这是一篇来自已证抗体库的有关大鼠 Hspd1的综述,是根据69篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Hspd1 抗体。
Hspd1 同义词: Hsp60; Hspd1-30p

圣克鲁斯生物技术
小鼠 单克隆(H-1)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
圣克鲁斯生物技术 Hspd1抗体(Santa, sc-13115)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). PLoS Genet (2021) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz Biotechnology, sc-13115)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). Acta Neuropathol (2019) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类; 图 7c
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz Biotechnology, H-1)被用于被用于免疫印迹在人类样本上 (图 7c). Oncogene (2019) ncbi
小鼠 单克隆(LK1)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-59567)被用于被用于免疫印迹在人类样本上 (图 6a). Cell Death Differ (2018) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 人类; 1:500; 图 4d
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-376240)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4d). Nat Commun (2017) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 小鼠; 1:1000; 图 3b
圣克鲁斯生物技术 Hspd1抗体(SantaCruz, sc-13115)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 人类; 1:1000; 图 3
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-13115)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Arch Biochem Biophys (2016) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-13115)被用于被用于免疫印迹在小鼠样本上 (图 2a). Mol Neurobiol (2017) ncbi
小鼠 单克隆(B-9)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, B-9)被用于被用于免疫印迹在人类样本上 (图 3e). J Virol (2016) ncbi
小鼠 单克隆(F-9)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-376261)被用于被用于免疫印迹在人类样本上 (图 2). Int J Mol Sci (2015) ncbi
小鼠 单克隆(SPM253)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, sc-65568)被用于被用于免疫印迹在人类样本上 (图 5). Cell Death Dis (2015) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 大鼠; 图 6
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, SC13115)被用于被用于免疫印迹在大鼠样本上 (图 6). J Biophotonics (2015) ncbi
小鼠 单克隆(H-1)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz Biotechnology, SC-13115)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Auton Neurosci (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫印迹; 大鼠; 1:100
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz Biotechnology, sc-376240)被用于被用于免疫印迹在大鼠样本上浓度为1:100. J Neurochem (2014) ncbi
小鼠 单克隆(C-10)
  • 免疫细胞化学; 人类; 图 2
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz, SC-376240)被用于被用于免疫细胞化学在人类样本上 (图 2). Nat Chem Biol (2014) ncbi
小鼠 单克隆(B-9)
  • 免疫细胞化学; 人类; 2 ug/ml (1:10
圣克鲁斯生物技术 Hspd1抗体(Santa Cruz Biotechnology, sc-271215)被用于被用于免疫细胞化学在人类样本上浓度为2 ug/ml (1:10. Comb Chem High Throughput Screen (2014) ncbi
Enzo Life Sciences
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-805)被用于被用于免疫印迹在人类样本上 (图 2b). Cells (2019) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 小鼠; 图 1c
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-806)被用于被用于免疫印迹在小鼠样本上 (图 1c). Cell Rep (2018) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; fruit fly ; 1:1000; 图 1b
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA 806-D)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 1b). Am J Cancer Res (2017) ncbi
小鼠 单克隆(LK-2)
  • 免疫细胞化学; 小鼠; 1:5000; 图 2b
  • 免疫细胞化学; African green monkey; 1:5000; 图 1d
  • 免疫细胞化学; 人类; 1:5000; 图 1b
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-807)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 2b), 被用于免疫细胞化学在African green monkey样本上浓度为1:5000 (图 1d) 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 1b). PLoS ONE (2017) ncbi
小鼠 单克隆(LK-2)
  • 免疫细胞化学; 人类; 1:5000; 图 2
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-807)被用于被用于免疫细胞化学在人类样本上浓度为1:5000 (图 2). Cell Logist (2016) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 小鼠; 图 3b
Enzo Life Sciences Hspd1抗体(Enzo, ADISPA806D)被用于被用于免疫印迹在小鼠样本上 (图 3b). Diabetes (2016) ncbi
domestic rabbit 多克隆
Enzo Life Sciences Hspd1抗体(Stressgen Bioreagents, SPA-805)被用于. J Exp Biol (2016) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 小鼠; 1:2000; 图 1
Enzo Life Sciences Hspd1抗体(Enzo, ADI-SPA-806)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Redox Biol (2016) ncbi
小鼠 单克隆(LK-2)
  • 免疫印迹; 人类; 1:4000; 图 1
Enzo Life Sciences Hspd1抗体(Enzo Life, SPA-807-E)被用于被用于免疫印迹在人类样本上浓度为1:4000 (图 1). Endocr Connect (2016) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 小鼠; 图 3a
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-806)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Gerontol A Biol Sci Med Sci (2017) ncbi
小鼠 单克隆(Mab-11-13)
  • 免疫印迹; 人类; 1:5000; 图 1a
Enzo Life Sciences Hspd1抗体(Stressgen Bioreagents, SPA-829)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1a). PLoS ONE (2016) ncbi
小鼠 单克隆(Mab-11-13)
  • 其他; 人类; 图 st1
Enzo Life Sciences Hspd1抗体(ENZO, Mab-11-13)被用于被用于其他在人类样本上 (图 st1). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(LK-2)
Enzo Life Sciences Hspd1抗体(Stressgen, SPA-807)被用于. Sci Rep (2015) ncbi
小鼠 单克隆(LK-2)
  • 抑制或激活实验; 小鼠; 图 3
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, ADI-SPA-807E)被用于被用于抑制或激活实验在小鼠样本上 (图 3). Cell Stress Chaperones (2015) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 大鼠; 1:1200
Enzo Life Sciences Hspd1抗体(Stressgen, SPA-806)被用于被用于免疫印迹在大鼠样本上浓度为1:1200. Neurobiol Dis (2015) ncbi
小鼠 单克隆(Mab-11-13)
  • 免疫印迹; 人类; 图 3
Enzo Life Sciences Hspd1抗体(Enzo Life Sciences, SPA-829)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2015) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; Garra rufa
Enzo Life Sciences Hspd1抗体(StressGen, SPA-806)被用于被用于免疫印迹在Garra rufa样本上. Redox Biol (2014) ncbi
小鼠 单克隆(LK-1)
  • 免疫印迹; 大鼠; 1:2000
Enzo Life Sciences Hspd1抗体(Stressgen, ADI-SPA 806)被用于被用于免疫印迹在大鼠样本上浓度为1:2000. PLoS ONE (2014) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:20,000; 图 2a
  • 免疫印迹; 小鼠; 1:20,000; 图 1k
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫印迹在人类样本上浓度为1:20,000 (图 2a) 和 被用于免疫印迹在小鼠样本上浓度为1:20,000 (图 1k). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 1c, s1h
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 1c, s1h). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). Front Physiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 1b
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫组化在小鼠样本上 (图 1b). Nat Commun (2020) ncbi
domestic rabbit 单克隆(EP1006Y)
  • 免疫组化-石蜡切片; 小鼠; 图 s5a
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab45134)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s5a). Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫印迹在小鼠样本上 (图 4b). Mol Cell Biochem (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 牛; 1:1000; 图 5
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫印迹在牛样本上浓度为1:1000 (图 5). J Proteomics (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 仓鼠; 图 3
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫印迹在仓鼠样本上 (图 3). Biotechnol Bioeng (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1 ug/ml; 图 3
艾博抗(上海)贸易有限公司 Hspd1抗体(Abcam, ab46798)被用于被用于免疫细胞化学在人类样本上浓度为1 ug/ml (图 3). Neuroscience (2016) ncbi
StressMarq Biosciences
小鼠 单克隆(LK1)
  • 免疫印迹; 人类; 图 6g
StressMarq Biosciences Hspd1抗体(StressMarq, SMC-110)被用于被用于免疫印迹在人类样本上 (图 6g). J Cell Biol (2019) ncbi
赛默飞世尔
小鼠 单克隆(4B9/89)
  • 免疫印迹; 小鼠; 图 s3
赛默飞世尔 Hspd1抗体(Pierce, MA3-012)被用于被用于免疫印迹在小鼠样本上 (图 s3). Sci Rep (2017) ncbi
小鼠 单克隆(4B9/89)
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Hspd1抗体(Thermo Scientific, MA3-012)被用于被用于免疫印迹在人类样本上 (图 4). J Cell Sci (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Technology, 12165T)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cells (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; fruit fly ; 1:100; 图 2c
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Technologies, 4870)被用于被用于免疫组化在fruit fly 样本上浓度为1:100 (图 2c). PLoS Genet (2021) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 图 s8a
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling, D6F1)被用于被用于免疫印迹在人类样本上 (图 s8a). Science (2021) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫细胞化学; 人类; 1:800; 图 3h
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Technologies, 12165)被用于被用于免疫细胞化学在人类样本上浓度为1:800 (图 3h). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 Hspd1抗体(Sigma, 4870)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 9d). Int J Mol Med (2020) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 1:500; 图 1c
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell signaling, 12165S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1c). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 1:1000; 图 1c
  • 免疫细胞化学; 人类; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Technology, D307)被用于被用于免疫印迹在fruit fly 样本上浓度为1:1000 (图 1c) 和 被用于免疫细胞化学在人类样本上浓度为1:1000 (图 8a). Hum Mol Genet (2017) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫细胞化学; African green monkey; 1:2000; 图 3b
  • 免疫印迹; 人类; 1:2500; 图 4a
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling, 12165)被用于被用于免疫细胞化学在African green monkey样本上浓度为1:2000 (图 3b) 和 被用于免疫印迹在人类样本上浓度为1:2500 (图 4a). Hum Mutat (2017) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling, 12165)被用于被用于免疫印迹在人类样本上 (图 2g). Oncotarget (2017) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell signaling, 12165)被用于被用于免疫印迹在人类样本上 (图 7). Lipids Health Dis (2016) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Hspd1抗体(cell signalling, 12165)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Technology, D307)被用于被用于免疫印迹在人类样本上 (图 5). Stem Cells Int (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 S3
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling, 4870)被用于被用于免疫印迹在人类样本上 (图 S3). Nat Commun (2016) ncbi
domestic rabbit 单克隆(D6F1)
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling Tech, 12165S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2015) ncbi
domestic rabbit 单克隆(D6F1)
  • 流式细胞仪; 小鼠; 1:100
赛信通(上海)生物试剂有限公司 Hspd1抗体(Cell Signaling, 12165)被用于被用于流式细胞仪在小鼠样本上浓度为1:100. J Cell Physiol (2015) ncbi
碧迪BD
小鼠 单克隆(24/HSP60)
  • 免疫印迹; fruit fly ; 1:10,000; 图 1c
碧迪BD Hspd1抗体(BD Biosciences, 24/Hsp60)被用于被用于免疫印迹在fruit fly 样本上浓度为1:10,000 (图 1c). Hum Mol Genet (2017) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫细胞化学; 人类; 图 s12
碧迪BD Hspd1抗体(BD Biosciences, 558684)被用于被用于免疫细胞化学在人类样本上 (图 s12). Mol Biol Cell (2016) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫印迹; 人类; 图 1a
碧迪BD Hspd1抗体(BD Pharmingen, 611562)被用于被用于免疫印迹在人类样本上 (图 1a). JCI Insight (2016) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫印迹; 人类; 1:5000; 图 s5
碧迪BD Hspd1抗体(BD, 611562)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5). Nature (2016) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫细胞化学; 人类; 图 s9
碧迪BD Hspd1抗体(BD Biosciences, 611563)被用于被用于免疫细胞化学在人类样本上 (图 s9). Nat Neurosci (2015) ncbi
小鼠 单克隆(24/HSP60)
  • 其他; 小鼠; 1:5000; 图 3
碧迪BD Hspd1抗体(BD Transduction, 611563)被用于被用于其他在小鼠样本上浓度为1:5000 (图 3). Nat Commun (2015) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫印迹; 人类; 1:2000; 图 s4
碧迪BD Hspd1抗体(BD Transduction Laboratories, 611562)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4). Nat Cell Biol (2015) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫印迹; 小鼠; 1:10,000
碧迪BD Hspd1抗体(BD Biosciences, 24/Hsp60)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000. J Biol Chem (2014) ncbi
小鼠 单克隆(24/HSP60)
  • 免疫印迹; 小鼠; 1:1000
碧迪BD Hspd1抗体(BD Transduction Laboratories, 611562)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Free Radic Biol Med (2014) ncbi
文章列表
  1. Lee Y, Gil E, Jeong I, Kim H, Jang J, Choung Y. Heat Shock Factor 1 Prevents Age-Related Hearing Loss by Decreasing Endoplasmic Reticulum Stress. Cells. 2021;10: pubmed 出版商
  2. Insolera R, Lorincz P, Wishnie A, Juhasz G, Collins C. Mitochondrial fission, integrity and completion of mitophagy require separable functions of Vps13D in Drosophila neurons. PLoS Genet. 2021;17:e1009731 pubmed 出版商
  3. Parma B, Ramesh V, Gollavilli P, Siddiqui A, Pinna L, Schwab A, et al. Metabolic impairment of non-small cell lung cancers by mitochondrial HSPD1 targeting. J Exp Clin Cancer Res. 2021;40:248 pubmed 出版商
  4. Olejniczak I, Ripperger J, Sandrelli F, Schnell A, Mansencal Strittmatter L, Wendrich K, et al. Light affects behavioral despair involving the clock gene Period 1. PLoS Genet. 2021;17:e1009625 pubmed 出版商
  5. Matsui H, Ito J, Matsui N, Uechi T, Onodera O, Kakita A. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 2021;12:3101 pubmed 出版商
  6. Li T, Huang T, Du M, Chen X, Du F, Ren J, et al. Phosphorylation and chromatin tethering prevent cGAS activation during mitosis. Science. 2021;371: pubmed 出版商
  7. Carotti S, Aquilano K, Zalfa F, Ruggiero S, Valentini F, Zingariello M, et al. Lipophagy Impairment Is Associated With Disease Progression in NAFLD. Front Physiol. 2020;11:850 pubmed 出版商
  8. Calvo Rodríguez M, Hou S, Snyder A, Kharitonova E, Russ A, Das S, et al. Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nat Commun. 2020;11:2146 pubmed 出版商
  9. Guo X, Aviles G, Liu Y, Tian R, Unger B, Lin Y, et al. Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature. 2020;579:427-432 pubmed 出版商
  10. Cai H, Han B, Hu Y, Zhao X, He Z, Chen X, et al. Metformin attenuates the D‑galactose‑induced aging process via the UPR through the AMPK/ERK1/2 signaling pathways. Int J Mol Med. 2020;45:715-730 pubmed 出版商
  11. Dorsch L, Schuldt M, dos Remedios C, Schinkel A, de Jong P, Michels M, et al. Protein Quality Control Activation and Microtubule Remodeling in Hypertrophic Cardiomyopathy. Cells. 2019;8: pubmed 出版商
  12. Gao Y, Wei L, Wang C, Huang Y, Li W, Li T, et al. Chronic prostatitis alters the prostatic microenvironment and accelerates preneoplastic lesions in C57BL/6 mice. Biol Res. 2019;52:30 pubmed 出版商
  13. Hu D, Sun X, Liao X, Zhang X, Zarabi S, Schimmer A, et al. Alpha-synuclein suppresses mitochondrial protease ClpP to trigger mitochondrial oxidative damage and neurotoxicity. Acta Neuropathol. 2019;137:939-960 pubmed 出版商
  14. McCambridge G, Agrawal M, Keady A, Kern P, Hasturk H, Nikolajczyk B, et al. Saturated Fatty Acid Activates T Cell Inflammation Through a Nicotinamide Nucleotide Transhydrogenase (NNT)-Dependent Mechanism. Biomolecules. 2019;9: pubmed 出版商
  15. Richter F, Dennerlein S, Nikolov M, Jans D, Naumenko N, Aich A, et al. ROMO1 is a constituent of the human presequence translocase required for YME1L protease import. J Cell Biol. 2019;218:598-614 pubmed 出版商
  16. D Eletto M, Rossin F, Occhigrossi L, Farrace M, Faccenda D, Desai R, et al. Transglutaminase Type 2 Regulates ER-Mitochondria Contact Sites by Interacting with GRP75. Cell Rep. 2018;25:3573-3581.e4 pubmed 出版商
  17. Killackey S, Rahman M, Soares F, Zhang A, Abdel Nour M, Philpott D, et al. The mitochondrial Nod-like receptor NLRX1 modifies apoptosis through SARM1. Mol Cell Biochem. 2019;453:187-196 pubmed 出版商
  18. Lai C, Liu H, Tin K, Huang Y, Yeh K, Peng H, et al. Identification of UAP1L1 as a critical factor for protein O-GlcNAcylation and cell proliferation in human hepatoma cells. Oncogene. 2019;38:317-331 pubmed 出版商
  19. Goiran T, Duplan E, Rouland L, El Manaa W, Lauritzen I, Dunys J, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation. Cell Death Differ. 2018;25:873-884 pubmed 出版商
  20. Guo W, Liu W, Chen Z, Gu Y, Peng S, Shen L, et al. Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis. Nat Commun. 2017;8:2168 pubmed 出版商
  21. Shiba Fukushima K, Ishikawa K, Inoshita T, Izawa N, Takanashi M, Sato S, et al. Evidence that phosphorylated ubiquitin signaling is involved in the etiology of Parkinson's disease. Hum Mol Genet. 2017;26:3172-3185 pubmed 出版商
  22. Umegawachi T, Yoshida H, Koshida H, Yamada M, Ohkawa Y, Sato T, et al. Control of tissue size and development by a regulatory element in the yorkie 3'UTR. Am J Cancer Res. 2017;7:673-687 pubmed
  23. Newman L, Schiavon C, Zhou C, Kahn R. The abundance of the ARL2 GTPase and its GAP, ELMOD2, at mitochondria are modulated by the fusogenic activity of mitofusins and stressors. PLoS ONE. 2017;12:e0175164 pubmed 出版商
  24. Zhang T, Du W, Wilson A, Namekawa S, Andreassen P, Meetei A, et al. Fancd2 in vivo interaction network reveals a non-canonical role in mitochondrial function. Sci Rep. 2017;7:45626 pubmed 出版商
  25. Musante L, Püttmann L, Kahrizi K, Garshasbi M, Hu H, Stehr H, et al. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability. Hum Mutat. 2017;38:621-636 pubmed 出版商
  26. Li G, Fu R, Shen H, Zhou J, Hu X, Liu Y, et al. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels. Oncotarget. 2017;8:10359-10374 pubmed 出版商
  27. Newman L, Schiavon C, Kahn R. Plasmids for variable expression of proteins targeted to the mitochondrial matrix or intermembrane space. Cell Logist. 2016;6:e1247939 pubmed 出版商
  28. Yu Q, Wu W, Tian X, Hou M, Dai R, Li X. Unraveling proteome changes of Holstein beef M. semitendinosus and its relationship to meat discoloration during post-mortem storage analyzed by label-free mass spectrometry. J Proteomics. 2017;154:85-93 pubmed 出版商
  29. Guo X, Qi X. VCP cooperates with UBXD1 to degrade mitochondrial outer membrane protein MCL1 in model of Huntington's disease. Biochim Biophys Acta Mol Basis Dis. 2017;1863:552-559 pubmed 出版商
  30. Yi J, Manna A, Barr V, Hong J, Neuman K, Samelson L. madSTORM: a superresolution technique for large-scale multiplexing at single-molecule accuracy. Mol Biol Cell. 2016;27:3591-3600 pubmed
  31. Thura M, Al Aidaroos A, Yong W, Kono K, Gupta A, Lin Y, et al. PRL3-zumab, a first-in-class humanized antibody for cancer therapy. JCI Insight. 2016;1:e87607 pubmed 出版商
  32. Christensen B, Nellemann B, Jørgensen J, Pedersen S, Jessen N. Erythropoietin does not activate erythropoietin receptor signaling or lipolytic pathways in human subcutaneous white adipose tissue in vivo. Lipids Health Dis. 2016;15:160 pubmed 出版商
  33. Lee J, Lee W, Seol M, Lee S, Kim D, Kim H, et al. Coupling of LETM1 up-regulation with oxidative phosphorylation and platelet-derived growth factor receptor signaling via YAP1 transactivation. Oncotarget. 2016;7:66728-66739 pubmed 出版商
  34. Yan S, Du F, Wu L, Zhang Z, Zhong C, Yu Q, et al. F1F0 ATP Synthase-Cyclophilin D Interaction Contributes to Diabetes-Induced Synaptic Dysfunction and Cognitive Decline. Diabetes. 2016;65:3482-3494 pubmed
  35. Ivanina A, Nesmelova I, Leamy L, Sokolov E, Sokolova I. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. J Exp Biol. 2016;219:1659-74 pubmed 出版商
  36. Patra M, Mahata S, Padhan D, Sen M. CCN6 regulates mitochondrial function. J Cell Sci. 2016;129:2841-51 pubmed 出版商
  37. Pharaoh G, Pulliam D, Hill S, Sataranatarajan K, Van Remmen H. Ablation of the mitochondrial complex IV assembly protein Surf1 leads to increased expression of the UPR(MT) and increased resistance to oxidative stress in primary cultures of fibroblasts. Redox Biol. 2016;8:430-8 pubmed 出版商
  38. Nilsen T, Thorsen L, Kirkegaard C, Ugelstad I, Fossa S, Raastad T. The effect of strength training on muscle cellular stress in prostate cancer patients on ADT. Endocr Connect. 2016;5:74-82 pubmed 出版商
  39. Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci. 2017;72:299-308 pubmed 出版商
  40. Leucci E, Vendramin R, Spinazzi M, Laurette P, Fiers M, Wouters J, et al. Melanoma addiction to the long non-coding RNA SAMMSON. Nature. 2016;531:518-22 pubmed 出版商
  41. Martínez Pizarro A, Desviat L, Ugarte M, Perez B, Richard E. Endoplasmic Reticulum Stress and Autophagy in Homocystinuria Patients with Remethylation Defects. PLoS ONE. 2016;11:e0150357 pubmed 出版商
  42. Sommeregger W, Mayrhofer P, Steinfellner W, Reinhart D, Henry M, Clynes M, et al. Proteomic differences in recombinant CHO cells producing two similar antibody fragments. Biotechnol Bioeng. 2016;113:1902-12 pubmed 出版商
  43. Catanzaro G, Besharat Z, Garg N, Ronci M, Pieroni L, Miele E, et al. MicroRNAs-Proteomic Networks Characterizing Human Medulloblastoma-SLCs. Stem Cells Int. 2016;2016:2683042 pubmed 出版商
  44. WoÅ› M, Szczepanowska J, PikuÅ‚a S, Tylki SzymaÅ„ska A, ZabÅ‚ocki K, Bandorowicz PikuÅ‚a J. Mitochondrial dysfunction in fibroblasts derived from patients with Niemann-Pick type C disease. Arch Biochem Biophys. 2016;593:50-9 pubmed 出版商
  45. El Hokayem J, Brittain G, Nawaz Z, Bethea J. Tumor Necrosis Factor Receptor Associated Factors (TRAFs) 2 and 3 Form a Transcriptional Complex with Phosho-RNA Polymerase II and p65 in CD40 Ligand Activated Neuro2a Cells. Mol Neurobiol. 2017;54:1301-1313 pubmed 出版商
  46. Lopez J, Bessou M, Riley J, Giampazolias E, Todt F, Rochegüe T, et al. Mito-priming as a method to engineer Bcl-2 addiction. Nat Commun. 2016;7:10538 pubmed 出版商
  47. Kanderová V, Kuzilkova D, Stuchly J, Vaskova M, Brdicka T, Fiser K, et al. High-resolution Antibody Array Analysis of Childhood Acute Leukemia Cells. Mol Cell Proteomics. 2016;15:1246-61 pubmed 出版商
  48. Singh H, Li M, Hall L, Chen S, Sukur S, Lu R, et al. MaxiK channel interactome reveals its interaction with GABA transporter 3 and heat shock protein 60 in the mammalian brain. Neuroscience. 2016;317:76-107 pubmed 出版商
  49. Rost B, Schneider F, Grauel M, Wozny C, Bentz C, Blessing A, et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat Neurosci. 2015;18:1845-1852 pubmed 出版商
  50. Hwang K, Choi Y. Modulation of Mitochondrial Antiviral Signaling by Human Herpesvirus 8 Interferon Regulatory Factor 1. J Virol. 2016;90:506-20 pubmed 出版商
  51. Wu S, Kao C, Wang L, Creighton C, Yang J, Donti T, et al. Increased COUP-TFII expression in adult hearts induces mitochondrial dysfunction resulting in heart failure. Nat Commun. 2015;6:8245 pubmed 出版商
  52. Serban A, Stanca L, Geicu O, Dinischiotu A. AGEs-Induced IL-6 Synthesis Precedes RAGE Up-Regulation in HEK 293 Cells: An Alternative Inflammatory Mechanism?. Int J Mol Sci. 2015;16:20100-17 pubmed 出版商
  53. Fischer F, Filippis C, Osiewacz H. RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model. Sci Rep. 2015;5:12697 pubmed 出版商
  54. Sargsyan A, Cai J, Fandino L, Labasky M, Forostyan T, Colosimo L, et al. Rapid parallel measurements of macroautophagy and mitophagy in mammalian cells using a single fluorescent biosensor. Sci Rep. 2015;5:12397 pubmed 出版商
  55. Monaghan R, Barnes R, Fisher K, Andreou T, Rooney N, Poulin G, et al. A nuclear role for the respiratory enzyme CLK-1 in regulating mitochondrial stress responses and longevity. Nat Cell Biol. 2015;17:782-92 pubmed 出版商
  56. Heiserman J, Chen L, Kim B, Kim S, Tran A, Siebenborn N, et al. TLR4 mutation and HSP60-induced cell death in adult mouse cardiac myocytes. Cell Stress Chaperones. 2015;20:527-35 pubmed 出版商
  57. Guan J, Zhang X, Sun W, Qi L, Wu J, Qin Z. DRAM1 regulates apoptosis through increasing protein levels and lysosomal localization of BAX. Cell Death Dis. 2015;6:e1624 pubmed 出版商
  58. Van Laar V, Roy N, Liu A, Rajprohat S, Arnold B, Dukes A, et al. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy. Neurobiol Dis. 2015;74:180-93 pubmed 出版商
  59. Davis A, Qiao S, Lesson J, Rojo de la Vega M, Park S, Seanez C, et al. The quinone methide aurin is a heat shock response inducer that causes proteotoxic stress and Noxa-dependent apoptosis in malignant melanoma cells. J Biol Chem. 2015;290:1623-38 pubmed 出版商
  60. Oksala N, Ekmekçi F, Ozsoy E, Kirankaya S, Kokkola T, Emecen G, et al. Natural thermal adaptation increases heat shock protein levels and decreases oxidative stress. Redox Biol. 2014;3:25-8 pubmed 出版商
  61. Shiba Fukushima K, Inoshita T, Hattori N, Imai Y. Lysine 63-linked polyubiquitination is dispensable for Parkin-mediated mitophagy. J Biol Chem. 2014;289:33131-6 pubmed 出版商
  62. Gupta A, Keshri G, Yadav A, Gola S, Chauhan S, Salhan A, et al. Superpulsed (Ga-As, 904 nm) low-level laser therapy (LLLT) attenuates inflammatory response and enhances healing of burn wounds. J Biophotonics. 2015;8:489-501 pubmed 出版商
  63. Yang H, La T, Gurenko Z, Steenhuis P, Liu W, Isseroff R. Recovery and Cultivation of Keratinocytes From Shipped Mouse Skin. J Cell Physiol. 2015;230:242-5 pubmed 出版商
  64. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed 出版商
  65. Hachani R, Dab H, Feriani A, Saber S, Sakly M, Vicaut E, et al. Hypercholesterolemic diet induces vascular smooth muscle cell apoptosis in sympathectomized rats via intrinsic pathway. Auton Neurosci. 2014;183:49-57 pubmed 出版商
  66. Campos Martorell M, Salvador N, Monge M, Canals F, Garcia Bonilla L, Hernandez Guillamon M, et al. Brain proteomics identifies potential simvastatin targets in acute phase of stroke in a rat embolic model. J Neurochem. 2014;130:301-12 pubmed 出版商
  67. Moura C, Lollo P, Morato P, Nisishima L, Carneiro E, Amaya Farfan J. Whey protein hydrolysate enhances HSP90 but does not alter HSP60 and HSP25 in skeletal muscle of rats. PLoS ONE. 2014;9:e83437 pubmed 出版商
  68. Wang W, Wang Y, Chen H, Xing Y, Li F, Zhang Q, et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol. 2014;10:133-40 pubmed 出版商
  69. Antczak C, Mahida J, Singh C, Calder P, Djaballah H. A high content assay to assess cellular fitness. Comb Chem High Throughput Screen. 2014;17:12-24 pubmed