这是一篇来自已证抗体库的有关大鼠 Gphn的综述,是根据80篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gphn 抗体。
Gphn 同义词: Geph

Synaptic Systems
小鼠 单克隆(mAb7a)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 3a
  • 免疫印迹; 小鼠; 1:5000; 图 s4a
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 3a) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4a). Front Cell Dev Biol (2022) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 图 3c
Synaptic Systems Gphn抗体(SySy, 147011)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 3c). Neuron (2022) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 大鼠; 1:2000; 图 1i
Synaptic Systems Gphn抗体(Synaptic Systems, 147,111)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 1i). elife (2022) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 人类; 1:500; 图 6b
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011C3)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6b). Int J Mol Sci (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:500; 图 3e
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3e). Nat Commun (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:300; 图 s5-2f
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 s5-2f). elife (2021) ncbi
domestic rabbit 单克隆(RbmAb7a)
  • 免疫细胞化学; 小鼠; 1:200; 图 1a
Synaptic Systems Gphn抗体(SYSY, 147018)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 1a). Transl Psychiatry (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 8b
Synaptic Systems Gphn抗体(Synaptic System, 147021)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 8b). Nat Commun (2021) ncbi
小鼠 单克隆(mAb7a)
Synaptic Systems Gphn抗体(Synaptic Systems, 147?C011)被用于. elife (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 图 6r
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011C3)被用于被用于免疫组化在小鼠样本上 (图 6r). Cell Death Differ (2021) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:5000; 图 6d
Synaptic Systems Gphn抗体(Synaptic Systems, 147111)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 6d). Nat Commun (2021) ncbi
小鼠 单克隆(3B11)
  • 免疫组化; 小鼠; 图 5b
Synaptic Systems Gphn抗体(Synaptic Systems, 147111)被用于被用于免疫组化在小鼠样本上 (图 5b). Cell Rep (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:2500; 图 2d
Synaptic Systems Gphn抗体(Synaptic systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 2d). elife (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:2500; 图 2d
Synaptic Systems Gphn抗体(Synaptic systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 2d). elife (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:2500; 图 2d
Synaptic Systems Gphn抗体(Synaptic systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 2d). Sci Rep (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:2500; 图 2d
Synaptic Systems Gphn抗体(Synaptic systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:2500 (图 2d). Nature (2021) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:500; 图 s1-3c
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s1-3c). elife (2020) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-自由浮动切片; 大鼠; 图 5a
  • 免疫细胞化学; 大鼠; 图 2a
  • 免疫印迹; 大鼠; 1:1000; 图 s3
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫组化-自由浮动切片在大鼠样本上 (图 5a), 被用于免疫细胞化学在大鼠样本上 (图 2a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3). Front Mol Neurosci (2020) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 1e
Synaptic Systems Gphn抗体(Sysy, 147011)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 1e). Nat Commun (2020) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3c
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3c). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s4a
Synaptic Systems Gphn抗体(Synaptic Systems, 147002)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s4a). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3b1
Synaptic Systems Gphn抗体(Synaptic Systems, 147 002)被用于被用于免疫印迹在大鼠样本上 (图 3b1). J Cell Biol (2020) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-自由浮动切片; 小鼠; 图 s1f
Synaptic Systems Gphn抗体(Synaptic Systems, 147 021)被用于被用于免疫组化-自由浮动切片在小鼠样本上 (图 s1f). Science (2020) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 大鼠; 1:500; 图 3a
Synaptic Systems Gphn抗体(SySy, 147 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3a). Cell Rep (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 图 9h4
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 9h4). J Comp Neurol (2019) ncbi
豚鼠 单克隆(GpmAb7a)
  • 免疫细胞化学; 小鼠; 1:500; 图 5a
Synaptic Systems Gphn抗体(Synaptic Systems, 147318)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5a). Cell Rep (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 12j
  • 免疫细胞化学; 大鼠; 1:200; 图 8e
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 12j) 和 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 8e). J Comp Neurol (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b
Synaptic Systems Gphn抗体(Synaptic systems, 147021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b). Science (2019) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
Synaptic Systems Gphn抗体(Synaptic systems, 147111)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Science (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 图 1d
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫细胞化学在小鼠样本上 (图 1d). Cell (2019) ncbi
豚鼠 单克隆(GpmAb7a)
  • 免疫组化; 小鼠; 1:1000; 图 5c
Synaptic Systems Gphn抗体(Synaptic Systems, 147 318)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 5c). Neuron (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:500; 图 3a
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3a). Front Cell Neurosci (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3g
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3g). Neuron (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
Synaptic Systems Gphn抗体(Synaptic System, 147021)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). J Comp Neurol (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 图 s1h
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫细胞化学在小鼠样本上 (图 s1h). Science (2019) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:500; 图 ev3a
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 ev3a). EMBO J (2019) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:1000; 图 3g
Synaptic Systems Gphn抗体(Synaptic Systems, 147111)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3g). Mol Neurobiol (2019) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:2000; 图 4b
Synaptic Systems Gphn抗体(Synaptic System, 147111)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4b). Hum Mol Genet (2018) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 大鼠; 1:500; 图 2b
Synaptic Systems Gphn抗体(Synaptic Systems, 147-011)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2b). J Cell Biol (2018) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 小鼠; 图 4e
  • 免疫印迹; 小鼠; 1:50; 图 4a
Synaptic Systems Gphn抗体(Synaptic systems, 3B11)被用于被用于免疫细胞化学在小鼠样本上 (图 4e) 和 被用于免疫印迹在小鼠样本上浓度为1:50 (图 4a). J Clin Invest (2017) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s2e
  • 免疫印迹; 小鼠; 1:10,000; 图 4c
Synaptic Systems Gphn抗体(Synaptic Systems, 3B11)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s2e) 和 被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 4c). Nat Commun (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 图 4g
Synaptic Systems Gphn抗体(Synaptic Systems, 147 021)被用于被用于免疫组化在小鼠样本上 (图 4g). elife (2017) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 图 3a
Synaptic Systems Gphn抗体(Synaptic Systems, 147111)被用于被用于免疫印迹在小鼠样本上 (图 3a). elife (2017) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 小鼠; 1:500; 图 3-s1a
Synaptic Systems Gphn抗体(Synaptic Systems, 3B11)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3-s1a). elife (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:1000; 图 4d
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4d). Front Neuroanat (2016) ncbi
小鼠 单克隆(mAb7a)
Synaptic Systems Gphn抗体(Synaptic systems, 147021)被用于. Cell (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 斑马鱼; 1:500; 表 1
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:500 (表 1). J Comp Neurol (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 8
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 8). Brain Struct Funct (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 人类
Synaptic Systems Gphn抗体(Synaptic Systems, mAb7a)被用于被用于免疫细胞化学在人类样本上. elife (2016) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 图 s4b
Synaptic Systems Gphn抗体(Synaptic systems, 147111)被用于被用于免疫印迹在小鼠样本上 (图 s4b). Cell (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:2000; 图 1f
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化在小鼠样本上浓度为1:2000 (图 1f). J Biol Chem (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:5000; 图 8a2
  • 免疫组化; 小鼠; 1:5000
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 (图 8a2) 和 被用于免疫组化在小鼠样本上浓度为1:5000. J Comp Neurol (2017) ncbi
小鼠 单克隆(3B11)
  • 免疫组化; 大鼠; 图 s2
Synaptic Systems Gphn抗体(SYSY, 147111)被用于被用于免疫组化在大鼠样本上 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 大鼠; 1:2000; 图 s3
Synaptic Systems Gphn抗体(SYSY, 147021)被用于被用于免疫组化在大鼠样本上浓度为1:2000 (图 s3). Nat Commun (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:1000; 图 s1b
  • 免疫细胞化学; 大鼠; 1:1000; 图 1e
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 s1b) 和 被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1e). J Cell Biol (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 大鼠; 1:200; 图 2d
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2d). J Comp Neurol (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 小鼠; 1:500; 图 1b
Synaptic Systems Gphn抗体(Synaptic Systems, 147011C3)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 1b). J Neurosci Res (2017) ncbi
小鼠 单克隆(mAb7a)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Neurosci (2016) ncbi
domestic rabbit 单克隆(RbmAb7a)
  • 免疫细胞化学; 大鼠; 1:300; 图 1b
Synaptic Systems Gphn抗体(Synaptic Systems, 147 008)被用于被用于免疫细胞化学在大鼠样本上浓度为1:300 (图 1b). Nat Methods (2016) ncbi
小鼠 单克隆(3B11)
  • 免疫组化; 斑马鱼; 1:250; 图 4b
  • 免疫印迹; 大鼠; 1:1000; 图 1d
Synaptic Systems Gphn抗体(Synaptic Systems, 147 111)被用于被用于免疫组化在斑马鱼样本上浓度为1:250 (图 4b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Nat Methods (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:100; 图 3
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 3). J Neurochem (2016) ncbi
小鼠 单克隆(3B11)
  • 免疫组化; 大鼠; 图 5e
  • 免疫印迹; 大鼠; 图 2b
Synaptic Systems Gphn抗体(Synaptic Systems, 3B11)被用于被用于免疫组化在大鼠样本上 (图 5e) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 大鼠; 图 5e
  • 免疫印迹; 大鼠; 图 2b
Synaptic Systems Gphn抗体(Synaptic Systems, mAb7a)被用于被用于免疫组化在大鼠样本上 (图 5e) 和 被用于免疫印迹在大鼠样本上 (图 2b). J Biol Chem (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 7
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 7). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 图 1
Synaptic Systems Gphn抗体(Synaptic System, 147021)被用于被用于免疫细胞化学在小鼠样本上 (图 1). J Neurosci (2016) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:500; 图 6
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 6). J Neurochem (2016) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
Synaptic Systems Gphn抗体(SySy, 147111)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). EMBO Mol Med (2015) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 小鼠; 图 7
Synaptic Systems Gphn抗体(Synaptic Systems, 147111)被用于被用于免疫细胞化学在小鼠样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 大鼠; 1:500; 图 1
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 s6
Synaptic Systems Gphn抗体(Synaptic Systems, 147-011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2015) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 小鼠; 1:3000
Synaptic Systems Gphn抗体(Synaptic systems, 14711)被用于被用于免疫印迹在小鼠样本上浓度为1:3000. PLoS ONE (2015) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-自由浮动切片; 小鼠; 1:700; 图 6
Synaptic Systems Gphn抗体(Synaptic Systems, 147011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:700 (图 6). Nature (2015) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 大鼠; 1:200
  • 免疫组化; 大鼠; 1:200
Synaptic Systems Gphn抗体(Synaptic Systems, 147021)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 和 被用于免疫组化在大鼠样本上浓度为1:200. J Comp Neurol (2015) ncbi
小鼠 单克隆(3B11)
  • 免疫印迹; 人类; 图 5
Synaptic Systems Gphn抗体(Synaptic System, 147111)被用于被用于免疫印迹在人类样本上 (图 5). Nat Commun (2014) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 3,4
  • 免疫细胞化学; 大鼠; 1:500; 图 6
Synaptic Systems Gphn抗体(Synaptic Systems, mAb7a)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 3,4) 和 被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 6). J Biol Chem (2014) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 人类
Synaptic Systems Gphn抗体(Synaptic Systems, 147 021)被用于被用于免疫细胞化学在人类样本上. J Neurosci (2014) ncbi
小鼠 单克隆(3B11)
  • 免疫细胞化学; 小鼠; 1:1000; 图 e4
Synaptic Systems Gphn抗体(Synaptic Systems, 147 111)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 e4). Nature (2014) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 小鼠; 1:250; 图 1
Synaptic Systems Gphn抗体(Synaptic Systems, 147 021)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 1). Nature (2014) ncbi
小鼠 单克隆(mAb7a)
  • 免疫细胞化学; 人类; 1:300
Synaptic Systems Gphn抗体(Synaptic Systems, 147 011)被用于被用于免疫细胞化学在人类样本上浓度为1:300. J Vis Exp (2014) ncbi
小鼠 单克隆(mAb7a)
  • 免疫组化; 大鼠; 1:500
Synaptic Systems Gphn抗体(Synaptic Systems, 147 021)被用于被用于免疫组化在大鼠样本上浓度为1:500. Eur J Neurosci (2011) ncbi
圣克鲁斯生物技术
小鼠 单克隆(G-6)
  • 免疫印迹; 人类; 1:200; 图 2b
  • 免疫印迹; 小鼠; 1:200; 图 2b
圣克鲁斯生物技术 Gphn抗体(Santa Cruz Biotechnology, sc-25311)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b) 和 被用于免疫印迹在小鼠样本上浓度为1:200 (图 2b). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(G-6)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Gphn抗体(Santa Cruz, SC25311)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). J Biol Chem (2014) ncbi
碧迪BD
小鼠 单克隆(45/Gephyrin)
  • 免疫印迹; 小鼠; 图 6c
碧迪BD Gphn抗体(BD Pharmingen, 610585)被用于被用于免疫印迹在小鼠样本上 (图 6c). elife (2017) ncbi
小鼠 单克隆(45/Gephyrin)
  • 免疫印迹; 小鼠; 1:250; 图 s2a
碧迪BD Gphn抗体(BD, 610584)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s2a). J Cell Biol (2016) ncbi
小鼠 单克隆(45/Gephyrin)
  • 免疫印迹; 小鼠; 1:1000; 图 4f
碧迪BD Gphn抗体(BD Transduction Labs, 610585)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). Acta Neuropathol (2016) ncbi
小鼠 单克隆(45/Gephyrin)
  • 免疫印迹; 小鼠; 图 7
碧迪BD Gphn抗体(BD Biosciences, 610584)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(45/Gephyrin)
  • 免疫印迹; 小鼠
碧迪BD Gphn抗体(BD Biosciences, 610584)被用于被用于免疫印迹在小鼠样本上. Mol Cell Proteomics (2013) ncbi
文章列表
  1. Mueller Buehl C, Reinhard J, Roll L, Bader V, Winklhofer K, Faissner A. Brevican, Neurocan, Tenascin-C, and Tenascin-R Act as Important Regulators of the Interplay Between Perineuronal Nets, Synaptic Integrity, Inhibitory Interneurons, and Otx2. Front Cell Dev Biol. 2022;10:886527 pubmed 出版商
  2. Hauser D, Behr K, Konno K, Schreiner D, Schmidt A, Watanabe M, et al. Targeted proteoform mapping uncovers specific Neurexin-3 variants required for dendritic inhibition. Neuron. 2022;: pubmed 出版商
  3. Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, et al. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. elife. 2022;11: pubmed 出版商
  4. Tate K, Kirk B, Tseng A, Ulffers A, LITWA K. Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Developing Neural Circuits in a Model of the Human Fetal Cortex. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Zhang X, Liu Y, Hong X, Li X, Meshul C, Moore C, et al. NG2 glia-derived GABA release tunes inhibitory synapses and contributes to stress-induced anxiety. Nat Commun. 2021;12:5740 pubmed 出版商
  6. O Neil S, Racz B, Brown W, Gao Y, Soderblom E, Yasuda R, et al. Action potential-coupled Rho GTPase signaling drives presynaptic plasticity. elife. 2021;10: pubmed 出版商
  7. Luo B, Liu Z, Lin D, Chen W, Ren D, Yu Z, et al. ErbB4 promotes inhibitory synapse formation by cell adhesion, independent of its kinase activity. Transl Psychiatry. 2021;11:361 pubmed 出版商
  8. Amegandjin C, Choudhury M, Jadhav V, Carriço J, Quintal A, Berryer M, et al. Sensitive period for rescuing parvalbumin interneurons connectivity and social behavior deficits caused by TSC1 loss. Nat Commun. 2021;12:3653 pubmed 出版商
  9. Franken T, Bondy B, HAIMES D, Goldwyn J, Golding N, Smith P, et al. Glycinergic axonal inhibition subserves acute spatial sensitivity to sudden increases in sound intensity. elife. 2021;10: pubmed 出版商
  10. Tamargo Gómez I, Martínez García G, Suarez M, Rey V, Fueyo A, Codina Martínez H, et al. ATG4D is the main ATG8 delipidating enzyme in mammalian cells and protects against cerebellar neurodegeneration. Cell Death Differ. 2021;: pubmed 出版商
  11. Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, et al. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun. 2021;12:1848 pubmed 出版商
  12. Sawant A, Ebbinghaus B, Bleckert A, Gamlin C, Yu W, BERSON D, et al. Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. Cell Rep. 2021;34:108858 pubmed 出版商
  13. Fang H, Bygrave A, Roth R, Johnson R, Huganir R. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. elife. 2021;10: pubmed 出版商
  14. Takemon Y, Chick J, Gerdes Gyuricza I, Skelly D, Devuyst O, Gygi S, et al. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. elife. 2021;10: pubmed 出版商
  15. Amine H, Benomar Y, Taouis M. Palmitic acid promotes resistin-induced insulin resistance and inflammation in SH-SY5Y human neuroblastoma. Sci Rep. 2021;11:5427 pubmed 出版商
  16. Wang P, Nair M, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021;593:130-135 pubmed 出版商
  17. Exposito Alonso D, Osório C, Bernard C, Pascual García S, del Pino I, Marin O, et al. Subcellular sorting of neuregulins controls the assembly of excitatory-inhibitory cortical circuits. elife. 2020;9: pubmed 出版商
  18. Kriebel M, Ebel J, Battke F, Griesbach S, Volkmer H. Interference With Complex IV as a Model of Age-Related Decline in Synaptic Connectivity. Front Mol Neurosci. 2020;13:43 pubmed 出版商
  19. Lorenzo L, Godin A, Ferrini F, Bachand K, Plasencia Fernandez I, Labrecque S, et al. Enhancing neuronal chloride extrusion rescues α2/α3 GABAA-mediated analgesia in neuropathic pain. Nat Commun. 2020;11:869 pubmed 出版商
  20. Yu K, Lin C, Hatcher A, Lozzi B, Kong K, Huang Hobbs E, et al. PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis. Nature. 2020;578:166-171 pubmed 出版商
  21. Burrus C, McKinstry S, Kim N, Ozlu M, Santoki A, Fang F, et al. Striatal Projection Neurons Require Huntingtin for Synaptic Connectivity and Survival. Cell Rep. 2020;30:642-657.e6 pubmed 出版商
  22. Lee M, Liu Y, Chen C, Lu C, Lu S, Huang T, et al. Ecm29-mediated proteasomal distribution modulates excitatory GABA responses in the developing brain. J Cell Biol. 2020;219: pubmed 出版商
  23. Cserép C, Pósfai B, Lénárt N, Fekete R, László Z, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science. 2020;367:528-537 pubmed 出版商
  24. Halff E, Szulc B, Lesept F, Kittler J. SNX27-Mediated Recycling of Neuroligin-2 Regulates Inhibitory Signaling. Cell Rep. 2019;29:2599-2607.e6 pubmed 出版商
  25. Nakamoto C, Konno K, Miyazaki T, Nakatsukasa E, Natsume R, Abe M, et al. Expression mapping, quantification, and complex formation of GluD1 and GluD2 glutamate receptors in adult mouse brain. J Comp Neurol. 2019;: pubmed 出版商
  26. Fricke S, Metzdorf K, Ohm M, Haak S, Heine M, Korte M, et al. Fast Regulation of GABAAR Diffusion Dynamics by Nogo-A Signaling. Cell Rep. 2019;29:671-684.e6 pubmed 出版商
  27. Miralles C, Taylor M, Bear J, Fekete C, George S, Li Y, et al. Expression of protocadherin-γC4 protein in the rat brain. J Comp Neurol. 2019;: pubmed 出版商
  28. Han W, Li J, Pelkey K, Pandey S, Chen X, Wang Y, et al. Shisa7 is a GABAA receptor auxiliary subunit controlling benzodiazepine actions. Science. 2019;366:246-250 pubmed 出版商
  29. Mukherjee A, Carvalho F, Eliez S, Caroni P. Long-Lasting Rescue of Network and Cognitive Dysfunction in a Genetic Schizophrenia Model. Cell. 2019;178:1387-1402.e14 pubmed 出版商
  30. Pan H, Fatima M, Li A, Lee H, Cai W, Horwitz L, et al. Identification of a Spinal Circuit for Mechanical and Persistent Spontaneous Itch. Neuron. 2019;103:1135-1149.e6 pubmed 出版商
  31. Duan J, Pandey S, Li T, Castellano D, Gu X, Li J, et al. Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Front Cell Neurosci. 2019;13:217 pubmed 出版商
  32. Tai Y, Gallo N, Wang M, Yu J, Van Aelst L. Axo-axonic Innervation of Neocortical Pyramidal Neurons by GABAergic Chandelier Cells Requires AnkyrinG-Associated L1CAM. Neuron. 2019;102:358-372.e9 pubmed 出版商
  33. Boccalaro I, Cristiá Lara L, Schwerdel C, Fritschy J, Rubi L. Cell type-specific distribution of GABAA receptor subtypes in the mouse dorsal striatum. J Comp Neurol. 2019;527:2030-2046 pubmed 出版商
  34. Awasthi A, Ramachandran B, Ahmed S, Benito E, Shinoda Y, Nitzan N, et al. Synaptotagmin-3 drives AMPA receptor endocytosis, depression of synapse strength, and forgetting. Science. 2019;363: pubmed 出版商
  35. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  36. Chmielewska J, Kuzniewska B, Milek J, Urbanska K, Dziembowska M. Neuroligin 1, 2, and 3 Regulation at the Synapse: FMRP-Dependent Translation and Activity-Induced Proteolytic Cleavage. Mol Neurobiol. 2019;56:2741-2759 pubmed 出版商
  37. Pellegrini L, Hauser D, Li Y, Mamais A, Beilina A, Kumaran R, et al. Proteomic analysis reveals co-ordinated alterations in protein synthesis and degradation pathways in LRRK2 knockout mice. Hum Mol Genet. 2018;27:3257-3271 pubmed 出版商
  38. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, et al. The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 2018;217:715-730 pubmed 出版商
  39. Kumar A, Dejanovic B, Hetsch F, Semtner M, Fusca D, Arjune S, et al. S-sulfocysteine/NMDA receptor-dependent signaling underlies neurodegeneration in molybdenum cofactor deficiency. J Clin Invest. 2017;127:4365-4378 pubmed 出版商
  40. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  41. Martenson J, Yamasaki T, Chaudhury N, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. elife. 2017;6: pubmed 出版商
  42. Daniel J, Cooper B, Palvimo J, Zhang F, Brose N, Tirard M. Analysis of SUMO1-conjugation at synapses. elife. 2017;6: pubmed 出版商
  43. Ripamonti S, Ambrozkiewicz M, Guzzi F, Gravati M, Biella G, Bormuth I, et al. Transient oxytocin signaling primes the development and function of excitatory hippocampal neurons. elife. 2017;6: pubmed 出版商
  44. Sohn J, Okamoto S, Kataoka N, Kaneko T, Nakamura K, Hioki H. Differential Inputs to the Perisomatic and Distal-Dendritic Compartments of VIP-Positive Neurons in Layer 2/3 of the Mouse Barrel Cortex. Front Neuroanat. 2016;10:124 pubmed 出版商
  45. Abraira V, Kuehn E, Chirila A, Springel M, Toliver A, Zimmerman A, et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn. Cell. 2017;168:295-310.e19 pubmed 出版商
  46. Yan Q, Zhai L, Zhang B, Dallman J. Spatial patterning of excitatory and inhibitory neuropil territories during spinal circuit development. J Comp Neurol. 2017;525:1649-1667 pubmed 出版商
  47. Oh Y, Karube F, Takahashi S, Kobayashi K, Takada M, Uchigashima M, et al. Using a novel PV-Cre rat model to characterize pallidonigral cells and their terminations. Brain Struct Funct. 2017;222:2359-2378 pubmed 出版商
  48. Nguyen T, Schreiner D, Xiao L, Traunmüller L, Bornmann C, Scheiffele P. An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus. elife. 2016;5: pubmed 出版商
  49. Li J, Casteels T, Frogne T, Ingvorsen C, Honore C, Courtney M, et al. Artemisinins Target GABAA Receptor Signaling and Impair ? Cell Identity. Cell. 2017;168:86-100.e15 pubmed 出版商
  50. Kilpatrick C, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of Golgi-associated DHHC-type Zinc Finger Protein (GODZ)- and Sertoli Cell Gene with a Zinc Finger Domain-? (SERZ-?)-mediated Palmitoylation by Loss of Function Analyses in Knock-out Mice. J Biol Chem. 2016;291:27371-27386 pubmed 出版商
  51. Matsuno T, Kiyokage E, Toida K. Synaptic distribution of individually labeled mitral cells in the external plexiform layer of the mouse olfactory bulb. J Comp Neurol. 2017;525:1633-1648 pubmed 出版商
  52. Ghosh H, Auguadri L, Battaglia S, Simone Thirouin Z, Zemoura K, Messner S, et al. Several posttranslational modifications act in concert to regulate gephyrin scaffolding and GABAergic transmission. Nat Commun. 2016;7:13365 pubmed 出版商
  53. Cai Y, Yang L, Hu G, Chen X, Niu F, Yuan L, et al. Regulation of morphine-induced synaptic alterations: Role of oxidative stress, ER stress, and autophagy. J Cell Biol. 2016;215:245-258 pubmed
  54. Fekete C, Goz R, Dinallo S, Miralles C, Chiou T, Bear J, et al. In vivo transgenic expression of collybistin in neurons of the rat cerebral cortex. J Comp Neurol. 2017;525:1291-1311 pubmed 出版商
  55. Perez Sanchez J, Lorenzo L, Lecker I, Zurek A, Labrakakis C, Bridgwater E, et al. ?5GABAA Receptors Mediate Tonic Inhibition in the Spinal Cord Dorsal Horn and Contribute to the Resolution Of Hyperalgesia. J Neurosci Res. 2017;95:1307-1318 pubmed 出版商
  56. Laclair K, Donde A, Ling J, Jeong Y, Chhabra R, Martin L, et al. Depletion of TDP-43 decreases fibril and plaque β-amyloid and exacerbates neurodegeneration in an Alzheimer's mouse model. Acta Neuropathol. 2016;132:859-873 pubmed
  57. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  58. Gross G, Straub C, Perez Sanchez J, Dempsey W, Junge J, Roberts R, et al. An E3-ligase-based method for ablating inhibitory synapses. Nat Methods. 2016;13:673-8 pubmed 出版商
  59. Xia M, Zhu S, Shevelkin A, Ross C, Pletnikov M. DISC1, astrocytes and neuronal maturation: a possible mechanistic link with implications for mental disorders. J Neurochem. 2016;138:518-24 pubmed 出版商
  60. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  61. Um J, Choii G, Park D, Kim D, Jeon S, Kang H, et al. IQ Motif and SEC7 Domain-containing Protein 3 (IQSEC3) Interacts with Gephyrin to Promote Inhibitory Synapse Formation. J Biol Chem. 2016;291:10119-30 pubmed 出版商
  62. Gao Y, Heldt S. Enrichment of GABAA Receptor α-Subunits on the Axonal Initial Segment Shows Regional Differences. Front Cell Neurosci. 2016;10:39 pubmed 出版商
  63. Zhang Q, Gao X, Li C, Feliciano C, Wang D, Zhou D, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci. 2016;36:2247-60 pubmed 出版商
  64. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  65. Lyons M, Chen L, Deng J, Finn C, Pfenning A, Sabhlok A, et al. The transcription factor calcium-response factor limits NMDA receptor-dependent transcription in the developing brain. J Neurochem. 2016;137:164-76 pubmed 出版商
  66. Valenza M, Chen J, Di Paolo E, Ruozi B, Belletti D, Ferrari Bardile C, et al. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice. EMBO Mol Med. 2015;7:1547-64 pubmed 出版商
  67. Bender J, Engeholm M, Ederer M, Breu J, Møller T, Michalakis S, et al. Corticotropin-Releasing Hormone Receptor Type 1 (CRHR1) Clustering with MAGUKs Is Mediated via Its C-Terminal PDZ Binding Motif. PLoS ONE. 2015;10:e0136768 pubmed 出版商
  68. Brigidi G, Santyr B, Shimell J, Jovellar B, Bamji S. Activity-regulated trafficking of the palmitoyl-acyl transferase DHHC5. Nat Commun. 2015;6:8200 pubmed 出版商
  69. He Q, Duguid I, Clark B, Panzanelli P, Patel B, Thomas P, et al. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nat Commun. 2015;6:7364 pubmed 出版商
  70. Chugh D, Ali I, Bakochi A, Bahonjic E, Etholm L, Ekdahl C. Alterations in Brain Inflammation, Synaptic Proteins, and Adult Hippocampal Neurogenesis during Epileptogenesis in Mice Lacking Synapsin2. PLoS ONE. 2015;10:e0132366 pubmed 出版商
  71. Schwarz L, Miyamichi K, Gao X, BEIER K, Weissbourd B, DeLoach K, et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature. 2015;524:88-92 pubmed 出版商
  72. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  73. Fekete C, Chiou T, Miralles C, Harris R, Fiondella C, LoTurco J, et al. In vivo clonal overexpression of neuroligin 3 and neuroligin 2 in neurons of the rat cerebral cortex: Differential effects on GABAergic synapses and neuronal migration. J Comp Neurol. 2015;523:1359-78 pubmed 出版商
  74. Antonelli R, Pizzarelli R, Pedroni A, Fritschy J, Del Sal G, Cherubini E, et al. Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun. 2014;5:5066 pubmed 出版商
  75. Kang Y, Ge Y, Cassidy R, Lam V, Luo L, Moon K, et al. A combined transgenic proteomic analysis and regulated trafficking of neuroligin-2. J Biol Chem. 2014;289:29350-64 pubmed 出版商
  76. Ohkawa T, Satake S, Yokoi N, Miyazaki Y, Ohshita T, Sobue G, et al. Identification and characterization of GABA(A) receptor autoantibodies in autoimmune encephalitis. J Neurosci. 2014;34:8151-63 pubmed 出版商
  77. Karayannis T, Au E, Patel J, Kruglikov I, Markx S, Delorme R, et al. Cntnap4 differentially contributes to GABAergic and dopaminergic synaptic transmission. Nature. 2014;511:236-40 pubmed
  78. Brady M, Moon C, Jacob T. Using an ?-bungarotoxin binding site tag to study GABA A receptor membrane localization and trafficking. J Vis Exp. 2014;: pubmed 出版商
  79. Tattikota S, Sury M, Rathjen T, Wessels H, Pandey A, You X, et al. Argonaute2 regulates the pancreatic β-cell secretome. Mol Cell Proteomics. 2013;12:1214-25 pubmed 出版商
  80. Corteen N, Cole T, Sarna A, Sieghart W, Swinny J. Localization of GABA-A receptor alpha subunits on neurochemically distinct cell types in the rat locus coeruleus. Eur J Neurosci. 2011;34:250-62 pubmed 出版商