这是一篇来自已证抗体库的有关大鼠 Grin1的综述,是根据88篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Grin1 抗体。
Grin1 同义词: GluN1; NMDAR1; NR1

赛默飞世尔
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 2g
赛默飞世尔 Grin1抗体(Thermo, 32-0500)被用于被用于免疫印迹在小鼠样本上 (图 2g). J Neurochem (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 3a
赛默飞世尔 Grin1抗体(Zymed, 320500)被用于被用于免疫印迹在大鼠样本上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 1:50; 图 3
  • 免疫印迹; 小鼠; 图 3
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Grin1抗体(生活技术, 32-0500)被用于被用于免疫组化在小鼠样本上浓度为1:50 (图 3), 被用于免疫印迹在小鼠样本上 (图 3), 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1) 和 被用于免疫印迹在人类样本上 (图 1). J Pathol (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 重组(1H13L3)
  • 抑制或激活实验; 大鼠; 图 s2
赛默飞世尔 Grin1抗体(ThermoFisher, 700685)被用于被用于抑制或激活实验在大鼠样本上 (图 s2). Brain Res (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 1:5000
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在大鼠样本上浓度为1:5000. Exp Neurol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1500
赛默飞世尔 Grin1抗体(Invitrogen, MAb 54.1)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Grin1抗体(Thermo Fisher Scientific, PA3-102)被用于. J Neurochem (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Grin1抗体(Life Technolog., 32-0500)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci Res (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 大鼠; 图 2
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在大鼠样本上 (图 2). J Biol Chem (2012) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫印迹在大鼠样本上 (图 5). Neurobiol Dis (2011) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-自由浮动切片; little skate; 1:1000; 图 3
赛默飞世尔 Grin1抗体(Invitrogen, 32-0500)被用于被用于免疫组化-自由浮动切片在little skate样本上浓度为1:1000 (图 3). J Exp Biol (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠; 1:400; 图 4
赛默飞世尔 Grin1抗体(Zymed, 32-0500)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 4). Eur J Neurosci (2010) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 人类
赛默飞世尔 Grin1抗体(Zymed, 54.1)被用于被用于免疫印迹在人类样本上. Prog Neuropsychopharmacol Biol Psychiatry (2003) ncbi
Synaptic Systems
小鼠 单克隆(M68)
  • 免疫组化; 斑马鱼; 1:400; 图 6c
Synaptic Systems Grin1抗体(Synaptic Systems, 114 011)被用于被用于免疫组化在斑马鱼样本上浓度为1:400 (图 6c). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(M68)
  • 免疫组化; 斑马鱼; 1:200; 图 4d
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫组化在斑马鱼样本上浓度为1:200 (图 4d). Sci Adv (2021) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 图 3g
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上 (图 3g). Neuron (2021) ncbi
小鼠 单克隆(M68)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 6e
Synaptic Systems Grin1抗体(Synaptic Systems, 114-011)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 6e). Front Neurosci (2019) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Synaptic Systems Grin1抗体(Synaptic systems, 114 011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Neurosci (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 1:3000; 图 1c
Synaptic Systems Grin1抗体(Synaptic Systems, 114011)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1c). Science (2016) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 大鼠; 1:1000; 图 s3
Synaptic Systems Grin1抗体(Synaptic Systems, 114 011)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3). Mol Biol Cell (2015) ncbi
小鼠 单克隆(M68)
  • 免疫印迹; 小鼠; 图 6
Synaptic Systems Grin1抗体(SYSY, M68)被用于被用于免疫印迹在小鼠样本上 (图 6). Proc Natl Acad Sci U S A (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 4p
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 4p). EBioMedicine (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab17345)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). Science (2020) ncbi
domestic rabbit 单克隆(EPR2480Y)
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab68144)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 4a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 大鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 1:1000; 图 1
艾博抗(上海)贸易有限公司 Grin1抗体(Epitomics, 2824-1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 表 1
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab17345)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (表 1). Eur J Pharm Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:200; 图 5c
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab17345)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 (图 5c). Behav Brain Res (2016) ncbi
小鼠 单克隆(S308-48)
  • 免疫组化-冰冻切片; 人类; 1:250; 图 5
  • 免疫细胞化学; 人类; 1:250; 图 5
  • 免疫印迹; 人类; 1:500; 图 5
艾博抗(上海)贸易有限公司 Grin1抗体(abcam, ab134308)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:250 (图 5), 被用于免疫细胞化学在人类样本上浓度为1:250 (图 5) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(EPR2481(2))
  • 免疫印迹; 小鼠; 图 7
艾博抗(上海)贸易有限公司 Grin1抗体(Abcam, ab109182)被用于被用于免疫印迹在小鼠样本上 (图 7). J Neurosci (2015) ncbi
Novus Biologicals
小鼠 单克隆(R1JHL)
  • 免疫印迹; 小鼠; 1:2000; 图 7a
Novus Biologicals Grin1抗体(Novus, NB300-118)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7a). Mol Neurodegener (2022) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化-自由浮动切片; 人类; 1:400; 图 3a
Alomone Labs Grin1抗体(Alomone, AGC-001)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:400 (图 3a). Front Neuroanat (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:300; 图 1e
Alomone Labs Grin1抗体(Alomone labs, AGC-001)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 1e). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:100; 图 s2
Alomone Labs Grin1抗体(Alomone Labs, AGC-001)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2). Diabetes (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司 Grin1抗体(CST, 5704)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5f). elife (2022) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2019) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Brain (2019) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). J Neurosci (2018) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 图 4I
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, D65B7)被用于被用于免疫印迹在小鼠样本上 (图 4I). elife (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫细胞化学; 小鼠; 图 1g
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫细胞化学在小鼠样本上 (图 1g) 和 被用于免疫印迹在小鼠样本上 (图 1h). Exp Neurol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell signaling, 5704S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 大鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling, 5704)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell signaling, 3381)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Int J Neuropsychopharmacol (2016) ncbi
domestic rabbit 单克隆(D65B7)
  • 免疫印迹; 小鼠; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Grin1抗体(Cell Signaling Technology, D65B7)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5). Anesthesiology (2015) ncbi
碧迪BD
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 11
  • 免疫印迹; 小鼠; 1:500; 图 10b
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 11) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 10b). J Neurosci (2022) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 人类; 1:250; 图 3
  • 免疫组化; 人类; 1:1000; 图 2b
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3) 和 被用于免疫组化在人类样本上浓度为1:1000 (图 2b). Sci Rep (2021) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 ev1h
碧迪BD Grin1抗体(BD bioscince, 556308)被用于被用于免疫印迹在小鼠样本上 (图 ev1h). EMBO Mol Med (2021) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 1:500; 图 s18a
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s18a). Science (2020) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; Lumbriculus variegatus; 1:33; 图 7c
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化-冰冻切片在Lumbriculus variegatus样本上浓度为1:33 (图 7c). J Comp Neurol (2020) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-石蜡切片; 人类; 1:250; 图 3a
碧迪BD Grin1抗体(BD Biosciences, BD556308)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:250 (图 3a). Arthritis Res Ther (2019) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 图 4b
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫组化在小鼠样本上 (图 4b). elife (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫细胞化学; 小鼠; 图 7a
碧迪BD Grin1抗体(BD, 55630878)被用于被用于免疫细胞化学在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 2
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
碧迪BD Grin1抗体(BD Biosciences, 54.1)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Front Cell Neurosci (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 s4
  • 免疫印迹; 大鼠; 1:1000; 图 s2
碧迪BD Grin1抗体(BD Pharmigen, 556308)被用于被用于免疫印迹在小鼠样本上 (图 s4) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000; 图 2c
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 2
碧迪BD Grin1抗体(BD, 556308)被用于被用于免疫印迹在小鼠样本上 (图 2). Nature (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫沉淀; 大鼠; 图 4
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫沉淀在大鼠样本上 (图 4). Nat Neurosci (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫沉淀; 小鼠; 1:500; 图 4
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:500
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫沉淀在小鼠样本上浓度为1:500 (图 4), 被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:500. Front Cell Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000; 图 1
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 图 4
碧迪BD Grin1抗体(BD Transduction Laboratories, 556308)被用于被用于免疫印迹在小鼠样本上 (图 4). J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 大鼠; 1:400
  • 免疫印迹; 大鼠; 1:750; 图 1c
碧迪BD Grin1抗体(PharMingen, 556308)被用于被用于免疫组化在大鼠样本上浓度为1:400 和 被用于免疫印迹在大鼠样本上浓度为1:750 (图 1c). Front Behav Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫组化-冰冻切片; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:4000; 图 2
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin1抗体(BD Pharmingen, 556308)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cereb Cortex (2016) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; western mosquitofish; 图 6
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化在western mosquitofish样本上 (图 6). Front Neural Circuits (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫组化; 小鼠; 1:50
碧迪BD Grin1抗体(BD Biosciences, 556308)被用于被用于免疫组化在小鼠样本上浓度为1:50. J Comp Neurol (2014) ncbi
小鼠 单克隆(54.1)
  • 免疫印迹; 大鼠
碧迪BD Grin1抗体(BD Biosciences, 54.1)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
Neuromab
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 图 4b
Neuromab Grin1抗体(Neuromab, 75-272)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Adv (2021) ncbi
小鼠 单克隆(N308/48)
  • 免疫组化; 小鼠; 1:200
Neuromab Grin1抗体(NeuroMab, N308/48)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2021) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 1:500; 图 4c
Neuromab Grin1抗体(NeuroMab, 75?\ 272)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Transl Psychiatry (2021) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 1:1000; 图 2c
Neuromab Grin1抗体(NeuroMab Facility, 75/272)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2c). elife (2019) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 1:500; 图 5c
Neuromab Grin1抗体(NeuroMab, 75-272)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5c). Nat Neurosci (2018) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 图 6
Neuromab Grin1抗体(NeuroMab, N308/48)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 小鼠; 图 7
Neuromab Grin1抗体(UC Davis/NIH NeuroMab Facility, 73-272)被用于被用于免疫印迹在小鼠样本上 (图 7). Neuropharmacology (2016) ncbi
小鼠 单克隆(N308/48)
  • 免疫组化; 大鼠; 5 ug/ml; 图 7a
Neuromab Grin1抗体(UC Davis/NIH NeuroMab facility, 75-272)被用于被用于免疫组化在大鼠样本上浓度为5 ug/ml (图 7a). PLoS ONE (2015) ncbi
小鼠 单克隆(N308/48)
  • 免疫组化; 小鼠; 1:500
Neuromab Grin1抗体(NeuroMab, 75-272)被用于被用于免疫组化在小鼠样本上浓度为1:500. Mol Vis (2014) ncbi
小鼠 单克隆(N308/48)
  • 免疫印迹; 人类; 1:300; 图 1
Neuromab Grin1抗体(NeuroMab, N308/48)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 1). Nat Commun (2014) ncbi
西格玛奥德里奇
domestic rabbit 多克隆
  • 免疫沉淀; 小鼠; 1:1000; 图 1d
西格玛奥德里奇 Grin1抗体(Sigma, G8913)被用于被用于免疫沉淀在小鼠样本上浓度为1:1000 (图 1d). Ann Neurol (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s1
西格玛奥德里奇 Grin1抗体(Sigma, G8913)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s1). Front Cell Neurosci (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Grin1抗体(Sigma, G8913)被用于. J Neurosci (2015) ncbi
文章列表
  1. Puntambekar S, Moutinho M, Lin P, Jadhav V, Tumbleson Brink D, Balaji A, et al. CX3CR1 deficiency aggravates amyloid driven neuronal pathology and cognitive decline in Alzheimer's disease. Mol Neurodegener. 2022;17:47 pubmed 出版商
  2. Coviello S, Gramuntell Y, Klimczak P, Varea E, Blasco Iba xf1 ez J, Crespo C, et al. Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Front Neuroanat. 2022;16:851432 pubmed 出版商
  3. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  4. Zheng R, Du Y, Wang X, Liao T, Zhang Z, Wang N, et al. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. elife. 2022;11: pubmed 出版商
  5. Matsuura K, Kobayashi S, Konno K, Yamasaki M, Horiuchi T, Senda T, et al. SIPA1L1/SPAR1 Interacts with the Neurabin Family of Proteins and is Involved in GPCR Signaling. J Neurosci. 2022;42:2448-2473 pubmed 出版商
  6. Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7:eabh2974 pubmed 出版商
  7. Kilonzo K, van der Veen B, Teutsch J, Schulz S, Kapanaiah S, Liss B, et al. Delayed-matching-to-position working memory in mice relies on NMDA-receptors in prefrontal pyramidal cells. Sci Rep. 2021;11:8788 pubmed 出版商
  8. Dong Y, Hsu F, Koziol White C, Stepanova V, Jude J, Gritsiuta A, et al. Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep. 2021;11:8205 pubmed 出版商
  9. Xie J, Jusuf P, Bui B, Dudczig S, Sztal T, Goodbourn P. Altered Visual Function in a Larval Zebrafish Knockout of Neurodevelopmental Risk Gene pdzk1. Invest Ophthalmol Vis Sci. 2021;62:29 pubmed 出版商
  10. Fang H, Bygrave A, Roth R, Johnson R, Huganir R. An optimized CRISPR/Cas9 approach for precise genome editing in neurons. elife. 2021;10: pubmed 出版商
  11. Golan M, Boulanger Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye D, et al. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. Sci Adv. 2021;7: pubmed 出版商
  12. Zhang F, Rein B, Zhong P, Shwani T, Conrow Graham M, Wang Z, et al. Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Transl Psychiatry. 2021;11:99 pubmed 出版商
  13. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  14. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  15. Yan J, Bengtson C, Buchthal B, Hagenston A, Bading H. Coupling of NMDA receptors and TRPM4 guides discovery of unconventional neuroprotectants. Science. 2020;370: pubmed 出版商
  16. Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, et al. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science. 2020;369: pubmed 出版商
  17. Yeung J, Palpagama T, Tate W, Peppercorn K, Waldvogel H, Faull R, et al. The Acute Effects of Amyloid-Beta1-42 on Glutamatergic Receptor and Transporter Expression in the Mouse Hippocampus. Front Neurosci. 2019;13:1427 pubmed 出版商
  18. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  19. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  20. Lybrand Z, Martinez Acosta V, Zoran M. Coupled sensory interneurons mediate escape neural circuit processing in an aquatic annelid worm, Lumbriculus variegatus. J Comp Neurol. 2020;528:468-480 pubmed 出版商
  21. Zhang H, Tian X, Lu X, Xu D, Guo Y, Dong Z, et al. TMEM25 modulates neuronal excitability and NMDA receptor subunit NR2B degradation. J Clin Invest. 2019;129:3864-3876 pubmed 出版商
  22. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed 出版商
  23. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  24. Bergqvist F, Carr A, Wheway K, Watkins B, Oppermann U, Jakobsson P, et al. Divergent roles of prostacyclin and PGE2 in human tendinopathy. Arthritis Res Ther. 2019;21:74 pubmed 出版商
  25. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  26. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  27. Qin L, Ma K, Wang Z, Hu Z, Matas E, Wei J, et al. Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nat Neurosci. 2018;21:564-575 pubmed 出版商
  28. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  29. Martenson J, Yamasaki T, Chaudhury N, Albrecht D, Tomita S. Assembly rules for GABAA receptor complexes in the brain. elife. 2017;6: pubmed 出版商
  30. Frank R, Zhu F, Komiyama N, Grant S. Hierarchical organization and genetically separable subfamilies of PSD95 postsynaptic supercomplexes. J Neurochem. 2017;142:504-511 pubmed 出版商
  31. Barad Z, Grattan D, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep. 2017;7:42926 pubmed 出版商
  32. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  33. Bodrikov V, Pauschert A, Kochlamazashvili G, Stuermer C. Reggie-1 and reggie-2 (flotillins) participate in Rab11a-dependent cargo trafficking, spine synapse formation and LTP-related AMPA receptor (GluA1) surface exposure in mouse hippocampal neurons. Exp Neurol. 2017;289:31-45 pubmed 出版商
  34. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  35. Qi X, Zhang K, Xu T, Yamaki V, Wei Z, Huang M, et al. Sex Differences in Long-Term Potentiation at Temporoammonic-CA1 Synapses: Potential Implications for Memory Consolidation. PLoS ONE. 2016;11:e0165891 pubmed 出版商
  36. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  37. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  38. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  39. Planaguma J, Haselmann H, Mannara F, Petit Pedrol M, Grünewald B, Aguilar E, et al. Ephrin-B2 prevents N-methyl-D-aspartate receptor antibody effects on memory and neuroplasticity. Ann Neurol. 2016;80:388-400 pubmed 出版商
  40. Roshanravan H, Kim E, Dryer S. NMDA Receptors as Potential Therapeutic Targets in Diabetic Nephropathy: Increased Renal NMDA Receptor Subunit Expression in Akita Mice and Reduced Nephropathy Following Sustained Treatment With Memantine or MK-801. Diabetes. 2016;65:3139-50 pubmed 出版商
  41. Shen J, Wang R, He Z, Huang H, He X, Zhou J, et al. NMDA receptors participate in the progression of diabetic kidney disease by decreasing Cdc42-GTP activation in podocytes. J Pathol. 2016;240:149-60 pubmed 出版商
  42. Bosch C, Muhaisen A, Pujadas L, Soriano E, MARTINEZ A. Reelin Exerts Structural, Biochemical and Transcriptional Regulation Over Presynaptic and Postsynaptic Elements in the Adult Hippocampus. Front Cell Neurosci. 2016;10:138 pubmed 出版商
  43. Sun X, Li L, Liu F, Huang Z, Bean J, Jiao H, et al. Lrp4 in astrocytes modulates glutamatergic transmission. Nat Neurosci. 2016;19:1010-8 pubmed 出版商
  44. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  45. Heise C, Schroeder J, Schoen M, Halbedl S, Reim D, Woelfle S, et al. Selective Localization of Shanks to VGLUT1-Positive Excitatory Synapses in the Mouse Hippocampus. Front Cell Neurosci. 2016;10:106 pubmed 出版商
  46. Reinhard J, Kriz A, Galic M, Angliker N, Rajalu M, Vogt K, et al. The calcium sensor Copine-6 regulates spine structural plasticity and learning and memory. Nat Commun. 2016;7:11613 pubmed 出版商
  47. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  48. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  49. Vingtdeux V, Chang E, Frattini S, Zhao H, Chandakkar P, Adrien L, et al. CALHM1 deficiency impairs cerebral neuron activity and memory flexibility in mice. Sci Rep. 2016;6:24250 pubmed 出版商
  50. Zhu X, Liu X, Sun S, Zhuang H, Yang J, Henkemeyer M, et al. Ephrin-B3 coordinates timed axon targeting and amygdala spinogenesis for innate fear behaviour. Nat Commun. 2016;7:11096 pubmed 出版商
  51. Li M, Corbelli A, Watanabe S, Armelloni S, Ikehata M, Parazzi V, et al. Three-dimensional podocyte-endothelial cell co-cultures: Assembly, validation, and application to drug testing and intercellular signaling studies. Eur J Pharm Sci. 2016;86:1-12 pubmed 出版商
  52. Mei Y, Monteiro P, Zhou Y, Kim J, Gao X, Fu Z, et al. Adult restoration of Shank3 expression rescues selective autistic-like phenotypes. Nature. 2016;530:481-4 pubmed 出版商
  53. Weilinger N, Lohman A, Rakai B, Ma E, Bialecki J, Maslieieva V, et al. Metabotropic NMDA receptor signaling couples Src family kinases to pannexin-1 during excitotoxicity. Nat Neurosci. 2016;19:432-42 pubmed 出版商
  54. Wang Z, Fan J, Wang J, Li Y, Duan D, Du G, et al. Chronic cerebral hypoperfusion induces long-lasting cognitive deficits accompanied by long-term hippocampal silent synapses increase in rats. Behav Brain Res. 2016;301:243-52 pubmed 出版商
  55. Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016;1633:10-18 pubmed 出版商
  56. Moraga Amaro R, González H, Ugalde V, Donoso Ramos J, Quintana Donoso D, Lara M, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology. 2016;103:222-35 pubmed 出版商
  57. Brai E, Marathe S, Astori S, Fredj N, Perry E, Lamy C, et al. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front Cell Neurosci. 2015;9:447 pubmed 出版商
  58. Zhang P, Fu W, Fu A, Ip N. S-nitrosylation-dependent proteasomal degradation restrains Cdk5 activity to regulate hippocampal synaptic strength. Nat Commun. 2015;6:8665 pubmed 出版商
  59. Mayanagi T, Yasuda H, Sobue K. PSD-Zip70 Deficiency Causes Prefrontal Hypofunction Associated with Glutamatergic Synapse Maturation Defects by Dysregulation of Rap2 Activity. J Neurosci. 2015;35:14327-40 pubmed 出版商
  60. Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed 出版商
  61. Liu S, Mi W, Li Q, Zhang M, Han P, Hu S, et al. Spinal IL-33/ST2 Signaling Contributes to Neuropathic Pain via Neuronal CaMKII-CREB and Astroglial JAK2-STAT3 Cascades in Mice. Anesthesiology. 2015;123:1154-69 pubmed 出版商
  62. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  63. SÅ‚oniecka M, Le Roux S, Boman P, Byström B, Zhou Q, Danielson P. Expression Profiles of Neuropeptides, Neurotransmitters, and Their Receptors in Human Keratocytes In Vitro and In Situ. PLoS ONE. 2015;10:e0134157 pubmed 出版商
  64. Gingras S, Earls L, Howell S, Smeyne R, Zakharenko S, Pelletier S. SCYL2 Protects CA3 Pyramidal Neurons from Excitotoxicity during Functional Maturation of the Mouse Hippocampus. J Neurosci. 2015;35:10510-22 pubmed 出版商
  65. Grüter T, Wiescholleck V, Dubovyk V, Aliane V, Manahan Vaughan D. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis. Front Behav Neurosci. 2015;9:117 pubmed 出版商
  66. Ferreira J, Schmidt J, Rio P, Águas R, Rooyakkers A, Li K, et al. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome. J Neurosci. 2015;35:8462-79 pubmed 出版商
  67. Atkin G, Moore S, Lu Y, Nelson R, Tipper N, Rajpal G, et al. Loss of F-box only protein 2 (Fbxo2) disrupts levels and localization of select NMDA receptor subunits, and promotes aberrant synaptic connectivity. J Neurosci. 2015;35:6165-78 pubmed 出版商
  68. Balsara R, Dang A, Donahue D, Snow T, Castellino F. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS ONE. 2015;10:e0122840 pubmed 出版商
  69. McGuier N, Padula A, Mulholland P, Chandler L. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing N-methyl-D-aspartate receptors in the nucleus accumbens. Front Pharmacol. 2015;6:28 pubmed 出版商
  70. Sceniak M, Lang M, Enomoto A, James Howell C, Hermes D, Katz D. Mechanisms of Functional Hypoconnectivity in the Medial Prefrontal Cortex of Mecp2 Null Mice. Cereb Cortex. 2016;26:1938-1956 pubmed 出版商
  71. Lo S, Wang Y, Weber M, Larson J, Scearce Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci. 2015;35:2118-32 pubmed 出版商
  72. Garcia Alvarez G, Lu B, Yap K, Wong L, Thevathasan J, Lim L, et al. STIM2 regulates PKA-dependent phosphorylation and trafficking of AMPARs. Mol Biol Cell. 2015;26:1141-59 pubmed 出版商
  73. Choi T, Jung S, Nah J, Ko H, Jo S, Chung G, et al. Low levels of methyl β-cyclodextrin disrupt GluA1-dependent synaptic potentiation but not synaptic depression. J Neurochem. 2015;132:276-85 pubmed 出版商
  74. de Andrade G, Kunzelman L, Merrill M, Fuerst P. Developmentally dynamic colocalization patterns of DSCAM with adhesion and synaptic proteins in the mouse retina. Mol Vis. 2014;20:1422-33 pubmed
  75. Maraschi A, Ciammola A, Folci A, Sassone F, Ronzitti G, Cappelletti G, et al. Parkin regulates kainate receptors by interacting with the GluK2 subunit. Nat Commun. 2014;5:5182 pubmed 出版商
  76. Abazyan S, Yang E, Abazyan B, Xia M, Yang C, Rojas C, et al. Mutant disrupted-in-schizophrenia 1 in astrocytes: focus on glutamate metabolism. J Neurosci Res. 2014;92:1659-68 pubmed 出版商
  77. Serrano Velez J, Rodriguez Alvarado M, Torres Vazquez I, Fraser S, Yasumura T, Vanderpool K, et al. Abundance of gap junctions at glutamatergic mixed synapses in adult Mosquitofish spinal cord neurons. Front Neural Circuits. 2014;8:66 pubmed 出版商
  78. Lee S, Sharma M, S dhof T, Shen J. Synaptic function of nicastrin in hippocampal neurons. Proc Natl Acad Sci U S A. 2014;111:8973-8 pubmed 出版商
  79. Kennard J, Guevremont D, Mason Parker S, Abraham W, Williams J. Redistribution of ionotropic glutamate receptors detected by laser microdissection of the rat dentate gyrus 48 h following LTP induction in vivo. PLoS ONE. 2014;9:e92972 pubmed 出版商
  80. Marques Lopes J, Van Kempen T, Waters E, Pickel V, Iadecola C, Milner T. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor ?-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol. 2014;522:3075-90 pubmed 出版商
  81. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  82. She K, Ferreira J, Carvalho A, Craig A. Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem. 2012;287:27432-45 pubmed 出版商
  83. She K, Craig A. NMDA receptors mediate synaptic competition in culture. PLoS ONE. 2011;6:e24423 pubmed 出版商
  84. Gibbs S, Chattopadhyaya B, Desgent S, Awad P, Clerk Lamalice O, Levesque M, et al. Long-term consequences of a prolonged febrile seizure in a dual pathology model. Neurobiol Dis. 2011;43:312-21 pubmed 出版商
  85. Kennard J, Barmanray R, Sampurno S, Ozturk E, Reid C, Paradiso L, et al. Stargazin and AMPA receptor membrane expression is increased in the somatosensory cortex of Genetic Absence Epilepsy Rats from Strasbourg. Neurobiol Dis. 2011;42:48-54 pubmed 出版商
  86. Zhang Z, Bodznick D. The importance of N-methyl-D-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J Exp Biol. 2010;213:2700-9 pubmed 出版商
  87. Ouardouz M, Lema P, Awad P, Di Cristo G, Carmant L. N-methyl-D-aspartate, hyperpolarization-activated cation current (Ih) and gamma-aminobutyric acid conductances govern the risk of epileptogenesis following febrile seizures in rat hippocampus. Eur J Neurosci. 2010;31:1252-60 pubmed 出版商
  88. Thompson P, Egbufoama S, Vawter M. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:411-7 pubmed