这是一篇来自已证抗体库的有关大鼠 Gria2的综述,是根据46篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gria2 抗体。
Gria2 同义词: GluA2; GluR-K2; GluR2; gluR-B

赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1F
赛默飞世尔 Gria2抗体(Thermo Fisher Scientific, PA1-4660)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1F). Eneuro (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 1d
赛默飞世尔 Gria2抗体(Thermo Scientific, PA1-4659)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Eur J Neurosci (2017) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 小鼠; 图 7
赛默飞世尔 Gria2抗体(Invitrogen, 320300)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 小鼠; 1:1000; 图 2,4,5,6
赛默飞世尔 Gria2抗体(Invitrogen, 32-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2,4,5,6). Cell Death Dis (2015) ncbi
小鼠 单克隆(6C4)
  • 免疫组化; 小鼠; 1:75; 图 4
赛默飞世尔 Gria2抗体(Invitrogen, 32-0300)被用于被用于免疫组化在小鼠样本上浓度为1:75 (图 4). Psychopharmacology (Berl) (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gria2抗体(Thermo Scientific, PA1-4659)被用于. Neuroscience (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gria2抗体(Thermo Scientific, PA1-4659)被用于. Psychopharmacology (Berl) (2015) ncbi
小鼠 单克隆(6C4)
  • 免疫细胞化学; 人类
赛默飞世尔 Gria2抗体(Invitrogen, 32-0300)被用于被用于免疫细胞化学在人类样本上. Mol Syst Biol (2014) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 小鼠; 1:200
赛默飞世尔 Gria2抗体(Invitrogen, 32-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Neurosci (2014) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 大鼠
赛默飞世尔 Gria2抗体(Zymed, 32-0300)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 大鼠; 图 4
赛默飞世尔 Gria2抗体(Invitrogen, 32-0300)被用于被用于免疫印迹在大鼠样本上 (图 4). Eur J Neurosci (2013) ncbi
小鼠 单克隆(6C4)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛默飞世尔 Gria2抗体(Zymed, 32-0300)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Neuropharmacology (2008) ncbi
小鼠 单克隆(6C4)
  • 免疫沉淀; 大鼠; 图 6
赛默飞世尔 Gria2抗体(Zymed Laboratories, 32-0300)被用于被用于免疫沉淀在大鼠样本上 (图 6). J Biol Chem (2007) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, Ab20673)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 3
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, ab27225)被用于被用于免疫组化在人类样本上 (图 3). J Comp Neurol (2019) ncbi
domestic rabbit 单克隆(EPR18115)
  • 免疫印迹; 小鼠; 图 2s2c
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, ab206293)被用于被用于免疫印迹在小鼠样本上 (图 2s2c). elife (2017) ncbi
domestic rabbit 单克隆(EPR5032)
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Gria2抗体(Epitomics, 3520-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, ab52932)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆
  • 免疫印迹; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, ab52932)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Neuropsychopharmacology (2015) ncbi
domestic rabbit 单克隆
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 2
  • 免疫印迹; 小鼠; 1:2000; 图 s11
艾博抗(上海)贸易有限公司 Gria2抗体(Abcam, ab52932)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 2) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s11). Nat Med (2014) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 4a
Alomone Labs Gria2抗体(Alamone, AGC-005)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 4a). Front Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:75; 图 2a
Alomone Labs Gria2抗体(Alomone, AGC-005)被用于被用于免疫印迹在大鼠样本上浓度为1:75 (图 2a). Mol Cell Neurosci (2018) ncbi
Synaptic Systems
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Synaptic Systems Gria2抗体(Synaptic Systems, 182103)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D39F2)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Gria2抗体(Cell Signaling, 5306)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Aging Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Gria2抗体(Cell signaling, 3921S)被用于被用于免疫印迹在大鼠样本上 (图 3). Neural Plast (2016) ncbi
domestic rabbit 单克隆(D39F2)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Gria2抗体(Cell signaling, 5306)被用于被用于免疫印迹在大鼠样本上 (图 3). Neural Plast (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Gria2抗体(Cell signaling, 4027S)被用于被用于免疫印迹在大鼠样本上 (图 3). Neural Plast (2016) ncbi
Neuromab
小鼠 单克隆(L21/32)
  • 免疫组化; 小鼠; 1:1000
Neuromab Gria2抗体(NeuroMab, 75 002)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Physiol Rep (2020) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
Neuromab Gria2抗体(NeuroMeb, 75-002)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Brain (2019) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 1:500; 图 5c
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Nat Neurosci (2018) ncbi
小鼠 单克隆(L21/32)
  • 其他; 小鼠; 1:1000; 图 1a
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于其他在小鼠样本上浓度为1:1000 (图 1a). Nat Commun (2017) ncbi
小鼠 单克隆(L21/32)
  • 免疫细胞化学; 大鼠; 图 1b
  • 免疫印迹; 大鼠; 图 1a
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫细胞化学在大鼠样本上 (图 1b) 和 被用于免疫印迹在大鼠样本上 (图 1a). Sci Rep (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠; 1:1000; 图 1e
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1e). Neuropsychopharmacology (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠; 图 5
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在大鼠样本上 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠; 1:500; 图 5
Neuromab Gria2抗体(Neuromab, 75-002)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5). J Neurosci (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 1:2000; 图 4f
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4f). Science (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 图 s6
Neuromab Gria2抗体(UC Davis/NIH NeuroMab, L21/32)被用于被用于免疫印迹在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 图 2
Neuromab Gria2抗体(Neuromab, 75-002)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 图 7
Neuromab Gria2抗体(UC Davis/NIH NeuroMab Facility, 73-002)被用于被用于免疫印迹在小鼠样本上 (图 7). Neuropharmacology (2016) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 图 5c
Neuromab Gria2抗体(NeuroMab, L21/32)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Neurodegener (2015) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 小鼠; 图 3
Neuromab Gria2抗体(NeuroMab, L21/32)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Neurodegener (2014) ncbi
小鼠 单克隆(L21/32)
  • 免疫组化; 小鼠; 1:400
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫组化在小鼠样本上浓度为1:400. Mol Vis (2014) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠; 图 1
Neuromab Gria2抗体(Neuromab, L21/32)被用于被用于免疫印迹在大鼠样本上 (图 1). Cereb Cortex (2015) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠; 1:200
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(L21/32)
  • 免疫印迹; 大鼠
Neuromab Gria2抗体(NeuroMab, 75-002)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
碧迪BD
小鼠 单克隆(6C4)
  • 免疫印迹; 小鼠; 1:5000; 图 s4
碧迪BD Gria2抗体(BD Pharmigen, 556341)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(6C4)
  • 免疫组化; 小鼠; 1:200
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Gria2抗体(BD Pharmingen, 556341)被用于被用于免疫组化在小鼠样本上浓度为1:200 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Hippocampus (2014) ncbi
小鼠 单克隆(6C4)
  • 免疫细胞化学; 大鼠
碧迪BD Gria2抗体(BD Pharmingen, 556341)被用于被用于免疫细胞化学在大鼠样本上. J Neurosci (2013) ncbi
文章列表
  1. Arias Hervert E, Xu N, Njus M, Murphy G, Hou Y, Williams J, et al. Actions of Rab27B-GTPase on mammalian central excitatory synaptic transmission. Physiol Rep. 2020;8:e14428 pubmed 出版商
  2. Yeung J, Palpagama T, Tate W, Peppercorn K, Waldvogel H, Faull R, et al. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front Neurosci. 2019;13:1427 pubmed 出版商
  3. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  4. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  5. Egbenya D, Hussain S, Lai Y, Xia J, Anderson A, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018;92:93-103 pubmed 出版商
  6. Baglietto Vargas D, Prieto G, Limon A, Forner S, Rodriguez Ortiz C, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer's disease. Aging Cell. 2018;17:e12791 pubmed 出版商
  7. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  8. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  9. Brechet A, Buchert R, Schwenk J, Boudkkazi S, Zolles G, Siquier Pernet K, et al. AMPA-receptor specific biogenesis complexes control synaptic transmission and intellectual ability. Nat Commun. 2017;8:15910 pubmed 出版商
  10. Zhong C, Akmentin W, DU C, Role L, Talmage D. Axonal Type III Nrg1 Controls Glutamate Synapse Formation and GluA2 Trafficking in Hippocampal-Accumbens Connections. Eneuro. 2017;4: pubmed 出版商
  11. Ouyang J, Carcea I, Schiavo J, Jones K, Rabinowitsch A, Kolaric R, et al. Food restriction induces synaptic incorporation of calcium-permeable AMPA receptors in nucleus accumbens. Eur J Neurosci. 2017;45:826-836 pubmed 出版商
  12. Hendrickson A, Zhang C. Development of cone photoreceptors and their synapses in the human and monkey fovea. J Comp Neurol. 2019;527:38-51 pubmed 出版商
  13. Chen M, Wang J, Jiang J, Zheng X, Justice N, Wang K, et al. APP modulates KCC2 expression and function in hippocampal GABAergic inhibition. elife. 2017;6: pubmed 出版商
  14. Rademacher N, Schmerl B, Lardong J, Wahl M, Shoichet S. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci Rep. 2016;6:35283 pubmed 出版商
  15. Oginsky M, Goforth P, Nobile C, Lopez Santiago L, Ferrario C. Eating 'Junk-Food' Produces Rapid and Long-Lasting Increases in NAc CP-AMPA Receptors: Implications for Enhanced Cue-Induced Motivation and Food Addiction. Neuropsychopharmacology. 2016;41:2977-2986 pubmed 出版商
  16. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. Identification of PSD-95 Depalmitoylating Enzymes. J Neurosci. 2016;36:6431-44 pubmed 出版商
  17. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  18. Russell S, Puttick D, Sawyer A, Potter D, Mague S, Carlezon W, et al. Nucleus Accumbens AMPA Receptors Are Necessary for Morphine-Withdrawal-Induced Negative-Affective States in Rats. J Neurosci. 2016;36:5748-62 pubmed 出版商
  19. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  20. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  21. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  22. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  23. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  24. Chen C, Meng S, Xue Y, Han Y, Sun C, Deng J, et al. Epigenetic modification of PKMζ rescues aging-related cognitive impairment. Sci Rep. 2016;6:22096 pubmed 出版商
  25. Mei Y, Monteiro P, Zhou Y, Kim J, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481-4 pubmed 出版商
  26. Moraga Amaro R, González H, Ugalde V, Donoso Ramos J, Quintana Donoso D, Lara M, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology. 2016;103:222-35 pubmed 出版商
  27. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  28. Hao J, Sun N, Lei L, Li X, Yao B, Sun K, et al. L-Stepholidine rescues memory deficit and synaptic plasticity in models of Alzheimer's disease via activating dopamine D1 receptor/PKA signaling pathway. Cell Death Dis. 2015;6:e1965 pubmed 出版商
  29. Vazquez Sanroman D, Carbó Gas M, Leto K, Cerezo Garcia M, Gil Miravet I, Sanchis Segura C, et al. Cocaine-induced plasticity in the cerebellum of sensitised mice. Psychopharmacology (Berl). 2015;232:4455-67 pubmed 出版商
  30. Peng X, Lister A, Rabinowitsch A, Kolaric R, Cabeza de Vaca S, Ziff E, et al. Episodic sucrose intake during food restriction increases synaptic abundance of AMPA receptors in nucleus accumbens and augments intake of sucrose following restoration of ad libitum feeding. Neuroscience. 2015;295:58-71 pubmed 出版商
  31. Xue Y, Zhu Z, Han H, Liu J, Meng S, Chen C, et al. Overexpression of Protein Kinase Mζ in the Prelimbic Cortex Enhances the Formation of Long-Term Fear Memory. Neuropsychopharmacology. 2015;40:2146-56 pubmed 出版商
  32. Zheng D, Cabeza de Vaca S, Jurkowski Z, Carr K. Nucleus accumbens AMPA receptor involvement in cocaine-conditioned place preference under different dietary conditions in rats. Psychopharmacology (Berl). 2015;232:2313-22 pubmed 出版商
  33. Serrano F, Tapia Rojas C, Carvajal F, Hancke J, Cerpa W, Inestrosa N. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014;9:61 pubmed 出版商
  34. Busskamp V, Lewis N, Guye P, Ng A, Shipman S, Byrne S, et al. Rapid neurogenesis through transcriptional activation in human stem cells. Mol Syst Biol. 2014;10:760 pubmed 出版商
  35. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden J, Seeley W, et al. Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med. 2014;20:1444-51 pubmed 出版商
  36. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  37. Yan Y, Eipper B, Mains R. Kalirin-9 and Kalirin-12 Play Essential Roles in Dendritic Outgrowth and Branching. Cereb Cortex. 2015;25:3487-501 pubmed 出版商
  38. Ho V, Dallalzadeh L, Karathanasis N, Keles M, Vangala S, Grogan T, et al. GluA2 mRNA distribution and regulation by miR-124 in hippocampal neurons. Mol Cell Neurosci. 2014;61:1-12 pubmed 出版商
  39. Nikitczuk J, Patil S, Matikainen Ankney B, Scarpa J, Shapiro M, Benson D, et al. N-cadherin regulates molecular organization of excitatory and inhibitory synaptic circuits in adult hippocampus in vivo. Hippocampus. 2014;24:943-962 pubmed 出版商
  40. Gong K, Kung L, Magni G, Bhargava A, Jasmin L. Increased response to glutamate in small diameter dorsal root ganglion neurons after sciatic nerve injury. PLoS ONE. 2014;9:e95491 pubmed 出版商
  41. Kennard J, Guevremont D, Mason Parker S, Abraham W, Williams J. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo. PLoS ONE. 2014;9:e92972 pubmed 出版商
  42. Megill A, Lee T, Dibattista A, Song J, Spitzer M, Rubinshtein M, et al. A tetra(ethylene glycol) derivative of benzothiazole aniline enhances Ras-mediated spinogenesis. J Neurosci. 2013;33:9306-18 pubmed 出版商
  43. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  44. Eckert M, Guevremont D, Williams J, Abraham W. Rapid visual stimulation increases extrasynaptic glutamate receptor expression but not visual-evoked potentials in the adult rat primary visual cortex. Eur J Neurosci. 2013;37:400-6 pubmed 出版商
  45. Gould T, O Donnell K, Dow E, Du J, Chen G, Manji H. Involvement of AMPA receptors in the antidepressant-like effects of lithium in the mouse tail suspension test and forced swim test. Neuropharmacology. 2008;54:577-87 pubmed
  46. Shukla K, Kim J, Blundell J, Powell C. Learning-induced glutamate receptor phosphorylation resembles that induced by long term potentiation. J Biol Chem. 2007;282:18100-7 pubmed