这是一篇来自已证抗体库的有关大鼠 Gsk3b的综述,是根据362篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Gsk3b 抗体。
圣克鲁斯生物技术
小鼠 单克隆(11B9)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-81462)被用于被用于免疫印迹在人类样本上 (图 2b). BMC Cancer (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 人类; 1:100; 图 5b
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-373800)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). FEBS Open Bio (2021) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 人类; 图 1j
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-81462)被用于被用于免疫印迹在人类样本上 (图 1j). Genome Biol (2021) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 Gsk3b抗体(Santacruz, 7291)被用于被用于免疫印迹在小鼠样本上 (图 7e). Sci Rep (2021) ncbi
小鼠 单克隆(F-2)
  • 免疫印迹; 大鼠; 图 3b
圣克鲁斯生物技术 Gsk3b抗体(Santa, sc-373800)被用于被用于免疫印迹在大鼠样本上 (图 3b). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 牛; 1:2000; 图 3a
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在牛样本上浓度为1:2000 (图 3a). BMC Vet Res (2020) ncbi
小鼠 单克隆(1H8)
  • 免疫印迹; 小鼠; 图 4e
圣克鲁斯生物技术 Gsk3b抗体(Santa, sc-56,913)被用于被用于免疫印迹在小鼠样本上 (图 4e). Mol Neurodegener (2020) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, Sc-7291)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Cell Mol Gastroenterol Hepatol (2019) ncbi
小鼠 单克隆(0011-A)
  • 其他; 人类; 图 4c
圣克鲁斯生物技术 Gsk3b抗体(SantaCruz, sc-7291)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 大鼠; 图 4c
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-81462)被用于被用于免疫印迹在大鼠样本上 (图 4c). Mol Cell Biochem (2018) ncbi
小鼠 单克隆(0011-A)
  • reverse phase protein lysate microarray; 人类; 图 st6
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, SC-7291)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
小鼠 单克隆(0011-A)
  • reverse phase protein lysate microarray; 人类; 图 3a
圣克鲁斯生物技术 Gsk3b抗体(SantaCruz, SC-7291)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 1:500; 图 3b
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3b). J Nutr Biochem (2017) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
小鼠 单克隆(1V001)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, SC-71186)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2016) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 小鼠; 1:1000; 图 6
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-377213)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-377213)被用于被用于免疫印迹在人类样本上 (图 6). Oxid Med Cell Longev (2016) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 1:200; 图 8e
圣克鲁斯生物技术 Gsk3b抗体(santa cruz, sc-7291)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 8e). J Biol Chem (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫细胞化学; 衣藻; 1:100; 图 5
  • 酶联免疫吸附测定; 衣藻; 1:500; 图 5
  • 免疫印迹; 衣藻; 1:500; 图 5
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫细胞化学在衣藻样本上浓度为1:100 (图 5), 被用于酶联免疫吸附测定在衣藻样本上浓度为1:500 (图 5) 和 被用于免疫印迹在衣藻样本上浓度为1:500 (图 5). Mol Biol Cell (2015) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 小鼠; 1:1000; 图 3
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-81462)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Mol Neurodegener (2015) ncbi
小鼠 单克隆(1H8)
  • 免疫印迹; 小鼠; 图 3b
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-56913)被用于被用于免疫印迹在小鼠样本上 (图 3b). Front Microbiol (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Psychiatry Res (2015) ncbi
小鼠 单克隆(E-11)
  • 免疫组化; 大鼠; 1:400; 图 1
  • 免疫印迹; 大鼠; 1:400; 图 1
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-377213)被用于被用于免疫组化在大鼠样本上浓度为1:400 (图 1) 和 被用于免疫印迹在大鼠样本上浓度为1:400 (图 1). Mol Med Rep (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc7291)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-81462)被用于被用于免疫印迹在人类样本上. Mol Med Rep (2015) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-81462)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-11)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-377213)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Carcinog (2015) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在小鼠样本上. J Biol Rhythms (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Gsk3b抗体(Santa, sc-7291)被用于被用于免疫印迹在小鼠样本上 (图 2a). Cell Res (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz Biotechnology, sc-7291)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(0011-A)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-7291)被用于被用于免疫印迹在人类样本上 (图 5). Cell (2014) ncbi
小鼠 单克隆(11B9)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Gsk3b抗体(Santa Cruz, sc-81462)被用于被用于免疫印迹在人类样本上 (图 1a). PLoS ONE (2014) ncbi
赛默飞世尔
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 7a
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1d
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1d). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 Gsk3b抗体(Invitrogen, 44604G)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Aging Cell (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛默飞世尔 Gsk3b抗体(Invitrogen, 44610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Aging Cell (2016) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛默飞世尔 Gsk3b抗体(Bioresource, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Brain Behav (2015) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 3
赛默飞世尔 Gsk3b抗体(生活技术, 44-604G)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 3). Neuropathol Appl Neurobiol (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gsk3b抗体(BioSource, 44-604)被用于. Front Microbiol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Gsk3b抗体(Invitrogen, 44604G)被用于. J Neurochem (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:3000; 图 2
赛默飞世尔 Gsk3b抗体(生活技术, 44610)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biol Reprod (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:5000; 图 1
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 1). Nat Commun (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 大鼠; 图 4d
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在大鼠样本上 (图 4d). PLoS ONE (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 s1
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 s1). FEBS Lett (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:1000
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2015) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上. Eur J Neurosci (2014) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:4000; 图 3, 5
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 3, 5). Am J Physiol Endocrinol Metab (2014) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 2
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Brain (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:2000
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Cell Biochem Funct (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上 (图 5). Am J Physiol Renal Physiol (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在小鼠样本上. Biochem J (2013) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Neuroinflammation (2012) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Nat Cell Biol (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 1:1000; 图 1
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Neurochem Int (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1). Br J Cancer (2011) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在人类样本上 (图 3). Biochem J (2009) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 人类
赛默飞世尔 Gsk3b抗体(Biosource, Invitrogen, 44610)被用于被用于免疫印迹在人类样本上. Methods Mol Biol (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 大鼠; 1:6000; 图 6
赛默飞世尔 Gsk3b抗体(Invitrogen, 44-610)被用于被用于免疫印迹在大鼠样本上浓度为1:6000 (图 6). Toxicol Appl Pharmacol (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 1
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 1). Am J Physiol Endocrinol Metab (2008) ncbi
小鼠 单克隆(21A)
  • 免疫印迹; 小鼠; 图 3
赛默飞世尔 Gsk3b抗体(Biosource, 44-610)被用于被用于免疫印迹在小鼠样本上 (图 3). FEBS Lett (2005) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e
艾博抗(上海)贸易有限公司 Gsk3b抗体(Abcam, ab75745)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5e, 5f
艾博抗(上海)贸易有限公司 Gsk3b抗体(Abcam, ab75745)被用于被用于免疫印迹在人类样本上 (图 5e, 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR933Y)
  • 免疫印迹; 小鼠
艾博抗(上海)贸易有限公司 Gsk3b抗体(Abcam, ab68476)被用于被用于免疫印迹在小鼠样本上. Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Gsk3b抗体(Abcam, ab75745)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4a). Neuropsychiatr Dis Treat (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 表 1
艾博抗(上海)贸易有限公司 Gsk3b抗体(abcam, ab 75745)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (表 1). Histochem Cell Biol (2016) ncbi
domestic rabbit 单克隆(EPR933Y)
  • 免疫印迹; 人类; 1:200; 图 st1
艾博抗(上海)贸易有限公司 Gsk3b抗体(Epitomics, 2309-1)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
艾博抗(上海)贸易有限公司 Gsk3b抗体(Abcam, ab75745)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Brain (2016) ncbi
Novus Biologicals
小鼠 单克隆(3D10)
  • 免疫组化-石蜡切片; 人类; 图 6c
Novus Biologicals Gsk3b抗体(Novus, NBP1-47470)被用于被用于免疫组化-石蜡切片在人类样本上 (图 6c). Oncotarget (2018) ncbi
小鼠 单克隆(3D10)
  • 免疫细胞化学; 小鼠
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠; 1:1000
Novus Biologicals Gsk3b抗体(Novus, NBP1-47470)被用于被用于免疫细胞化学在小鼠样本上, 被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上浓度为1:1000. Cell Death Differ (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 图 5
Novus Biologicals Gsk3b抗体(Novus, NBP1-47470)被用于被用于免疫印迹在小鼠样本上 (图 5). Cell Death Dis (2014) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:2000; 图 s3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s3c). iScience (2022) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在人类样本上浓度为1:1000. EMBO J (2022) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). Int J Biol Sci (2022) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:2000; 图 2f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). iScience (2022) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:2000; 图 2f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2f). iScience (2022) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Death Dis (2022) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫组化-冰冻切片; 小鼠; 图 1a, 3a
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 图 s4g
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 1a, 3a), 被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 s4g). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:3000; 图 1b, 2b, 2i
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1b, 2b, 2i). Nat Commun (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Cell Mol Med (2022) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5m
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9336)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5m). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558S)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, D85E12)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). J Cancer (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 7b). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上 (图 7b). Acta Pharm Sin B (2021) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9322)被用于被用于免疫印迹在小鼠样本上 (图 4e). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9322)被用于被用于免疫印迹在人类样本上 (图 1c). Nat Commun (2021) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 1:500-1:2000; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在小鼠样本上浓度为1:500-1:2000 (图 3c). Redox Biol (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:250; 图 s2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336S)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 s2a). Biomolecules (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:250; 图 s2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在大鼠样本上浓度为1:250 (图 s2a). Biomolecules (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5o
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9336)被用于被用于免疫印迹在小鼠样本上 (图 5o). Cell Rep (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 s4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 s4a). iScience (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于流式细胞仪在小鼠样本上. Cancer Cell (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:2000; 图 1k, 2e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1k, 2e). Stem Cell Res Ther (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 1a, 4a, s3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a, 4a, s3c). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323)被用于被用于免疫印迹在人类样本上 (图 4b). Cell Death Discov (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). elife (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9322)被用于被用于免疫印迹在人类样本上 (图 5e). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 s4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 s2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上 (图 s2a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫组化; 小鼠; 1:100; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 1). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 大鼠; 1:200; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323)被用于被用于免疫印迹在大鼠样本上浓度为1:200 (图 5a). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 大鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cst, 9832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3c). IBRO Neurosci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cst, 9336)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). IBRO Neurosci Rep (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 6b, 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558S)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 6b, 7a). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5a). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 6a, 6c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a, 6c). Neoplasma (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫细胞化学; 人类; 1:800
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫细胞化学在人类样本上浓度为1:800. Cancer Biol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). Br J Pharmacol (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 流式细胞仪; 小鼠; 1:100; 图 6c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 6c). elife (2021) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a). iScience (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 2a). iScience (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹基因敲除验证; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 2a). iScience (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling Technology, CST9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Bone Res (2021) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cells (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). Cells (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4b). Redox Biol (2021) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上 (图 4b). Redox Biol (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Cell Death Dis (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Sci Signal (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Sci Signal (2021) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 ev1i
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 ev1i). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 牛; 图 s2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在牛样本上 (图 s2b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 牛; 图 s2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在牛样本上 (图 s2b). JCI Insight (2020) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323S)被用于被用于免疫印迹在人类样本上 (图 4c). Cell Death Dis (2020) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:500; 图 s2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s2b). Commun Biol (2020) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 s4a
  • 免疫组化-石蜡切片; 人类; 图 8j
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558S)被用于被用于免疫印迹在小鼠样本上 (图 s4a) 和 被用于免疫组化-石蜡切片在人类样本上 (图 8j). Theranostics (2020) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Mol Metab (2020) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, Danvers, MA;, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Integr Cancer Ther (2020) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9322S)被用于被用于免疫印迹在小鼠样本上 (图 5d). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 8b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 8b). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 5e). Sci Adv (2020) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:1000; 图 6f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 9315)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6f). Front Cell Neurosci (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 大鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 5558)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6e). Front Cell Neurosci (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 2c). Brain Behav (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 2c). Brain Behav (2020) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7d
  • 免疫印迹; 大鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7d) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 7b). elife (2020) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 大鼠; 1:1000; 图 8a
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9b). Cell Mol Gastroenterol Hepatol (2020) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). elife (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Nature (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 4d
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 5a). J Biol Chem (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). J Exp Med (2020) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). EBioMedicine (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 大鼠; 1:50; 图 4g
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在大鼠样本上浓度为1:50 (图 4g). Am J Physiol Regul Integr Comp Physiol (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Sci Adv (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315s)被用于被用于免疫印迹在小鼠样本上 (图 3b). Cardiovasc Diabetol (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, D85E12)被用于被用于免疫印迹在人类样本上 (图 6d). Onco Targets Ther (2019) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 s1e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上 (图 s1e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s1e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在小鼠样本上 (图 s1e). Sci Adv (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 s24e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s24e). Science (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, D85E12)被用于被用于免疫印迹在小鼠样本上 (图 4c). Science (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 4a). Oxid Med Cell Longev (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 5d). Front Pharmacol (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4d
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 4d) 和 被用于免疫印迹在小鼠样本上 (图 5d). Front Pharmacol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Neurobiol Dis (2019) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8b). Int J Mol Sci (2019) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Stress (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 1c). Nat Cell Biol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 4a). Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). FASEB J (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). FASEB J (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 2d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d). elife (2019) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hepatology (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 3h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上 (图 3h). Hepatology (2019) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, D3A4)被用于被用于免疫印迹在人类样本上 (图 3a). Mol Oncol (2019) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncol Rep (2019) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 流式细胞仪; 小鼠; 图 8b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558 s)被用于被用于流式细胞仪在小鼠样本上 (图 8b). elife (2018) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
  • 免疫细胞化学; pigs ; 1:1000; 图 7f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling Technology, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a) 和 被用于免疫细胞化学在pigs 样本上浓度为1:1000 (图 7f). Redox Biol (2019) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s5f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s5f). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 s5f). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Front Aging Neurosci (2018) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:2000; 图 4h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 4h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4h). Nat Commun (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558S)被用于被用于免疫印迹在小鼠样本上 (图 3c). Cell Rep (2018) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5B3)被用于被用于免疫印迹在人类样本上 (图 7e). Cell Death Differ (2019) ncbi
小鼠 单克隆(3D10)
  • 免疫组化-石蜡切片; 人类; 图 4d
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4d) 和 被用于免疫印迹在人类样本上 (图 1d). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 1d). J Exp Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 s3f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在小鼠样本上 (图 s3f). Neuron (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1e). elife (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Biol Open (2018) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 s7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上 (图 s7b). Biol Open (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 6e). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336S)被用于被用于免疫印迹在小鼠样本上 (图 6c). Neurobiol Dis (2018) ncbi
小鼠 单克隆(3D10)
  • 免疫细胞化学; 人类; 图 5a
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫细胞化学在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 1a). Mol Biol Cell (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 s2). Oncotarget (2017) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 7b). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 7b). Clin Cancer Res (2018) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫组化; fruit fly ; 图 s2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 5558)被用于被用于免疫组化在fruit fly 样本上 (图 s2). Dev Cell (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4e). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 4e). Sci Rep (2017) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 93155)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 8a). Eur J Pharm Sci (2017) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 8a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 8a). Eur J Pharm Sci (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 3a). Autophagy (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST Signaling, 5558S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9323)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 3b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 3b). Sci Signal (2017) ncbi
domestic rabbit 多克隆
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9336)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫细胞化学; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫细胞化学在人类样本上 (图 s1). Sci Rep (2017) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9832)被用于被用于免疫印迹在小鼠样本上 (图 1f). EMBO Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在小鼠样本上 (图 1f). EMBO Rep (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4e). Nucleic Acids Res (2017) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫细胞化学; 小鼠; 1:100
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Front Neurosci (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 12A
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 12A). EBioMedicine (2017) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Mol Metab (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). Mol Metab (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在小鼠样本上 (图 1a). Int J Biol Sci (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上. Oncogene (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9315)被用于被用于免疫印迹在人类样本上 (图 4i). Oncogene (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 4i
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 5558)被用于被用于免疫印迹在人类样本上 (图 4i). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9336)被用于被用于免疫印迹在人类样本上 (图 4c). Oncoscience (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 4o
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4o). Nat Commun (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9d). J Neurosci (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9d). J Neurosci (2017) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 st2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 st2). Brain Behav Immun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9336)被用于被用于免疫印迹在人类样本上 (图 3a). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 2c). Front Mol Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 2d). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 2d). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫细胞化学; 小鼠; 1:100; 图 s8d
  • 免疫印迹; 小鼠; 1:2000; 图 s8f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 5558s)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s8d) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s8f). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 图 1b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9336S)被用于被用于免疫印迹在仓鼠样本上 (图 1b). J Neurochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9336)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1c). Nat Neurosci (2017) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Chem Biol (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 3a). Cell Chem Biol (2016) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832S)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336S)被用于被用于免疫印迹在小鼠样本上 (图 4). J Biol Chem (2016) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, D85E12)被用于被用于免疫印迹在人类样本上 (图 5a). Cancer Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 s1). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 27C10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6e). Austin J Med Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Austin J Med Oncol (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 2c
  • 免疫印迹; 小鼠; 1:1000; 图 2d
  • 免疫印迹; African green monkey; 1:1000; 图 2c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2d) 和 被用于免疫印迹在African green monkey样本上浓度为1:1000 (图 2c). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Brain (2016) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9832)被用于被用于免疫印迹在人类样本上 (图 6a). Mol Brain (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 大鼠; 1:1000; 图 8e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8e). J Pharmacol Exp Ther (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, D3A4)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 犬; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558P)被用于被用于免疫印迹在犬样本上浓度为1:1000 (图 7b). Cell Mol Life Sci (2017) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫组化; 人类; 1:200; 图 s8c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫组化在人类样本上浓度为1:200 (图 s8c). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336S)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 5). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 图 s7b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在人类样本上 (图 s7b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 5). Biosci Rep (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Biomed Res Int (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5B3)被用于被用于免疫印迹在人类样本上 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:100; 图 8b
  • 免疫印迹; 人类; 1:2000; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫组化在人类样本上浓度为1:100 (图 8b) 和 被用于免疫印迹在人类样本上浓度为1:2000 (图 7a). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫沉淀; 人类; 图 2c
  • 免疫细胞化学; 人类; 1:200; 图 1g
  • 免疫组化; 人类; 1:200; 图 6c
  • 免疫印迹; 人类; 1:2000; 图 1a
  • 免疫印迹; 小鼠; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫沉淀在人类样本上 (图 2c), 被用于免疫细胞化学在人类样本上浓度为1:200 (图 1g), 被用于免疫组化在人类样本上浓度为1:200 (图 6c), 被用于免疫印迹在人类样本上浓度为1:2000 (图 1a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, CST-9315)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 ev2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev2). EMBO Mol Med (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Discov (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 大鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9322)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:800; 图 7
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 大鼠; 1:800; 图 7
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9322)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 7). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Alzheimers Dement (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Alzheimers Dement (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:500. J Huntingtons Dis (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 9323)被用于被用于免疫印迹在小鼠样本上 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:500; 图 s1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 s1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9336)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9315)被用于被用于免疫印迹在人类样本上 (图 3). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 3). Cancer Res (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在小鼠样本上 (图 8a). JCI Insight (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 6b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上 (图 6b). JCI Insight (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在人类样本上 (图 6). Neuroscience (2016) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 9832)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 5558)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 s17
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s17). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9336)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:200; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 3c). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315S)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:2000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 9322)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 大鼠; 图 1a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在大鼠样本上 (图 1a). Int J Mol Med (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 3). J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上 (图 3). J Clin Endocrinol Metab (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Chin Med J (Engl) (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 s8
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 s8). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫组化; 人类; 1:100; 图 6
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫组化在人类样本上浓度为1:100 (图 6) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫沉淀; 人类; 图 1
  • 免疫细胞化学; 人类; 1:100; 图 1
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 27C10)被用于被用于免疫沉淀在人类样本上 (图 1), 被用于免疫细胞化学在人类样本上浓度为1:100 (图 1) 和 被用于免疫印迹在人类样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5B3)被用于被用于免疫印迹在小鼠样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 4
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9322)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 4) 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9336)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4). Int J Mol Sci (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:3000; 表 s2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:3000 (表 s2). Exp Cell Res (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:5000; 表 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Neural Plast (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 5558)被用于被用于免疫印迹在人类样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315)被用于被用于免疫印迹在人类样本上 (图 3c). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 4). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在人类样本上 (图 4). Cell Commun Signal (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫沉淀; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫沉淀在小鼠样本上 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫沉淀; 人类; 图 4
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 27C10)被用于被用于免疫沉淀在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 4). ACS Chem Neurosci (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 4). Mol Cancer (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Neural Plast (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Neural Plast (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9336)被用于被用于免疫印迹在小鼠样本上 (图 st1). Liver Int (2016) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 仓鼠; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在仓鼠样本上 (图 4a). J Neurochem (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 s4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 27C10)被用于被用于免疫印迹在人类样本上 (图 s4b). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9323)被用于被用于免疫印迹在小鼠样本上 (图 3). Oncogene (2016) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling Technology, 9832S)被用于被用于免疫印迹在小鼠样本上 (图 8a). Diabetes Metab Res Rev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 2C
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Sgnaling, 9336S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2C). Mol Oncol (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在大鼠样本上. Redox Biol (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9323)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:2000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:2000. Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, CELL5558S)被用于被用于免疫印迹在小鼠样本上 (图 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 s5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 6). Autophagy (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 5). Eur Neuropsychopharmacol (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 5e). BMC Cancer (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Sci Rep (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:20,000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315S)被用于被用于免疫印迹在大鼠样本上浓度为1:20,000. Exp Neurol (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 4b). Neuroendocrinology (2016) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上 (图 1). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). Int J Mol Med (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, #9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Eur J Neurosci (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. J Neurochem (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:3000; 图 1b
  • 免疫印迹; 人类; 1:3000; 图 1c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1b) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 1c). Nat Commun (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:3000; 图 1c
  • 免疫印迹; 小鼠; 1:3000; 图 1b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 1c) 和 被用于免疫印迹在小鼠样本上浓度为1:3000 (图 1b). Nat Commun (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 9315)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Tech, 5558)被用于被用于免疫印迹在人类样本上 (图 3). EMBO J (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Mol Neurodegener (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹基因敲除验证; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 1). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 5). EMBO Mol Med (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 13
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 13). Oncotarget (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9832S)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9832)被用于被用于免疫印迹在小鼠样本上 (图 5). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 s1). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 27C10)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). BMC Complement Altern Med (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 大鼠; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在大鼠样本上 (图 1). J Transl Med (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 6). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Psychiatry (2016) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9322)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 2). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). BMC Genomics (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Br J Pharmacol (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5558)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9323)被用于被用于免疫印迹在人类样本上 (图 1). Exp Mol Med (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 3,7,8
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上 (图 3,7,8). J Am Heart Assoc (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 人类; 1:1000; 图 5f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 3D10)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). J Neural Transm (Vienna) (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 10
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10). Age (Dordr) (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 27C10)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cell Proteomics (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cst, 9315)被用于被用于免疫印迹在小鼠样本上. J Proteome Res (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315BC)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Mol Neurobiol (2016) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 9323)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 9315)被用于被用于免疫印迹在人类样本上 (图 3). Cell Death Dis (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 1:1000; 图 s12
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s12). Nat Commun (2015) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(细胞, 5558S)被用于被用于免疫印迹在小鼠样本上. Redox Biol (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 9315)被用于被用于免疫印迹在人类样本上 (图 6h). Mol Cell (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Toxicol Appl Pharmacol (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 大鼠; 1:10,000; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 5B3)被用于被用于免疫印迹在大鼠样本上浓度为1:10,000 (图 6). J Neurosci Res (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在小鼠样本上. Neurosci Lett (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上. Neurosci Lett (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 流式细胞仪; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于流式细胞仪在人类样本上 (图 6). Invest New Drugs (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Cell Physiol (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 3c). FASEB J (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323s)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315s, 27C10)被用于被用于免疫印迹在人类样本上. Neurobiol Aging (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Oncogene (2015) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Oncogene (2015) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9832)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9322)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Bioenerg Biomembr (2015) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫细胞化学; 人类; 1:300
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫细胞化学在人类样本上浓度为1:300 和 被用于免疫印迹在人类样本上. J Cell Biochem (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9323)被用于被用于免疫印迹在小鼠样本上 和 被用于免疫印迹在大鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, #9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Neurobiol Aging (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在大鼠样本上 (图 3). Biomed Res Int (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 染色质免疫沉淀 ; 人类
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于染色质免疫沉淀 在人类样本上, 被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 1b). PLoS Genet (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫印迹在人类样本上 (图 5). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, 9315)被用于被用于免疫印迹在人类样本上 (图 6f). Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:500; 图 s3
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 9315)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 s3). Nature (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Gsk3b抗体(CST, 9315)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling Technology, 9323)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(3D10)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technologies, 9832)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, D85E12)被用于被用于免疫印迹在人类样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 27C10)被用于被用于免疫印迹在人类样本上 (图 6). Nat Commun (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signalling, 27C10)被用于被用于免疫印迹在人类样本上. RNA (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signal, 9315S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Evid Based Complement Alternat Med (2014) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signal, 9323S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Evid Based Complement Alternat Med (2014) ncbi
domestic rabbit 单克隆(D85E12)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, D85E12)被用于被用于流式细胞仪在小鼠样本上. Eur J Immunol (2014) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9315)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell signaling, 27C10)被用于被用于免疫印迹在人类样本上. Nucleic Acids Res (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 27C10)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2014) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Gsk3b抗体(cell signalling, 9315)被用于被用于免疫印迹在人类样本上 (图 4b). Int J Cancer (2014) ncbi
domestic rabbit 单克隆(D85E12)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 5558S)被用于被用于免疫印迹在人类样本上 (图 6). Biochem J (2013) ncbi
domestic rabbit 单克隆(5B3)
  • 免疫组化-冰冻切片; 小鼠; 1:50
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9323)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 和 被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(D3A4)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling Technology, 9322)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(27C10)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Gsk3b抗体(Cell Signaling, #9315)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2009) ncbi
文章列表
  1. Pan R, Yu Y, Zhu H, Zhang W, Qin Y, Ye L, et al. RSPO2 promotes progression of ovarian cancer through dual receptor-mediated FAK/Src signaling activation. iScience. 2022;25:105184 pubmed 出版商
  2. Paulmann C, Spallek R, Karpiuk O, Heider M, Sch xe4 ffer I, Zecha J, et al. The OTUD6B-LIN28B-MYC axis determines the proliferative state in multiple myeloma. EMBO J. 2022;41:e110871 pubmed 出版商
  3. Tang Y, Dong L, Zhang C, Li X, Li R, Lin H, et al. PRMT5 acts as a tumor suppressor by inhibiting Wnt/β-catenin signaling in murine gastric tumorigenesis. Int J Biol Sci. 2022;18:4329-4340 pubmed 出版商
  4. Serna R, Ramrakhiani A, Hernández J, Chen C, Nakagawa C, Machida T, et al. c-JUN inhibits mTORC2 and glucose uptake to promote self-renewal and obesity. iScience. 2022;25:104325 pubmed 出版商
  5. Yu J, Yang K, Zheng J, Zhao P, Xia J, Sun X, et al. Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death Dis. 2022;13:388 pubmed 出版商
  6. Zhou Q, Li S, Li M, Ke D, Wang Q, Yang Y, et al. Human tau accumulation promotes glycogen synthase kinase-3β acetylation and thus upregulates the kinase: A vicious cycle in Alzheimer neurodegeneration. EBioMedicine. 2022;78:103970 pubmed 出版商
  7. Jiang Q, Zhang X, Dai X, Han S, Wu X, Wang L, et al. S6K1-mediated phosphorylation of PDK1 impairs AKT kinase activity and oncogenic functions. Nat Commun. 2022;13:1548 pubmed 出版商
  8. He S, Gao Q, Wu X, Shi J, Zhang Y, Yang J, et al. NAD+ ameliorates endotoxin-induced acute kidney injury in a sirtuin1-dependent manner via GSK-3β/Nrf2 signalling pathway. J Cell Mol Med. 2022;26:1979-1993 pubmed 出版商
  9. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  10. Zou Y, Gan C, Xin Z, Zhang H, Zhang Q, Lee T, et al. Programmed Cell Death Protein 1 Blockade Reduces Glycogen Synthase Kinase 3β Activity and Tau Hyperphosphorylation in Alzheimer's Disease Mouse Models. Front Cell Dev Biol. 2021;9:769229 pubmed 出版商
  11. Lin G, Li J, Cai J, Zhang H, Xin Q, Wang N, et al. RNA-binding Protein MBNL2 regulates Cancer Cell Metastasis through MiR-182-MBNL2-AKT Pathway. J Cancer. 2021;12:6715-6726 pubmed 出版商
  12. Zhao Y, Sun J, Li Y, Zhou X, Zhai W, Wu Y, et al. Tryptophan 2,3-dioxygenase 2 controls M2 macrophages polarization to promote esophageal squamous cell carcinoma progression via AKT/GSK3β/IL-8 signaling pathway. Acta Pharm Sin B. 2021;11:2835-2849 pubmed 出版商
  13. Rock S, Jiang K, Wu Y, Liu Y, Li J, Weiss H, et al. Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2022;13:501-516 pubmed 出版商
  14. Liu Y, Li Y, Huang S, Li Y, Xia J, Jia J, et al. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY). 2021;13:21155-21190 pubmed 出版商
  15. De Velasco M, Kura Y, Ando N, Sako N, Banno E, Fujita K, et al. Context-Specific Efficacy of Apalutamide Therapy in Preclinical Models of Pten-Deficient Prostate Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  16. Tang X, Li G, Shi L, Su F, Qian M, Liu Z, et al. Combined intermittent fasting and ERK inhibition enhance the anti-tumor effects of chemotherapy via the GSK3β-SIRT7 axis. Nat Commun. 2021;12:5058 pubmed 出版商
  17. Chiang S, Braidy N, Maleki S, Lal S, Richardson D, Huang M. Mechanisms of impaired mitochondrial homeostasis and NAD+ metabolism in a model of mitochondrial heart disease exhibiting redox active iron accumulation. Redox Biol. 2021;46:102038 pubmed 出版商
  18. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  19. Xu X, Lei Y, Chen L, Zhou H, Liu H, Jiang J, et al. Phosphorylation of NF-κBp65 drives inflammation-mediated hepatocellular carcinogenesis and is a novel therapeutic target. J Exp Clin Cancer Res. 2021;40:253 pubmed 出版商
  20. Zavvarian M, Hong J, Khazaei M, Chio J, Wang J, Badner A, et al. The Protein Kinase Inhibitor Midostaurin Improves Functional Neurological Recovery and Attenuates Inflammatory Changes Following Traumatic Cervical Spinal Cord Injury. Biomolecules. 2021;11: pubmed 出版商
  21. Lupse B, Annamalai K, Ibrahim H, Kaur S, Geravandi S, Sarma B, et al. Inhibition of PHLPP1/2 phosphatases rescues pancreatic β-cells in diabetes. Cell Rep. 2021;36:109490 pubmed 出版商
  22. Mygland L, Brinch S, Strand M, Olsen P, Aizenshtadt A, Lund K, et al. Identification of response signatures for tankyrase inhibitor treatment in tumor cell lines. iScience. 2021;24:102807 pubmed 出版商
  23. Hutton C, Heider F, Blanco Gómez A, Banyard A, Kononov A, Zhang X, et al. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell. 2021;: pubmed 出版商
  24. Shen J, Sun Y, Liu X, Zhu Y, Bao B, Gao T, et al. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res Ther. 2021;12:415 pubmed 出版商
  25. Guo J, Cheng J, Zheng N, Zhang X, Dai X, Zhang L, et al. Copper Promotes Tumorigenesis by Activating the PDK1-AKT Oncogenic Pathway in a Copper Transporter 1 Dependent Manner. Adv Sci (Weinh). 2021;8:e2004303 pubmed 出版商
  26. Gan G, Shi Z, Liu D, Zhang S, Zhu H, Wang Y, et al. 3-hydroxyanthranic acid increases the sensitivity of hepatocellular carcinoma to sorafenib by decreasing tumor cell stemness. Cell Death Discov. 2021;7:173 pubmed 出版商
  27. Huang Q, Ouyang D, Liu Q. Isoeucommin A attenuates kidney injury in diabetic nephropathy through the Nrf2/HO-1 pathway. FEBS Open Bio. 2021;: pubmed 出版商
  28. Guo Y, Yu Z, Wu J, Gong H, Kesteven S, Iismaa S, et al. The Ca2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy. elife. 2021;10: pubmed 出版商
  29. Sakai H, Kawakami H, Teramura T, Onodera Y, Somers E, Furuuchi K, et al. Folate receptor α increases chemotherapy resistance through stabilizing MDM2 in cooperation with PHB2 that is overcome by MORAb-202 in gastric cancer. Clin Transl Med. 2021;11:e454 pubmed 出版商
  30. Yin S, Liu L, Brobbey C, PALANISAMY V, Ball L, Olsen S, et al. PRMT5-mediated arginine methylation activates AKT kinase to govern tumorigenesis. Nat Commun. 2021;12:3444 pubmed 出版商
  31. Lai W, Zhu W, Xiao C, Li X, Wang Y, Han Y, et al. HJURP promotes proliferation in prostate cancer cells through increasing CDKN1A degradation via the GSK3β/JNK signaling pathway. Cell Death Dis. 2021;12:583 pubmed 出版商
  32. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  33. Mou S, Zhou Z, Feng H, Zhang N, Lin Z, Aiyasiding X, et al. Liquiritin Attenuates Lipopolysaccharides-Induced Cardiomyocyte Injury via an AMP-Activated Protein Kinase-Dependent Signaling Pathway. Front Pharmacol. 2021;12:648688 pubmed 出版商
  34. Yao J, Yang Z, Yang J, Wang Z, Zhang Z. Long non-coding RNA FEZF1-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma via targeting miR-107/Wnt/β-catenin axis. Aging (Albany NY). 2021;13:13726-13738 pubmed 出版商
  35. Liu Y, Cong P, Zhang T, Wang R, Wang X, Liu J, et al. Plasmalogen attenuates the development of hepatic steatosis and cognitive deficit through mechanism involving p75NTR inhibition. Redox Biol. 2021;43:102002 pubmed 出版商
  36. Di Giorgio E, Paluvai H, Dalla E, Ranzino L, Renzini A, Moresi V, et al. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Genome Biol. 2021;22:129 pubmed 出版商
  37. Landin Malt A, Clancy S, Hwang D, Liu A, Smith C, Smith M, et al. Non-Canonical Wnt Signaling Regulates Cochlear Outgrowth and Planar Cell Polarity via Gsk3β Inhibition. Front Cell Dev Biol. 2021;9:649830 pubmed 出版商
  38. Luo L, Wu J, Lin T, Lian G, Wang H, Gao G, et al. Influence of atorvastatin on metabolic pattern of rats with pulmonary hypertension. Aging (Albany NY). 2021;13:11954-11968 pubmed 出版商
  39. Correll E, Ramser B, Knott M, McCullumsmith R, McGuire J, Ngwenya L. Deficits in pattern separation and dentate gyrus proliferation after rodent lateral fluid percussion injury. IBRO Neurosci Rep. 2021;10:31-41 pubmed 出版商
  40. Gao S, Gao L, Wang S, Shi X, Yue C, Wei S, et al. ATF3 Suppresses Growth and Metastasis of Clear Cell Renal Cell Carcinoma by Deactivating EGFR/AKT/GSK3β/β-Catenin Signaling Pathway. Front Cell Dev Biol. 2021;9:618987 pubmed 出版商
  41. Chen Y, Hu W, Li Q, Zhao S, Zhao D, Zhang S, et al. NGBR is required to ameliorate type 2 diabetes in mice by enhancing insulin sensitivity. J Biol Chem. 2021;296:100624 pubmed 出版商
  42. Chang N, Yeh C, Lin Y, Kuo K, Fong I, Kounis N, et al. Garcinol Attenuates Lipoprotein(a)-Induced Oxidative Stress and Inflammatory Cytokine Production in Ventricular Cardiomyocyte through α7-Nicotinic Acetylcholine Receptor-Mediated Inhibition of the p38 MAPK and NF-κB Signaling Pathways. Antioxidants (Basel). 2021;10: pubmed 出版商
  43. Zhang L, Li M, Tian C, Wang T, Mi S. CCAAT enhancer binding protein α suppresses proliferation, metastasis, and epithelial-mesenchymal transition of ovarian cancer cells via suppressing the Wnt/β-catenin signaling. Neoplasma. 2021;68:602-612 pubmed 出版商
  44. Wang X, Pei Z, Hossain A, Bai Y, Chen G. Transcription factor-based gene therapy to treat glioblastoma through direct neuronal conversion. Cancer Biol Med. 2021;: pubmed 出版商
  45. Ryu Y, Lee D, Shim J, Park J, Kim Y, Choi S, et al. KY19382, a novel activator of Wnt/β-catenin signalling, promotes hair regrowth and hair follicle neogenesis. Br J Pharmacol. 2021;178:2533-2546 pubmed 出版商
  46. Jacques S, Arjomand A, Per xe9 e H, Collins P, Mayer A, Lavergne A, et al. Dual-specificity phosphatase 3 deletion promotes obesity, non-alcoholic steatohepatitis and hepatocellular carcinoma. Sci Rep. 2021;11:5817 pubmed 出版商
  47. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  48. Amaral A, Perez Nievas B, Siao Tick Chong M, González Martínez A, Argente Escrig H, Rubio Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3β) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058 pubmed 出版商
  49. Tangseefa P, Martin S, Chin P, Breen J, Mah C, Baldock P, et al. The mTORC1 complex in pre-osteoblasts regulates whole-body energy metabolism independently of osteocalcin. Bone Res. 2021;9:10 pubmed 出版商
  50. Zhang S, Sousa A, Lin M, Iwano A, Jain R, Ma B, et al. Role of Chitinase 3-Like 1 Protein in the Pathogenesis of Hepatic Insulin Resistance in Nonalcoholic Fatty Liver Disease. Cells. 2021;10: pubmed 出版商
  51. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  52. Lu M, Qin X, Zhou Y, Li G, Liu Z, Geng X, et al. Long non-coding RNA LINC00665 promotes gemcitabine resistance of Cholangiocarcinoma cells via regulating EMT and stemness properties through miR-424-5p/BCL9L axis. Cell Death Dis. 2021;12:72 pubmed 出版商
  53. Yang J, Kitami M, Pan H, Nakamura M, Zhang H, Liu F, et al. Augmented BMP signaling commits cranial neural crest cells to a chondrogenic fate by suppressing autophagic β-catenin degradation. Sci Signal. 2021;14: pubmed 出版商
  54. Bae M, Roh J, Kim Y, Kim S, Han H, Yang E, et al. SLC6A20 transporter: a novel regulator of brain glycine homeostasis and NMDAR function. EMBO Mol Med. 2021;13:e12632 pubmed 出版商
  55. Nakayama A, Albarrán Juárez J, Liang G, Roquid K, Iring A, Tonack S, et al. Disturbed flow-induced Gs-mediated signaling protects against endothelial inflammation and atherosclerosis. JCI Insight. 2020;5: pubmed 出版商
  56. He F, Li L, Li P, Deng Y, Yang Y, Deng Y, et al. Cyclooxygenase-2/sclerostin mediates TGF-β1-induced calcification in vascular smooth muscle cells and rats undergoing renal failure. Aging (Albany NY). 2020;12:21220-21235 pubmed 出版商
  57. Yu W, Hua Y, Qiu H, Hao J, Zou K, Li Z, et al. PD-L1 promotes tumor growth and progression by activating WIP and β-catenin signaling pathways and predicts poor prognosis in lung cancer. Cell Death Dis. 2020;11:506 pubmed 出版商
  58. Waaler J, Mygland L, Tveita A, Strand M, Solberg N, Olsen P, et al. Tankyrase inhibition sensitizes melanoma to PD-1 immune checkpoint blockade in syngeneic mouse models. Commun Biol. 2020;3:196 pubmed 出版商
  59. Li X, Wu Y, Zhao J, Wang H, Tan J, Yang M, et al. Distinct cardiac energy metabolism and oxidative stress adaptations between obese and non-obese type 2 diabetes mellitus. Theranostics. 2020;10:2675-2695 pubmed 出版商
  60. Hu S, Hu M, Liu J, Zhang B, Zhang Z, Zhou F, et al. Phosphorylation of Tau and α-Synuclein Induced Neurodegeneration in MPTP Mouse Model of Parkinson's Disease. Neuropsychiatr Dis Treat. 2020;16:651-663 pubmed 出版商
  61. Xu M, Ge C, Qin Y, Lou D, Li Q, Feng J, et al. Functional loss of inactive rhomboid-like protein 2 mitigates obesity by suppressing pro-inflammatory macrophage activation-triggered adipose inflammation. Mol Metab. 2020;34:112-123 pubmed 出版商
  62. Chen Z, Zhang J, Xue H, Qian M, Guo X, Gao X, et al. Nitidine Chloride Is a Potential Alternative Therapy for Glioma Through Inducing Endoplasmic Reticulum Stress and Alleviating Epithelial-Mesenchymal Transition. Integr Cancer Ther. 2020;19:1534735419900927 pubmed 出版商
  63. Shi H, Wang Q, Zheng M, Hao S, Lum J, Chen X, et al. Supplement of microbiota-accessible carbohydrates prevents neuroinflammation and cognitive decline by improving the gut microbiota-brain axis in diet-induced obese mice. J Neuroinflammation. 2020;17:77 pubmed 出版商
  64. Du X, He W, He H, Wang H. Beta-catenin inhibits bovine parainfluenza virus type 3 replication via innate immunity pathway. BMC Vet Res. 2020;16:72 pubmed 出版商
  65. Tian S, Peng P, Li J, Deng H, Zhan N, Zeng Z, et al. SERPINH1 regulates EMT and gastric cancer metastasis via the Wnt/β-catenin signaling pathway. Aging (Albany NY). 2020;12:3574-3593 pubmed 出版商
  66. Aldonza M, Ku J, Hong J, Kim D, Yu S, Lee M, et al. Prior acquired resistance to paclitaxel relays diverse EGFR-targeted therapy persistence mechanisms. Sci Adv. 2020;6:eaav7416 pubmed 出版商
  67. Zeng S, Bai J, Jiang H, Zhu J, Fu C, He M, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2019;13:585 pubmed 出版商
  68. Li J, Chiu J, Ramanjulu M, Blass B, Pratico D. A pharmacological chaperone improves memory by reducing Aβ and tau neuropathology in a mouse model with plaques and tangles. Mol Neurodegener. 2020;15:1 pubmed 出版商
  69. Fine J, Kosyakovsky J, Baillargeon A, Tokarev J, Cooner J, Svitak A, et al. Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially non-disease-specific pathway of functional neurologic improvement. Brain Behav. 2020;10:e01536 pubmed 出版商
  70. Zhou L, Shao C, Xie Y, Wang N, Xu S, Luo B, et al. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. elife. 2020;9: pubmed 出版商
  71. Xing T, Benderman L, Sabu S, Parker J, Yang J, Lu Q, et al. Tight Junction Protein Claudin-7 Is Essential for Intestinal Epithelial Stem Cell Self-Renewal and Differentiation. Cell Mol Gastroenterol Hepatol. 2020;9:641-659 pubmed 出版商
  72. Woo Y, Kim S, Suh B, Kwak Y, Jung H, Nhung T, et al. Sequential phosphorylation of NDEL1 by the DYRK2-GSK3β complex is critical for neuronal morphogenesis. elife. 2019;8: pubmed 出版商
  73. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt S, Vieira Saecker A, et al. NLRP3 inflammasome activation drives tau pathology. Nature. 2019;: pubmed 出版商
  74. Tian S, Jia W, Lu M, Zhao J, Sun X. Dual-specificity tyrosine phosphorylation-regulated kinase 1A ameliorates insulin resistance in neurons by up-regulating IRS-1 expression. J Biol Chem. 2019;: pubmed 出版商
  75. Yan D, Wang J, Sun H, Zamani A, Zhang H, Chen W, et al. TIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesis. J Exp Med. 2020;217: pubmed 出版商
  76. Liu Y, Jiang Q, Liu X, Lin X, Tang Z, Liu C, et al. Cinobufotalin powerfully reversed EBV-miR-BART22-induced cisplatin resistance via stimulating MAP2K4 to antagonize non-muscle myosin heavy chain IIA/glycogen synthase 3β/β-catenin signaling pathway. EBioMedicine. 2019;48:386-404 pubmed 出版商
  77. Presby D, Checkley L, Jackman M, Higgins J, Jones K, Giles E, et al. Regular exercise potentiates energetically expensive hepatic de novo lipogenesis during early weight regain. Am J Physiol Regul Integr Comp Physiol. 2019;317:R684-R695 pubmed 出版商
  78. Gao C, Chen G, Zhang D, Zhang J, Kuan S, Hu W, et al. PYK2 Is Involved in Premalignant Acinar Cell Reprogramming and Pancreatic Ductal Adenocarcinoma Maintenance by Phosphorylating β-CateninY654. Cell Mol Gastroenterol Hepatol. 2019;8:561-578 pubmed 出版商
  79. van de Vlekkert D, Demmers J, Nguyen X, Campos Y, Machado E, Annunziata I, et al. Excessive exosome release is the pathogenic pathway linking a lysosomal deficiency to generalized fibrosis. Sci Adv. 2019;5:eaav3270 pubmed 出版商
  80. Uddin G, Zhang L, Shah S, Fukushima A, Wagg C, Gopal K, et al. Impaired branched chain amino acid oxidation contributes to cardiac insulin resistance in heart failure. Cardiovasc Diabetol. 2019;18:86 pubmed 出版商
  81. Ye Z, Zeng Z, Shen Y, Yang Q, Chen D, Chen Z, et al. ODC1 promotes proliferation and mobility via the AKT/GSK3β/β-catenin pathway and modulation of acidotic microenvironment in human hepatocellular carcinoma. Onco Targets Ther. 2019;12:4081-4092 pubmed 出版商
  82. Yang S, Harding A, Sweeney C, Miao D, Swan G, Zhou C, et al. Control of antiviral innate immune response by protein geranylgeranylation. Sci Adv. 2019;5:eaav7999 pubmed 出版商
  83. Chaves Pérez A, Yilmaz M, Perna C, de la Rosa S, Djouder N. URI is required to maintain intestinal architecture during ionizing radiation. Science. 2019;364: pubmed 出版商
  84. Choi J, Zhong X, McAlpine W, Liao T, Zhang D, Fang B, et al. LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling. Science. 2019;364: pubmed 出版商
  85. Zhang H, Wang J, Wang Y, Gao C, Gu Y, Huang J, et al. Salvianolic Acid A Protects the Kidney against Oxidative Stress by Activating the Akt/GSK-3β/Nrf2 Signaling Pathway and Inhibiting the NF-κB Signaling Pathway in 5/6 Nephrectomized Rats. Oxid Med Cell Longev. 2019;2019:2853534 pubmed 出版商
  86. Xu F, Xiao H, Liu R, Yang Y, Zhang M, Chen L, et al. Paeonol Ameliorates Glucose and Lipid Metabolism in Experimental Diabetes by Activating Akt. Front Pharmacol. 2019;10:261 pubmed 出版商
  87. Chang H, Di T, Wang Y, Zeng X, Li G, Wan Q, et al. Seipin deletion in mice enhances phosphorylation and aggregation of tau protein through reduced neuronal PPARγ and insulin resistance. Neurobiol Dis. 2019;127:350-361 pubmed 出版商
  88. Liu P, Yao R, Shi H, Liu Y, Lian S, Yang Y, et al. Effects of Cold-inducible RNA-binding Protein (CIRP) on Liver Glycolysis during Acute Cold Exposure in C57BL/6 Mice. Int J Mol Sci. 2019;20: pubmed 出版商
  89. Shi H, Yao R, Lian S, Liu P, Liu Y, Yang Y, et al. Regulating glycolysis, the TLR4 signal pathway and expression of RBM3 in mouse liver in response to acute cold exposure. Stress. 2019;22:366-376 pubmed 出版商
  90. Guo J, Dai X, Laurent B, Zheng N, Gan W, Zhang J, et al. AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat Cell Biol. 2019;21:226-237 pubmed 出版商
  91. Bishnupuri K, Alvarado D, Khouri A, Shabsovich M, Chen B, Dieckgraefe B, et al. IDO1 and kynurenine pathway metabolites activate PI3K-Akt signaling in the neoplastic colon epithelium to promote cancer cell proliferation and inhibit apoptosis. Cancer Res. 2019;: pubmed 出版商
  92. Ruegsegger G, Manjunatha S, Summer P, Gopala S, Zabeilski P, Dasari S, et al. Insulin deficiency and intranasal insulin alter brain mitochondrial function: a potential factor for dementia in diabetes. FASEB J. 2019;33:4458-4472 pubmed 出版商
  93. Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, et al. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. elife. 2019;8: pubmed 出版商
  94. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  95. Zhang Z, Chen J, Huang W, Ning D, Liu Q, Wang C, et al. FAM134B induces tumorigenesis and epithelial-to-mesenchymal transition via Akt signaling in hepatocellular carcinoma. Mol Oncol. 2019;13:792-810 pubmed 出版商
  96. Peng J, Liang S, Li L. sFRP1 exerts effects on gastric cancer cells through GSK3β/Rac1‑mediated restraint of TGFβ/Smad3 signaling. Oncol Rep. 2019;41:224-234 pubmed 出版商
  97. Ding Y, Li N, Dong B, Guo W, Wei H, Chen Q, et al. Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. J Clin Invest. 2019;129:759-773 pubmed 出版商
  98. Zhu H, Zhang L, Wu Y, Dong B, Guo W, Wang M, et al. T-ALL leukemia stem cell 'stemness' is epigenetically controlled by the master regulator SPI1. elife. 2018;7: pubmed 出版商
  99. Li H, Feng J, Zhang Y, Feng J, Wang Q, Zhao S, et al. Mst1 deletion attenuates renal ischaemia-reperfusion injury: The role of microtubule cytoskeleton dynamics, mitochondrial fission and the GSK3β-p53 signalling pathway. Redox Biol. 2019;20:261-274 pubmed 出版商
  100. Bartolomé A, Zhu C, Sussel L, Pajvani U. Notch signaling dynamically regulates adult β cell proliferation and maturity. J Clin Invest. 2019;129:268-280 pubmed 出版商
  101. Nie S, Tan Y, Zhang Z, Chen G, Xiong J, Hu D, et al. Bilateral Implantation of Shear Stress Modifier in ApoE Knockout Mouse Induces Cognitive Impairment and Tau Abnormalities. Front Aging Neurosci. 2018;10:303 pubmed 出版商
  102. Mangolini M, Götte F, Moore A, Ammon T, Oelsner M, Lutzny Geier G, et al. Notch2 controls non-autonomous Wnt-signalling in chronic lymphocytic leukaemia. Nat Commun. 2018;9:3839 pubmed 出版商
  103. Wang X, Li Q, Liu C, Hall P, Jiang J, Katchis C, et al. Lin28 Signaling Supports Mammalian PNS and CNS Axon Regeneration. Cell Rep. 2018;24:2540-2552.e6 pubmed 出版商
  104. Lionnard L, Duc P, Brennan M, Kueh A, Pal M, Guardia F, et al. TRIM17 and TRIM28 antagonistically regulate the ubiquitination and anti-apoptotic activity of BCL2A1. Cell Death Differ. 2019;26:902-917 pubmed 出版商
  105. Huang W, Bei L, Eklund E. Inhibition of Fas associated phosphatase 1 (Fap1) facilitates apoptosis of colon cancer stem cells and enhances the effects of oxaliplatin. Oncotarget. 2018;9:25891-25902 pubmed 出版商
  106. Zheng C, Wang J, Lin M, Zhang P, Liu L, Lin J, et al. CDK5RAP3 suppresses Wnt/β-catenin signaling by inhibiting AKT phosphorylation in gastric cancer. J Exp Clin Cancer Res. 2018;37:59 pubmed 出版商
  107. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  108. Zhao Y, Wu X, Li X, Jiang L, Gui X, Liu Y, et al. TREM2 Is a Receptor for β-Amyloid that Mediates Microglial Function. Neuron. 2018;97:1023-1031.e7 pubmed 出版商
  109. Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta M, et al. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. elife. 2018;7: pubmed 出版商
  110. Markussen L, Winther S, Wicksteed B, Hansen J. GSK3 is a negative regulator of the thermogenic program in brown adipocytes. Sci Rep. 2018;8:3469 pubmed 出版商
  111. Patra D, DeLassus E, Mueller J, Abou Ezzi G, Sandell L. Site-1 protease regulates skeletal stem cell population and osteogenic differentiation in mice. Biol Open. 2018;7: pubmed 出版商
  112. Xue C, Hong L, Lin J, Yao X, Wu D, Lin X, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018;38: pubmed 出版商
  113. Shen L, Qu X, Li H, Xu C, Wei M, Wang Q, et al. NDRG2 facilitates colorectal cancer differentiation through the regulation of Skp2-p21/p27 axis. Oncogene. 2018;37:1759-1774 pubmed 出版商
  114. Ka M, Kim W. ANKRD11 associated with intellectual disability and autism regulates dendrite differentiation via the BDNF/TrkB signaling pathway. Neurobiol Dis. 2018;111:138-152 pubmed 出版商
  115. Zheng L, Conner S. Glycogen synthase kinase 3β inhibition enhances Notch1 recycling. Mol Biol Cell. 2018;29:389-395 pubmed 出版商
  116. Shuang W, Hou L, Zhu Y, Li Q, Hu W. Mcl-1 stabilization confers resistance to taxol in human gastric cancer. Oncotarget. 2017;8:82981-82990 pubmed 出版商
  117. Zhao Z, Luo J, Li H, Wang S, Li X. SOX2-mediated inhibition of miR-223 contributes to STIM1 activation in phenylephrine-induced hypertrophic cardiomyocytes. Mol Cell Biochem. 2018;443:47-56 pubmed 出版商
  118. Zhao Z, Jia Q, Wu M, Xie X, Wang Y, Song G, et al. Degalactotigonin, a Natural Compound from Solanum nigrum L., Inhibits Growth and Metastasis of Osteosarcoma through GSK3β Inactivation-Mediated Repression of the Hedgehog/Gli1 Pathway. Clin Cancer Res. 2018;24:130-144 pubmed 出版商
  119. Romero Pozuelo J, Demetriades C, Schroeder P, Teleman A. CycD/Cdk4 and Discontinuities in Dpp Signaling Activate TORC1 in the Drosophila Wing Disc. Dev Cell. 2017;42:376-387.e5 pubmed 出版商
  120. Take K, Waki H, Sun W, Wada T, Yu J, Nakamura M, et al. CDK5 Regulatory Subunit-Associated Protein 1-like 1 Negatively Regulates Adipocyte Differentiation through Activation of Wnt Signaling Pathway. Sci Rep. 2017;7:7326 pubmed 出版商
  121. Wilkinson B, Li J, Coba M. Synaptic GAP and GEF Complexes Cluster Proteins Essential for GTP Signaling. Sci Rep. 2017;7:5272 pubmed 出版商
  122. Patel N, Garikapati K, Pandita R, Singh D, Pandita T, Bhadra U, et al. miR-15a/miR-16 down-regulates BMI1, impacting Ub-H2A mediated DNA repair and breast cancer cell sensitivity to doxorubicin. Sci Rep. 2017;7:4263 pubmed 出版商
  123. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  124. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  125. Wu X, Kosaraju J, Tam K. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3? activity in SH-SY5Y cells. Eur J Pharm Sci. 2017;110:101-108 pubmed 出版商
  126. Suresh S, Chavalmane A, Dj V, Yarreiphang H, Rai S, Paul A, et al. A novel autophagy modulator 6-Bio ameliorates SNCA/?-synuclein toxicity. Autophagy. 2017;13:1221-1234 pubmed 出版商
  127. Wang X, Chen H, Tian R, Zhang Y, Drutskaya M, Wang C, et al. Macrophages induce AKT/β-catenin-dependent Lgr5+ stem cell activation and hair follicle regeneration through TNF. Nat Commun. 2017;8:14091 pubmed 出版商
  128. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  129. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  130. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  131. Loo L, Bougen Zhukov N, Tan W. Early spatiotemporal-specific changes in intermediate signals are predictive of cytotoxic sensitivity to TNFα and co-treatments. Sci Rep. 2017;7:43541 pubmed 出版商
  132. Hui X, Zhang M, Gu P, Li K, Gao Y, Wu D, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue. EMBO Rep. 2017;18:645-657 pubmed 出版商
  133. Subramaniam M, Cicek M, Pitel K, Bruinsma E, Nelson Holte M, Withers S, et al. TIEG1 modulates ?-catenin sub-cellular localization and enhances Wnt signaling in bone. Nucleic Acids Res. 2017;45:5170-5182 pubmed 出版商
  134. He X, Li Z, Rizak J, Wu S, Wang Z, He R, et al. Resveratrol Attenuates Formaldehyde Induced Hyperphosphorylation of Tau Protein and Cytotoxicity in N2a Cells. Front Neurosci. 2016;10:598 pubmed 出版商
  135. Shen C, Zhou J, Wang X, Yu X, Liang C, Liu B, et al. Angiotensin-II-induced Muscle Wasting is Mediated by 25-Hydroxycholesterol via GSK3? Signaling Pathway. EBioMedicine. 2017;16:238-250 pubmed 出版商
  136. Cederquist C, Lentucci C, Martinez Calejman C, Hayashi V, Orofino J, GUERTIN D, et al. Systemic insulin sensitivity is regulated by GPS2 inhibition of AKT ubiquitination and activation in adipose tissue. Mol Metab. 2017;6:125-137 pubmed 出版商
  137. Zheng B, Wang J, Tang L, Tan C, Zhao Z, Xiao Y, et al. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro. Int J Biol Sci. 2017;13:110-121 pubmed 出版商
  138. Guo A, Lu P, Lee J, Zhen C, Chiosis G, Wang Y. HSP90 stabilizes B-cell receptor kinases in a multi-client interactome: PU-H71 induces CLL apoptosis in a cytoprotective microenvironment. Oncogene. 2017;36:3441-3449 pubmed 出版商
  139. Chen Y, Li C, Xie H, Fan Y, Yang Z, Ma J, et al. Infiltrating mast cells promote renal cell carcinoma angiogenesis by modulating PI3K→︀AKT→︀GSK3β→︀AM signaling. Oncogene. 2017;36:2879-2888 pubmed 出版商
  140. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  141. Marquez Vilendrer S, Rai S, Gramling S, Lu L, Reisman D. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience. 2016;3:337-350 pubmed 出版商
  142. Wu M, Chen W, Lu Y, Zhu G, Hao L, Li Y. Gα13 negatively controls osteoclastogenesis through inhibition of the Akt-GSK3β-NFATc1 signalling pathway. Nat Commun. 2017;8:13700 pubmed 出版商
  143. Granato M, Rizzello C, Gilardini Montani M, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124-136 pubmed 出版商
  144. Hussain R, Macklin W. Integrin-Linked Kinase (ILK) Deletion Disrupts Oligodendrocyte Development by Altering Cell Cycle. J Neurosci. 2017;37:397-412 pubmed 出版商
  145. Liu W, Liu J, Xia J, Xue X, Wang H, Qi Z, et al. Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling. Brain Behav Immun. 2017;61:297-305 pubmed 出版商
  146. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  147. Cao J, Tyburczy M, Moss J, Darling T, Widlund H, Kwiatkowski D. Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation. J Clin Invest. 2017;127:349-364 pubmed 出版商
  148. Grabinski T, Kanaan N. Novel Non-phosphorylated Serine 9/21 GSK3?/? Antibodies: Expanding the Tools for Studying GSK3 Regulation. Front Mol Neurosci. 2016;9:123 pubmed
  149. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  150. Lian G, Dettenhofer M, Lu J, Downing M, Chenn A, Wong T, et al. Filamin A- and formin 2-dependent endocytosis regulates proliferation via the canonical Wnt pathway. Development. 2016;143:4509-4520 pubmed
  151. Tapia Rojas C, Burgos P, Inestrosa N. Inhibition of Wnt signaling induces amyloidogenic processing of amyloid precursor protein and the production and aggregation of Amyloid-? (A?)42 peptides. J Neurochem. 2016;139:1175-1191 pubmed 出版商
  152. Goebbels S, Wieser G, Pieper A, Spitzer S, Weege B, Yan K, et al. A neuronal PI(3,4,5)P3-dependent program of oligodendrocyte precursor recruitment and myelination. Nat Neurosci. 2017;20:10-15 pubmed 出版商
  153. Gómez Salinero J, López Olañeta M, Ortiz Sánchez P, Larrasa Alonso J, Gatto A, Felkin L, et al. The Calcineurin Variant CnA?1 Controls Mouse Embryonic Stem Cell Differentiation by Directing mTORC2 Membrane Localization and Activation. Cell Chem Biol. 2016;23:1372-1382 pubmed 出版商
  154. Hinds T, Burns K, Hosick P, McBeth L, Nestor Kalinoski A, Drummond H, et al. Biliverdin Reductase A Attenuates Hepatic Steatosis by Inhibition of Glycogen Synthase Kinase (GSK) 3? Phosphorylation of Serine 73 of Peroxisome Proliferator-activated Receptor (PPAR) ?. J Biol Chem. 2016;291:25179-25191 pubmed
  155. Sun W, Lee S, Huang X, Liu S, Inayathullah M, Kim K, et al. Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer's disease treatment. Sci Rep. 2016;6:34784 pubmed 出版商
  156. Nonomiya Y, Noguchi K, Tanaka N, Kasagaki T, Katayama K, Sugimoto Y. Effect of AKT3 expression on MYC- and caspase-8-dependent apoptosis caused by polo-like kinase inhibitors in HCT 116 cells. Cancer Sci. 2016;107:1877-1887 pubmed 出版商
  157. Barth K, Blasche R, Neiser A, Bramke S, Frank J, Kasper M. P2X7R-dependent regulation of glycogen synthase kinase 3β and claudin-18 in alveolar epithelial type I cells of mice lung. Histochem Cell Biol. 2016;146:757-768 pubmed 出版商
  158. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  159. Tai Y, Tung L, Lin Y, Lu P, Chu P, Wang M, et al. Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression. PLoS ONE. 2016;11:e0163617 pubmed 出版商
  160. Kim Y, Yadava R, Mandal M, Mahadevan K, Yu Q, Leitges M, et al. Disease Phenotypes in a Mouse Model of RNA Toxicity Are Independent of Protein Kinase Cα and Protein Kinase Cβ. PLoS ONE. 2016;11:e0163325 pubmed 出版商
  161. Mercado Pimentel M, Igarashi S, Dunn A, Behbahani M, Miller C, Read C, et al. The Novel Small Molecule Inhibitor, OSU-T315, Suppresses Vestibular Schwannoma and Meningioma Growth by Inhibiting PDK2 Function in the AKT Pathway Activation. Austin J Med Oncol. 2016;3: pubmed
  162. Drelon C, Berthon A, Sahut Barnola I, Mathieu M, Dumontet T, Rodriguez S, et al. PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development. Nat Commun. 2016;7:12751 pubmed 出版商
  163. Xing H, Lim Y, Chong J, Lee J, Aarsland D, Ballard C, et al. Increased phosphorylation of collapsin response mediator protein-2 at Thr514 correlates with ?-amyloid burden and synaptic deficits in Lewy body dementias. Mol Brain. 2016;9:84 pubmed 出版商
  164. Olianas M, Dedoni S, Onali P. LPA1 Mediates Antidepressant-Induced ERK1/2 Signaling and Protection from Oxidative Stress in Glial Cells. J Pharmacol Exp Ther. 2016;359:340-353 pubmed
  165. Qin Y, Liu Y, Hao W, Decker Y, Tomic I, Menger M, et al. Stimulation of TLR4 Attenuates Alzheimer's Disease-Related Symptoms and Pathology in Tau-Transgenic Mice. J Immunol. 2016;197:3281-3292 pubmed
  166. Wetzel F, Mittag S, Cano Cortina M, Wagner T, Kramer O, Niedenthal R, et al. SUMOylation regulates the intracellular fate of ZO-2. Cell Mol Life Sci. 2017;74:373-392 pubmed 出版商
  167. Li C, Lim S, Xia W, Lee H, Chan L, Kuo C, et al. Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun. 2016;7:12632 pubmed 出版商
  168. Woodall B, Woodall M, Luongo T, Grisanti L, Tilley D, Elrod J, et al. Skeletal Muscle-specific G Protein-coupled Receptor Kinase 2 Ablation Alters Isolated Skeletal Muscle Mechanics and Enhances Clenbuterol-stimulated Hypertrophy. J Biol Chem. 2016;291:21913-21924 pubmed
  169. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  170. Mirkheshti N, Park S, Jiang S, Cropper J, Werner S, Song C, et al. Dual targeting of androgen receptor and mTORC1 by salinomycin in prostate cancer. Oncotarget. 2016;7:62240-62254 pubmed 出版商
  171. Weikel K, Cacicedo J, Ruderman N, Ido Y. Knockdown of GSK3β increases basal autophagy and AMPK signalling in nutrient-laden human aortic endothelial cells. Biosci Rep. 2016;36: pubmed 出版商
  172. Li L, Liu H, Wang C, Liu X, Hu F, Xie N, et al. Overexpression of ?-Catenin Induces Cisplatin Resistance in Oral Squamous Cell Carcinoma. Biomed Res Int. 2016;2016:5378567 pubmed 出版商
  173. Cao L, Zhang L, Zhao X, Zhang Y. A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS ONE. 2016;11:e0161025 pubmed 出版商
  174. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  175. Zhou A, Lin K, Zhang S, Chen Y, Zhang N, Xue J, et al. Nuclear GSK3β promotes tumorigenesis by phosphorylating KDM1A and inducing its deubiquitylation by USP22. Nat Cell Biol. 2016;18:954-966 pubmed 出版商
  176. Oh B, Kim S, Lee Y, Hong H, Kim T, Kim S, et al. Twist1-induced epithelial-mesenchymal transition according to microsatellite instability status in colon cancer cells. Oncotarget. 2016;7:57066-57076 pubmed 出版商
  177. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  178. Liu J, Wan L, Liu J, Yuan Z, Zhang J, Guo J, et al. Cdh1 inhibits WWP2-mediated ubiquitination of PTEN to suppress tumorigenesis in an APC-independent manner. Cell Discov. 2016;2:15044 pubmed 出版商
  179. Hsu Y, Chang P, Ho C, Huang Y, Shih Y, Wang C, et al. Protective effects of miR-29a on diabetic glomerular dysfunction by modulation of DKK1/Wnt/β-catenin signaling. Sci Rep. 2016;6:30575 pubmed 出版商
  180. Fang F, Qin Y, Hao F, Li Q, Zhang W, Zhao C, et al. CD147 modulates androgen receptor activity through the Akt/Gsk-3?/?-catenin/AR pathway in prostate cancer cells. Oncol Lett. 2016;12:1124-1128 pubmed
  181. Metz H, Kargl J, Busch S, Kim K, Kurland B, Abberbock S, et al. Insulin receptor substrate-1 deficiency drives a proinflammatory phenotype in KRAS mutant lung adenocarcinoma. Proc Natl Acad Sci U S A. 2016;113:8795-800 pubmed 出版商
  182. Pan B, Huang X, Deng C. Chronic administration of aripiprazole activates GSK3β-dependent signalling pathways, and up-regulates GABAA receptor expression and CREB1 activity in rats. Sci Rep. 2016;6:30040 pubmed 出版商
  183. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  184. Manassero G, Guglielmotto M, Zamfir R, Borghi R, Colombo L, Salmona M, et al. Beta-amyloid 1-42 monomers, but not oligomers, produce PHF-like conformation of Tau protein. Aging Cell. 2016;15:914-23 pubmed 出版商
  185. Sun Z, Zhan L, Liang L, Sui H, Zheng L, Sun X, et al. ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes. BMC Complement Altern Med. 2016;16:200 pubmed 出版商
  186. Herring A, Münster Y, Akkaya T, Moghaddam S, Deinsberger K, Meyer J, et al. Kallikrein-8 inhibition attenuates Alzheimer's disease pathology in mice. Alzheimers Dement. 2016;12:1273-1287 pubmed 出版商
  187. Vodicka P, Chase K, Iuliano M, Valentine D, Sapp E, Lu B, et al. Effects of Exogenous NUB1 Expression in the Striatum of HDQ175/Q7 Mice. J Huntingtons Dis. 2016;5:163-74 pubmed 出版商
  188. Fagnocchi L, Cherubini A, Hatsuda H, Fasciani A, Mazzoleni S, Poli V, et al. A Myc-driven self-reinforcing regulatory network maintains mouse embryonic stem cell identity. Nat Commun. 2016;7:11903 pubmed 出版商
  189. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  190. Kuang J, Li L, Guo L, Su Y, Wang Y, Xu Y, et al. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J Exp Clin Cancer Res. 2016;35:88 pubmed 出版商
  191. Xi Z, Yao M, Li Y, Xie C, Holst J, Liu T, et al. Guttiferone K impedes cell cycle re-entry of quiescent prostate cancer cells via stabilization of FBXW7 and subsequent c-MYC degradation. Cell Death Dis. 2016;7:e2252 pubmed 出版商
  192. Li B, Sun J, Dong Z, Xue P, He X, Liao L, et al. GCN5 modulates osteogenic differentiation of periodontal ligament stem cells through DKK1 acetylation in inflammatory microenvironment. Sci Rep. 2016;6:26542 pubmed 出版商
  193. Guinot A, Oeztuerk Winder F, Ventura J. miR-17-92/p38? Dysregulation Enhances Wnt Signaling and Selects Lgr6+ Cancer Stem-like Cells during Lung Adenocarcinoma Progression. Cancer Res. 2016;76:4012-22 pubmed 出版商
  194. Wang K, Cao P, Wang H, Tang Z, Wang N, Wang J, et al. Chronic administration of Angelica sinensis polysaccharide effectively improves fatty liver and glucose homeostasis in high-fat diet-fed mice. Sci Rep. 2016;6:26229 pubmed 出版商
  195. Chelko S, Asimaki A, Andersen P, Bedja D, Amat Alarcon N, Demazumder D, et al. Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight. 2016;1: pubmed 出版商
  196. Huang Y, Lin C, Liao H, Liu C, Chen Y, Chiu W, et al. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience. 2016;328:201-9 pubmed 出版商
  197. Bie Q, Sun C, Gong A, Li C, Su Z, Zheng D, et al. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci Rep. 2016;6:25447 pubmed 出版商
  198. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  199. Yang E, Tacchelly Benites O, Wang Z, Randall M, Tian A, Benchabane H, et al. Wnt pathway activation by ADP-ribosylation. Nat Commun. 2016;7:11430 pubmed 出版商
  200. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  201. Leung C, Mak W, Kai A, Chan K, Lee T, Ng I, et al. Sox9 confers stemness properties in hepatocellular carcinoma through Frizzled-7 mediated Wnt/?-catenin signaling. Oncotarget. 2016;7:29371-86 pubmed 出版商
  202. Li N, Liu S, Zhang H, Deng Z, Zhao H, Zhao Q, et al. Exogenous R-Spondin1 Induces Precocious Telogen-to-Anagen Transition in Mouse Hair Follicles. Int J Mol Sci. 2016;17: pubmed 出版商
  203. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  204. Dinger K, Kasper P, Hucklenbruch Rother E, Vohlen C, Jobst E, Janoschek R, et al. Early-onset obesity dysregulates pulmonary adipocytokine/insulin signaling and induces asthma-like disease in mice. Sci Rep. 2016;6:24168 pubmed 出版商
  205. Pan B, Huang X, Deng C. Aripiprazole and Haloperidol Activate GSK3?-Dependent Signalling Pathway Differentially in Various Brain Regions of Rats. Int J Mol Sci. 2016;17:459 pubmed 出版商
  206. Parameswaran R, Ramakrishnan P, Moreton S, Xia Z, Hou Y, Lee D, et al. Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun. 2016;7:11154 pubmed 出版商
  207. Ge N, Liu C, Li G, Xie L, Zhang Q, Li L, et al. Hydrosulfide attenuates acute myocardial ischemic injury through the glycogen synthase kinase-3?/?-catenin signaling pathway. Int J Mol Med. 2016;37:1281-9 pubmed 出版商
  208. Hansen N, Hjort L, Broholm C, Gillberg L, Schrölkamp M, Schultz H, et al. Metabolic and Transcriptional Changes in Cultured Muscle Stem Cells from Low Birth Weight Subjects. J Clin Endocrinol Metab. 2016;101:2254-64 pubmed 出版商
  209. Pan Y, Deng Y, Xie S, Wang Z, Wang Y, Ren J, et al. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3? and ?-catenin. Chin Med J (Engl). 2016;129:838-45 pubmed 出版商
  210. Winnay J, Solheim M, Dirice E, Sakaguchi M, Noh H, Kang H, et al. PI3-kinase mutation linked to insulin and growth factor resistance in vivo. J Clin Invest. 2016;126:1401-12 pubmed 出版商
  211. Gao X, Feng J, He Y, Xu F, Fan X, Huang W, et al. hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells. Sci Rep. 2016;6:22999 pubmed 出版商
  212. Kral J, Kuttke M, Schrottmaier W, Birnecker B, Warszawska J, Wernig C, et al. Sustained PI3K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep. 2016;6:23034 pubmed 出版商
  213. Hu W, Xiao L, Cao C, Hua S, Wu D. UBE2T promotes nasopharyngeal carcinoma cell proliferation, invasion, and metastasis by activating the AKT/GSK3β/β-catenin pathway. Oncotarget. 2016;7:15161-72 pubmed 出版商
  214. Li S, Wang F, Yang Y, Tiao M, Chuang J, Huang Y. Microarray Study of Pathway Analysis Expression Profile Associated with MicroRNA-29a with Regard to Murine Cholestatic Liver Injuries. Int J Mol Sci. 2016;17:324 pubmed 出版商
  215. Santio N, Salmela M, Arola H, Eerola S, Heino J, Rainio E, et al. The PIM1 kinase promotes prostate cancer cell migration and adhesion via multiple signalling pathways. Exp Cell Res. 2016;342:113-24 pubmed 出版商
  216. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  217. Katoh I, Fukunishi N, Fujimuro M, Kasai H, Moriishi K, Hata R, et al. Repression of Wnt/β-catenin response elements by p63 (TP63). Cell Cycle. 2016;15:699-710 pubmed 出版商
  218. Wang P, Zhang X, Luo P, Jiang X, Zhang P, Guo J, et al. Hepatocyte TRAF3 promotes liver steatosis and systemic insulin resistance through targeting TAK1-dependent signalling. Nat Commun. 2016;7:10592 pubmed 出版商
  219. Molteni R, Rossetti A, Savino E, Racagni G, Calabrese F. Chronic Mild Stress Modulates Activity-Dependent Transcription of BDNF in Rat Hippocampal Slices. Neural Plast. 2016;2016:2592319 pubmed 出版商
  220. Liu T, Fang Z, Wang G, Shi M, Wang X, Jiang K, et al. Anti-tumor activity of the TRPM8 inhibitor BCTC in prostate cancer DU145 cells. Oncol Lett. 2016;11:182-188 pubmed
  221. Cott C, Thuenauer R, Landi A, Kühn K, Juillot S, Imberty A, et al. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation. Biochim Biophys Acta. 2016;1863:1106-18 pubmed 出版商
  222. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  223. Thornton T, Delgado P, Chen L, Salas B, Krementsov D, Fernández M, et al. Inactivation of nuclear GSK3β by Ser(389) phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nat Commun. 2016;7:10553 pubmed 出版商
  224. Ogawa F, Murphy L, Malavasi E, O Sullivan S, Torrance H, Porteous D, et al. NDE1 and GSK3? Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking. ACS Chem Neurosci. 2016;7:553-64 pubmed 出版商
  225. Luey B, May F. Insulin-like growth factors are essential to prevent anoikis in oestrogen-responsive breast cancer cells: importance of the type I IGF receptor and PI3-kinase/Akt pathway. Mol Cancer. 2016;15:8 pubmed 出版商
  226. Bian Y, Yang L, Wang Z, Wang Q, Zeng L, Xu G. Repeated Three-Hour Maternal Separation Induces Depression-Like Behavior and Affects the Expression of Hippocampal Plasticity-Related Proteins in C57BL/6N Mice. Neural Plast. 2015;2015:627837 pubmed 出版商
  227. Kim K, Qiang L, Hayden M, Sparling D, Purcell N, Pajvani U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat Commun. 2016;7:10255 pubmed 出版商
  228. Wang C, Che L, Hu J, Zhang S, Jiang L, Latte G, et al. Activated mutant forms of PIK3CA cooperate with RasV12 or c-Met to induce liver tumour formation in mice via AKT2/mTORC1 cascade. Liver Int. 2016;36:1176-86 pubmed 出版商
  229. Schmieg N, Rocchi C, Romeo S, Maggio R, Millan M, Mannoury La Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and Dâ‚‚ receptors. J Neurochem. 2016;136:1037-51 pubmed 出版商
  230. Borriello A, Naviglio S, Bencivenga D, Caldarelli I, Tramontano A, Speranza M, et al. Histone Deacetylase Inhibitors Increase p27(Kip1) by Affecting Its Ubiquitin-Dependent Degradation through Skp2 Downregulation. Oxid Med Cell Longev. 2016;2016:2481865 pubmed 出版商
  231. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  232. Bowser J, Blackburn M, Shipley G, Molina J, Dunner K, Broaddus R. Loss of CD73-mediated actin polymerization promotes endometrial tumor progression. J Clin Invest. 2016;126:220-38 pubmed 出版商
  233. Oudart J, Doué M, Vautrin A, Brassart B, Sellier C, Dupont Deshorgue A, et al. The anti-tumor NC1 domain of collagen XIX inhibits the FAK/ PI3K/Akt/mTOR signaling pathway through αvβ3 integrin interaction. Oncotarget. 2016;7:1516-28 pubmed 出版商
  234. Diersch S, Wirth M, Schneeweis C, Jörs S, Geisler F, Siveke J, et al. Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene. 2016;35:3880-6 pubmed 出版商
  235. Young P, Leonard S, Martin D, Findlay J. The effect of retinol binding protein on the proteome of C2C12 muscle cells. Diabetes Metab Res Rev. 2016;32:379-90 pubmed 出版商
  236. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  237. Rizvi F, Mathur A, Krishna S, Siddiqi M, Kakkar P. Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biol. 2015;6:587-598 pubmed 出版商
  238. Wang Y, Zhang Y, Hu W, Xie S, Gong C, Iqbal K, et al. Rapid alteration of protein phosphorylation during postmortem: implication in the study of protein phosphorylation. Sci Rep. 2015;5:15709 pubmed 出版商
  239. Nishikawa T, Takahashi T, Nakamori M, Hosomi N, Maruyama H, Miyazaki Y, et al. The identification of raft-derived tau-associated vesicles that are incorporated into immature tangles and paired helical filaments. Neuropathol Appl Neurobiol. 2016;42:639-653 pubmed 出版商
  240. Lin K, Kao S, Lai C, Chen C, Wu C, Hsu H, et al. Tumor Suppressor Lzap Suppresses Wnt/β-Catenin Signaling to Promote Zebrafish Embryonic Ventral Cell Fates via the Suppression of Inhibitory Phosphorylation of Glycogen Synthase Kinase 3. J Biol Chem. 2015;290:29808-19 pubmed 出版商
  241. Radford H, Moreno J, Verity N, Halliday M, Mallucci G. PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 2015;130:633-42 pubmed 出版商
  242. Kong J, Hardin K, Dinkins M, Wang G, He Q, Mujadzic T, et al. Regulation of Chlamydomonas flagella and ependymal cell motile cilia by ceramide-mediated translocation of GSK3. Mol Biol Cell. 2015;26:4451-65 pubmed 出版商
  243. da Rocha A, Pereira B, Pauli J, Cintra D, De Souza C, Ropelle E, et al. Downhill Running-Based Overtraining Protocol Improves Hepatic Insulin Signaling Pathway without Concomitant Decrease of Inflammatory Proteins. PLoS ONE. 2015;10:e0140020 pubmed 出版商
  244. Leve F, Peres Moreira R, Binato R, Abdelhay E, Morgado Díaz J. LPA Induces Colon Cancer Cell Proliferation through a Cooperation between the ROCK and STAT-3 Pathways. PLoS ONE. 2015;10:e0139094 pubmed 出版商
  245. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  246. Haim Y, Bluher M, Slutsky N, Goldstein N, Kloting N, Harman Boehm I, et al. Elevated autophagy gene expression in adipose tissue of obese humans: A potential non-cell-cycle-dependent function of E2F1. Autophagy. 2015;11:2074-2088 pubmed 出版商
  247. Harmeier A, Obermueller S, Meyer C, Revel F, Buchy D, Chaboz S, et al. Trace amine-associated receptor 1 activation silences GSK3β signaling of TAAR1 and D2R heteromers. Eur Neuropsychopharmacol. 2015;25:2049-61 pubmed 出版商
  248. Salim H, Zong D, Hååg P, Novak M, Mörk B, Lewensohn R, et al. DKK1 is a potential novel mediator of cisplatin-refractoriness in non-small cell lung cancer cell lines. BMC Cancer. 2015;15:628 pubmed 出版商
  249. Plescher M, Teleman A, Demetriades C. TSC2 mediates hyperosmotic stress-induced inactivation of mTORC1. Sci Rep. 2015;5:13828 pubmed 出版商
  250. Li M, Yang S, Xing B, Ferguson B, Gulchina Y, Li Y, et al. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment. Exp Neurol. 2015;273:190-201 pubmed 出版商
  251. Reuther C, Heinzle V, Spampatti M, Vlotides G, de Toni E, Spöttl G, et al. Cabozantinib and Tivantinib, but Not INC280, Induce Antiproliferative and Antimigratory Effects in Human Neuroendocrine Tumor Cells in vitro: Evidence for 'Off-Target' Effects Not Mediated by c-Met Inhibition. Neuroendocrinology. 2016;103:383-401 pubmed 出版商
  252. Chiang K, Chen H, Hsu S, Pang J, Wang S, Hsu J, et al. PTEN insufficiency modulates ER+ breast cancer cell cycle progression and increases cell growth in vitro and in vivo. Drug Des Devel Ther. 2015;9:4631-8 pubmed 出版商
  253. Yan G, Wang Q, Hu S, Wang D, Qiao Y, Ma G, et al. Digoxin inhibits PDGF-BB-induced VSMC proliferation and migration through an increase in ILK signaling and attenuates neointima formation following carotid injury. Int J Mol Med. 2015;36:1001-11 pubmed 出版商
  254. Angliker N, Burri M, Zaichuk M, Fritschy J, Rüegg M. mTORC1 and mTORC2 have largely distinct functions in Purkinje cells. Eur J Neurosci. 2015;42:2595-612 pubmed 出版商
  255. Lee I, Jung K, Kim I, Lee H, Kim M, Yun S, et al. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015;10:38 pubmed 出版商
  256. Chiang C, Uzoma I, Lane D, MemiÅ¡ević V, Alem F, Yao K, et al. A reverse-phase protein microarray-based screen identifies host signaling dynamics upon Burkholderia spp. infection. Front Microbiol. 2015;6:683 pubmed 出版商
  257. Seo M, Lee C, Cho H, You Y, Lee B, Lee J, et al. Effects of antipsychotic drugs on the expression of synapse-associated proteins in the frontal cortex of rats subjected to immobilization stress. Psychiatry Res. 2015;229:968-74 pubmed 出版商
  258. Rodríguez Seoane C, Ramos A, Korth C, Requena J. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem. 2015;135:598-605 pubmed 出版商
  259. Cymerman I, Gozdz A, Urbanska M, Milek J, Dziembowska M, Jaworski J. Structural Plasticity of Dendritic Spines Requires GSK3α and GSK3β. PLoS ONE. 2015;10:e0134018 pubmed 出版商
  260. Lee M, Jeong M, Lee H, Han H, Ko A, Hewitt S, et al. PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun. 2015;6:7769 pubmed 出版商
  261. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A New Therapeutic Modality for Acute Myocardial Infarction: Nanoparticle-Mediated Delivery of Pitavastatin Induces Cardioprotection from Ischemia-Reperfusion Injury via Activation of PI3K/Akt Pathway and Anti-Inflammation in a Rat Model. PLoS ONE. 2015;10:e0132451 pubmed 出版商
  262. Metge B, Mitra A, Chen D, Shevde L, Samant R. N-Myc and STAT Interactor regulates autophagy and chemosensitivity in breast cancer cells. Sci Rep. 2015;5:11995 pubmed 出版商
  263. Reis C, Chen P, Srinivasan S, Aguet F, Mettlen M, Schmid S. Crosstalk between Akt/GSK3β signaling and dynamin-1 regulates clathrin-mediated endocytosis. EMBO J. 2015;34:2132-46 pubmed 出版商
  264. Tan X, Xue Y, Ma T, Wang X, Li J, Lan L, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Mol Neurodegener. 2015;10:24 pubmed 出版商
  265. Khan K, Dô F, Marineau A, Doyon P, Clément J, Woodgett J, et al. Fine-Tuning of the RIG-I-Like Receptor/Interferon Regulatory Factor 3-Dependent Antiviral Innate Immune Response by the Glycogen Synthase Kinase 3/β-Catenin Pathway. Mol Cell Biol. 2015;35:3029-43 pubmed 出版商
  266. Stoy C, Sundaram A, Rios Garcia M, Wang X, Seibert O, Zota A, et al. Transcriptional co-factor Transducin beta-like (TBL) 1 acts as a checkpoint in pancreatic cancer malignancy. EMBO Mol Med. 2015;7:1048-62 pubmed 出版商
  267. Ching J, Amiridis S, Stylli S, Bjorksten A, Kountouri N, Zheng T, et al. The peroxisome proliferator activated receptor gamma agonist pioglitazone increases functional expression of the glutamate transporter excitatory amino acid transporter 2 (EAAT2) in human glioblastoma cells. Oncotarget. 2015;6:21301-14 pubmed
  268. Zeng X, Wang H, Bai F, Zhou X, Li S, Ren L, et al. Identification of matrine as a promising novel drug for hepatic steatosis and glucose intolerance with HSP72 as an upstream target. Br J Pharmacol. 2015;172:4303-18 pubmed 出版商
  269. Petrov D, Pedrós I, Artiach G, Sureda F, Barroso E, Pallas M, et al. High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochim Biophys Acta. 2015;1852:1687-99 pubmed 出版商
  270. Shi C, Zhang M, Tong M, Yang L, Pang L, Chen L, et al. miR-148a is Associated with Obesity and Modulates Adipocyte Differentiation of Mesenchymal Stem Cells through Wnt Signaling. Sci Rep. 2015;5:9930 pubmed 出版商
  271. Liu G, Liu C, Zhang X. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats. Mol Med Rep. 2015;12:3297-3308 pubmed 出版商
  272. Jackson B, Ivanova I, Dagnino L. An ELMO2-RhoG-ILK network modulates microtubule dynamics. Mol Biol Cell. 2015;26:2712-25 pubmed 出版商
  273. Cheng H, Liang Y, Kuo Y, Chuu C, Lin C, Lee M, et al. Identification of thioridazine, an antipsychotic drug, as an antiglioblastoma and anticancer stem cell agent using public gene expression data. Cell Death Dis. 2015;6:e1753 pubmed 出版商
  274. Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, et al. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. BMC Complement Altern Med. 2015;15:126 pubmed 出版商
  275. Moreira J, Wohlwend M, Alves M, Wisløff U, Bye A. A small molecule activator of AKT does not reduce ischemic injury of the rat heart. J Transl Med. 2015;13:76 pubmed 出版商
  276. Morra F, Luise C, Merolla F, Poser I, Visconti R, Ilardi G, et al. FBXW7 and USP7 regulate CCDC6 turnover during the cell cycle and affect cancer drugs susceptibility in NSCLC. Oncotarget. 2015;6:12697-709 pubmed
  277. Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell Death Dis. 2015;6:e1719 pubmed 出版商
  278. Gassen N, Hartmann J, Zannas A, Kretzschmar A, Zschocke J, Maccarrone G, et al. FKBP51 inhibits GSK3β and augments the effects of distinct psychotropic medications. Mol Psychiatry. 2016;21:277-89 pubmed 出版商
  279. Monteiro da Rocha A, Ding J, Slawny N, Wolf A, Smith G. Loss of glycogen synthase kinase 3 isoforms during murine oocyte growth induces offspring cardiac dysfunction. Biol Reprod. 2015;92:127 pubmed 出版商
  280. Ko R, Park J, Ha H, Choi Y, Lee S. Glycogen synthase kinase 3β ubiquitination by TRAF6 regulates TLR3-mediated pro-inflammatory cytokine production. Nat Commun. 2015;6:6765 pubmed 出版商
  281. Marathe S, Liu S, Brai E, Kaczarowski M, Alberi L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015;22:1775-84 pubmed 出版商
  282. Yazlovitskaya E, Tseng H, Viquez O, Tu T, Mernaugh G, McKee K, et al. Integrin α3β1 regulates kidney collecting duct development via TRAF6-dependent K63-linked polyubiquitination of Akt. Mol Biol Cell. 2015;26:1857-74 pubmed 出版商
  283. Hossini A, Megges M, Prigione A, Lichtner B, Toliat M, Wruck W, et al. Induced pluripotent stem cell-derived neuronal cells from a sporadic Alzheimer's disease donor as a model for investigating AD-associated gene regulatory networks. BMC Genomics. 2015;16:84 pubmed 出版商
  284. Cuesto G, Jordán Álvarez S, Enriquez Barreto L, Ferrús A, Morales M, Acebes A. GSK3β inhibition promotes synaptogenesis in Drosophila and mammalian neurons. PLoS ONE. 2015;10:e0118475 pubmed 出版商
  285. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3β/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997 pubmed 出版商
  286. Zheng T, Yang X, Wu D, Xing S, Bian F, Li W, et al. Salidroside ameliorates insulin resistance through activation of a mitochondria-associated AMPK/PI3K/Akt/GSK3β pathway. Br J Pharmacol. 2015;172:3284-301 pubmed 出版商
  287. Williams J, Ni H, Haynes A, Manley S, Li Y, Jaeschke H, et al. Chronic Deletion and Acute Knockdown of Parkin Have Differential Responses to Acetaminophen-induced Mitophagy and Liver Injury in Mice. J Biol Chem. 2015;290:10934-46 pubmed 出版商
  288. Yi Y, Kang H, Bae E, Oh S, Seong Y, Bae I. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Exp Mol Med. 2015;47:e143 pubmed 出版商
  289. Schisler J, Grevengoed T, Pascual F, Cooper D, Ellis J, Paul D, et al. Cardiac energy dependence on glucose increases metabolites related to glutathione and activates metabolic genes controlled by mechanistic target of rapamycin. J Am Heart Assoc. 2015;4: pubmed 出版商
  290. Riise J, Plath N, Pakkenberg B, Parachikova A. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer's disease. J Neural Transm (Vienna). 2015;122:1303-18 pubmed 出版商
  291. Porquet D, Andrés Benito P, Griñán Ferré C, Camins A, Ferrer I, Canudas A, et al. Amyloid and tau pathology of familial Alzheimer's disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age (Dordr). 2015;37:9747 pubmed 出版商
  292. Banach Orlowska M, Szymańska E, Miaczynska M. APPL1 endocytic adaptor as a fine tuner of Dvl2-induced transcription. FEBS Lett. 2015;589:532-9 pubmed 出版商
  293. Traenkle B, Emele F, Anton R, Poetz O, Haeussler R, Maier J, et al. Monitoring interactions and dynamics of endogenous beta-catenin with intracellular nanobodies in living cells. Mol Cell Proteomics. 2015;14:707-23 pubmed 出版商
  294. Azimzadeh O, Sievert W, Sarioglu H, Merl Pham J, Yentrapalli R, Bakshi M, et al. Integrative proteomics and targeted transcriptomics analyses in cardiac endothelial cells unravel mechanisms of long-term radiation-induced vascular dysfunction. J Proteome Res. 2015;14:1203-19 pubmed 出版商
  295. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  296. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  297. Goossens S, Radaelli E, Blanchet O, Durinck K, Van der Meulen J, Peirs S, et al. ZEB2 drives immature T-cell lymphoblastic leukaemia development via enhanced tumour-initiating potential and IL-7 receptor signalling. Nat Commun. 2015;6:5794 pubmed 出版商
  298. Manley S, Ni H, Williams J, Kong B, DiTacchio L, Guo G, et al. Farnesoid X receptor regulates forkhead Box O3a activation in ethanol-induced autophagy and hepatotoxicity. Redox Biol. 2014;2:991-1002 pubmed 出版商
  299. Gasser J, Inuzuka H, Lau A, Wei W, Beroukhim R, Toker A. SGK3 mediates INPP4B-dependent PI3K signaling in breast cancer. Mol Cell. 2014;56:595-607 pubmed 出版商
  300. Liu J, Bain L. Arsenic inhibits hedgehog signaling during P19 cell differentiation. Toxicol Appl Pharmacol. 2014;281:243-53 pubmed 出版商
  301. Oyanagi K, Negishi T, Tashiro T. Action of thyroxine on the survival and neurite maintenance of cerebellar granule neurons in culture. J Neurosci Res. 2015;93:592-603 pubmed 出版商
  302. Fine J, Renner D, Forsberg A, Cameron R, Galick B, Le C, et al. Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neurosci Lett. 2015;584:362-7 pubmed 出版商
  303. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  304. Guzmán E, Maers K, Roberts J, Kemami Wangun H, Harmody D, Wright A. The marine natural product microsclerodermin A is a novel inhibitor of the nuclear factor kappa B and induces apoptosis in pancreatic cancer cells. Invest New Drugs. 2015;33:86-94 pubmed 出版商
  305. Pérez Alvarez M, Mateos L, Alonso A, Wandosell F. Estradiol and Progesterone Administration After pMCAO Stimulates the Neurological Recovery and Reduces the Detrimental Effect of Ischemia Mainly in Hippocampus. Mol Neurobiol. 2015;52:1690-1703 pubmed 出版商
  306. Li F, Song N, Tombran Tink J, Niyibizi C. Pigment epithelium derived factor suppresses expression of Sost/Sclerostin by osteocytes: implication for its role in bone matrix mineralization. J Cell Physiol. 2015;230:1243-9 pubmed 出版商
  307. Kim H, Park J, Won H, Lee J, Kong G. CBX7 inhibits breast tumorigenicity through DKK-1-mediated suppression of the Wnt/β-catenin pathway. FASEB J. 2015;29:300-13 pubmed 出版商
  308. Yu J, Kong C, Zhang Z, Zhan B, Jiang Z. Aplasia Ras homolog member I expression induces apoptosis in renal cancer cells via the β-catenin signaling pathway. Mol Med Rep. 2015;11:475-81 pubmed 出版商
  309. Zaru R, Edgar A, Hanauer A, Watts C. Structural and functional basis for p38-MK2-activated Rsk signaling in toll-like receptor-stimulated dendritic cells. Mol Cell Biol. 2015;35:132-40 pubmed 出版商
  310. Wang D, Zhang P, Gao K, Tang Y, Jin X, Zhang Y, et al. PLK1 and β-TrCP-dependent ubiquitination and degradation of Rap1GAP controls cell proliferation. PLoS ONE. 2014;9:e110296 pubmed 出版商
  311. Fan C, Jiang G, Zhang X, Miao Y, Lin X, Luan L, et al. Zbed3 contributes to malignant phenotype of lung cancer via regulating β-catenin and P120-catenin 1. Mol Carcinog. 2015;54 Suppl 1:E138-47 pubmed 出版商
  312. Young M, Brewer R, Peliciari Garcia R, Collins H, He L, Birky T, et al. Cardiomyocyte-specific BMAL1 plays critical roles in metabolism, signaling, and maintenance of contractile function of the heart. J Biol Rhythms. 2014;29:257-76 pubmed 出版商
  313. Chu Y, Gómez Rosso L, Huang P, Wang Z, Xu Y, Yao X, et al. Liver Med23 ablation improves glucose and lipid metabolism through modulating FOXO1 activity. Cell Res. 2014;24:1250-65 pubmed 出版商
  314. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188-200 pubmed 出版商
  315. Morris S, Carter K, Baek J, Koszarek A, Yeh M, Knoblaugh S, et al. TGF-? signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene. 2015;34:3273-82 pubmed 出版商
  316. Xu R, Hu Q, Ma Q, Liu C, Wang G. The protease Omi regulates mitochondrial biogenesis through the GSK3β/PGC-1α pathway. Cell Death Dis. 2014;5:e1373 pubmed 出版商
  317. Xu L, Long Z, Peng F, Liu Y, Xu J, Wang C, et al. Aurora kinase a suppresses metabolic stress-induced autophagic cell death by activating mTOR signaling in breast cancer cells. Oncotarget. 2014;5:7498-511 pubmed
  318. Biswas C, Shah N, Muthu M, La P, Fernando A, Sengupta S, et al. Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem. 2014;289:26882-94 pubmed 出版商
  319. Selfridge J, Wilkins H, E L, Carl S, Koppel S, Funk E, et al. Effect of one month duration ketogenic and non-ketogenic high fat diets on mouse brain bioenergetic infrastructure. J Bioenerg Biomembr. 2015;47:1-11 pubmed 出版商
  320. Bastos L, de Marcondes P, de Freitas Junior J, Leve F, Mencalha A, de Souza W, et al. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/?-catenin pathway. J Cell Biochem. 2014;115:2175-87 pubmed 出版商
  321. Izumi H, Kaneko Y. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells. Cancer Res. 2014;74:5620-30 pubmed 出版商
  322. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  323. Forsdahl S, Kiselev Y, Hogseth R, Mjelle J, Mikkola I. Pax6 regulates the expression of Dkk3 in murine and human cell lines, and altered responses to Wnt signaling are shown in FlpIn-3T3 cells stably expressing either the Pax6 or the Pax6(5a) isoform. PLoS ONE. 2014;9:e102559 pubmed 出版商
  324. E L, Burns J, Swerdlow R. Effect of high-intensity exercise on aged mouse brain mitochondria, neurogenesis, and inflammation. Neurobiol Aging. 2014;35:2574-2583 pubmed 出版商
  325. Bañón Maneus E, Rovira J, Ramírez Bajo M, Moya Rull D, Hierro Garcia N, Takenaka S, et al. Wnt pathway activation in long term remnant rat model. Biomed Res Int. 2014;2014:324713 pubmed 出版商
  326. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, et al. YAP/TAZ incorporation in the ?-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158:157-70 pubmed 出版商
  327. Sarshad A, Corcoran M, Al Muzzaini B, Borgonovo Brandter L, von Euler A, Lamont D, et al. Glycogen synthase kinase (GSK) 3? phosphorylates and protects nuclear myosin 1c from proteasome-mediated degradation to activate rDNA transcription in early G1 cells. PLoS Genet. 2014;10:e1004390 pubmed 出版商
  328. Chen K, Yang T, Wu C, Cheng C, Hsu S, Hung H, et al. Pemetrexed induces S-phase arrest and apoptosis via a deregulated activation of Akt signaling pathway. PLoS ONE. 2014;9:e97888 pubmed 出版商
  329. Bian Z, Liao H, Zhang Y, Wu Q, Zhou H, Yang Z, et al. Never in mitosis gene A related kinase-6 attenuates pressure overload-induced activation of the protein kinase B pathway and cardiac hypertrophy. PLoS ONE. 2014;9:e96095 pubmed 出版商
  330. Sahlberg S, Spiegelberg D, Glimelius B, Stenerlow B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS ONE. 2014;9:e94621 pubmed 出版商
  331. Maurin H, Lechat B, Borghgraef P, Devijver H, Jaworski T, Van Leuven F. Terminal hypothermic Tau.P301L mice have increased Tau phosphorylation independently of glycogen synthase kinase 3?/?. Eur J Neurosci. 2014;40:2442-53 pubmed 出版商
  332. Wang Y, Zhou D, Chen S. SGK3 is an androgen-inducible kinase promoting prostate cancer cell proliferation through activation of p70 S6 kinase and up-regulation of cyclin D1. Mol Endocrinol. 2014;28:935-48 pubmed 出版商
  333. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer's disease. Nature. 2014;507:448-54 pubmed 出版商
  334. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  335. Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin J, Bertrand L, et al. Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3K/Akt/mTor signaling pathway. Biochem Pharmacol. 2014;89:217-23 pubmed 出版商
  336. Wang H, Sun W, Ma J, Pan Y, Wang L, Zhang W. Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/?-catenin pathway. PLoS ONE. 2014;9:e91730 pubmed 出版商
  337. Nakahata S, Ichikawa T, Maneesaay P, Saito Y, Nagai K, Tamura T, et al. Loss of NDRG2 expression activates PI3K-AKT signalling via PTEN phosphorylation in ATLL and other cancers. Nat Commun. 2014;5:3393 pubmed 出版商
  338. Gonçalves V, Henriques A, Henriques A, Pereira J, Pereira J, Neves Costa A, et al. Phosphorylation of SRSF1 by SRPK1 regulates alternative splicing of tumor-related Rac1b in colorectal cells. RNA. 2014;20:474-82 pubmed 出版商
  339. Chen L, Dai J, Wang Z, Zhang H, Huang Y, Zhao Y. Ginseng Total Saponins Reverse Corticosterone-Induced Changes in Depression-Like Behavior and Hippocampal Plasticity-Related Proteins by Interfering with GSK-3 ? -CREB Signaling Pathway. Evid Based Complement Alternat Med. 2014;2014:506735 pubmed 出版商
  340. Wadosky K, Rodriguez J, Hite R, Min J, Walton B, Willis M. Muscle RING finger-1 attenuates IGF-I-dependent cardiomyocyte hypertrophy by inhibiting JNK signaling. Am J Physiol Endocrinol Metab. 2014;306:E723-39 pubmed 出版商
  341. McGuire D, Rowse A, Li H, Peng B, Sestero C, Cashman K, et al. CD5 enhances Th17-cell differentiation by regulating IFN-? response and ROR?t localization. Eur J Immunol. 2014;44:1137-42 pubmed 出版商
  342. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  343. Samaan S, Tranchevent L, Dardenne E, Polay Espinoza M, Zonta E, Germann S, et al. The Ddx5 and Ddx17 RNA helicases are cornerstones in the complex regulatory array of steroid hormone-signaling pathways. Nucleic Acids Res. 2014;42:2197-207 pubmed 出版商
  344. Knoblich K, Wang H, Sharma C, Fletcher A, Turley S, Hemler M. Tetraspanin TSPAN12 regulates tumor growth and metastasis and inhibits ?-catenin degradation. Cell Mol Life Sci. 2014;71:1305-14 pubmed 出版商
  345. Yu P, Yan M, Lai H, Huang R, Chou Y, Lin W, et al. Downregulation of miR-29 contributes to cisplatin resistance of ovarian cancer cells. Int J Cancer. 2014;134:542-51 pubmed 出版商
  346. Maurin H, Lechat B, Dewachter I, Ris L, Louis J, Borghgraef P, et al. Neurological characterization of mice deficient in GSK3? highlight pleiotropic physiological functions in cognition and pathological activity as Tau kinase. Mol Brain. 2013;6:27 pubmed 出版商
  347. Willis M, Min J, Wang S, McDonough H, Lockyer P, Wadosky K, et al. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise. Cell Biochem Funct. 2013;31:724-35 pubmed 出版商
  348. BENTLEY C, Jurinka S, Kljavin N, Vartanian S, Ramani S, Gonzalez L, et al. A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J. 2013;452:313-20 pubmed 出版商
  349. Kim H, Woo H, Ryu J, Bok J, Kim J, Choi S, et al. Conditional deletion of pten leads to defects in nerve innervation and neuronal survival in inner ear development. PLoS ONE. 2013;8:e55609 pubmed 出版商
  350. Dai J, Shen D, Bian Z, Zhou H, Gan H, Zong J, et al. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS ONE. 2013;8:e53412 pubmed 出版商
  351. Zhou X, Wang H, Burg M, Ferraris J. Inhibitory phosphorylation of GSK-3? by AKT, PKA, and PI3K contributes to high NaCl-induced activation of the transcription factor NFAT5 (TonEBP/OREBP). Am J Physiol Renal Physiol. 2013;304:F908-17 pubmed 出版商
  352. Wang H, Ducommun S, Quan C, Xie B, Li M, Wasserman D, et al. AS160 deficiency causes whole-body insulin resistance via composite effects in multiple tissues. Biochem J. 2013;449:479-89 pubmed 出版商
  353. Pérez Alvarez M, Maza M, Anton M, Ordoñez L, Wandosell F. Post-ischemic estradiol treatment reduced glial response and triggers distinct cortical and hippocampal signaling in a rat model of cerebral ischemia. J Neuroinflammation. 2012;9:157 pubmed 出版商
  354. Wray J, Kalkan T, Gómez López S, Eckardt D, Cook A, Kemler R, et al. Inhibition of glycogen synthase kinase-3 alleviates Tcf3 repression of the pluripotency network and increases embryonic stem cell resistance to differentiation. Nat Cell Biol. 2011;13:838-45 pubmed 出版商
  355. Goñi Oliver P, Avila J, Hernandez F. Calpain regulates N-terminal interaction of GSK-3? with 14-3-3?, p53 and PKB but not with axin. Neurochem Int. 2011;59:97-100 pubmed 出版商
  356. García Martínez J, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi D, et al. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. Br J Cancer. 2011;104:1116-25 pubmed 出版商
  357. García Martínez J, Moran J, Clarke R, Gray A, Cosulich S, Chresta C, et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem J. 2009;421:29-42 pubmed 出版商
  358. Abrahamsson A, Geron I, Gotlib J, Dao K, Barroga C, Newton I, et al. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci U S A. 2009;106:3925-9 pubmed 出版商
  359. Cole A, Sutherland C. Measuring GSK3 expression and activity in cells. Methods Mol Biol. 2008;468:45-65 pubmed 出版商
  360. Sun H, Xu B, Sheveleva E, Chen Q. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism. Toxicol Appl Pharmacol. 2008;232:25-32 pubmed 出版商
  361. Bouskila M, Hirshman M, Jensen J, Goodyear L, Sakamoto K. Insulin promotes glycogen synthesis in the absence of GSK3 phosphorylation in skeletal muscle. Am J Physiol Endocrinol Metab. 2008;294:E28-35 pubmed
  362. Mora A, Sakamoto K, McManus E, Alessi D. Role of the PDK1-PKB-GSK3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett. 2005;579:3632-8 pubmed