in the rat hippocampus following global ischemia. J Neurol Sci. 2014;337:25-37 pubmed 出版商
  566. Takano T, He W, Han X, Wang F, Xu Q, Wang X, et al. Rapid manifestation of reactive astrogliosis in acute hippocampal brain slices. Glia. 2014;62:78-95 pubmed 出版商
  567. Wakatsuki S, Araki T, Sehara Fujisawa A. Neuregulin-1/glial growth factor stimulates Schwann cell migration by inducing ?5 ?1 integrin-ErbB2-focal adhesion kinase complex formation. Genes Cells. 2014;19:66-77 pubmed 出版商
  568. Ní Fhlathartaigh M, McMahon J, Reynolds R, Connolly D, Higgins E, Counihan T, et al. Calreticulin and other components of endoplasmic reticulum stress in rat and human inflammatory demyelination. Acta Neuropathol Commun. 2013;1:37 pubmed 出版商
  569. Raha A, VAISHNAV R, FRIEDLAND R, Bomford A, Raha Chowdhury R. The systemic iron-regulatory proteins hepcidin and ferroportin are reduced in the brain in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:55 pubmed 出版商
  570. Nguyen H, Ostendorf A, Satz J, Westra S, Ross Barta S, Campbell K, et al. Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol Commun. 2013;1:58 pubmed 出版商
  571. Yan Y, Zhang J, Wang K, Xu Y, Ren K, Zhang B, et al. Significant reduction of the GLUT3 level, but not GLUT1 level, was observed in the brain tissues of several scrapie experimental animals and scrapie-infected cell lines. Mol Neurobiol. 2014;49:991-1004 pubmed 出版商
  572. Hawkins K, Demars K, Singh J, Yang C, Cho H, Frankowski J, et al. Neurovascular protection by post-ischemic intravenous injections of the lipoxin A4 receptor agonist, BML-111, in a rat model of ischemic stroke. J Neurochem. 2014;129:130-42 pubmed 出版商
  573. Danovi D, Folarin A, Gogolok S, Ender C, Elbatsh A, Engström P, et al. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. PLoS ONE. 2013;8:e77053 pubmed 出版商
  574. Yamada J, Jinno S. S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus. 2014;24:89-101 pubmed 出版商
  575. Dobolyi A, Ostergaard E, Bagó A, Doczi T, Palkovits M, Gal A, et al. Exclusive neuronal expression of SUCLA2 in the human brain. Brain Struct Funct. 2015;220:135-51 pubmed 出版商
  576. Bellesi M, Pfister Genskow M, Maret S, Keles S, Tononi G, Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci. 2013;33:14288-300 pubmed 出版商
  577. Viganò F, Mobius W, Gotz M, Dimou L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci. 2013;16:1370-2 pubmed 出版商
  578. Schreiner A, Durry S, Aida T, Stock M, Ruther U, Tanaka K, et al. Laminar and subcellular heterogeneity of GLAST and GLT-1 immunoreactivity in the developing postnatal mouse hippocampus. J Comp Neurol. 2014;522:204-24 pubmed 出版商
  579. Cops E, Sashindranath M, Daglas M, Short K, da Fonseca Pereira C, Pang T, et al. Tissue-type plasminogen activator is an extracellular mediator of Purkinje cell damage and altered gait. Exp Neurol. 2013;249:8-19 pubmed 出版商
  580. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  581. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  582. Ramesh G, Santana Gould L, Inglis F, England J, Philipp M. The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia. J Neuroinflammation. 2013;10:88 pubmed 出版商
  583. Brunne B, FRANCO S, Bouché E, Herz J, Howell B, Pahle J, et al. Role of the postnatal radial glial scaffold for the development of the dentate gyrus as revealed by Reelin signaling mutant mice. Glia. 2013;61:1347-63 pubmed 出版商
  584. Otte D, Barcena de Arellano M, Bilkei Gorzo A, Albayram O, Imbeault S, Jeung H, et al. Effects of Chronic D-Serine Elevation on Animal Models of Depression and Anxiety-Related Behavior. PLoS ONE. 2013;8:e67131 pubmed 出版商
  585. Dieriks B, Waldvogel H, Monzo H, Faull R, Curtis M. GABA(A) receptor characterization and subunit localization in the human sub-ventricular zone. J Chem Neuroanat. 2013;52:58-68 pubmed 出版商
  586. Mietzsch U, McKenna J, Reith R, Way S, Gambello M. Comparative analysis of Tsc1 and Tsc2 single and double radial glial cell mutants. J Comp Neurol. 2013;521:3817-31 pubmed 出版商
  587. Li L, Ginet V, Liu X, Vergun O, Tuittila M, Mathieu M, et al. The nNOS-p38MAPK pathway is mediated by NOS1AP during neuronal death. J Neurosci. 2013;33:8185-201 pubmed 出版商
  588. Sparmann A, Xie Y, Verhoeven E, Vermeulen M, Lancini C, Gargiulo G, et al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J. 2013;32:1598-612 pubmed 出版商
  589. Bourque S, Kuny S, Reyes L, Davidge S, Sauve Y. Prenatal hypoxia is associated with long-term retinal dysfunction in rats. PLoS ONE. 2013;8:e61861 pubmed 出版商
  590. Kelleher M, Hirst J, Palliser H. Changes in neuroactive steroid concentrations after preterm delivery in the Guinea pig. Reprod Sci. 2013;20:1365-75 pubmed 出版商
  591. Degerman E, Rauch U, Lindberg S, Caye Thomasen P, Hultgårdh A, Magnusson M. Expression of insulin signalling components in the sensory epithelium of the human saccule. Cell Tissue Res. 2013;352:469-78 pubmed 出版商
  592. Vontell R, Supramaniam V, Thornton C, Wyatt Ashmead J, Mallard C, Gressens P, et al. Toll-like receptor 3 expression in glia and neurons alters in response to white matter injury in preterm infants. Dev Neurosci. 2013;35:130-9 pubmed 出版商
  593. Chio C, Chang C, Wang C, Cheong C, Chao C, Cheng B, et al. Etanercept attenuates traumatic brain injury in rats by reducing early microglial expression of tumor necrosis factor-?. BMC Neurosci. 2013;14:33 pubmed 出版商
  594. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  595. Vinukonda G, Zia M, Bhimavarapu B, Hu F, Feinberg M, Bokhari A, et al. Intraventricular hemorrhage induces deposition of proteoglycans in premature rabbits, but their in vivo degradation with chondroitinase does not restore myelination, ventricle size and neurological recovery. Exp Neurol. 2013;247:630-44 pubmed 出版商
  596. Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwenberghe C, Kolen K, et al. Increased expression of BIN1 mediates Alzheimer genetic risk by modulating tau pathology. Mol Psychiatry. 2013;18:1225-34 pubmed 出版商
  597. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  598. Murakami K, Jiang Y, Tanaka T, Bando Y, Mitrovic B, Yoshida S. In vivo analysis of kallikrein-related peptidase 6 (KLK6) function in oligodendrocyte development and the expression of myelin proteins. Neuroscience. 2013;236:1-11 pubmed 出版商
  599. Phares T, Stohlman S, Hinton D, Bergmann C. Astrocyte-derived CXCL10 drives accumulation of antibody-secreting cells in the central nervous system during viral encephalomyelitis. J Virol. 2013;87:3382-92 pubmed 出版商
  600. Chen S, Tsai H, Hung T, Chen C, Lee C, Wu C, et al. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS ONE. 2012;7:e45763 pubmed 出版商
  601. Gerber A, Bale T. Antiinflammatory treatment ameliorates HPA stress axis dysfunction in a mouse model of stress sensitivity. Endocrinology. 2012;153:4830-7 pubmed
  602. Dixon K, Munro K, Boyd A, Bartlett P, Turnley A. Partial change in EphA4 knockout mouse phenotype: loss of diminished GFAP upregulation following spinal cord injury. Neurosci Lett. 2012;525:66-71 pubmed 出版商
  603. Wakabayashi T, Kosaka J, Mori T, Yamada H. Prolonged expression of Puma in cholinergic amacrine cells during the development of rat retina. J Histochem Cytochem. 2012;60:777-88 pubmed
  604. Shimada I, LeComte M, Granger J, Quinlan N, Spees J. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J Neurosci. 2012;32:7926-40 pubmed 出版商
  605. Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NF-?B-dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediators Inflamm. 2012;2012:217580 pubmed 出版商
  606. Desilva T, Borenstein N, Volpe J, Kinney H, Rosenberg P. Expression of EAAT2 in neurons and protoplasmic astrocytes during human cortical development. J Comp Neurol. 2012;520:3912-32 pubmed 出版商
  607. Skjolding A, Holst A, Broholm H, Laursen H, Juhler M. Differences in distribution and regulation of astrocytic aquaporin-4 in human and rat hydrocephalic brain. Neuropathol Appl Neurobiol. 2013;39:179-91 pubmed 出版商
  608. Lutz S, Raine C, Brosnan C. Loss of astrocyte connexins 43 and 30 does not significantly alter susceptibility or severity of acute experimental autoimmune encephalomyelitis in mice. J Neuroimmunol. 2012;245:8-14 pubmed 出版商
  609. Lewitus D, Landers J, Branch J, Smith K, Callegari G, Kohn J, et al. Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering. Adv Funct Mater. 2011;21:2624-2632 pubmed
  610. Zhao L, Ma W, Fariss R, Wong W. Minocycline attenuates photoreceptor degeneration in a mouse model of subretinal hemorrhage microglial: inhibition as a potential therapeutic strategy. Am J Pathol. 2011;179:1265-77 pubmed 出版商
  611. Zürner M, Mittelstaedt T, Tom Dieck S, Becker A, Schoch S. Analyses of the spatiotemporal expression and subcellular localization of liprin-? proteins. J Comp Neurol. 2011;519:3019-39 pubmed 出版商
  612. Lewitus D, Smith K, Shain W, Bolikal D, Kohn J. The fate of ultrafast degrading polymeric implants in the brain. Biomaterials. 2011;32:5543-50 pubmed 出版商
  613. Chang C, Chen S, Lee T, Lee H, Chen S, Shyue S. Caveolin-1 deletion reduces early brain injury after experimental intracerebral hemorrhage. Am J Pathol. 2011;178:1749-61 pubmed 出版商
  614. Lewitus D, Smith K, Shain W, Kohn J. Ultrafast resorbing polymers for use as carriers for cortical neural probes. Acta Biomater. 2011;7:2483-91 pubmed 出版商
  615. Bloch J, Kaeser M, Sadeghi Y, Rouiller E, Redmond D, Brunet J. Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol. 2011;519:775-89 pubmed 出版商
  616. Sawamoto K, Hirota Y, Alfaro Cervello C, Soriano Navarro M, He X, Hayakawa Yano Y, et al. Cellular composition and organization of the subventricular zone and rostral migratory stream in the adult and neonatal common marmoset brain. J Comp Neurol. 2011;519:690-713 pubmed 出版商
  617. Phares T, Marques C, Stohlman S, Hinton D, Bergmann C. Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol. 2011;85:2589-98 pubmed 出版商
  618. Schwartz C, Cheng A, Mughal M, Mattson M, Yao P. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain. J Comp Neurol. 2010;518:3803-18 pubmed 出版商
  619. Tseng Y, Gruzdeva N, Li A, Chuang J, Sung C. Identification of the Tctex-1 regulatory element that directs expression to neural stem/progenitor cells in developing and adult brain. J Comp Neurol. 2010;518:3327-42 pubmed 出版商
  620. Yang H, Zhuo J, Chu J, Chinnici C, Pratico D. Amelioration of the Alzheimer's disease phenotype by absence of 12/15-lipoxygenase. Biol Psychiatry. 2010;68:922-9 pubmed 出版商
  621. DellaValle B, Hempel C, Kurtzhals J, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia. 2010;58:1220-7 pubmed 出版商
  622. Pang J, Gao F, Wu S. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina. J Comp Neurol. 2010;518:2456-74 pubmed 出版商
  623. VanBrocklin M, Robinson J, Lastwika K, Khoury J, Holmen S. Targeted delivery of NRASQ61R and Cre-recombinase to post-natal melanocytes induces melanoma in Ink4a/Arflox/lox mice. Pigment Cell Melanoma Res. 2010;23:531-41 pubmed 出版商
  624. Ampatzis K, Dermon C. Regional distribution and cellular localization of beta2-adrenoceptors in the adult zebrafish brain (Danio rerio). J Comp Neurol. 2010;518:1418-41 pubmed 出版商
  625. Liu Y, Namba T, Liu J, Suzuki R, Shioda S, Seki T. Glial fibrillary acidic protein-expressing neural progenitors give rise to immature neurons via early intermediate progenitors expressing both glial fibrillary acidic protein and neuronal markers in the adult hippocampus. Neuroscience. 2010;166:241-51 pubmed 出版商
  626. Rehermann M, Marichal N, RUSSO R, TRUJILLO CENOZ O. Neural reconnection in the transected spinal cord of the freshwater turtle Trachemys dorbignyi. J Comp Neurol. 2009;515:197-214 pubmed 出版商
  627. Singer B, Jutkiewicz E, Fuller C, Lichtenwalner R, Zhang H, Velander A, et al. Conditional ablation and recovery of forebrain neurogenesis in the mouse. J Comp Neurol. 2009;514:567-82 pubmed 出版商
  628. Sanchez P, Navarro F, Fares R, Nadam J, Georges B, Moulin C, et al. Erythropoietin receptor expression is concordant with erythropoietin but not with common beta chain expression in the rat brain throughout the life span. J Comp Neurol. 2009;514:403-14 pubmed 出版商
  629. Komitova M, Zhu X, Serwanski D, Nishiyama A. NG2 cells are distinct from neurogenic cells in the postnatal mouse subventricular zone. J Comp Neurol. 2009;512:702-16 pubmed 出版商
  630. Ji B, Maeda J, Sawada M, Ono M, Okauchi T, Inaji M, et al. Imaging of peripheral benzodiazepine receptor expression as biomarkers of detrimental versus beneficial glial responses in mouse models of Alzheimer's and other CNS pathologies. J Neurosci. 2008;28:12255-67 pubmed 出版商
  631. Sakakibara S, Nakadate K, Tanaka Nakadate S, Yoshida K, Nogami S, Shirataki H, et al. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J Comp Neurol. 2008;511:65-80 pubmed 出版商
  632. Miya K, Inoue R, Takata Y, Abe M, Natsume R, Sakimura K, et al. Serine racemase is predominantly localized in neurons in mouse brain. J Comp Neurol. 2008;510:641-54 pubmed 出版商
  633. Buniel M, Glazebrook P, Ramirez Navarro A, Kunze D. Distribution of voltage-gated potassium and hyperpolarization-activated channels in sensory afferent fibers in the rat carotid body. J Comp Neurol. 2008;510:367-77 pubmed 出版商
  634. Hoff S, Zeller F, Von Weyhern C, Wegner M, Schemann M, Michel K, et al. Quantitative assessment of glial cells in the human and guinea pig enteric nervous system with an anti-Sox8/9/10 antibody. J Comp Neurol. 2008;509:356-71 pubmed 出版商
  635. Ampatzis K, Kentouri M, Dermon C. Neuronal and glial localization of alpha(2A)-adrenoceptors in the adult zebrafish (Danio rerio) brain. J Comp Neurol. 2008;508:72-93 pubmed 出版商
  636. Lennerz J, Rühle V, Ceppa E, Neuhuber W, Bunnett N, Grady E, et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribu. J Comp Neurol. 2008;507:1277-99 pubmed 出版商
  637. Yang Y, Zhang P, Xiong Y, Li X, Qi Y, Hu H. Ectopia of meningeal fibroblasts and reactive gliosis in the cerebral cortex of the mouse model of muscle-eye-brain disease. J Comp Neurol. 2007;505:459-77 pubmed
  638. Bishop G, Berbari N, Lewis J, Mykytyn K. Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol. 2007;505:562-71 pubmed
  639. Blakqori G, Delhaye S, Habjan M, Blair C, S nchez Vargas I, Olson K, et al. La Crosse bunyavirus nonstructural protein NSs serves to suppress the type I interferon system of mammalian hosts. J Virol. 2007;81:4991-9 pubmed 出版商
  640. Tran P, Banisadr G, Ren D, Chenn A, Miller R. Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol. 2007;500:1007-33 pubmed
  641. Chen H, Liu B, Neufeld A. Epidermal growth factor receptor in adult retinal neurons of rat, mouse, and human. J Comp Neurol. 2007;500:299-310 pubmed
  642. Talos D, Fishman R, Park H, Folkerth R, Follett P, Volpe J, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42-60 pubmed
  643. Dedesma C, Chuang J, Alfinito P, Sung C. Dynein light chain Tctex-1 identifies neural progenitors in adult brain. J Comp Neurol. 2006;496:773-86 pubmed
  644. Herber D, Maloney J, Roth L, Freeman M, Morgan D, Gordon M. Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia. 2006;53:382-91 pubmed
  645. Kiyokage E, Toida K, Suzuki Yamamoto T, Ishimura K. Localization of 5alpha-reductase in the rat main olfactory bulb. J Comp Neurol. 2005;493:381-95 pubmed
  646. Wicher G, Larsson M, Rask L, Aldskogius H. Low-density lipoprotein receptor-related protein (LRP)-2/megalin is transiently expressed in a subpopulation of neural progenitors in the embryonic mouse spinal cord. J Comp Neurol. 2005;492:123-31 pubmed
  647. Herber D, Roth L, Wilson D, Wilson N, Mason J, Morgan D, et al. Time-dependent reduction in Abeta levels after intracranial LPS administration in APP transgenic mice. Exp Neurol. 2004;190:245-53 pubmed
  648. Apicelli A, Uhlmann E, Baldwin R, Ding H, Nagy A, Guha A, et al. Role of the Rap1 GTPase in astrocyte growth regulation. Glia. 2003;42:225-34 pubmed
  649. Uhlmann E, Apicelli A, Baldwin R, Burke S, Bajenaru M, Onda H, et al. Heterozygosity for the tuberous sclerosis complex (TSC) gene products results in increased astrocyte numbers and decreased p27-Kip1 expression in TSC2+/- cells. Oncogene. 2002;21:4050-9 pubmed
  650. Seitz A, Aglow E, Heber Katz E. Recovery from spinal cord injury: a new transection model in the C57Bl/6 mouse. J Neurosci Res. 2002;67:337-45 pubmed
  651. Penkowa M, Carrasco J, Giralt M, Moos T, Hidalgo J. CNS wound healing is severely depressed in metallothionein I- and II-deficient mice. J Neurosci. 1999;19:2535-45 pubmed
  652. Satoh J, Yukitake M, Kuroda Y. Constitutive and heat-inducible expression of HSP105 in neurons and glial cells in culture. Neuroreport. 1998;9:2977-83 pubmed
  653. Haring H, Akamine B, Habermann R, Koziol J, del Zoppo G. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol. 1996;55:236-45 pubmed