这是一篇来自已证抗体库的有关大鼠 Grin2b的综述,是根据86篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Grin2b 抗体。
Grin2b 同义词: GluN2B

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 (图 5). J Pain Res (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4p
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于免疫印迹在小鼠样本上 (图 4p). EBioMedicine (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, 65783)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h). Int J Biol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 2f
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2f). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:3000; 图 2a
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于免疫印迹在大鼠样本上浓度为1:3000 (图 2a). Mol Cell Neurosci (2018) ncbi
domestic rabbit 单克隆(EP1858Y)
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, Ab81271)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Neurosci (2018) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 5h
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样本上 (图 5h). Diabetes (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 6
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, AB65783)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 2b
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样本上 (图 2b). EBioMedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2f
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab73014)被用于被用于免疫印迹在小鼠样本上 (图 2f). EBioMedicine (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Mol Pain (2016) ncbi
domestic rabbit 多克隆
  • 其他; 大鼠; 1:400; 图 6b
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab65783)被用于被用于其他在大鼠样本上浓度为1:400 (图 6b). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:2000; 图 5
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Int J Neuropsychopharmacol (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:1000; 图 3a,b
艾博抗(上海)贸易有限公司 Grin2b抗体(Abcam, ab28373)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a,b). PLoS ONE (2015) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:300; 图 3
赛默飞世尔 Grin2b抗体(Thermo Fisher Scientific, 71-8600)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛默飞世尔 Grin2b抗体(Invitrogen, A6474)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Biol Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:250; 图 3a
赛默飞世尔 Grin2b抗体(Thermo Fischer Scientific, 718600)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3a). elife (2020) ncbi
小鼠 单克隆(NR2B)
  • 免疫细胞化学; 人类; 1:1000; 图 2h
  • 免疫印迹; 人类; 1:500; 图 2c
赛默飞世尔 Grin2b抗体(Thermo Scientific, MA1-2014)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 2h) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 1:2000; 图 7b
赛默飞世尔 Grin2b抗体(ThermoFisher Scientific, MA1-2014)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 7b). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 6a
赛默飞世尔 Grin2b抗体(分子探针, A-6474)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 6a). J Cell Physiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:3000; 图 4
赛默飞世尔 Grin2b抗体(Invitrogen, 71-8,600)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 抑制或激活实验; 大鼠; 图 s2
赛默飞世尔 Grin2b抗体(ThermoFisher Scientific, 71-8600)被用于被用于抑制或激活实验在大鼠样本上 (图 s2). Brain Res (2016) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Grin2b抗体(Thermo Fisher, MA1-2014)被用于被用于免疫印迹在小鼠样本上 (图 3). Curr Alzheimer Res (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Grin2b抗体(Invitrogen, 71-8600)被用于. J Neurosci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Grin2b抗体(Molecular Probes/Invitrogen, A-6474)被用于. J Alzheimers Dis (2015) ncbi
小鼠 单克隆(NR2B)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Grin2b抗体(Pierce, MA1-2014)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Brain Behav Immun (2014) ncbi
小鼠 单克隆(B3-13B11)
  • 免疫细胞化学; 大鼠
赛默飞世尔 Grin2b抗体(Invitrogen, 32-0700)被用于被用于免疫细胞化学在大鼠样本上. J Biol Chem (2012) ncbi
BioLegend
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 图 4b
BioLegend Grin2b抗体(BioLegend, 832501)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Adv (2021) ncbi
小鼠 单克隆(N59/20)
  • 免疫细胞化学; 大鼠; 1:100; 图 5b
  • 免疫印迹; 大鼠; 1:100; 图 5a
BioLegend Grin2b抗体(Biolegend, N59/20)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 5b) 和 被用于免疫印迹在大鼠样本上浓度为1:100 (图 5a). Mol Neurobiol (2018) ncbi
Alomone Labs
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:3000; 图 2d
Alomone Labs Grin2b抗体(Alomone, AGC-003)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 2d). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4I
Alomone Labs Grin2b抗体(Alomone labs, AGC-003)被用于被用于免疫印迹在小鼠样本上 (图 4I). elife (2017) ncbi
MyBioSource
大鼠 单克隆(S59-36)
  • 免疫沉淀; 小鼠; 图 2a
MyBioSource Grin2b抗体(MyBioSource, MBS800075)被用于被用于免疫沉淀在小鼠样本上 (图 2a). Exp Neurol (2018) ncbi
北京傲锐东源
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 5h
北京傲锐东源 Grin2b抗体(OriGene, TA309196)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5h). J Exp Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b, s1g, 4d
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 4207)被用于被用于免疫印迹在小鼠样本上 (图 1b, s1g, 4d). Sci Adv (2022) ncbi
domestic rabbit 单克隆(D8E10)
  • 免疫印迹; 小鼠; 图 s4
  • 免疫印迹; 人类; 图 s4
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 14544S)被用于被用于免疫印迹在小鼠样本上 (图 s4) 和 被用于免疫印迹在人类样本上 (图 s4). PLoS Pathog (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5f
赛信通(上海)生物试剂有限公司 Grin2b抗体(CST, 4207)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5f). elife (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 4207S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, CST4208)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Front Pharmacol (2020) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling Technology, 4212)被用于被用于免疫印迹在人类样本上 (图 2a). J Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2g
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling Technology, 4207S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Neurosci (2019) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫细胞化学; 小鼠; 图 2c
  • 免疫印迹; 小鼠; 1:2000; 图 3
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 4212)被用于被用于免疫细胞化学在小鼠样本上 (图 2c) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3). Exp Neurol (2018) ncbi
domestic rabbit 单克隆(D8E10)
  • 免疫印迹; 大鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 14544)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2b). Brain Res (2017) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫印迹; 大鼠; 图 7b
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling, 4212)被用于被用于免疫印迹在大鼠样本上 (图 7b). J Neurosci (2016) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell signaling, 4212)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cell Div (2016) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling Tech, 4212)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D8E10)
  • 免疫印迹; 大鼠; 图 2
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell signaling, 14544)被用于被用于免疫印迹在大鼠样本上 (图 2). Neural Plast (2016) ncbi
domestic rabbit 单克隆(D15B3)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Grin2b抗体(Cell Signaling Technology, 4212S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Mol Brain (2015) ncbi
Phosphosolutions
  • 免疫印迹; 小鼠; 1:1000; 图 2g
Phosphosolutions Grin2b抗体(PhosphoSolutions, p1516-1472)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Neurosci (2019) ncbi
  • 免疫印迹; 大鼠; 图 2
Phosphosolutions Grin2b抗体(PhosphoSolutions, P1516-1472)被用于被用于免疫印迹在大鼠样本上 (图 2). Neural Plast (2016) ncbi
Neuromab
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 ev1h
Neuromab Grin2b抗体(Neuromab, 75?\101)被用于被用于免疫印迹在小鼠样本上 (图 ev1h). EMBO Mol Med (2021) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 大鼠; 1:200; 图 5a
Neuromab Grin2b抗体(NeuroMab, 75-C101)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). elife (2020) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:500; 图 1j
Neuromab Grin2b抗体(NeuromAb, 73-101)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 1j). elife (2020) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000; 图 5d
Neuromab Grin2b抗体(Neuromab, 75-097)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). elife (2020) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
Neuromab Grin2b抗体(NeuroMab Facility, 75/097)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). elife (2019) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
Neuromab Grin2b抗体(DSHB, 75-097)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Proc Natl Acad Sci U S A (2018) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:500; 图 4c
Neuromab Grin2b抗体(NeuroMab, 75-101)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4c). Nat Commun (2017) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
Neuromab Grin2b抗体(NeuroMab, 75-097)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
小鼠 单克隆(N59/36)
  • proximity ligation assay; 小鼠; 图 s2
Neuromab Grin2b抗体(UC Davis/NIH NeuroMab Facility, N59/36)被用于被用于proximity ligation assay在小鼠样本上 (图 s2). Nat Struct Mol Biol (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:1000; 图 2
Neuromab Grin2b抗体(NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 1f
  • 免疫印迹; 大鼠; 图 1e
Neuromab Grin2b抗体(NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上 (图 1f) 和 被用于免疫印迹在大鼠样本上 (图 1e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 大鼠; 1:1000; 图 1d
Neuromab Grin2b抗体(NeuroMab, 75-097)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 1d). Nat Methods (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
Neuromab Grin2b抗体(NeuroMab, 75-101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Sci Rep (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:2000; 图 1c
Neuromab Grin2b抗体(NeuroMab, 75-101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1c). Science (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 s6
Neuromab Grin2b抗体(UC Davis/NIH NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上 (图 s6). Nat Commun (2016) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000; 图 4e
Neuromab Grin2b抗体(NeuroMab, N59/20)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4e). Exp Neurol (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 7
Neuromab Grin2b抗体(UC Davis/NIH NeuroMab Facility, 73-101)被用于被用于免疫印迹在小鼠样本上 (图 7). Neuropharmacology (2016) ncbi
小鼠 单克隆(N59/36)
  • 免疫细胞化学; 大鼠; 1:100; 图 2
  • 免疫印迹; 大鼠; 1:1000; 图 s3
Neuromab Grin2b抗体(Neuromab, 75-101)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s3). Nat Commun (2015) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 5c
Neuromab Grin2b抗体(NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mol Neurodegener (2015) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 图 4b
Neuromab Grin2b抗体(Neuromab, 75-097)被用于被用于免疫印迹在小鼠样本上 (图 4b). Korean J Physiol Pharmacol (2015) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:300; 图 3
Neuromab Grin2b抗体(Neuromab, N59/36)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 3). Nat Neurosci (2015) ncbi
小鼠 单克隆(N59/36)
  • 免疫组化; 大鼠; 5 ug/ml; 图 9a
Neuromab Grin2b抗体(UC Davis/NIH NeuroMab facility, 75-101)被用于被用于免疫组化在大鼠样本上浓度为5 ug/ml (图 9a). PLoS ONE (2015) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:2000; 图 2
Neuromab Grin2b抗体(NIH NeuroMab, 75-097)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Front Pharmacol (2015) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 图 7
Neuromab Grin2b抗体(NeuroMab, N59/20)被用于被用于免疫印迹在小鼠样本上 (图 7). J Neurosci (2015) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 图 3
Neuromab Grin2b抗体(NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上 (图 3). Mol Neurodegener (2014) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 大鼠; 1:200
Neuromab Grin2b抗体(NeuroMab, 73-097)被用于被用于免疫印迹在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 小鼠; 1:1000
Neuromab Grin2b抗体(NeuroMab, 75-097)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2014) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 小鼠; 1:100
Neuromab Grin2b抗体(NeuroMab, N59/36)被用于被用于免疫印迹在小鼠样本上浓度为1:100. J Neurosci (2013) ncbi
小鼠 单克隆(N59/20)
  • 免疫组化-冰冻切片; 小鼠; 1:300
  • 免疫印迹; 小鼠; 1:1000
Neuromab Grin2b抗体(NeuroMab, N59/20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 和 被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurosci (2013) ncbi
小鼠 单克隆(N59/36)
  • 免疫细胞化学; 小鼠; 1:500
Neuromab Grin2b抗体(NeuroMab, 75-101)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. PLoS Comput Biol (2013) ncbi
小鼠 单克隆(N59/20)
  • 免疫印迹; 大鼠
Neuromab Grin2b抗体(NeuroMab, 75-097)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(N59/36)
  • 免疫印迹; 大鼠
Neuromab Grin2b抗体(NeuroMab, 75-101)被用于被用于免疫印迹在大鼠样本上. J Neurosci (2013) ncbi
碧迪BD
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 图 s4c
碧迪BD Grin2b抗体(BD Biosciences, 610416)被用于被用于免疫印迹在小鼠样本上 (图 s4c). Proc Natl Acad Sci U S A (2021) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000; 图 4g
碧迪BD Grin2b抗体(BD Biosciences, 610416)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4g). Nat Commun (2019) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 图 2e
碧迪BD Grin2b抗体(BD, 610416)被用于被用于免疫印迹在小鼠样本上 (图 2e). Sci Rep (2017) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 大鼠; 图 3a
碧迪BD Grin2b抗体(BD biosciences, 610417)被用于被用于免疫印迹在大鼠样本上 (图 3a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000; 图 4
碧迪BD Grin2b抗体(BD Bioscience, 610416/7)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫细胞化学; 小鼠; 图 5
碧迪BD Grin2b抗体(BD Transduction Laboratories, 610416)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Acta Neuropathol Commun (2016) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 人类; 1:500
碧迪BD Grin2b抗体(BD Biosciences, 610416)被用于被用于免疫印迹在人类样本上浓度为1:500. Acta Neuropathol Commun (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin2b抗体(BD Transduction, 610417)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫组化; 大鼠; 1 ug/ml; 图 2a
碧迪BD Grin2b抗体(BD Transduction, 610416)被用于被用于免疫组化在大鼠样本上浓度为1 ug/ml (图 2a). Front Synaptic Neurosci (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Grin2b抗体(BD Transduction Laboratories, 610416)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Ann Neurol (2015) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 大鼠
碧迪BD Grin2b抗体(BD Biosciences, 610417)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(13/NMDAR2B)
  • 免疫印迹; 小鼠
碧迪BD Grin2b抗体(BD Transduction Labs, 610417)被用于被用于免疫印迹在小鼠样本上. J Neuroinflammation (2014) ncbi
文章列表
  1. Li Y, Fang S, Zhou L, Mo X, Guo H, Deng Y, et al. Complement Receptor 3 Pathway and NMDA Receptor 2B Subunit Involve Neuropathic Pain Associated with Spinal Cord Injury. J Pain Res. 2022;15:1813-1823 pubmed 出版商
  2. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  3. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  4. Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, et al. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog. 2022;18:e1010366 pubmed 出版商
  5. Zheng R, Du Y, Wang X, Liao T, Zhang Z, Wang N, et al. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. elife. 2022;11: pubmed 出版商
  6. Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7:eabh2974 pubmed 出版商
  7. Gan C, Zou Y, Xia Y, Zhang T, Chen D, Lan G, et al. Inhibition of Death-associated Protein Kinase 1 protects against Epileptic Seizures in mice. Int J Biol Sci. 2021;17:2356-2366 pubmed 出版商
  8. Dong Y, Hsu F, Koziol White C, Stepanova V, Jude J, Gritsiuta A, et al. Functional NMDA receptors are expressed by human pulmonary artery smooth muscle cells. Sci Rep. 2021;11:8205 pubmed 出版商
  9. Gordon A, Yoon S, Tran S, Makinson C, Park J, Andersen J, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. 2021;24:331-342 pubmed 出版商
  10. Lira M, Zamorano P, Cerpa W. Exo70 intracellular redistribution after repeated mild traumatic brain injury. Biol Res. 2021;54:5 pubmed 出版商
  11. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  12. Fukata Y, Chen X, Chiken S, Hirano Y, Yamagata A, Inahashi H, et al. LGI1-ADAM22-MAGUK configures transsynaptic nanoalignment for synaptic transmission and epilepsy prevention. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  13. Sanders S, Hernandez L, Soh H, Karnam S, Walikonis R, Tzingounis A, et al. The palmitoyl acyltransferase ZDHHC14 controls Kv1-family potassium channel clustering at the axon initial segment. elife. 2020;9: pubmed 出版商
  14. Haubrich J, Bernabo M, Nader K. Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. elife. 2020;9: pubmed 出版商
  15. Tan Y, Xu Y, Cheng C, Zheng C, Zeng W, Wang J, et al. LY354740 Reduces Extracellular Glutamate Concentration, Inhibits Phosphorylation of Fyn/NMDARs, and Expression of PLK2/pS129 α-Synuclein in Mice Treated With Acute or Sub-Acute MPTP. Front Pharmacol. 2020;11:183 pubmed 出版商
  16. Kim K, Shin W, Kang M, Lee S, Kim D, Kang R, et al. Presynaptic PTPσ regulates postsynaptic NMDA receptor function through direct adhesion-independent mechanisms. elife. 2020;9: pubmed 出版商
  17. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  18. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  19. Yao W, Tambini M, Liu X, D ADAMIO L. Tuning of glutamate, but not GABA, release by an intra-synaptic vesicles APP domain whose function can be modulated by β- or α-secretase cleavage. J Neurosci. 2019;: pubmed 出版商
  20. Koster K, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. elife. 2019;8: pubmed 出版商
  21. Zhong L, Xu Y, Zhuo R, Wang T, Wang K, Huang R, et al. Soluble TREM2 ameliorates pathological phenotypes by modulating microglial functions in an Alzheimer's disease model. Nat Commun. 2019;10:1365 pubmed 出版商
  22. Salazar S, Cox T, Lee S, Brody A, Chyung A, Haas L, et al. Alzheimer's Disease Risk Factor Pyk2 Mediates Amyloid-β-Induced Synaptic Dysfunction and Loss. J Neurosci. 2019;39:758-772 pubmed 出版商
  23. Egbenya D, Hussain S, Lai Y, Xia J, Anderson A, Davanger S. Changes in synaptic AMPA receptor concentration and composition in chronic temporal lobe epilepsy. Mol Cell Neurosci. 2018;92:93-103 pubmed 出版商
  24. Wang W, Rein B, Zhang F, Tan T, Zhong P, Qin L, et al. Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci. 2018;38:5939-5948 pubmed 出版商
  25. Wang Y, Figueiredo D, Sun X, Dong Z, Chen W, Cui W, et al. Controlling of glutamate release by neuregulin3 via inhibiting the assembly of the SNARE complex. Proc Natl Acad Sci U S A. 2018;115:2508-2513 pubmed 出版商
  26. Lu F, Shao G, Wang Y, Guan S, Burlingame A, Liu X, et al. Hypoxia-ischemia modifies postsynaptic GluN2B-containing NMDA receptor complexes in the neonatal mouse brain. Exp Neurol. 2018;299:65-74 pubmed 出版商
  27. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  28. Wilkinson B, Li J, Coba M. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling. Sci Rep. 2017;7:5272 pubmed 出版商
  29. Sodero A, Rodríguez Silva M, Salio C, Sassoè Pognetto M, Chambers J. Sab is differentially expressed in the brain and affects neuronal activity. Brain Res. 2017;1670:76-85 pubmed 出版商
  30. Xu J, Kurup P, Nairn A, Lombroso P. Synaptic NMDA Receptor Activation Induces Ubiquitination and Degradation of STEP61. Mol Neurobiol. 2018;55:3096-3111 pubmed 出版商
  31. Chakraborty M, Chen L, Fridel E, Klein M, Senft R, Sarkar A, et al. Overexpression of human NR2B receptor subunit in LMAN causes stuttering and song sequence changes in adult zebra finches. Sci Rep. 2017;7:942 pubmed 出版商
  32. Barad Z, Grattan D, Leitch B. NMDA Receptor Expression in the Thalamus of the Stargazer Model of Absence Epilepsy. Sci Rep. 2017;7:42926 pubmed 出版商
  33. Niu Y, Dai Z, Liu W, Zhang C, Yang Y, Guo Z, et al. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory. elife. 2017;6: pubmed 出版商
  34. Pearson Leary J, McNay E. Novel Roles for the Insulin-Regulated Glucose Transporter-4 in Hippocampally Dependent Memory. J Neurosci. 2016;36:11851-11864 pubmed
  35. Hayano Y, Takasu K, Koyama Y, Yamada M, Ogawa K, Minami K, et al. Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. J Exp Med. 2016;213:2949-2966 pubmed
  36. Le H, Ahn B, Lee H, Shin A, Chae S, Lee S, et al. Disruption of Ninjurin1 Leads to Repetitive and Anxiety-Like Behaviors in Mice. Mol Neurobiol. 2017;54:7353-7368 pubmed 出版商
  37. Ampuero E, Jury N, Hartel S, Marzolo M, van Zundert B. Interfering of the Reelin/ApoER2/PSD95 Signaling Axis Reactivates Dendritogenesis of Mature Hippocampal Neurons. J Cell Physiol. 2017;232:1187-1199 pubmed 出版商
  38. Clairfeuille T, Mas C, Chan A, Yang Z, Tello Lafoz M, Chandra M, et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol. 2016;23:921-932 pubmed 出版商
  39. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  40. El Jamal S, Taylor E, Abd Elmageed Z, Alamodi A, Selimovic D, Alkhateeb A, et al. Interferon gamma-induced apoptosis of head and neck squamous cell carcinoma is connected to indoleamine-2,3-dioxygenase via mitochondrial and ER stress-associated pathways. Cell Div. 2016;11:11 pubmed 出版商
  41. Lie E, Ko J, Choi S, Roh J, Cho Y, Noh R, et al. SALM4 suppresses excitatory synapse development by cis-inhibiting trans-synaptic SALM3-LAR adhesion. Nat Commun. 2016;7:12328 pubmed 出版商
  42. Won S, Incontro S, Nicoll R, Roche K. PSD-95 stabilizes NMDA receptors by inducing the degradation of STEP61. Proc Natl Acad Sci U S A. 2016;113:E4736-44 pubmed 出版商
  43. Sierra Valdez F, Ruiz Suárez J, Delint Ramirez I. Pentobarbital modifies the lipid raft-protein interaction: A first clue about the anesthesia mechanism on NMDA and GABAA receptors. Biochim Biophys Acta. 2016;1858:2603-2610 pubmed 出版商
  44. Cheng Y, Huang C, Lee Y, Tien L, Ku W, Chien R, et al. Knocking down of heat-shock protein 27 directs differentiation of functional glutamatergic neurons from placenta-derived multipotent cells. Sci Rep. 2016;6:30314 pubmed 出版商
  45. Emanuele M, Esposito A, Camerini S, Antonucci F, Ferrara S, Seghezza S, et al. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts. EBioMedicine. 2016;7:191-204 pubmed 出版商
  46. Gross G, Straub C, Perez Sanchez J, Dempsey W, Junge J, Roberts R, et al. An E3-ligase-based method for ablating inhibitory synapses. Nat Methods. 2016;13:673-8 pubmed 出版商
  47. Zhang H, Kang E, Wang Y, Yang C, Yu H, Wang Q, et al. Brain-specific Crmp2 deletion leads to neuronal development deficits and behavioural impairments in mice. Nat Commun. 2016;7: pubmed 出版商
  48. Lazarczyk M, Kemmler J, Eyford B, Short J, Varghese M, Sowa A, et al. Major Histocompatibility Complex class I proteins are critical for maintaining neuronal structural complexity in the aging brain. Sci Rep. 2016;6:26199 pubmed 出版商
  49. Traunmüller L, Gomez A, Nguyen T, Scheiffele P. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science. 2016;352:982-6 pubmed 出版商
  50. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  51. Jang S, Royston S, Lee G, Wang S, Chung H. Seizure-Induced Regulations of Amyloid-?, STEP61, and STEP61 Substrates Involved in Hippocampal Synaptic Plasticity. Neural Plast. 2016;2016:2123748 pubmed 出版商
  52. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  53. Liang Y, Liu Y, Hou B, Zhang W, Liu M, Sun Y, et al. CREB-regulated transcription coactivator 1 enhances CREB-dependent gene expression in spinal cord to maintain the bone cancer pain in mice. Mol Pain. 2016;12: pubmed 出版商
  54. Schedin Weiss S, Caesar I, Winblad B, Blom H, Tjernberg L. Super-resolution microscopy reveals ?-secretase at both sides of the neuronal synapse. Acta Neuropathol Commun. 2016;4:29 pubmed 出版商
  55. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  56. Hussain S, Ringsevjen H, Egbenya D, Skjervold T, Davanger S. SNARE Protein Syntaxin-1 Colocalizes Closely with NMDA Receptor Subunit NR2B in Postsynaptic Spines in the Hippocampus. Front Mol Neurosci. 2016;9:10 pubmed 出版商
  57. Würdemann T, Kersten M, Tokay T, Guli X, Kober M, Rohde M, et al. Stereotactic injection of cerebrospinal fluid from anti-NMDA receptor encephalitis into rat dentate gyrus impairs NMDA receptor function. Brain Res. 2016;1633:10-18 pubmed 出版商
  58. Moraga Amaro R, González H, Ugalde V, Donoso Ramos J, Quintana Donoso D, Lara M, et al. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory. Neuropharmacology. 2016;103:222-35 pubmed 出版商
  59. Stanic J, Carta M, Eberini I, Pelucchi S, Marcello E, Genazzani A, et al. Rabphilin 3A retains NMDA receptors at synaptic sites through interaction with GluN2A/PSD-95 complex. Nat Commun. 2015;6:10181 pubmed 出版商
  60. Tapia Rojas C, Lindsay C, Montecinos Oliva C, Arrázola M, Retamales R, Bunout D, et al. Is L-methionine a trigger factor for Alzheimer's-like neurodegeneration?: Changes in Aβ oligomers, tau phosphorylation, synaptic proteins, Wnt signaling and behavioral impairment in wild-type mice. Mol Neurodegener. 2015;10:62 pubmed 出版商
  61. Kim S, Kim T, Lee H, Kong Y, Kaang B. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity. Korean J Physiol Pharmacol. 2015;19:515-22 pubmed 出版商
  62. Lin T, Liu Y, Shih Y, Chen S, Huang T, Chang C, et al. Neurodegeneration in Amygdala Precedes Hippocampus in the APPswe/ PS1dE9 Mouse Model of Alzheimer's Disease. Curr Alzheimer Res. 2015;12:951-63 pubmed
  63. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed 出版商
  64. Posa L, Accarie A, Noble F, Marie N. Methadone Reverses Analgesic Tolerance Induced by Morphine Pretreatment. Int J Neuropsychopharmacol. 2016;19: pubmed 出版商
  65. Henstridge C, Jackson R, Kim J, Herrmann A, Wright A, Harris S, et al. Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. Acta Neuropathol Commun. 2015;3:53 pubmed 出版商
  66. Liu J, Zhang X, Zhang W, Gu G, Wang P. Effects of Sevoflurane on Young Male Adult C57BL/6 Mice Spatial Cognition. PLoS ONE. 2015;10:e0134217 pubmed 出版商
  67. Liu H, Li Y, Wang Y, Wang X, An X, Wang S, et al. The distinct role of NR2B subunit in the enhancement of visual plasticity in adulthood. Mol Brain. 2015;8:49 pubmed 出版商
  68. Megill A, Tran T, Eldred K, Lee N, Wong P, HOE H, et al. Defective Age-Dependent Metaplasticity in a Mouse Model of Alzheimer's Disease. J Neurosci. 2015;35:11346-57 pubmed 出版商
  69. Pasek J, Wang X, Colbran R. Differential CaMKII regulation by voltage-gated calcium channels in the striatum. Mol Cell Neurosci. 2015;68:234-43 pubmed 出版商
  70. Balsara R, Dang A, Donahue D, Snow T, Castellino F. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS ONE. 2015;10:e0122840 pubmed 出版商
  71. McGuier N, Padula A, Mulholland P, Chandler L. Homer2 deletion alters dendritic spine morphology but not alcohol-associated adaptations in GluN2B-containing N-methyl-D-aspartate receptors in the nucleus accumbens. Front Pharmacol. 2015;6:28 pubmed 出版商
  72. Bidoret C, Bouvier G, Ayon A, Szapiro G, Casado M. Properties and molecular identity of NMDA receptors at synaptic and non-synaptic inputs in cerebellar molecular layer interneurons. Front Synaptic Neurosci. 2015;7:1 pubmed 出版商
  73. Kaufman A, Salazar S, Haas L, Yang J, Kostylev M, Jeng A, et al. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol. 2015;77:953-71 pubmed 出版商
  74. Lo S, Wang Y, Weber M, Larson J, Scearce Levie K, Sheng M. Caspase-3 deficiency results in disrupted synaptic homeostasis and impaired attention control. J Neurosci. 2015;35:2118-32 pubmed 出版商
  75. Serrano F, Tapia Rojas C, Carvajal F, Hancke J, Cerpa W, Inestrosa N. Andrographolide reduces cognitive impairment in young and mature AβPPswe/PS-1 mice. Mol Neurodegener. 2014;9:61 pubmed 出版商
  76. Ma Q, Ying M, Sui X, Zhang H, Huang H, Yang L, et al. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice. J Alzheimers Dis. 2015;43:1413-27 pubmed 出版商
  77. Connors E, Shaik A, Migliore M, Kentner A. Environmental enrichment mitigates the sex-specific effects of gestational inflammation on social engagement and the hypothalamic pituitary adrenal axis-feedback system. Brain Behav Immun. 2014;42:178-90 pubmed 出版商
  78. Kehoe L, Bellone C, De Roo M, Zandueta A, Dey P, Pérez Otaño I, et al. GluN3A promotes dendritic spine pruning and destabilization during postnatal development. J Neurosci. 2014;34:9213-21 pubmed 出版商
  79. Fernandes J, Vieira M, Carreto L, Santos M, Duarte C, Carvalho A, et al. In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons. PLoS ONE. 2014;9:e99958 pubmed 出版商
  80. Niesman I, Schilling J, Shapiro L, Kellerhals S, Bonds J, Kleschevnikov A, et al. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice. J Neuroinflammation. 2014;11:39 pubmed 出版商
  81. Portugal G, Al Hasani R, Fakira A, Gonzalez Romero J, Melyan Z, McCall J, et al. Hippocampal long-term potentiation is disrupted during expression and extinction but is restored after reinstatement of morphine place preference. J Neurosci. 2014;34:527-38 pubmed 出版商
  82. Prox J, Bernreuther C, Altmeppen H, Grendel J, Glatzel M, D Hooge R, et al. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J Neurosci. 2013;33:12915-28, 12928a pubmed 出版商
  83. Hoy J, Haeger P, Constable J, Arias R, McCallum R, Kyweriga M, et al. Neuroligin1 drives synaptic and behavioral maturation through intracellular interactions. J Neurosci. 2013;33:9364-84 pubmed 出版商
  84. Busse B, Smith S. Automated analysis of a diverse synapse population. PLoS Comput Biol. 2013;9:e1002976 pubmed 出版商
  85. Murata Y, Constantine Paton M. Postsynaptic density scaffold SAP102 regulates cortical synapse development through EphB and PAK signaling pathway. J Neurosci. 2013;33:5040-52 pubmed 出版商
  86. Hayashi H, Eguchi Y, Fukuchi Nakaishi Y, Takeya M, Nakagata N, Tanaka K, et al. A potential neuroprotective role of apolipoprotein E-containing lipoproteins through low density lipoprotein receptor-related protein 1 in normal tension glaucoma. J Biol Chem. 2012;287:25395-406 pubmed 出版商