这是一篇来自已证抗体库的有关大鼠 Gja1的综述,是根据199篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gja1 抗体。
Gja1 同义词: Cx43; Cxnk1

赛默飞世尔
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 大鼠; 1:100; 图 4c
赛默飞世尔 Gja1抗体(Thermo Fisher, 13-8300)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:100 (图 4c). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1i
  • 免疫印迹; 小鼠; 图 4h
赛默飞世尔 Gja1抗体(Thermo, 710700)被用于被用于免疫组化在小鼠样本上 (图 1i) 和 被用于免疫印迹在小鼠样本上 (图 4h). Adv Sci (Weinh) (2021) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 小鼠; 1:250; 图 2a
赛默飞世尔 Gja1抗体(Thermo Fisher, 138300)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:250 (图 2a). Sci Rep (2021) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 1:200; 图 8
赛默飞世尔 Gja1抗体(Thermofishe, 13-8300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 8). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛默飞世尔 Gja1抗体(Thermo Fisher, 71-0700)被用于被用于免疫印迹在人类样本上 (图 5c). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(CX-1B1)
  • mass cytometry; 小鼠; 图 5s2b
赛默飞世尔 Gja1抗体(Thermo Fisher, Cx-1B1)被用于被用于mass cytometry在小鼠样本上 (图 5s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3a
赛默飞世尔 Gja1抗体(Zymed, 71?\0700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3a). J Comp Neurol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 8c
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 8c). Histochem Cell Biol (2017) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化; 小鼠; 1:100; 图 1b
赛默飞世尔 Gja1抗体(Thermo Fisher Scientific, 35-5000)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1b). J Neurosci Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2d
赛默飞世尔 Gja1抗体(Thermo, 71-0700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2d). Am J Physiol Cell Physiol (2017) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠; 1:100; 图 2a
赛默飞世尔 Gja1抗体(Thermo Fisher, 13-8300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2a). Int J Mol Sci (2017) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 图 1
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫组化在大鼠样本上 (图 1). Cell Signal (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 2a
赛默飞世尔 Gja1抗体(ThermoFisher, 71-0700)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2a). Tissue Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 1g
赛默飞世尔 Gja1抗体(生活技术, 71-0700)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1g). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:100; 图 3a
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3a). Ann Anat (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 犬; 图 1b
  • 免疫印迹; 犬; 图 1a
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫组化在犬样本上 (图 1b) 和 被用于免疫印迹在犬样本上 (图 1a). Cell Physiol Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1c
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Neuropharmacology (2016) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 人类; 1:2500; 图 5c
赛默飞世尔 Gja1抗体(生活技术, CX-1B1)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:2500 (图 5c). J Neurooncol (2016) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 小鼠; 图 6a
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在小鼠样本上 (图 6a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; domestic rabbit; 图 5a
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上 (图 5a). Cardiovasc Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:100; 图 6c
赛默飞世尔 Gja1抗体(生活技术, 710700)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 6c). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 1
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 1). Cell Tissue Res (2016) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 图 4
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在大鼠样本上 (图 4). Front Cardiovasc Med (2016) ncbi
小鼠 单克隆(3D8A5)
  • 免疫印迹; domestic rabbit; 表 2
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫印迹在domestic rabbit样本上 (表 2). Asian Pac J Trop Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 7
赛默飞世尔 Gja1抗体(生活技术, 71-0700)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 7). Exp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫印迹在小鼠样本上 (图 3). J Cell Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 8
  • 免疫细胞化学; 人类; 图 8
赛默飞世尔 Gja1抗体(生活技术, 71-0700)被用于被用于免疫细胞化学在小鼠样本上 (图 8) 和 被用于免疫细胞化学在人类样本上 (图 8). Cell Adh Migr (2017) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 小鼠; 1:200
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在小鼠样本上浓度为1:200. Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:500; 图 1
赛默飞世尔 Gja1抗体(Zymed, 71-0700)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1). Endocrinology (2016) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; domestic rabbit; 图 4
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫印迹在domestic rabbit样本上 (图 4). Exp Eye Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey
  • 免疫组化; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Gja1抗体(Zymed, 71-0700)被用于被用于免疫印迹在African green monkey样本上, 被用于免疫组化在大鼠样本上浓度为1:400 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Cardiovasc Electrophysiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:250
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250. J Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于. Sci Rep (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Zymed Laboratorie, 71-0700)被用于. Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于. J Mol Cell Cardiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, 710700)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 3). Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, #71-0700)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于. Cardiorenal Med (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 1:200; 图 st1
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 st1). Sci Rep (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫组化在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Am J Physiol Lung Cell Mol Physiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Zymed, 71-0700)被用于. Oncol Rep (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gja1抗体(生活技术, 13-8300)被用于被用于免疫细胞化学在小鼠样本上. Stem Cells Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Cx43, 71-0700)被用于. PLoS ONE (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Hum Reprod (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Zymed, 71-0700)被用于. Basic Res Cardiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, 71-0700)被用于. Glia (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 1:100; 图 1
赛默飞世尔 Gja1抗体(Life Tech, Clone: CX-1B1)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1). J Immunol Res (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 人类
赛默飞世尔 Gja1抗体(生活技术, CX-1B1)被用于被用于免疫组化在人类样本上. Mol Pharmacol (2015) ncbi
小鼠 单克隆(3D8A5)
  • 免疫印迹; 小鼠
赛默飞世尔 Gja1抗体(生活技术, 35-5000)被用于被用于免疫印迹在小鼠样本上. Nitric Oxide (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 1:500; 图 s1
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1). Nat Commun (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(Invitrogen, Cat# 71-0700)被用于. Dev Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gja1抗体(LifeTechnologies, 71-07000)被用于. Cardiovasc Pathol (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Gja1抗体(Zymed/Invitrogen, 13-8300)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 抑制或激活实验; 人类
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于抑制或激活实验在人类样本上. Atherosclerosis (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 0.5 ug/ml
赛默飞世尔 Gja1抗体(生活技术, 138300)被用于被用于免疫印迹在人类样本上浓度为0.5 ug/ml. J Cell Sci (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 家羊
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在家羊样本上. Neuroscience (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 人类; 1:400; 图 5c
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫组化在人类样本上浓度为1:400 (图 5c). J Urol (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 6b
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫印迹在大鼠样本上 (图 6b). J Biol Chem (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类; 图 4b
  • 免疫印迹; 人类; 图 6a
赛默飞世尔 Gja1抗体(Invitrogen, 138300)被用于被用于免疫组化-冰冻切片在人类样本上 (图 4b) 和 被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 1:500
赛默飞世尔 Gja1抗体(Invitrogen, 138300)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Nat Cell Biol (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. FEBS Lett (2014) ncbi
小鼠 单克隆(3D8A5)
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gja1抗体(生活技术, 35-5000)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠
  • 免疫细胞化学; 小鼠
赛默飞世尔 Gja1抗体(生活技术, 13-8300)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫细胞化学在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:1000
赛默飞世尔 Gja1抗体(生活技术, 13-8300)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Hum Reprod (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫细胞化学在人类样本上浓度为1:200. Biomaterials (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 人类; 1:100
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在人类样本上浓度为1:100. Cell Tissue Res (2014) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-冰冻切片; 人类; 1:200; 图 3
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 2
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
赛默飞世尔 Gja1抗体(生活技术, 35-5000)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200 (图 3), 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 2) 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). Cardiovasc Res (2014) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:2000; 图 2
赛默飞世尔 Gja1抗体(Zymed, 138300)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2). Mol Biol Cell (2013) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 3 ug/ml; 图 2
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上浓度为3 ug/ml (图 2). Arq Bras Cardiol (2013) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类; 1:50; 图 6
赛默飞世尔 Gja1抗体(Invitrogen, clone CX-1B1)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 6). Histochem Cell Biol (2013) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). J Cell Physiol (2013) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 1). Exp Ther Med (2012) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在小鼠样本上 (图 1). Mol Cell Biol (2012) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-冰冻切片; 小鼠; 2 ug/ml
赛默飞世尔 Gja1抗体(Invitrogen, 35-5000)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为2 ug/ml. Eur J Neurosci (2011) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed/Invitrogen, 13-8300)被用于被用于免疫印迹在小鼠样本上 (图 1). Biochim Biophys Acta (2012) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 3). J Cardiovasc Pharmacol (2011) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:250; 图 4
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫印迹在人类样本上浓度为1:250 (图 4). J Periodontal Res (2011) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 人类; 1:100; 表 3
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在人类样本上浓度为1:100 (表 3). Am J Pathol (2011) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 1:100; 图 3
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 3). Glia (2011) ncbi
小鼠 单克隆(3D8A5)
  • 免疫印迹; 大鼠; 图 3
赛默飞世尔 Gja1抗体(Invitrogen, 35-5000)被用于被用于免疫印迹在大鼠样本上 (图 3). Neurobiol Dis (2010) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 犬; 1:500; 图 4
赛默飞世尔 Gja1抗体(Zymed, 13?C8300)被用于被用于免疫组化在犬样本上浓度为1:500 (图 4). J Cardiovasc Electrophysiol (2010) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 大鼠; 10 ug/ml; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为10 ug/ml (图 1). J Surg Res (2010) ncbi
小鼠 单克隆(CX-1B1)
  • 流式细胞仪; 人类; 图 2
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于流式细胞仪在人类样本上 (图 2). J Leukoc Biol (2010) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化; 大鼠
赛默飞世尔 Gja1抗体(Invitrogen, 35-5000)被用于被用于免疫组化在大鼠样本上. Heart Rhythm (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 2). Exp Cell Res (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 1). Circ J (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类; 图 7b
  • 免疫印迹; 人类; 图 1c
  • 免疫组化-冰冻切片; 小鼠; 图 5
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫组化-冰冻切片在人类样本上 (图 7b), 被用于免疫印迹在人类样本上 (图 1c), 被用于免疫组化-冰冻切片在小鼠样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1). Neurosci Lett (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 牛; 1:100; 图 5
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在牛样本上浓度为1:100 (图 5). Reprod Domest Anim (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠
赛默飞世尔 Gja1抗体(Zymed Laboratories, CX-1B1)被用于被用于免疫细胞化学在大鼠样本上. Circulation (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 人类; 1:500
赛默飞世尔 Gja1抗体(Zymed Laboratories, CX-1B1)被用于被用于免疫印迹在人类样本上浓度为1:500. Hum Mol Genet (2009) ncbi
小鼠 单克隆(CX-1B1)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 1). Clin Exp Metastasis (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; pigs ; 1:100; 图 2
  • 免疫印迹; pigs ; 1:200; 图 3a
赛默飞世尔 Gja1抗体(Invitrogen, 13-8300)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:100 (图 2) 和 被用于免疫印迹在pigs 样本上浓度为1:200 (图 3a). Am J Physiol Heart Circ Physiol (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类; 1:100; 图 2
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 (图 2). Reprod Biol Endocrinol (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:50; 图 5
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 (图 5). Cell Biol Int (2008) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-石蜡切片; 小鼠; 图 3
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 3). BMC Med (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 图 6
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在小鼠样本上 (图 6). BMC Med (2008) ncbi
小鼠 单克隆(3D8A5)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Am J Physiol Regul Integr Comp Physiol (2008) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫组化-冰冻切片在小鼠样本上. Circ Res (2008) ncbi
小鼠 单克隆(3D8A5)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed, 3D8A5)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurosci (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Neurosci (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在小鼠样本上 (图 1). J Mol Cell Cardiol (2008) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 2). Cell Commun Adhes (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 图 4
  • 免疫印迹; 人类; 图 3a
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于免疫细胞化学在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 3a). Cell Commun Adhes (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:500
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Toxicol In Vitro (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 大鼠; 1:100
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Huazhong Univ Sci Technolog Med Sci (2007) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化; 大鼠; 2 ug/ml; 图 3
赛默飞世尔 Gja1抗体(Invitrogen/Zymed, 35-5000)被用于被用于免疫组化在大鼠样本上浓度为2 ug/ml (图 3). Neuroscience (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 图 st1
  • 免疫印迹; 人类; 1:500; 图 st1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在人类样本上 (图 st1) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 st1). Glia (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠
  • 免疫印迹; 人类
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 和 被用于免疫印迹在人类样本上. J Cell Biochem (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 1:200; 图 1
  • 免疫印迹; 大鼠; 1:1000; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1). Biochem Biophys Res Commun (2007) ncbi
小鼠 单克隆(3D8A5)
  • 免疫印迹; domestic rabbit; 1:1000; 图 3
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1000 (图 3). Ann Thorac Surg (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 1:50; 图 2
  • 免疫印迹; 大鼠; 1:250; 图 3
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 3). J Cell Biochem (2007) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 人类; 1:10; 图 1
  • 免疫印迹; 人类; 1:20; 图 1
  • 免疫组化; 大鼠; 1:10; 图 2
  • 免疫印迹; 大鼠; 1:20; 图 2
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫组化在人类样本上浓度为1:10 (图 1), 被用于免疫印迹在人类样本上浓度为1:20 (图 1), 被用于免疫组化在大鼠样本上浓度为1:10 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:20 (图 2). Cardiovasc Res (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 犬
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在犬样本上. Proc Natl Acad Sci U S A (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 1). Am J Pathol (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠; 1:500; 图 5
  • 免疫印迹; 小鼠; 1:250; 图 5
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:250 (图 5). Eur J Neurosci (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 小鼠; 图 1m
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1m). Cell Tissue Res (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; domestic rabbit; 1:200
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在domestic rabbit样本上浓度为1:200. Am J Physiol Heart Circ Physiol (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 流式细胞仪; 人类; 图 2
  • 免疫细胞化学; 人类; 1:50; 图 1
赛默飞世尔 Gja1抗体(Invitrogen, CX-1B1)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫细胞化学在人类样本上浓度为1:50 (图 1). Stem Cells (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:200; 图 1e
  • 免疫印迹; 大鼠; 图 2a
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1e) 和 被用于免疫印迹在大鼠样本上 (图 2a). Histochem Cell Biol (2006) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 5). Cell Commun Adhes (2004) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-石蜡切片在小鼠样本上. Biochim Biophys Acta (2005) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 1
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 1). Histochem Cell Biol (2005) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-石蜡切片; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-石蜡切片在小鼠样本上. Cell Tissue Res (2005) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 1:500
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在大鼠样本上浓度为1:500. Can J Physiol Pharmacol (2005) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠; 图 2
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在小鼠样本上 (图 2) 和 被用于免疫印迹在小鼠样本上 (图 1). J Biol Chem (2005) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:50
  • 免疫印迹; 大鼠; 1:250
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50 和 被用于免疫印迹在大鼠样本上浓度为1:250. J Mol Cell Cardiol (2004) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 小鼠; 1:100
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. J Neurosci (2004) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-冰冻切片; 人类; 图 5
赛默飞世尔 Gja1抗体(Zymed, 35-5000)被用于被用于免疫组化-冰冻切片在人类样本上 (图 5). J Urol (2004) ncbi
小鼠 单克隆(3D8A5)
  • 免疫组化-冰冻切片; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 35?C5000)被用于被用于免疫组化-冰冻切片在小鼠样本上. Glia (2003) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 仓鼠; 1:100; 图 9
赛默飞世尔 Gja1抗体(Zymed Laboratories, 13-8300)被用于被用于免疫细胞化学在仓鼠样本上浓度为1:100 (图 9). Exp Cell Res (2003) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 10 ug/ml
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在大鼠样本上浓度为10 ug/ml. J Comp Neurol (2003) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 1:600
赛默飞世尔 Gja1抗体(Zymed, 13?C8300)被用于被用于免疫印迹在大鼠样本上浓度为1:600. J Neurophysiol (2002) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 人类; 1:10; 图 6
赛默飞世尔 Gja1抗体(Zymed, CX 1B1)被用于被用于免疫细胞化学在人类样本上浓度为1:10 (图 6). Cardiovasc Res (2002) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2001) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed Laboratories, 13-8300)被用于被用于免疫印迹在大鼠样本上 (图 2). J Neurochem (2001) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类; 1:100
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100. Arch Dermatol Res (2001) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:1000; 图 4
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 4). J Comp Neurol (2001) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-自由浮动切片; 大鼠; 图 2
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 2). Eur J Neurosci (2000) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫细胞化学; 大鼠; 1:500
  • 免疫印迹; 大鼠; 1:750
赛默飞世尔 Gja1抗体(zymed, 13-8300)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 和 被用于免疫印迹在大鼠样本上浓度为1:750. Eur J Neurosci (2000) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化; 大鼠; 1:500; 图 1
  • 免疫印迹; 大鼠; 1:750; 图 7
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:750 (图 7). Neuroscience (2000) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫印迹在小鼠样本上 (图 1). Exp Cell Res (1999) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 15
赛默飞世尔 Gja1抗体(Zymed, 13-8300)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 15). Neuroscience (1999) ncbi
小鼠 单克隆(CX-1B1)
  • 免疫组化-冰冻切片; 人类
赛默飞世尔 Gja1抗体(Zymed, CX-1B1)被用于被用于免疫组化-冰冻切片在人类样本上. Dev Immunol (1998) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 3b
  • 免疫印迹; 小鼠; 1:1000; 图 3c
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化在小鼠样本上 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). Front Physiol (2022) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫细胞化学在小鼠样本上. Sci Adv (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, Ab11370)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 7b
  • 免疫细胞化学; 猕猴; 1:1000; 图 7b
  • 免疫细胞化学; African green monkey; 1:1000; 图 7b
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 7b), 被用于免疫细胞化学在猕猴样本上浓度为1:1000 (图 7b) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:1000 (图 7b). Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 大鼠; 1:1000; 图 7
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 7). Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:1000; 图 4c
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4c). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫印迹在小鼠样本上 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5b). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 9a
  • 免疫印迹; 大鼠; 1:3000; 图 9g
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 9a) 和 被用于免疫印迹在大鼠样本上浓度为1:3000 (图 9g). Toxicol Lett (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:700; 图 1
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:700 (图 1). Front Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1
艾博抗(上海)贸易有限公司 Gja1抗体(Abcam, ab11370)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1). Nat Commun (2016) ncbi
圣克鲁斯生物技术
小鼠 单克隆(F-7)
  • 免疫印迹; 人类; 1:1000; 图 8d
圣克鲁斯生物技术 Gja1抗体(Santa, sc-271837)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8d). Nat Commun (2019) ncbi
小鼠 单克隆(D-7)
  • 流式细胞仪; 大鼠; 1:500; 图 5a
  • 免疫细胞化学; 大鼠; 1:500; 图 8b
  • 免疫印迹; 大鼠; 1:1000; 图 9b
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc-13558)被用于被用于流式细胞仪在大鼠样本上浓度为1:500 (图 5a), 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 8b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9b). Mol Med Rep (2019) ncbi
小鼠 单克隆(CXN-6)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc-59949)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Brain (2016) ncbi
小鼠 单克隆(F-7)
  • 免疫细胞化学; 人类; 图 2h
  • 免疫印迹; 人类; 图 4g
圣克鲁斯生物技术 Gja1抗体(SantaCruz, sc-271837)被用于被用于免疫细胞化学在人类样本上 (图 2h) 和 被用于免疫印迹在人类样本上 (图 4g). Cell Physiol Biochem (2016) ncbi
小鼠 单克隆(D-7)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, SC-13558)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(D-7)
  • 免疫组化; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc13558)被用于被用于免疫组化在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:200 (图 2). Int J Biol Sci (2015) ncbi
小鼠 单克隆(D-7)
  • 流式细胞仪; 人类; 图 1
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc-13558)被用于被用于流式细胞仪在人类样本上 (图 1). Int J Mol Med (2015) ncbi
小鼠 单克隆(D-7)
  • 免疫组化-石蜡切片; 人类; 1:50
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc-13558)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:50 和 被用于免疫印迹在人类样本上浓度为1:1000. Int J Cancer (2014) ncbi
小鼠 单克隆(CXN-6)
  • 免疫细胞化学; 人类; 1:25
圣克鲁斯生物技术 Gja1抗体(Santa Cruz, sc-59949)被用于被用于免疫细胞化学在人类样本上浓度为1:25. Cell Tissue Res (2013) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2g
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3511)被用于被用于免疫印迹在小鼠样本上 (图 2g). Commun Biol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 人类; 图 s8a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512S)被用于被用于免疫印迹基因敲除验证在人类样本上 (图 s8a). iScience (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signalling, 3512S)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5a). Int J Mol Sci (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 6d
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Gja1抗体(CST, 3512)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Mol Ther Nucleic Acids (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6a
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2e
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫印迹在小鼠样本上 (图 2e). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7h, 7i
  • 免疫印迹; 人类; 1:1000; 图 5g, s6a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7h, 7i) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5g, s6a). Basic Res Cardiol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 s4d
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3512)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 s4d). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:200; 图 5d
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell signaling, 3512)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 5d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹基因敲除验证; 小鼠; 1:850; 图 1s2c
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 3b, 3g
  • 免疫细胞化学; 小鼠; 1:100; 图 2s1b
  • 免疫印迹; 小鼠; 1:850; 图 1s2c, 1s2d
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:850 (图 1s2c), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 3b, 3g), 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2s1b) 和 被用于免疫印迹在小鼠样本上浓度为1:850 (图 1s2c, 1s2d). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3511)被用于被用于免疫印迹在人类样本上 (图 5a). Front Pharmacol (2018) ncbi
domestic rabbit 多克隆
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 1e
  • 免疫印迹; 小鼠; 1:200; 图 4c
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 1e) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 4c). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512p)被用于被用于免疫印迹在小鼠样本上 (图 5b). PLoS Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signalling, 3511)被用于被用于免疫印迹在小鼠样本上 (图 3e). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signalling, 3512)被用于被用于免疫印迹在小鼠样本上 (图 5a). Hum Mol Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 8a
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 8a). Neural Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 2C
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3512)被用于被用于免疫组化在人类样本上 (图 2C). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3511)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4c). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 4a
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3512)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4c). Am J Physiol Heart Circ Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:100; 图 8
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technolog, 3511S)被用于被用于免疫印迹在小鼠样本上浓度为1:100 (图 8). J Comp Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
  • 免疫细胞化学; 人类; 1:75; 图 4
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell signaling, 3512)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2), 被用于免疫细胞化学在人类样本上浓度为1:75 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Endocrinology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell signaling, 3511)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 其他; 大鼠; 1:100; 表 2
  • 免疫印迹; 大鼠; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3512s)被用于被用于其他在大鼠样本上浓度为1:100 (表 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (表 2). FASEB J (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling, 3511)被用于被用于免疫印迹在African green monkey样本上 和 被用于免疫印迹在大鼠样本上浓度为1:1000. J Cardiovasc Electrophysiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 图 3
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signaling Technology, 3511S)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3) 和 被用于免疫印迹在大鼠样本上. J Tissue Eng Regen Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 6
赛信通(上海)生物试剂有限公司 Gja1抗体(Cell Signalin g Technology, 3512S)被用于被用于免疫印迹在大鼠样本上 (图 6). J Tissue Eng Regen Med (2017) ncbi
碧迪BD
小鼠 单克隆(2/Connexin-43)
  • 免疫印迹; 人类; 1:2000; 图 7a
碧迪BD Gja1抗体(Transduction Laboratories, 610062)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Cancers (Basel) (2020) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫印迹; 人类; 图 5c
碧迪BD Gja1抗体(BD Biosciences, 610061)被用于被用于免疫印迹在人类样本上 (图 5c). J Mol Cell Biol (2019) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫组化; 人类; 1:100; 图 4e
碧迪BD Gja1抗体(BD Biosciences, 610061)被用于被用于免疫组化在人类样本上浓度为1:100 (图 4e). Cell Rep (2019) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫印迹; 人类; 图 5a
碧迪BD Gja1抗体(BD Biosciences, 612400)被用于被用于免疫印迹在人类样本上 (图 5a). Front Pharmacol (2018) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫组化-冰冻切片; 小鼠; 1:250; 图 1e
碧迪BD Gja1抗体(B&D, 610061)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:250 (图 1e). J Biol Chem (2017) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 小鼠; 1:100; 图 3a
碧迪BD Gja1抗体(BD, 610061)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3a). Nat Protoc (2017) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫印迹; domestic rabbit; 图 3a
碧迪BD Gja1抗体(BD Transduction Laboratories, 610062)被用于被用于免疫印迹在domestic rabbit样本上 (图 3a). Cardiovasc Res (2016) ncbi
小鼠 单克隆(2/Connexin-43)
碧迪BD Gja1抗体(BD biosciences, 610061)被用于. PLoS ONE (2016) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 大鼠; 图 1c
  • 免疫印迹; 大鼠; 1:250; 图 1b
碧迪BD Gja1抗体(BD Bioscience, 610062)被用于被用于免疫细胞化学在大鼠样本上 (图 1c) 和 被用于免疫印迹在大鼠样本上浓度为1:250 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫印迹基因敲除验证; 小鼠; 1:500; 图 1
碧迪BD Gja1抗体(BD Biosciences, 610062)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:500 (图 1). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
碧迪BD Gja1抗体(BD Biosciences, 610062)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Stem Cell Reports (2015) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 小鼠; 1:100; 图 2
碧迪BD Gja1抗体(BD Biosciences, 610061)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 2). Nat Protoc (2015) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 人类; 图 3
碧迪BD Gja1抗体(BD Transduction Laboratories, 610062)被用于被用于免疫细胞化学在人类样本上 (图 3). Mol Cell Proteomics (2015) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫组化; 人类; 图 3
碧迪BD Gja1抗体(Transduction Laboratories, 610061)被用于被用于免疫组化在人类样本上 (图 3). PLoS ONE (2014) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫细胞化学; 小鼠; 1:200
碧迪BD Gja1抗体(BD Biosciences, 610061)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200. Nat Cell Biol (2014) ncbi
小鼠 单克隆(2/Connexin-43)
  • 免疫组化-冰冻切片; 大鼠; 1:50
碧迪BD Gja1抗体(BD, 610062)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50. Glia (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3b
  • 免疫印迹; 小鼠; 1:2000; 图 3a
西格玛奥德里奇 Gja1抗体(Sigma, C6219)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3b) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4a
西格玛奥德里奇 Gja1抗体(Sigma Aldrich, C6219)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化基因敲除验证; 小鼠; 1:500; 图 1a
  • 免疫印迹基因敲除验证; 小鼠; 1:10,000; 图 3
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1a
  • 免疫印迹; 小鼠; 1:10,000; 图 3, 1b
西格玛奥德里奇 Gja1抗体(Sigma, C6219)被用于被用于免疫组化基因敲除验证在小鼠样本上浓度为1:500 (图 1a), 被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:10,000 (图 3), 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 3, 1b). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 6b
西格玛奥德里奇 Gja1抗体(Sigma-Aldrich, C6219)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6b). Mol Cell Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
西格玛奥德里奇 Gja1抗体(Sigma-Aldrich, C6219)被用于被用于免疫印迹在人类样本上 (图 1a). Aging (Albany NY) (2020) ncbi
文章列表
  1. Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Contraction Band Necrosis with Dephosphorylated Connexin 43 in Rat Myocardium after Daily Cocaine Administration. Int J Mol Sci. 2022;23: pubmed 出版商
  2. Dufour C, Xia H, B chir W, Perry M, Kuzmanov U, Gainullina A, et al. Integrated multi-omics analysis of adverse cardiac remodeling and metabolic inflexibility upon ErbB2 and ERRα deficiency. Commun Biol. 2022;5:955 pubmed 出版商
  3. Liu Y, Xu Y, Yao Y, Cao Y, Chen G, Cai Y, et al. I-κB kinase-ε deficiency improves doxorubicin-induced dilated cardiomyopathy by inhibiting the NF-κB pathway. Front Physiol. 2022;13:934899 pubmed 出版商
  4. Tan H, Yong Y, Xue Y, Liu H, Furihata T, Shankar E, et al. cGAS and DDX41-STING mediated intrinsic immunity spreads intercellularly to promote neuroinflammation in SOD1 ALS model. iScience. 2022;25:104404 pubmed 出版商
  5. Vicario N, Denaro S, Turnaturi R, Longhitano L, Spitale F, Spoto S, et al. Mu and Delta Opioid Receptor Targeting Reduces Connexin 43-Based Heterocellular Coupling during Neuropathic Pain. Int J Mol Sci. 2022;23: pubmed 出版商
  6. Kim H, Song B, Park S, Choi S, Moon H, Hwang K, et al. Ultraefficient extracellular vesicle-guided direct reprogramming of fibroblasts into functional cardiomyocytes. Sci Adv. 2022;8:eabj6621 pubmed 出版商
  7. Gupta A, Mandal K, Singh P, Sarkar R, Majumdar S. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. Mol Ther Nucleic Acids. 2021;26:192-207 pubmed 出版商
  8. Rode K, Langeheine M, Seeger B, Brehm R. Connexin43 in Germ Cells Seems to Be Dispensable for Murine Spermatogenesis. Int J Mol Sci. 2021;22: pubmed 出版商
  9. Kim Y, Lee J, Kim H, Jang J, Choung Y. Gap Junction-Mediated Intercellular Communication of cAMP Prevents CDDP-Induced Ototoxicity via cAMP/PKA/CREB Pathway. Int J Mol Sci. 2021;22: pubmed 出版商
  10. Wang Y, Su Y, Yu G, Wang X, Chen X, Yu B, et al. Reduced Oligodendrocyte Precursor Cell Impairs Astrocytic Development in Early Life Stress. Adv Sci (Weinh). 2021;8:e2101181 pubmed 出版商
  11. Sugita J, Fujiu K, Nakayama Y, Matsubara T, Matsuda J, Oshima T, et al. Cardiac macrophages prevent sudden death during heart stress. Nat Commun. 2021;12:1910 pubmed 出版商
  12. Qin L, Fu X, Ma J, Lin M, Zhang P, Wang Y, et al. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes. Commun Biol. 2021;4:402 pubmed 出版商
  13. Mat Nor M, Rupenthal I, Green C, Acosta M. Differential Action of Connexin Hemichannel and Pannexin Channel Therapeutics for Potential Treatment of Retinal Diseases. Int J Mol Sci. 2021;22: pubmed 出版商
  14. Dufeys C, Daskalopoulos E, Castanares Zapatero D, Conway S, Ginion A, Bouzin C, et al. AMPKα1 deletion in myofibroblasts exacerbates post-myocardial infarction fibrosis by a connexin 43 mechanism. Basic Res Cardiol. 2021;116:10 pubmed 出版商
  15. Kono J, Ueda M, Sengiku A, Suadicani S, Ogawa O, Negoro H. Urothelium-Specific Deletion of Connexin43 in the Mouse Urinary Bladder Alters Distension-Induced ATP Release and Voiding Behavior. Int J Mol Sci. 2021;22: pubmed 出版商
  16. Liu X, Schneble L xf6 hnert N, Kristofova M, Qing X, Labisch J, Hofmann S, et al. The N-terminal BRCT domain determines MCPH1 function in brain development and fertility. Cell Death Dis. 2021;12:143 pubmed 出版商
  17. Shiba S, Ikeda K, Horie Inoue K, Azuma K, Hasegawa T, Amizuka N, et al. Vitamin K-Dependent γ-Glutamyl Carboxylase in Sertoli Cells Is Essential for Male Fertility in Mice. Mol Cell Biol. 2021;41: pubmed 出版商
  18. Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep. 2021;11:1779 pubmed 出版商
  19. Liu X, Ge J, Chen C, Shen Y, Xie J, Zhu X, et al. FAT10 protects against ischemia-induced ventricular arrhythmia by decreasing Nedd4-2/Nav1.5 complex formation. Cell Death Dis. 2021;12:25 pubmed 出版商
  20. Boucher J, Balandre A, Debant M, Vix J, Harnois T, Bourmeyster N, et al. Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis. Cancers (Basel). 2020;12: pubmed 出版商
  21. Varela Eirin M, Carpintero Fernández P, Sánchez Temprano A, Varela Vazquez A, Paíno C, Casado Diaz A, et al. Senolytic activity of small molecular polyphenols from olive restores chondrocyte redifferentiation and promotes a pro-regenerative environment in osteoarthritis. Aging (Albany NY). 2020;12:15882-15905 pubmed 出版商
  22. Stauske M, Rodriguez Polo I, Haas W, Knorr D, Borchert T, Streckfuss Bömeke K, et al. Non-Human Primate iPSC Generation, Cultivation, and Cardiac Differentiation under Chemically Defined Conditions. Cells. 2020;9: pubmed 出版商
  23. Zhong L, Yao L, Tower R, Wei Y, Miao Z, Park J, et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. elife. 2020;9: pubmed 出版商
  24. Prado N, Muñoz E, Farias Altamirano L, Aguiar F, Ponce Zumino A, Sánchez F, et al. Reperfusion Arrhythmias Increase after Superior Cervical Ganglionectomy Due to Conduction Disorders and Changes in Repolarization. Int J Mol Sci. 2020;21: pubmed 出版商
  25. Moriyama M, Koshiba T, Ichinohe T. Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 2019;10:4624 pubmed 出版商
  26. Rival C, Xu W, Shankman L, Morioka S, Arandjelovic S, Lee C, et al. Phosphatidylserine on viable sperm and phagocytic machinery in oocytes regulate mammalian fertilization. Nat Commun. 2019;10:4456 pubmed 出版商
  27. Wang R, Yu R, Zhu C, Lin H, Lu X, Wang H. Tubulin detyrosination promotes human trophoblast syncytium formation. J Mol Cell Biol. 2019;: pubmed 出版商
  28. Ni X, Zhang L, Ma X, Shan L, Li L, Si J, et al. β‑estradiol alleviates hypertension‑ and concanavalin A‑mediated inflammatory responses via modulation of connexins in peripheral blood lymphocytes. Mol Med Rep. 2019;19:3743-3755 pubmed 出版商
  29. Yap L, Wang J, Moreno Moral A, Chong L, Sun Y, Harmston N, et al. In Vivo Generation of Post-infarct Human Cardiac Muscle by Laminin-Promoted Cardiovascular Progenitors. Cell Rep. 2019;26:3231-3245.e9 pubmed 出版商
  30. Dosch M, Zindel J, Jebbawi F, Melin N, Sánchez Taltavull D, Stroka D, et al. Connexin-43-dependent ATP release mediates macrophage activation during sepsis. elife. 2019;8: pubmed 出版商
  31. Piantanida A, Acosta L, Brocardo L, Capurro C, Greer C, Rela L. Selective Cre-mediated gene deletion identifies connexin 43 as the main connexin channel supporting olfactory ensheathing cell networks. J Comp Neurol. 2019;527:1278-1289 pubmed 出版商
  32. Choi E, Yeo J, Yoon S, Lee J. Gambogic Acid and Its Analogs Inhibit Gap Junctional Intercellular Communication. Front Pharmacol. 2018;9:814 pubmed 出版商
  33. Anderson D, Kaplan D, Bell K, Koutsis K, Haynes J, Mills R, et al. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun. 2018;9:1373 pubmed 出版商
  34. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  35. Pelz L, Purfürst B, Rathjen F. The cell adhesion molecule BT-IgSF is essential for a functional blood-testis barrier and male fertility in mice. J Biol Chem. 2017;292:21490-21503 pubmed 出版商
  36. Katsumata O, Mori M, Sawane Y, Niimura T, Ito A, Okamoto H, et al. Cellular and subcellular localization of ADP-ribosylation factor 6 in mouse peripheral tissues. Histochem Cell Biol. 2017;148:577-596 pubmed 出版商
  37. Lalit P, Rodriguez A, Downs K, Kamp T. Generation of multipotent induced cardiac progenitor cells from mouse fibroblasts and potency testing in ex vivo mouse embryos. Nat Protoc. 2017;12:1029-1054 pubmed 出版商
  38. Theofilas P, Steinhäuser C, Theis M, Derouiche A. Morphological study of a connexin 43-GFP reporter mouse highlights glial heterogeneity, amacrine cells, and olfactory ensheathing cells. J Neurosci Res. 2017;95:2182-2194 pubmed 出版商
  39. Guo R, Si R, Scott B, Makino A. Mitochondrial connexin40 regulates mitochondrial calcium uptake in coronary endothelial cells. Am J Physiol Cell Physiol. 2017;312:C398-C406 pubmed 出版商
  40. Bondar C, Ormazábal M, Crivaro A, Ferreyra Compagnucci M, Delpino M, Rozenfeld P, et al. Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease. Int J Mol Sci. 2017;18: pubmed 出版商
  41. Major J, Dewan A, Salih M, Leddy J, Tuana B. E2F6 Impairs Glycolysis and Activates BDH1 Expression Prior to Dilated Cardiomyopathy. PLoS ONE. 2017;12:e0170066 pubmed 出版商
  42. Dukic A, Haugen L, Pidoux G, Leithe E, Bakke O, Tasken K. A protein kinase A-ezrin complex regulates connexin 43 gap junction communication in liver epithelial cells. Cell Signal. 2017;32:1-11 pubmed 出版商
  43. Jiang C, Diao F, Sang Y, Xu N, Zhu R, Wang X, et al. GGPP-Mediated Protein Geranylgeranylation in Oocyte Is Essential for the Establishment of Oocyte-Granulosa Cell Communication and Primary-Secondary Follicle Transition in Mouse Ovary. PLoS Genet. 2017;13:e1006535 pubmed 出版商
  44. Le Dour C, Macquart C, Sera F, Homma S, Bonne G, Morrow J, et al. Decreased WNT/?-catenin signalling contributes to the pathogenesis of dilated cardiomyopathy caused by mutations in the lamin a/C gene. Hum Mol Genet. 2017;26:333-343 pubmed 出版商
  45. Dergilev K, Makarevich P, Tsokolaeva Z, Boldyreva M, Beloglazova I, Zubkova E, et al. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell. 2017;49:64-71 pubmed 出版商
  46. Cao X, Shen L, Wu S, Yan C, Zhou Y, Xiong G, et al. Urban fine particulate matter exposure causes male reproductive injury through destroying blood-testis barrier (BTB) integrity. Toxicol Lett. 2017;266:1-12 pubmed 出版商
  47. Bosch P, Fuller L, Sleeth C, Weiner J. Akirin2 is essential for the formation of the cerebral cortex. Neural Dev. 2016;11:21 pubmed
  48. Nguyen H, Kirkton R, Bursac N. Engineering prokaryotic channels for control of mammalian tissue excitability. Nat Commun. 2016;7:13132 pubmed 出版商
  49. Wagner A, Glenske K, Wolf V, Fietz D, Mazurek S, Hanke T, et al. Osteogenic differentiation capacity of human mesenchymal stromal cells in response to extracellular calcium with special regard to connexin 43. Ann Anat. 2017;209:18-24 pubmed 出版商
  50. Ponce A, Larre I, Castillo A, Flores Maldonado C, Verdejo Torres O, Contreras R, et al. Ouabain Modulates the Distribution of Connexin 43 in Epithelial Cells. Cell Physiol Biochem. 2016;39:1329-38 pubmed 出版商
  51. Choi S, Roh D, Yoon S, Kwon S, Choi H, Han H, et al. Astrocyte sigma-1 receptors modulate connexin 43 expression leading to the induction of below-level mechanical allodynia in spinal cord injured mice. Neuropharmacology. 2016;111:34-46 pubmed 出版商
  52. Choi M, Ahn S, Yang E, Kim H, Chong Y, Kim H. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain. 2016;9:72 pubmed 出版商
  53. Hamilton B, Woltjer R, Prola Netto J, Nesbit G, Gahramanov S, Pham T, et al. Ferumoxytol-enhanced MRI differentiation of meningioma from dural metastases: a pilot study with immunohistochemical observations. J Neurooncol. 2016;129:301-9 pubmed 出版商
  54. Zhang Z, Chen Y, Zhang T, Guo L, Yang W, Zhang J, et al. Role of Myoendothelial Gap Junctions in the Regulation of Human Coronary Artery Smooth Muscle Cell Differentiation by Laminar Shear Stress. Cell Physiol Biochem. 2016;39:423-37 pubmed 出版商
  55. He Z, Forest F, Gain P, Rageade D, Bernard A, Acquart S, et al. 3D map of the human corneal endothelial cell. Sci Rep. 2016;6:29047 pubmed 出版商
  56. Forsberg D, Horn Z, Tserga E, Smedler E, Silberberg G, Shvarev Y, et al. CO2-evoked release of PGE2 modulates sighs and inspiration as demonstrated in brainstem organotypic culture. elife. 2016;5: pubmed 出版商
  57. Takanari H, Bourgonje V, Fontes M, Raaijmakers A, Driessen H, Jansen J, et al. Calmodulin/CaMKII inhibition improves intercellular communication and impulse propagation in the heart and is antiarrhythmic under conditions when fibrosis is absent. Cardiovasc Res. 2016;111:410-21 pubmed 出版商
  58. Kang C, Qiao Y, Li G, Baechle K, Camelliti P, Rentschler S, et al. Human Organotypic Cultured Cardiac Slices: New Platform For High Throughput Preclinical Human Trials. Sci Rep. 2016;6:28798 pubmed 出版商
  59. Li W, Jin D, Hata M, Takai S, Yamanishi K, Shen W, et al. Dysfunction of mitochondria and deformed gap junctions in the heart of IL-18-deficient mice. Am J Physiol Heart Circ Physiol. 2016;311:H313-25 pubmed 出版商
  60. Ambrosi C, Ren C, Spagnol G, Cavin G, CONE A, Grintsevich E, et al. Connexin43 Forms Supramolecular Complexes through Non-Overlapping Binding Sites for Drebrin, Tubulin, and ZO-1. PLoS ONE. 2016;11:e0157073 pubmed 出版商
  61. Rodríguez Jiménez F, Alastrue A, Stojkovic M, Erceg S, Moreno Manzano V. Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295-307 pubmed 出版商
  62. Soni S, Raaijmakers A, Raaijmakers L, Damen J, van Stuijvenberg L, Vos M, et al. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins. PLoS ONE. 2016;11:e0152231 pubmed 出版商
  63. Iwai Takekoshi L, Ramos A, Schaler A, Weinreb S, Blazeski R, Mason C. Retinal pigment epithelial integrity is compromised in the developing albino mouse retina. J Comp Neurol. 2016;524:3696-3716 pubmed 出版商
  64. Yu J, Berga S, Johnston MacAnanny E, Sidell N, Bagchi I, Bagchi M, et al. Endometrial Stromal Decidualization Responds Reversibly to Hormone Stimulation and Withdrawal. Endocrinology. 2016;157:2432-46 pubmed 出版商
  65. Bragança B, Oliveira Monteiro N, Ferreirinha F, Lima P, Faria M, Fontes Sousa A, et al. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria. Front Pharmacol. 2016;7:45 pubmed 出版商
  66. Boulaksil M, Bierhuizen M, Engelen M, Stein M, Kok B, van Amersfoorth S, et al. Spatial Heterogeneity of Cx43 is an Arrhythmogenic Substrate of Polymorphic Ventricular Tachycardias during Compensated Cardiac Hypertrophy in Rats. Front Cardiovasc Med. 2016;3:5 pubmed 出版商
  67. Chen X, Kong X, Zhuang W, Teng B, Yu X, Hua S, et al. Dynamic changes in protein interaction between AKAP95 and Cx43 during cell cycle progression of A549 cells. Sci Rep. 2016;6:21224 pubmed 出版商
  68. Chojnacka K, Bilinska B, Mruk D. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal. 2016;28:469-480 pubmed 出版商
  69. Chen X, Lu S, Huang K, Zhang W, Liu Z, Zhong J. Effects of Ang â…¡ perfusion on transmural heterogeneous of Cx43 in acute myocardial ischemia reperfusion. Asian Pac J Trop Med. 2016;9:96-9 pubmed 出版商
  70. Lee Kubli C, Ingves M, Henry K, Shiao R, Collyer E, Tuszynski M, et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp Neurol. 2016;278:91-104 pubmed 出版商
  71. Villarroel Espíndola F, Tapia C, González Stegmaier R, Concha I, Slebe J. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells. J Cell Physiol. 2016;231:2142-52 pubmed 出版商
  72. Eng G, Lee B, Protas L, Gagliardi M, Brown K, Kass R, et al. Autonomous beating rate adaptation in human stem cell-derived cardiomyocytes. Nat Commun. 2016;7:10312 pubmed 出版商
  73. McCutcheon S, Unachukwu U, Thakur A, MAJESKA R, Redenti S, Vazquez M. In vitro formation of neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients. Cell Adh Migr. 2017;11:1-12 pubmed 出版商
  74. Quesseveur G, Portal B, Basile J, Ezan P, Mathou A, Halley H, et al. Attenuated Levels of Hippocampal Connexin 43 and its Phosphorylation Correlate with Antidepressant- and Anxiolytic-Like Activities in Mice. Front Cell Neurosci. 2015;9:490 pubmed 出版商
  75. Li N, Mruk D, Mok K, Li M, Wong C, Lee W, et al. Connexin 43 reboots meiosis and reseals blood-testis barrier following toxicant-mediated aspermatogenesis and barrier disruption. FASEB J. 2016;30:1436-52 pubmed 出版商
  76. Ban K, Wile B, Cho K, Kim S, Song M, Kim S, et al. Non-genetic Purification of Ventricular Cardiomyocytes from Differentiating Embryonic Stem Cells through Molecular Beacons Targeting IRX-4. Stem Cell Reports. 2015;5:1239-1249 pubmed 出版商
  77. Pinet Charvet C, Geller S, Desroziers E, Ottogalli M, Lomet D, Georgelin C, et al. GnRH Episodic Secretion Is Altered by Pharmacological Blockade of Gap Junctions: Possible Involvement of Glial Cells. Endocrinology. 2016;157:304-22 pubmed 出版商
  78. Zamudio A, Wang Z, Chung S, Wolosin J. Inhibition of TGFβ cell signaling for limbal explant culture in serumless, defined xeno-free conditions. Exp Eye Res. 2016;145:48-57 pubmed 出版商
  79. Nassal M, Werdich A, Wan X, Hoshi M, Deschênes I, Rosenbaum D, et al. Phosphorylation at Connexin43 Serine-368 Is Necessary for Myocardial Conduction During Metabolic Stress. J Cardiovasc Electrophysiol. 2016;27:110-9 pubmed 出版商
  80. Bolte P, Herrling R, Dorgau B, Schultz K, Feigenspan A, Weiler R, et al. Expression and Localization of Connexins in the Outer Retina of the Mouse. J Mol Neurosci. 2016;58:178-92 pubmed 出版商
  81. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  82. Han X, He D, Xu L, Chen M, Wang Y, Feng J, et al. Knockdown of connexin 43 attenuates balloon injury-induced vascular restenosis through the inhibition of the proliferation and migration of vascular smooth muscle cells. Int J Mol Med. 2015;36:1361-8 pubmed 出版商
  83. Basheer W, Harris B, Mentrup H, Abreha M, Thames E, Lea J, et al. Cardiomyocyte-specific overexpression of the ubiquitin ligase Wwp1 contributes to reduction in Connexin 43 and arrhythmogenesis. J Mol Cell Cardiol. 2015;88:1-13 pubmed 出版商
  84. Thuringer D, Berthenet K, Cronier L, Solary E, Garrido C. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells. Oncotarget. 2015;6:28800-15 pubmed 出版商
  85. Noritake K, Aki T, Funakoshi T, Unuma K, Uemura K. Direct Exposure to Ethanol Disrupts Junctional Cell-Cell Contact and Hippo-YAP Signaling in HL-1 Murine Atrial Cardiomyocytes. PLoS ONE. 2015;10:e0136952 pubmed 出版商
  86. Fontes M, Papazova D, van Koppen A, de Jong S, Korte S, Bongartz L, et al. Arrhythmogenic Remodeling in Murine Models of Deoxycorticosterone Acetate-Salt-Induced and 5/6-Subtotal Nephrectomy-Salt-Induced Cardiorenal Disease. Cardiorenal Med. 2015;5:208-18 pubmed 出版商
  87. Jones A, Gokhale P, Allison T, Sampson B, Athwal S, Grant S, et al. Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells. Sci Rep. 2015;5:11694 pubmed 出版商
  88. Kandasamy K, Escue R, Manna J, Adebiyi A, Parthasarathi K. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE-cadherin expression in endotoxin-challenged lungs. Am J Physiol Lung Cell Mol Physiol. 2015;309:L584-92 pubmed 出版商
  89. Jiang H, Zhao L, Dong X, He A, Zheng C, Johansson M, et al. Tanshinone IIA enhances bystander cell killing of cancer cells expressing Drosophila melanogaster deoxyribonucleoside kinase in nuclei and mitochondria. Oncol Rep. 2015;34:1487-93 pubmed 出版商
  90. Yang J, Kaur K, Ong L, Eisenberg C, Eisenberg L. Inhibition of G9a Histone Methyltransferase Converts Bone Marrow Mesenchymal Stem Cells to Cardiac Competent Progenitors. Stem Cells Int. 2015;2015:270428 pubmed 出版商
  91. Zhu S, Wang H, Ding S. Reprogramming fibroblasts toward cardiomyocytes, neural stem cells and hepatocytes by cell activation and signaling-directed lineage conversion. Nat Protoc. 2015;10:959-73 pubmed 出版商
  92. Fontes J, Ramsey J, Polk J, Koop A, Denisova J, Belousov A. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin. PLoS ONE. 2015;10:e0125395 pubmed 出版商
  93. Gago Fuentes R, Fernández Puente P, Megias D, Carpintero Fernández P, Mateos J, Acea B, et al. Proteomic Analysis of Connexin 43 Reveals Novel Interactors Related to Osteoarthritis. Mol Cell Proteomics. 2015;14:1831-45 pubmed 出版商
  94. Best M, Wu J, Pauli S, KANE M, Pierzchalski K, Session D, et al. A role for retinoids in human oocyte fertilization: regulation of connexin 43 by retinoic acid in cumulus granulosa cells. Mol Hum Reprod. 2015;21:527-34 pubmed 出版商
  95. Zhang D, Zhu L, Li C, Mu J, Fu Y, Zhu Q, et al. Sialyltransferase7A, a Klf4-responsive gene, promotes cardiomyocyte apoptosis during myocardial infarction. Basic Res Cardiol. 2015;110:28 pubmed 出版商
  96. Rela L, Piantanida A, Bordey A, Greer C. Voltage-dependent K+ currents contribute to heterogeneity of olfactory ensheathing cells. Glia. 2015;63:1646-59 pubmed 出版商
  97. Rajnai H, Teleki I, Kiszner G, Meggyesházi N, Balla P, Vancsik T, et al. Connexin 43 communication channels in follicular dendritic cell development and in follicular lymphomas. J Immunol Res. 2015;2015:528098 pubmed 出版商
  98. Wang N, Sun L, Zhang S, Wei R, Xie F, Liu J, et al. MicroRNA-23a participates in estrogen deficiency induced gap junction remodeling of rats by targeting GJA1. Int J Biol Sci. 2015;11:390-403 pubmed 出版商
  99. Lee J, Shahidullah M, Hotchkiss A, Coca Prados M, Delamere N, Pelis R. A renal-like organic anion transport system in the ciliary epithelium of the bovine and human eye. Mol Pharmacol. 2015;87:697-705 pubmed 出版商
  100. Kundu S, Pushpakumar S, Sen U. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator. Nitric Oxide. 2015;46:172-85 pubmed 出版商
  101. Chang K, Nayak R, Roy S, Perumbeti A, Wellendorf A, Bezold K, et al. Vasculopathy-associated hyperangiotensinemia mobilizes haematopoietic stem cells/progenitors through endothelial ATâ‚‚R and cytoskeletal dysregulation. Nat Commun. 2015;6:5914 pubmed 出版商
  102. Reikvam H, Ryningen A, Sæterdal L, Nepstad I, Foss B, Bruserud Ã. Connexin expression in human acute myeloid leukemia cells: identification of patient subsets based on protein and global gene expression profiles. Int J Mol Med. 2015;35:645-52 pubmed 出版商
  103. Mroue R, INMAN J, Mott J, Budunova I, Bissell M. Asymmetric expression of connexins between luminal epithelial- and myoepithelial- cells is essential for contractile function of the mammary gland. Dev Biol. 2015;399:15-26 pubmed 出版商
  104. Swager S, Delfín D, Rastogi N, Wang H, Canan B, Fedorov V, et al. Claudin-5 levels are reduced from multiple cell types in human failing hearts and are associated with mislocalization of ephrin-B1. Cardiovasc Pathol. 2015;24:160-167 pubmed 出版商
  105. Shriver M, Stroka K, Vitolo M, Martin S, Huso D, Konstantopoulos K, et al. Loss of giant obscurins from breast epithelium promotes epithelial-to-mesenchymal transition, tumorigenicity and metastasis. Oncogene. 2015;34:4248-59 pubmed 出版商
  106. Kinjo E, Higa G, Morya E, Valle A, Kihara A, Britto L. Reciprocal regulation of epileptiform neuronal oscillations and electrical synapses in the rat hippocampus. PLoS ONE. 2014;9:e109149 pubmed 出版商
  107. Okamoto T, Akita N, Hayashi T, Shimaoka M, Suzuki K. Endothelial connexin 32 regulates tissue factor expression induced by inflammatory stimulation and direct cell-cell interaction with activated cells. Atherosclerosis. 2014;236:430-7 pubmed 出版商
  108. Pidoux G, Gerbaud P, Dompierre J, Lygren B, Solstad T, Evain Brion D, et al. A PKA-ezrin-Cx43 signaling complex controls gap junction communication and thereby trophoblast cell fusion. J Cell Sci. 2014;127:4172-85 pubmed 出版商
  109. Antanavičiūtė I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L, Sveikatiene R, et al. Long-distance communication between laryngeal carcinoma cells. PLoS ONE. 2014;9:e99196 pubmed 出版商
  110. Sadowska G, Stonestreet B. Maternal treatment with glucocorticoids modulates gap junction protein expression in the ovine fetal brain. Neuroscience. 2014;275:248-58 pubmed 出版商
  111. Morgan K, Black L. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med. 2017;11:342-353 pubmed 出版商
  112. Gevaert T, Vanstreels E, Daelemans D, Franken J, Van Der Aa F, Roskams T, et al. Identification of different phenotypes of interstitial cells in the upper and deep lamina propria of the human bladder dome. J Urol. 2014;192:1555-63 pubmed 出版商
  113. Kudo Sakamoto Y, Akazawa H, Ito K, Takano J, Yano M, Yabumoto C, et al. Calpain-dependent cleavage of N-cadherin is involved in the progression of post-myocardial infarction remodeling. J Biol Chem. 2014;289:19408-19 pubmed 出版商
  114. Förster T, Rausch V, Zhang Y, Isayev O, Heilmann K, Schoensiegel F, et al. Sulforaphane counteracts aggressiveness of pancreatic cancer driven by dysregulated Cx43-mediated gap junctional intercellular communication. Oncotarget. 2014;5:1621-34 pubmed
  115. Bejarano E, Yuste A, Patel B, Stout R, Spray D, Cuervo A. Connexins modulate autophagosome biogenesis. Nat Cell Biol. 2014;16:401-14 pubmed 出版商
  116. Solan J, Lampe P. Specific Cx43 phosphorylation events regulate gap junction turnover in vivo. FEBS Lett. 2014;588:1423-9 pubmed 出版商
  117. Talaverón R, Matarredona E, de la Cruz R, Macías D, Gálvez V, Pastor A. Implanted neural progenitor cells regulate glial reaction to brain injury and establish gap junctions with host glial cells. Glia. 2014;62:623-38 pubmed 出版商
  118. Bautista W, Rash J, Vanderpool K, Yasumura T, Nagy J. Re-evaluation of connexins associated with motoneurons in rodent spinal cord, sexually dimorphic motor nuclei and trigeminal motor nucleus. Eur J Neurosci. 2014;39:757-70 pubmed 出版商
  119. Yu J, Boicea A, Barrett K, James C, Bagchi I, Bagchi M, et al. Reduced connexin 43 in eutopic endometrium and cultured endometrial stromal cells from subjects with endometriosis. Mol Hum Reprod. 2014;20:260-70 pubmed 出版商
  120. Glenske K, Wagner A, Hanke T, Cavalcanti Adam E, Heinemann S, Heinemann C, et al. Bioactivity of xerogels as modulators of osteoclastogenesis mediated by connexin 43. Biomaterials. 2014;35:1487-95 pubmed 出版商
  121. Liu W, Glueckert R, Linthicum F, Rieger G, Blumer M, Bitsche M, et al. Possible role of gap junction intercellular channels and connexin 43 in satellite glial cells (SGCs) for preservation of human spiral ganglion neurons : A comparative study with clinical implications. Cell Tissue Res. 2014;355:267-78 pubmed 出版商
  122. Liang B, Nissen J, Laursen M, Wang X, Skibsbye L, Hearing M, et al. G-protein-coupled inward rectifier potassium current contributes to ventricular repolarization. Cardiovasc Res. 2014;101:175-84 pubmed 出版商
  123. Shishido S, Delahaye A, Beck A, Nguyen T. The anticancer effect of PQ1 in the MMTV-PyVT mouse model. Int J Cancer. 2014;134:1474-83 pubmed 出版商
  124. Fong J, Kells R, Falk M. Two tyrosine-based sorting signals in the Cx43 C-terminus cooperate to mediate gap junction endocytosis. Mol Biol Cell. 2013;24:2834-48 pubmed 出版商
  125. Novo R, Freire C, Felisbino S, Minicucci M, Azevedo P, Zornoff L, et al. Smoking is associated with remodeling of gap junction in the rat heart: smoker's paradox explanation?. Arq Bras Cardiol. 2013;100:274-80 pubmed
  126. Fong G, Backman L, Andersson G, Scott A, Danielson P. Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway. Cell Tissue Res. 2013;351:465-75 pubmed 出版商
  127. Takahashi M, Tajika Y, Khairani A, Ueno H, Murakami T, Yorifuji H. The localization of VAMP5 in skeletal and cardiac muscle. Histochem Cell Biol. 2013;139:573-82 pubmed 出版商
  128. Wu J, Taylor R, Sidell N. Retinoic acid regulates gap junction intercellular communication in human endometrial stromal cells through modulation of the phosphorylation status of connexin 43. J Cell Physiol. 2013;228:903-10 pubmed 出版商
  129. Wu W, Li Y, Lu Z, Hu X. Increased susceptibility to ischemia-induced ventricular tachyarrhythmias in depressed rats: Involvement of reduction of connexin 43. Exp Ther Med. 2012;3:192-194 pubmed
  130. Swope D, Cheng L, Gao E, Li J, Radice G. Loss of cadherin-binding proteins ?-catenin and plakoglobin in the heart leads to gap junction remodeling and arrhythmogenesis. Mol Cell Biol. 2012;32:1056-67 pubmed 出版商
  131. Lynn B, Tress O, May D, Willecke K, Nagy J. Ablation of connexin30 in transgenic mice alters expression patterns of connexin26 and connexin32 in glial cells and leptomeninges. Eur J Neurosci. 2011;34:1783-93 pubmed 出版商
  132. Marquez Rosado L, Solan J, Dunn C, Norris R, Lampe P. Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. Biochim Biophys Acta. 2012;1818:1985-92 pubmed 出版商
  133. Stauffer B, Sobus R, Sucharov C. Sex differences in cardiomyocyte connexin43 expression. J Cardiovasc Pharmacol. 2011;58:32-9 pubmed 出版商
  134. Luckprom P, Kanjanamekanant K, Pavasant P. Role of connexin43 hemichannels in mechanical stress-induced ATP release in human periodontal ligament cells. J Periodontal Res. 2011;46:607-15 pubmed 出版商
  135. Chui J, Coroneo M, Tat L, Crouch R, Wakefield D, Di Girolamo N. Ophthalmic pterygium: a stem cell disorder with premalignant features. Am J Pathol. 2011;178:817-27 pubmed 出版商
  136. Magnotti L, Goodenough D, Paul D. Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia. 2011;59:26-34 pubmed 出版商
  137. Takahashi D, Vargas J, Wilcox K. Increased coupling and altered glutamate transport currents in astrocytes following kainic-acid-induced status epilepticus. Neurobiol Dis. 2010;40:573-85 pubmed 出版商
  138. Hussain W, Patel P, Chowdhury R, Cabo C, Ciaccio E, Lab M, et al. The Renin-Angiotensin system mediates the effects of stretch on conduction velocity, connexin43 expression, and redistribution in intact ventricle. J Cardiovasc Electrophysiol. 2010;21:1276-83 pubmed 出版商
  139. Mühlfeld C, Cetegen C, Freese S, Volkmann R, Hellige G, Vetterlein F. Phosphorylation of extrajunctional Cx43 in ischemic-preconditioned rat hearts. J Surg Res. 2010;162:e1-8 pubmed 出版商
  140. Oviedo Orta E, Perreau M, Evans W, Potolicchio I. Control of the proliferation of activated CD4+ T cells by connexins. J Leukoc Biol. 2010;88:79-86 pubmed 出版商
  141. Procida K, Jørgensen L, Schmitt N, Delmar M, Taffet S, Holstein Rathlou N, et al. Phosphorylation of connexin43 on serine 306 regulates electrical coupling. Heart Rhythm. 2009;6:1632-8 pubmed 出版商
  142. Girao H, Catarino S, Pereira P. Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Exp Cell Res. 2009;315:3587-97 pubmed 出版商
  143. Shintani Ishida K, Unuma K, Yoshida K. Ischemia enhances translocation of connexin43 and gap junction intercellular communication, thereby propagating contraction band necrosis after reperfusion. Circ J. 2009;73:1661-8 pubmed
  144. Ey B, Eyking A, Gerken G, Podolsky D, Cario E. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury. J Biol Chem. 2009;284:22332-43 pubmed 出版商
  145. Beraneck M, Uno A, Vassias I, Idoux E, de Waele C, Vidal P, et al. Evidence against a role of gap junctions in vestibular compensation. Neurosci Lett. 2009;450:97-101 pubmed 出版商
  146. Berisha B, Bridger P, Toth A, Kliem H, Meyer H, Schams D, et al. Expression and localization of gap junctional connexins 26 and 43 in bovine periovulatory follicles and in corpus luteum during different functional stages of oestrous cycle and pregnancy. Reprod Domest Anim. 2009;44:295-302 pubmed 出版商
  147. de Diego C, Pai R, Chen F, Xie L, de Leeuw J, Weiss J, et al. Electrophysiological consequences of acute regional ischemia/reperfusion in neonatal rat ventricular myocyte monolayers. Circulation. 2008;118:2330-7 pubmed 出版商
  148. Serre Beinier V, Bosco D, Zulianello L, Charollais A, Caille D, Charpantier E, et al. Cx36 makes channels coupling human pancreatic beta-cells, and correlates with insulin expression. Hum Mol Genet. 2009;18:428-39 pubmed 出版商
  149. Li Z, Zhou Z, Welch D, Donahue H. Expressing connexin 43 in breast cancer cells reduces their metastasis to lungs. Clin Exp Metastasis. 2008;25:893-901 pubmed 出版商
  150. Totzeck A, Boengler K, van De Sand A, Konietzka I, Gres P, Garcia Dorado D, et al. No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2008;295:H2106-12 pubmed 出版商
  151. Hutchings G, Gevaert T, Deprest J, Roskams T, Van Lommel A, Nilius B, et al. Immunohistochemistry using an antibody to unphosphorylated connexin 43 to identify human myometrial interstitial cells. Reprod Biol Endocrinol. 2008;6:43 pubmed 出版商
  152. Liang J, Wang S, Chung T, Yang S, Wu J. Effects of 18-glycyrrhetinic acid on serine 368 phosphorylation of connexin43 in rat neonatal cardiomyocytes. Cell Biol Int. 2008;32:1371-9 pubmed 出版商
  153. ElZarrad M, Haroon A, Willecke K, Dobrowolski R, Gillespie M, Al Mehdi A. Connexin-43 upregulation in micrometastases and tumor vasculature and its role in tumor cell attachment to pulmonary endothelium. BMC Med. 2008;6:20 pubmed 出版商
  154. Sorensen C, Salomonsson M, Braunstein T, Nielsen M, Holstein Rathlou N. Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles. Am J Physiol Regul Integr Comp Physiol. 2008;295:R840-7 pubmed 出版商
  155. Leaf D, Feig J, Vasquez C, Riva P, Yu C, Lader J, et al. Connexin40 imparts conduction heterogeneity to atrial tissue. Circ Res. 2008;103:1001-8 pubmed 出版商
  156. Kang J, Kang N, Lovatt D, Torres A, Zhao Z, Lin J, et al. Connexin 43 hemichannels are permeable to ATP. J Neurosci. 2008;28:4702-11 pubmed 出版商
  157. Li J, Levin M, Xiong Y, Petrenko N, Patel V, Radice G. N-cadherin haploinsufficiency affects cardiac gap junctions and arrhythmic susceptibility. J Mol Cell Cardiol. 2008;44:597-606 pubmed 出版商
  158. Sundset R, Ytrehus K, Zhang Y, Saffitz J, Yamada K. Repeated simulated ischemia and protection against gap junctional uncoupling. Cell Commun Adhes. 2007;14:239-49 pubmed
  159. Leinonen P, Aaltonen V, Koskela S, Lehenkari P, Korkiamäki T, Peltonen J. Impaired gap junction formation and intercellular calcium signaling in urinary bladder cancer cells can be improved by Gö6976. Cell Commun Adhes. 2007;14:125-36 pubmed
  160. Zhang S, Liu Y, Huang G, Liu L. Aconitine alters connexin43 phosphorylation status and [Ca2+] oscillation patterns in cultured ventricular myocytes of neonatal rats. Toxicol In Vitro. 2007;21:1476-85 pubmed
  161. Wang R, Zhang C, Ruan Y, Liu N, Wang L. Changes in phosphorylation of connexin43 in rats during acute myocardial hypoxia and effects of antiarrhythmic peptide on the phosphorylation. J Huazhong Univ Sci Technolog Med Sci. 2007;27:241-4 pubmed
  162. Rash J, Olson C, Davidson K, Yasumura T, Kamasawa N, Nagy J. Identification of connexin36 in gap junctions between neurons in rodent locus coeruleus. Neuroscience. 2007;147:938-56 pubmed
  163. Malone P, Miao H, Parker A, Juarez S, Hernandez M. Pressure induces loss of gap junction communication and redistribution of connexin 43 in astrocytes. Glia. 2007;55:1085-98 pubmed
  164. Girao H, Pereira P. The proteasome regulates the interaction between Cx43 and ZO-1. J Cell Biochem. 2007;102:719-28 pubmed
  165. Goubaeva F, Mikami M, Giardina S, Ding B, Abe J, Yang J. Cardiac mitochondrial connexin 43 regulates apoptosis. Biochem Biophys Res Commun. 2007;352:97-103 pubmed
  166. Tansey E, Kwaku K, Hammer P, Cowan D, Federman M, Levitsky S, et al. Reduction and redistribution of gap and adherens junction proteins after ischemia and reperfusion. Ann Thorac Surg. 2006;82:1472-9 pubmed
  167. Chung T, Wang S, Chang Y, Chen Y, Wu J. 18beta-glycyrrhetinic acid promotes src interaction with connexin43 in rat cardiomyocytes. J Cell Biochem. 2007;100:653-64 pubmed
  168. Rucker Martin C, Milliez P, Tan S, Decrouy X, Recouvreur M, Vranckx R, et al. Chronic hemodynamic overload of the atria is an important factor for gap junction remodeling in human and rat hearts. Cardiovasc Res. 2006;72:69-79 pubmed
  169. Larre I, Ponce A, Fiorentino R, Shoshani L, Contreras R, Cereijido M. Contacts and cooperation between cells depend on the hormone ouabain. Proc Natl Acad Sci U S A. 2006;103:10911-6 pubmed
  170. Choi Y, Stamm C, Hammer P, Kwaku K, Marler J, Friehs I, et al. Cardiac conduction through engineered tissue. Am J Pathol. 2006;169:72-85 pubmed
  171. Rouach N, Pebay A, Meme W, Cordier J, Ezan P, Etienne E, et al. S1P inhibits gap junctions in astrocytes: involvement of G and Rho GTPase/ROCK. Eur J Neurosci. 2006;23:1453-64 pubmed
  172. Lee M, Kim J, Lee S, Sasaki H, Lunny D, Lane E, et al. Association of Shh and Ptc with keratin localization in the initiation of the formation of circumvallate papilla and von Ebner's gland. Cell Tissue Res. 2006;325:253-61 pubmed
  173. Ripplinger C, Krinsky V, Nikolski V, Efimov I. Mechanisms of unpinning and termination of ventricular tachycardia. Am J Physiol Heart Circ Physiol. 2006;291:H184-92 pubmed
  174. Chen Z, Evans W, Pflugfelder S, Li D. Gap junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells. 2006;24:1265-73 pubmed
  175. Gorbe A, Becker D, Dux L, Krenacs L, Krenacs T. In differentiating prefusion myoblasts connexin43 gap junction coupling is upregulated before myoblast alignment then reduced in post-mitotic cells. Histochem Cell Biol. 2006;125:705-16 pubmed
  176. Sundset R, Cooper M, Mikalsen S, Ytrehus K. Ischemic preconditioning protects against gap junctional uncoupling in cardiac myofibroblasts. Cell Commun Adhes. 2004;11:51-66 pubmed
  177. King T, Lampe P. Temporal regulation of connexin phosphorylation in embryonic and adult tissues. Biochim Biophys Acta. 2005;1719:24-35 pubmed
  178. Gorbe A, Becker D, Dux L, Stelkovics E, Krenacs L, Bagdi E, et al. Transient upregulation of connexin43 gap junctions and synchronized cell cycle control precede myoblast fusion in regenerating skeletal muscle in vivo. Histochem Cell Biol. 2005;123:573-83 pubmed
  179. Kim J, Cho S, Lee M, Hwang H, Lee J, Lee S, et al. Inhibition of connexin 43 alters Shh and Bmp-2 expression patterns in embryonic mouse tongue. Cell Tissue Res. 2005;320:409-15 pubmed
  180. Leite A, Carvalho C, Furtado A, Barbosa H, Boschero A, Collares Buzato C. Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Can J Physiol Pharmacol. 2005;83:142-51 pubmed
  181. Li W, Hertzberg E, Spray D. Regulation of connexin43-protein binding in astrocytes in response to chemical ischemia/hypoxia. J Biol Chem. 2005;280:7941-8 pubmed
  182. Chung T, Wang S, Wu J. 17beta-estradiol reduces the effect of metabolic inhibition on gap junction intercellular communication in rat cardiomyocytes via the estrogen receptor. J Mol Cell Cardiol. 2004;37:1013-22 pubmed
  183. Altevogt B, Paul D. Four classes of intercellular channels between glial cells in the CNS. J Neurosci. 2004;24:4313-23 pubmed
  184. Van Der Aa F, Roskams T, Blyweert W, Ost D, Bogaert G, De Ridder D. Identification of kit positive cells in the human urinary tract. J Urol. 2004;171:2492-6 pubmed
  185. Nagy J, Ionescu A, Lynn B, Rash J. Coupling of astrocyte connexins Cx26, Cx30, Cx43 to oligodendrocyte Cx29, Cx32, Cx47: Implications from normal and connexin32 knockout mice. Glia. 2003;44:205-18 pubmed
  186. Cruciani V, Leithe E, Mikalsen S. Ilimaquinone inhibits gap-junctional communication prior to Golgi fragmentation and block in protein transport. Exp Cell Res. 2003;287:130-42 pubmed
  187. Zahs K, Kofuji P, Meier C, Dermietzel R. Connexin immunoreactivity in glial cells of the rat retina. J Comp Neurol. 2003;455:531-46 pubmed
  188. Jahromi S, Wentlandt K, Piran S, Carlen P. Anticonvulsant actions of gap junctional blockers in an in vitro seizure model. J Neurophysiol. 2002;88:1893-902 pubmed
  189. Rucker Martin C, Pecker F, Godreau D, Hatem S. Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro. Cardiovasc Res. 2002;55:38-52 pubmed
  190. Bruzzone S, Franco L, Guida L, Zocchi E, Contini P, Bisso A, et al. A self-restricted CD38-connexin 43 cross-talk affects NAD+ and cyclic ADP-ribose metabolism and regulates intracellular calcium in 3T3 fibroblasts. J Biol Chem. 2001;276:48300-8 pubmed
  191. Verderio C, Bruzzone S, Zocchi E, Fedele E, Schenk U, De Flora A, et al. Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes. J Neurochem. 2001;78:646-57 pubmed
  192. Hentula M, Peltonen J, Peltonen S. Expression profiles of cell-cell and cell-matrix junction proteins in developing human epidermis. Arch Dermatol Res. 2001;293:259-67 pubmed
  193. Mercier F, Hatton G. Connexin 26 and basic fibroblast growth factor are expressed primarily in the subpial and subependymal layers in adult brain parenchyma: roles in stem cell proliferation and morphological plasticity?. J Comp Neurol. 2001;431:88-104 pubmed
  194. Nagy J, Li W. A brain slice model for in vitro analyses of astrocytic gap junction and connexin43 regulation: actions of ischemia, glutamate and elevated potassium. Eur J Neurosci. 2000;12:4567-72 pubmed
  195. Li W, Nagy J. Connexin43 phosphorylation state and intercellular communication in cultured astrocytes following hypoxia and protein phosphatase inhibition. Eur J Neurosci. 2000;12:2644-50 pubmed
  196. Li W, Nagy J. Activation of fibres in rat sciatic nerve alters phosphorylation state of connexin-43 at astrocytic gap junctions in spinal cord: evidence for junction regulation by neuronal-glial interactions. Neuroscience. 2000;97:113-23 pubmed
  197. Cruciani V, Mikalsen S. Stimulated phosphorylation of intracellular connexin43. Exp Cell Res. 1999;251:285-98 pubmed
  198. Nagy J, Patel D, Ochalski P, Stelmack G. Connexin30 in rodent, cat and human brain: selective expression in gray matter astrocytes, co-localization with connexin43 at gap junctions and late developmental appearance. Neuroscience. 1999;88:447-68 pubmed
  199. Krenacs T, Rosendaal M. Gap-junction communication pathways in germinal center reactions. Dev Immunol. 1998;6:111-8 pubmed