这是一篇来自已证抗体库的有关大鼠 ICAM的综述,是根据39篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合ICAM 抗体。
ICAM 同义词: CD54; ICAM

圣克鲁斯生物技术
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠; 1:500; 图 9c
圣克鲁斯生物技术 ICAM抗体(Santa, sc-8439)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 9c). Invest Ophthalmol Vis Sci (2021) ncbi
小鼠 单克隆(2Q710)
  • 免疫印迹; 小鼠; 1:200; 图 7f
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-71292)被用于被用于免疫印迹在小鼠样本上浓度为1:200 (图 7f). Am J Pathol (2021) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-8439)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(G-5)
  • 免疫细胞化学; 人类; 1:50; 图 2s2d
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-8439)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2s2d). elife (2020) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-石蜡切片; 小鼠; 图 s14b
圣克鲁斯生物技术 ICAM抗体(Santa, SC-8439)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s14b). Science (2018) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 1:400; 图 8c
圣克鲁斯生物技术 ICAM抗体(SantaCruz, sc-8439)被用于被用于免疫印迹在人类样本上浓度为1:400 (图 8c). Am J Physiol Heart Circ Physiol (2018) ncbi
小鼠 单克隆(15.2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ICAM抗体(Santa cruz, Sc-107)被用于被用于免疫印迹在人类样本上 (图 5). PLoS Genet (2017) ncbi
小鼠 单克隆(6.5B5)
  • 免疫印迹; 小鼠; 图 1d
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-18853)被用于被用于免疫印迹在小鼠样本上 (图 1d). Redox Biol (2017) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 1:1000; 图 2d
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-8439)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2d). Oncotarget (2017) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-石蜡切片; 大鼠; 1:325; 图 4d
  • 免疫印迹; 大鼠; 1:325
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-8439)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:325 (图 4d) 和 被用于免疫印迹在大鼠样本上浓度为1:325. Front Pharmacol (2016) ncbi
小鼠 单克隆(15.2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, SC-107)被用于被用于免疫印迹在人类样本上 (图 1). J Inflamm (Lond) (2016) ncbi
小鼠 单克隆(15.2)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-107)被用于被用于免疫印迹在人类样本上 (图 5). Orphanet J Rare Dis (2016) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 图 3B
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-8439)被用于被用于免疫印迹在人类样本上 (图 3B). PLoS ONE (2016) ncbi
小鼠 单克隆(15.2)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-107)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(6.5B5)
  • 免疫组化; 小鼠; 1:100-1:200; 图 5
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-18853)被用于被用于免疫组化在小鼠样本上浓度为1:100-1:200 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(15.2)
  • 流式细胞仪; 人类; 图 2
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-107)被用于被用于流式细胞仪在人类样本上 (图 2). Mol Cancer (2015) ncbi
小鼠 单克隆(15.2)
  • 其他; 人类; 图 1
圣克鲁斯生物技术 ICAM抗体(Santa cruz biotechnology, SC-107)被用于被用于其他在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-石蜡切片; 人类; 4 ug/ml; 图 s7
  • 免疫印迹; 人类; 300 ng/ml; 图 5a
圣克鲁斯生物技术 ICAM抗体(Santa cruz, sc-8439)被用于被用于免疫组化-石蜡切片在人类样本上浓度为4 ug/ml (图 s7) 和 被用于免疫印迹在人类样本上浓度为300 ng/ml (图 5a). Mol Cancer (2015) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 大鼠; 1:500; 图 7c
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-8439)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 7c). Mol Med Rep (2015) ncbi
小鼠 单克隆(15.2)
  • 免疫组化-石蜡切片; 小鼠; 图 1
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-107)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). J Exp Med (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-8439)被用于被用于免疫印迹在人类样本上 (图 1). Basic Res Cardiol (2014) ncbi
小鼠 单克隆(15.2)
  • 免疫组化; 人类; 1:50
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-107)被用于被用于免疫组化在人类样本上浓度为1:50. PLoS ONE (2014) ncbi
小鼠 单克隆(G-5)
  • 免疫组化-石蜡切片; 小鼠; 1:400
圣克鲁斯生物技术 ICAM抗体(Santa Cruz, sc-8439)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400. J Mol Cell Cardiol (2014) ncbi
小鼠 单克隆(6.5B5)
  • 免疫印迹; 人类
圣克鲁斯生物技术 ICAM抗体(Santa Cruz Biotechnology, sc-18853)被用于被用于免疫印迹在人类样本上. Free Radic Biol Med (2014) ncbi
赛默飞世尔
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类; 表 3
赛默飞世尔 ICAM抗体(Invitrogen, MEM-111)被用于被用于流式细胞仪在人类样本上 (表 3). Am J Pathol (2017) ncbi
domestic rabbit 重组(9H21L19)
  • 免疫印迹; 人类; 图 5
赛默飞世尔 ICAM抗体(Thermo, 9H21L19)被用于被用于免疫印迹在人类样本上 (图 5). Eur J Med Res (2015) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类; 图 3
赛默飞世尔 ICAM抗体(Caltag, MEM111)被用于被用于流式细胞仪在人类样本上 (图 3). Int J Hematol (2011) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 ICAM抗体(Caltag, MEM-111)被用于被用于流式细胞仪在人类样本上 (图 6). J Infect Dis (2010) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类; 图 4
赛默飞世尔 ICAM抗体(Caltag, MEM-111)被用于被用于流式细胞仪在人类样本上 (图 4). J Immunol (2007) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类
赛默飞世尔 ICAM抗体(Caltag, MEM-111)被用于被用于流式细胞仪在人类样本上. Am J Clin Pathol (2006) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类; 图 6
赛默飞世尔 ICAM抗体(Caltag, MEM-111)被用于被用于流式细胞仪在人类样本上 (图 6). J Biol Chem (2005) ncbi
小鼠 单克隆(1A29)
  • 免疫组化; 大鼠; 1:50; 图 3
  • 免疫印迹; 大鼠; 1:50; 图 5
赛默飞世尔 ICAM抗体(Caltag, 1A29)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3) 和 被用于免疫印迹在大鼠样本上浓度为1:50 (图 5). Muscle Nerve (2002) ncbi
小鼠 单克隆(MEM-111)
  • 流式细胞仪; 人类
赛默飞世尔 ICAM抗体(Caltag, MEM111)被用于被用于流式细胞仪在人类样本上. Infect Immun (2001) ncbi
艾博抗(上海)贸易有限公司
小鼠 单克隆(1A29)
  • 免疫印迹; 大鼠; 1:2000; 图 3a
艾博抗(上海)贸易有限公司 ICAM抗体(Abcam, ab171123)被用于被用于免疫印迹在大鼠样本上浓度为1:2000 (图 3a). Front Pharmacol (2020) ncbi
小鼠 单克隆(1A29)
  • 免疫组化-石蜡切片; 小鼠; 图 6a
艾博抗(上海)贸易有限公司 ICAM抗体(Abcam, ab171123)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6a). J Clin Invest (2019) ncbi
小鼠 单克隆(1A29)
  • 免疫组化-冰冻切片; 大鼠; 图 1q
艾博抗(上海)贸易有限公司 ICAM抗体(Abcam, ab171123)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1q). Brain Behav Immun (2018) ncbi
碧迪BD
小鼠 单克隆(1A29)
  • 流式细胞仪; 大鼠; 图 3
碧迪BD ICAM抗体(BD Bioscience, 1A29)被用于被用于流式细胞仪在大鼠样本上 (图 3). PLoS ONE (2017) ncbi
小鼠 单克隆(1A29)
  • 流式细胞仪; 大鼠; 图 1c
碧迪BD ICAM抗体(BD Biosciences, 554970)被用于被用于流式细胞仪在大鼠样本上 (图 1c). Mol Med Rep (2016) ncbi
小鼠 单克隆(1A29)
  • 流式细胞仪; 大鼠; 图 4
碧迪BD ICAM抗体(BD, 554967)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2016) ncbi
文章列表
  1. Abu El Asrar A, Nawaz M, Ahmad A, Siddiquei M, Allegaert E, Gikandi P, et al. CD146/Soluble CD146 Pathway Is a Novel Biomarker of Angiogenesis and Inflammation in Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci. 2021;62:32 pubmed 出版商
  2. Saadane A, Du Y, Thoreson W, Miyagi M, Lessieur E, Kiser J, et al. Photoreceptor Cell Calcium Dysregulation and Calpain Activation Promote Pathogenic Photoreceptor Oxidative Stress and Inflammation in Prodromal Diabetic Retinopathy. Am J Pathol. 2021;191:1805-1821 pubmed 出版商
  3. Li C, Li J, Loreno E, Miriyala S, Panchatcharam M, Lu X, et al. Chronic Low-Dose Alcohol Consumption Attenuates Post-Ischemic Inflammation via PPARγ in Mice. Int J Mol Sci. 2021;22: pubmed 出版商
  4. Wang T, Liu C, Pan L, Liu Z, Li C, Lin J, et al. Inhibition of p38 MAPK Mitigates Lung Ischemia Reperfusion Injury by Reducing Blood-Air Barrier Hyperpermeability. Front Pharmacol. 2020;11:569251 pubmed 出版商
  5. Barruet E, Garcia S, Striedinger K, Wu J, Lee S, Byrnes L, et al. Functionally heterogeneous human satellite cells identified by single cell RNA sequencing. elife. 2020;9: pubmed 出版商
  6. Hu Y, Guo F, Xu Y, Li P, Lu Z, McVey D, et al. Long noncoding RNA NEXN-AS1 mitigates atherosclerosis by regulating the actin-binding protein NEXN. J Clin Invest. 2019;129:1115-1128 pubmed 出版商
  7. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  8. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  9. Padilla J, Carpenter A, Das N, Kandikattu H, López Ongil S, Martinez Lemus L, et al. TRAF3IP2 mediates high glucose-induced endothelin-1 production as well as endothelin-1-induced inflammation in endothelial cells. Am J Physiol Heart Circ Physiol. 2018;314:H52-H64 pubmed 出版商
  10. Horn A, Celic I, Dong C, Martirosyan I, Han J. A conserved role for the ESCRT membrane budding complex in LINE retrotransposition. PLoS Genet. 2017;13:e1006837 pubmed 出版商
  11. Prasad S, Sajja R, Kaisar M, Park J, Villalba H, Liles T, et al. Role of Nrf2 and protective effects of Metformin against tobacco smoke-induced cerebrovascular toxicity. Redox Biol. 2017;12:58-69 pubmed 出版商
  12. Brooks M, Turk J, Guerrero A, Narayanan P, Nolan J, Besteman E, et al. Non-Lethal Endotoxin Injection: A Rat Model of Hypercoagulability. PLoS ONE. 2017;12:e0169976 pubmed 出版商
  13. Fromm J, Thomas A, Wood B. Characterization and Purification of Neoplastic Cells of Nodular Lymphocyte Predominant Hodgkin Lymphoma from Lymph Nodes by Flow Cytometry and Flow Cytometric Cell Sorting. Am J Pathol. 2017;187:304-317 pubmed 出版商
  14. Bonan S, Albrengues J, Grasset E, Kuzet S, Nottet N, Bourget I, et al. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts. Oncotarget. 2017;8:1304-1320 pubmed 出版商
  15. Di Paola R, Fusco R, Gugliandolo E, Crupi R, Evangelista M, Granese R, et al. Co-micronized Palmitoylethanolamide/Polydatin Treatment Causes Endometriotic Lesion Regression in a Rodent Model of Surgically Induced Endometriosis. Front Pharmacol. 2016;7:382 pubmed
  16. Xu J, Wu D, Yang Y, Ji K, Gao P. Endothelial?like cells differentiated from mesenchymal stem cells attenuate neointimal hyperplasia after vascular injury. Mol Med Rep. 2016;14:4830-4836 pubmed 出版商
  17. Naidenow J, Hrgovic I, Doll M, Hailemariam Jahn T, Lang V, Kleemann J, et al. Peroxisome proliferator-activated receptor (PPAR) ? and ? activators induce ICAM-1 expression in quiescent non stimulated endothelial cells. J Inflamm (Lond). 2016;13:27 pubmed 出版商
  18. Sabry S, Vuillaumier Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Heron D, et al. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis. 2016;11:84 pubmed 出版商
  19. Kim J, Hong S, Park C, Park J, Choi S, Woo S, et al. Intramyocardial Adipose-Derived Stem Cell Transplantation Increases Pericardial Fat with Recovery of Myocardial Function after Acute Myocardial Infarction. PLoS ONE. 2016;11:e0158067 pubmed 出版商
  20. Kwon O, Kim K, Lee E, Kim M, Choi S, Li H, et al. Induction of MiR-21 by Stereotactic Body Radiotherapy Contributes to the Pulmonary Fibrotic Response. PLoS ONE. 2016;11:e0154942 pubmed 出版商
  21. Amigo Jiménez I, Bailón E, Aguilera Montilla N, Terol M, García Marco J, García Pardo A. Bone marrow stroma-induced resistance of chronic lymphocytic leukemia cells to arsenic trioxide involves Mcl-1 upregulation and is overcome by inhibiting the PI3Kδ or PKCβ signaling pathways. Oncotarget. 2015;6:44832-48 pubmed 出版商
  22. Kraut B, Maier H, Kókai E, Fiedler K, Boettger T, Illing A, et al. Cardiac-Specific Activation of IKK2 Leads to Defects in Heart Development and Embryonic Lethality. PLoS ONE. 2015;10:e0141591 pubmed 出版商
  23. Conigliaro A, Costa V, Lo Dico A, Saieva L, Buccheri S, Dieli F, et al. CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Mol Cancer. 2015;14:155 pubmed 出版商
  24. McCormick S, He Q, Stern J, Khodarev N, Weichselbaum R, Skelly C. Evidence for the Use of Multiple Mechanisms by Herpes Simplex Virus-1 R7020 to Inhibit Intimal Hyperplasia. PLoS ONE. 2015;10:e0130264 pubmed 出版商
  25. Koizume S, Ito S, Nakamura Y, Yoshihara M, Furuya M, Yamada R, et al. Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer. Mol Cancer. 2015;14:77 pubmed 出版商
  26. Luo C, Yuan D, Zhao W, Chen H, Luo G, Su G, et al. Sevoflurane ameliorates intestinal ischemia-reperfusion-induced lung injury by inhibiting the synergistic action between mast cell activation and oxidative stress. Mol Med Rep. 2015;12:1082-90 pubmed 出版商
  27. Yao Y, Wei W, Sun J, Chen L, Deng X, Ma L, et al. Proteomic analysis of exosomes derived from human lymphoma cells. Eur J Med Res. 2015;20:8 pubmed 出版商
  28. Liang N, Zhang C, Dill P, Panasyuk G, Pion D, Koka V, et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J Exp Med. 2014;211:2249-63 pubmed 出版商
  29. Fork C, Hitzel J, Nichols B, Tikkanen R, Brandes R. Flotillin-1 facilitates toll-like receptor 3 signaling in human endothelial cells. Basic Res Cardiol. 2014;109:439 pubmed 出版商
  30. Toutounchian J, Steinle J, Makena P, Waters C, Wilson M, Haik B, et al. Modulation of radiation injury response in retinal endothelial cells by quinic acid derivative KZ-41 involves p38 MAPK. PLoS ONE. 2014;9:e100210 pubmed 出版商
  31. Chen R, Zhang F, Song L, Shu Y, Lin Y, Dong L, et al. Transcriptome profiling reveals that the SM22?-regulated molecular pathways contribute to vascular pathology. J Mol Cell Cardiol. 2014;72:263-72 pubmed 出版商
  32. Valente A, Irimpen A, Siebenlist U, Chandrasekar B. OxLDL induces endothelial dysfunction and death via TRAF3IP2: inhibition by HDL3 and AMPK activators. Free Radic Biol Med. 2014;70:117-28 pubmed 出版商
  33. Perdomo Arciniegas A, Vernot J. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int J Hematol. 2011;94:525-32 pubmed 出版商
  34. Lee D, Li H, Ochoa M, Tanaka M, Carbone R, Damoiseaux R, et al. Integrated pathways for neutrophil recruitment and inflammation in leprosy. J Infect Dis. 2010;201:558-69 pubmed 出版商
  35. Lee D, Sieling P, Ochoa M, Krutzik S, Guo B, Hernandez M, et al. LILRA2 activation inhibits dendritic cell differentiation and antigen presentation to T cells. J Immunol. 2007;179:8128-36 pubmed
  36. Fromm J, Kussick S, Wood B. Identification and purification of classical Hodgkin cells from lymph nodes by flow cytometry and flow cytometric cell sorting. Am J Clin Pathol. 2006;126:764-80 pubmed
  37. Zhang F, Marcus W, Goyal N, Selvaraj P, Springer T, Zhu C. Two-dimensional kinetics regulation of alphaLbeta2-ICAM-1 interaction by conformational changes of the alphaL-inserted domain. J Biol Chem. 2005;280:42207-18 pubmed
  38. Ito T, Kumamoto T, Horinouchi H, Yukishige K, Sugihara R, Fujimoto S, et al. Adhesion molecule expression in experimental myositis. Muscle Nerve. 2002;25:409-18 pubmed
  39. Semnani R, Sabzevari H, Iyer R, Nutman T. Filarial antigens impair the function of human dendritic cells during differentiation. Infect Immun. 2001;69:5813-22 pubmed