这是一篇来自已证抗体库的有关大鼠 Icos的综述,是根据71篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Icos 抗体。
Icos 同义词: Ailim

BioLegend
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 2a
BioLegend Icos抗体(BioLegend, 313508)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Sci Adv (2022) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 200 ug/ml; 图 2e
BioLegend Icos抗体(BioLegend, 313510)被用于被用于流式细胞仪在小鼠样本上浓度为200 ug/ml (图 2e). Sci Rep (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:200; 图 1h
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 1h). Front Immunol (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s4a
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s4a). Proc Natl Acad Sci U S A (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:100; 图 1e
BioLegend Icos抗体(BioLegend, 313520)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1e). elife (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 3c
BioLegend Icos抗体(Biolegend, 313520)被用于被用于流式细胞仪在小鼠样本上 (图 3c). Nat Commun (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:250; 图 1c, 7a
BioLegend Icos抗体(BioLegend, 313525)被用于被用于流式细胞仪在小鼠样本上浓度为1:250 (图 1c, 7a). Cancer Res (2021) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:200; 图 3d
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 3d). elife (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
BioLegend Icos抗体(BioLegend, 313538)被用于被用于流式细胞仪在小鼠样本上. Cell (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:100; 图 1a, 7s1a
BioLegend Icos抗体(Biolegend, 313518)被用于被用于流式细胞仪在小鼠样本上浓度为1:100 (图 1a, 7s1a). elife (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 2s2c
BioLegend Icos抗体(Biolegend, 313524)被用于被用于流式细胞仪在人类样本上 (图 2s2c). elife (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 6d). elife (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 s12a
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在人类样本上 (图 s12a). Nat Commun (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s1a
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). BMC Immunol (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 1d
BioLegend Icos抗体(Biolegend, 313508)被用于被用于流式细胞仪在小鼠样本上 (图 1d). Cell Rep (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 其他; 人类; 图 7s1b
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于其他在人类样本上 (图 7s1b). elife (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 1b
BioLegend Icos抗体(Biolegend, 313525)被用于被用于流式细胞仪在人类样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 5a
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 5a). Front Immunol (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s16b
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s16b). Science (2019) ncbi
仓鼠 单克隆(C398.4A)
  • mass cytometry; 人类; 图 2b
BioLegend Icos抗体(Biolegend, 313502)被用于被用于mass cytometry在人类样本上 (图 2b). Cell (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s5l
BioLegend Icos抗体(Biolegend, 313510)被用于被用于流式细胞仪在小鼠样本上 (图 s5l). Cell (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 1a
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 1a). J Exp Med (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 大鼠; 图 15a
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在大鼠样本上 (图 15a). PLoS ONE (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 1c
BioLegend Icos抗体(BioLegend, 313529)被用于被用于流式细胞仪在小鼠样本上 (图 1c). Cell (2019) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s3c
  • 流式细胞仪; 人类; 图 s3c
  • 流式细胞仪; 大鼠; 图 s3c
BioLegend Icos抗体(BioLegend, 313540)被用于被用于流式细胞仪在小鼠样本上 (图 s3c), 被用于流式细胞仪在人类样本上 (图 s3c) 和 被用于流式细胞仪在大鼠样本上 (图 s3c). Immunity (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:400; 图 4d
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上浓度为1:400 (图 4d). Nat Commun (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 s1a
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在人类样本上 (图 s1a). J Clin Invest (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:200; 图 2c
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (图 2c). Nat Commun (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s1h
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s1h). Science (2017) ncbi
仓鼠 单克隆(C398.4A)
  • mass cytometry; 人类; 图 s8
BioLegend Icos抗体(BioLegend, 313502)被用于被用于mass cytometry在人类样本上 (图 s8). Nature (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 s2a
BioLegend Icos抗体(BioLegend, C.398.4A)被用于被用于流式细胞仪在人类样本上 (图 s2a). JCI Insight (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类
  • 流式细胞仪; 小鼠; 图 2b
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在人类样本上 和 被用于流式细胞仪在小鼠样本上 (图 2b). PLoS Pathog (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 2a
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在人类样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上. J Allergy Clin Immunol (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 st1
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 st1). J Immunol (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 6d
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 6d). J Clin Invest (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:200; 表 s2
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上浓度为1:200 (表 s2). Nat Immunol (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 猕猴
BioLegend Icos抗体(BioLegend, 313520)被用于被用于流式细胞仪在猕猴样本上. Nat Med (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 1b
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在人类样本上 (图 1b). Nat Immunol (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 图 3
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在人类样本上 (图 3). Am J Transplant (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 4c
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 4c). Diabetes (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在人类样本上. J Immunol (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; African green monkey; 图 1
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在African green monkey样本上 (图 1). J Immunol (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s4
BioLegend Icos抗体(biolegend, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s4). Theranostics (2015) ncbi
仓鼠 单克隆(C398.4A)
BioLegend Icos抗体(BioLegend, 313510)被用于. Nat Commun (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
BioLegend Icos抗体(BioLegend, 313516)被用于被用于流式细胞仪在小鼠样本上. J Leukoc Biol (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 抑制或激活实验; 小鼠; 20 ug/ml; 图 7
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于抑制或激活实验在小鼠样本上浓度为20 ug/ml (图 7). J Immunol (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 大鼠; 图 3
BioLegend Icos抗体(BioLegend, C398.4A)被用于被用于流式细胞仪在大鼠样本上 (图 3). Eur J Immunol (2015) ncbi
仓鼠 单克隆(C398.4A)
BioLegend Icos抗体(BioLegend, C398.4a)被用于. J Immunol (2014) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 猕猴; 图 s1c
BioLegend Icos抗体(Biolegend, C398.4A)被用于被用于流式细胞仪在猕猴样本上 (图 s1c). J Immunol (2014) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 1:100
BioLegend Icos抗体(Biolegend, c398.4A)被用于被用于流式细胞仪在人类样本上浓度为1:100. J Clin Invest (2014) ncbi
赛默飞世尔
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 人类; 1:50
赛默飞世尔 Icos抗体(ThermoFisher, 15-9949-82)被用于被用于流式细胞仪在人类样本上浓度为1:50. bioRxiv (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 6e
赛默飞世尔 Icos抗体(eBioscience, clone C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 6e). elife (2020) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 s6b
赛默飞世尔 Icos抗体(eBiosciences, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 s6b). Nat Commun (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 1:500; 图 s12c
赛默飞世尔 Icos抗体(Thermo Fisher Scientific, 17-9949-82)被用于被用于流式细胞仪在小鼠样本上浓度为1:500 (图 s12c). Nat Commun (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Icos抗体(eBiosciences, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 2a). Cancer Cell (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 4d). J Immunol (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 2a
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 2a). J Exp Med (2018) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 4d
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 4d). Immunol Lett (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 4a
赛默飞世尔 Icos抗体(eBioscience, C398.4 A)被用于被用于流式细胞仪在小鼠样本上 (图 4a). Sci Rep (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
赛默飞世尔 Icos抗体(eBiosciences, C398.4A)被用于被用于流式细胞仪在小鼠样本上. Mucosal Immunol (2017) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
赛默飞世尔 Icos抗体(eBiocience, C398.4A)被用于被用于流式细胞仪在小鼠样本上. Nature (2016) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 6
赛默飞世尔 Icos抗体(eBiosciences, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 6). Nat Immunol (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 抑制或激活实验; 小鼠; 图 2a
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于抑制或激活实验在小鼠样本上 (图 2a). Immunity (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 5
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 5). Nat Immunol (2015) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
赛默飞世尔 Icos抗体(e-Bioscience, C398.4A)被用于被用于流式细胞仪在小鼠样本上. Nature (2012) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠; 图 1
赛默飞世尔 Icos抗体(eBiosciences, C398.4A)被用于被用于流式细胞仪在小鼠样本上 (图 1). J Leukoc Biol (2007) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 猕猴; 图 7
赛默飞世尔 Icos抗体(eBioscience, C398.4A)被用于被用于流式细胞仪在猕猴样本上 (图 7). J Med Primatol (2006) ncbi
仓鼠 单克隆(C398.4A)
  • 流式细胞仪; 小鼠
赛默飞世尔 Icos抗体(eBiosciences, C3948.4A)被用于被用于流式细胞仪在小鼠样本上. J Immunol (2004) ncbi
美天旎
人类 单克隆(REA192)
  • 流式细胞仪; 人类; 图 3a
美天旎 Icos抗体(Miltenyi Biotec, REA192)被用于被用于流式细胞仪在人类样本上 (图 3a). J Autoimmun (2018) ncbi
人类 单克隆(REA192)
  • 流式细胞仪; 人类; 图 7a
美天旎 Icos抗体(Miltenyi Biotec, REA192)被用于被用于流式细胞仪在人类样本上 (图 7a). Sci Rep (2017) ncbi
文章列表
  1. Que W, Ma K, Hu X, Guo W, Li X. Combinations of anti-GITR antibody and CD28 superagonist induce permanent allograft acceptance by generating type 1 regulatory T cells. Sci Adv. 2022;8:eabo4413 pubmed 出版商
  2. Patial S, Lewis B, Vo T, Choudhary I, Paudel K, Mao Y, et al. Myeloid-IL4Rα is an indispensable link in IL-33-ILCs-IL-13-IL4Rα axis of eosinophil recruitment in murine lungs. Sci Rep. 2021;11:15465 pubmed 出版商
  3. Zhang S, Li L, Xie D, Reddy S, Sleasman J, Ma L, et al. Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Front Immunol. 2021;12:620437 pubmed 出版商
  4. Lin X, Twelkmeyer T, Zhu D, Zhang L, Zhao Y, Zhang C, et al. Homeostatic regulation of T follicular helper and antibody response to particle antigens by IL-1Ra of medullary sinus macrophage origin. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  5. Sun Z, Yao Y, You M, Liu J, Guo W, Qi Z, et al. The kinase PDK1 is critical for promoting T follicular helper cell differentiation. elife. 2021;10: pubmed 出版商
  6. Yang Y, Li X, Ma Z, Wang C, Yang Q, Byrne Steele M, et al. CTLA-4 expression by B-1a B cells is essential for immune tolerance. Nat Commun. 2021;12:525 pubmed 出版商
  7. Kharkwal S, Johndrow C, Veerapen N, Kharkwal H, Saavedra Avila N, Carreño L, et al. Serial Stimulation of Invariant Natural Killer T Cells with Covalently Stabilized Bispecific T-cell Engagers Generates Antitumor Immunity While Avoiding Anergy. Cancer Res. 2021;81:1788-1801 pubmed 出版商
  8. Rundqvist H, Veliça P, Barbieri L, Gameiro P, Bargiela D, Gojkovic M, et al. Cytotoxic T-cells mediate exercise-induced reductions in tumor growth. elife. 2020;9: pubmed 出版商
  9. Pasciuto E, Burton O, Roca C, Lagou V, Rajan W, Theys T, et al. Microglia Require CD4 T Cells to Complete the Fetal-to-Adult Transition. Cell. 2020;182:625-640.e24 pubmed 出版商
  10. Mathew D, Giles J, Baxter A, Greenplate A, Wu J, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals patient heterogeneity and distinct immunotypes with implications for therapeutic interventions. bioRxiv. 2020;: pubmed 出版商
  11. Gryzik S, Hoang Y, Lischke T, Mohr E, Venzke M, Kadner I, et al. Identification of a super-functional Tfh-like subpopulation in murine lupus by pattern perception. elife. 2020;9: pubmed 出版商
  12. Vacca F, Chauch C, Jamwal A, Hinchy E, Heieis G, Webster H, et al. A helminth-derived suppressor of ST2 blocks allergic responses. elife. 2020;9: pubmed 出版商
  13. Pallikkuth S, Chaudhury S, Lu P, Pan L, Jongert E, Wille Reece U, et al. A delayed fractionated dose RTS,S AS01 vaccine regimen mediates protection via improved T follicular helper and B cell responses. elife. 2020;9: pubmed 出版商
  14. Canel M, Taggart D, Sims A, Lonergan D, Waizenegger I, Serrels A. T-cell co-stimulation in combination with targeting FAK drives enhanced anti-tumor immunity. elife. 2020;9: pubmed 出版商
  15. Schafflick D, Xu C, Hartlehnert M, Cole M, Schulte Mecklenbeck A, Lautwein T, et al. Integrated single cell analysis of blood and cerebrospinal fluid leukocytes in multiple sclerosis. Nat Commun. 2020;11:247 pubmed 出版商
  16. Mantani P, Dunér P, Ljungcrantz I, Nilsson J, Bjorkbacka H, Fredrikson G. ILC2 transfers to apolipoprotein E deficient mice reduce the lipid content of atherosclerotic lesions. BMC Immunol. 2019;20:47 pubmed 出版商
  17. Wang L, Shen E, Luo L, Rabe H, Wang Q, Yin J, et al. Control of Germinal Center Localization and Lineage Stability of Follicular Regulatory T Cells by the Blimp1 Transcription Factor. Cell Rep. 2019;29:1848-1861.e6 pubmed 出版商
  18. Saliba D, Céspedes Donoso P, Balint S, Compeer E, Korobchevskaya K, Valvo S, et al. Composition and structure of synaptic ectosomes exporting antigen receptor linked to functional CD40 ligand from helper T cells. elife. 2019;8: pubmed 出版商
  19. Di Blasi D, Boldanova T, Mori L, Terracciano L, Heim M, De Libero G. Unique T-Cell Populations Define Immune-Inflamed Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol. 2020;9:195-218 pubmed 出版商
  20. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I, et al. PD-1 Primarily Targets TCR Signal in the Inhibition of Functional T Cell Activation. Front Immunol. 2019;10:630 pubmed 出版商
  21. Sugiura D, Maruhashi T, Okazaki I, Shimizu K, Maeda T, Takemoto T, et al. Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses. Science. 2019;364:558-566 pubmed 出版商
  22. Wagner J, Rapsomaniki M, Chevrier S, Anzeneder T, Langwieder C, Dykgers A, et al. A Single-Cell Atlas of the Tumor and Immune Ecosystem of Human Breast Cancer. Cell. 2019;177:1330-1345.e18 pubmed 出版商
  23. Binnewies M, Mujal A, Pollack J, Combes A, Hardison E, Barry K, et al. Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4+ T Cell Immunity. Cell. 2019;177:556-571.e16 pubmed 出版商
  24. Qian L, Bajana S, Georgescu C, Peng V, Wang H, Adrianto I, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216:884-899 pubmed 出版商
  25. Bath N, Ding X, Wilson N, Verhoven B, Boldt B, Sukhwal A, et al. Desensitization and treatment with APRIL/BLyS blockade in rodent kidney transplant model. PLoS ONE. 2019;14:e0211865 pubmed 出版商
  26. Kobayashi T, Voisin B, Kim D, Kennedy E, Jo J, Shih H, et al. Homeostatic Control of Sebaceous Glands by Innate Lymphoid Cells Regulates Commensal Bacteria Equilibrium. Cell. 2019;176:982-997.e16 pubmed 出版商
  27. Li F, Zeng Z, Xing S, Gullicksrud J, Shan Q, Choi J, et al. Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nat Commun. 2018;9:5452 pubmed 出版商
  28. Nguyen X, Dauvilliers Y, Quériault C, Pérals C, Romieu Mourez R, Paulet P, et al. Circulating follicular helper T cells exhibit reduced ICOS expression and impaired function in narcolepsy type 1 patients. J Autoimmun. 2018;94:134-142 pubmed 出版商
  29. Shi J, Hou S, Fang Q, Liu X, Liu X, Qi H. PD-1 Controls Follicular T Helper Cell Positioning and Function. Immunity. 2018;49:264-274.e4 pubmed 出版商
  30. Zhang C, Wang C, Jiang M, Gu C, Xiao J, Chen X, et al. Act1 is a negative regulator in T and B cells via direct inhibition of STAT3. Nat Commun. 2018;9:2745 pubmed 出版商
  31. Cho S, Lee H, Yu I, Choi Y, Huang H, Hashemifar S, et al. Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun. 2018;9:2757 pubmed 出版商
  32. Moysi E, Pallikkuth S, de Armas L, Gonzalez L, Ambrozak D, George V, et al. Altered immune cell follicular dynamics in HIV infection following influenza vaccination. J Clin Invest. 2018;128:3171-3185 pubmed 出版商
  33. Cortes J, Ambesi Impiombato A, Couronné L, Quinn S, Kim C, da Silva Almeida A, et al. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell. 2018;33:259-273.e7 pubmed 出版商
  34. Shi B, Geng J, Wang Y, Wei H, Walters B, Li W, et al. Foxp1 Negatively Regulates T Follicular Helper Cell Differentiation and Germinal Center Responses by Controlling Cell Migration and CTLA-4. J Immunol. 2018;200:586-594 pubmed 出版商
  35. Harly C, Cam M, Kaye J, Bhandoola A. Development and differentiation of early innate lymphoid progenitors. J Exp Med. 2018;215:249-262 pubmed 出版商
  36. Yi W, Gupta S, Ricker E, Manni M, Jessberger R, Chinenov Y, et al. The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun. 2017;8:254 pubmed 出版商
  37. Liaskou E, Jeffery L, Chanouzas D, Soskic B, Seldin M, Harper L, et al. Genetic variation at the CD28 locus and its impact on expansion of pro-inflammatory CD28 negative T cells in healthy individuals. Sci Rep. 2017;7:7652 pubmed 出版商
  38. Kim S, Kwon J, Park J, Seo H, Jung K, Moon Y, et al. Achaete-scute complex homologue 2 accelerates the development of Sjögren's syndrome-like disease in the NOD/ShiLtJ mouse. Immunol Lett. 2017;190:26-33 pubmed 出版商
  39. Minutti C, Jackson Jones L, Garcia Fojeda B, Knipper J, Sutherland T, Logan N, et al. Local amplifiers of IL-4R?-mediated macrophage activation promote repair in lung and liver. Science. 2017;356:1076-1080 pubmed 出版商
  40. Chien C, Yu H, Chen S, Chiang B. Characterization of c-Maf+Foxp3- Regulatory T Cells Induced by Repeated Stimulation of Antigen-Presenting B Cells. Sci Rep. 2017;7:46348 pubmed 出版商
  41. Lu X, Horner J, Paul E, Shang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature. 2017;543:728-732 pubmed 出版商
  42. Martin Gayo E, Cronin J, Hickman T, Ouyang Z, Lindqvist M, Kolb K, et al. Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth. JCI Insight. 2017;2:e89574 pubmed 出版商
  43. Kinosada H, Yasunaga J, Shimura K, Miyazato P, Onishi C, Iyoda T, et al. HTLV-1 bZIP Factor Enhances T-Cell Proliferation by Impeding the Suppressive Signaling of Co-inhibitory Receptors. PLoS Pathog. 2017;13:e1006120 pubmed 出版商
  44. Serr I, Fürst R, Ott V, Scherm M, Nikolaev A, Gökmen F, et al. miRNA92a targets KLF2 and the phosphatase PTEN signaling to promote human T follicular helper precursors in T1D islet autoimmunity. Proc Natl Acad Sci U S A. 2016;113:E6659-E6668 pubmed
  45. Mascarell L, Airouche S, Berjont N, Gary C, Gueguen C, Fourcade G, et al. The regulatory dendritic cell marker C1q is a potent inhibitor of allergic inflammation. Mucosal Immunol. 2017;10:695-704 pubmed 出版商
  46. Ramirez Carrozzi V, Sambandam A, Zhou M, Yan D, Kang J, Wu X, et al. Combined blockade of the IL-13 and IL-33 pathways leads to a greater inhibition of type 2 inflammation over inhibition of either pathway alone. J Allergy Clin Immunol. 2017;139:705-708.e6 pubmed 出版商
  47. Johnston L, Hsu C, Krier Burris R, Chhiba K, Chien K, McKenzie A, et al. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197:3445-3453 pubmed
  48. Lexmond W, Goettel J, Lyons J, Jacobse J, Deken M, Lawrence M, et al. FOXP3+ Tregs require WASP to restrain Th2-mediated food allergy. J Clin Invest. 2016;126:4030-4044 pubmed 出版商
  49. Leong Y, Chen Y, Ong H, Wu D, Man K, Deléage C, et al. CXCR5(+) follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016;17:1187-96 pubmed 出版商
  50. Vaccari M, Gordon S, Fourati S, Schifanella L, Liyanage N, Cameron M, et al. Adjuvant-dependent innate and adaptive immune signatures of risk of SIVmac251 acquisition. Nat Med. 2016;22:762-70 pubmed 出版商
  51. Bal S, Bernink J, Nagasawa M, Groot J, Shikhagaie M, Golebski K, et al. IL-1?, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 2016;17:636-45 pubmed 出版商
  52. Zwang N, Zhang R, Germana S, Fan M, Hastings W, Cao A, et al. Selective Sparing of Human Tregs by Pharmacologic Inhibitors of the Phosphatidylinositol 3-Kinase and MEK Pathways. Am J Transplant. 2016;16:2624-38 pubmed 出版商
  53. Leeth C, Racine J, Chapman H, Arpa B, Carrillo J, Carrascal J, et al. B-lymphocytes expressing an Ig specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice. Diabetes. 2016;65:1977-1987 pubmed 出版商
  54. Llibre A, López Macías C, Marafioti T, Mehta H, Partridge A, Kanzig C, et al. LLT1 and CD161 Expression in Human Germinal Centers Promotes B Cell Activation and CXCR4 Downregulation. J Immunol. 2016;196:2085-94 pubmed 出版商
  55. Luo C, Liao W, Dadi S, Toure A, Li M. Graded Foxo1 activity in Treg cells differentiates tumour immunity from spontaneous autoimmunity. Nature. 2016;529:532-6 pubmed 出版商
  56. Vargas Inchaustegui D, Demers A, Shaw J, Kang G, Ball D, Tuero I, et al. Vaccine Induction of Lymph Node-Resident Simian Immunodeficiency Virus Env-Specific T Follicular Helper Cells in Rhesus Macaques. J Immunol. 2016;196:1700-10 pubmed 出版商
  57. Kim J, Phan T, Nguyen V, Dinh Vu H, Zheng J, Yun M, et al. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Theranostics. 2015;5:1328-42 pubmed 出版商
  58. Miles B, Miller S, Folkvord J, Kimball A, Chamanian M, Meditz A, et al. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection. Nat Commun. 2015;6:8608 pubmed 出版商
  59. Choi Y, Gullicksrud J, Xing S, Zeng Z, Shan Q, Li F, et al. LEF-1 and TCF-1 orchestrate T(FH) differentiation by regulating differentiation circuits upstream of the transcriptional repressor Bcl6. Nat Immunol. 2015;16:980-90 pubmed 出版商
  60. Lu K, Keppler S, Leithäuser F, Mattfeldt T, Castello A, Kostezka U, et al. Nck adaptor proteins modulate differentiation and effector function of T cells. J Leukoc Biol. 2015;98:301-11 pubmed 出版商
  61. Stone E, Pepper M, Katayama C, Kerdiles Y, Lai C, Emslie E, et al. ICOS coreceptor signaling inactivates the transcription factor FOXO1 to promote Tfh cell differentiation. Immunity. 2015;42:239-251 pubmed 出版商
  62. Nelson M, Kundimi S, Bowers J, Rogers C, Huff L, Schwartz K, et al. The inducible costimulator augments Tc17 cell responses to self and tumor tissue. J Immunol. 2015;194:1737-47 pubmed 出版商
  63. Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H. Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol. 2015;16:178-87 pubmed 出版商
  64. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  65. Herati R, Reuter M, Dolfi D, Mansfield K, Aung H, Badwan O, et al. Circulating CXCR5+PD-1+ response predicts influenza vaccine antibody responses in young adults but not elderly adults. J Immunol. 2014;193:3528-37 pubmed 出版商
  66. Hong J, Amancha P, Rogers K, Courtney C, Havenar Daughton C, Crotty S, et al. Early lymphoid responses and germinal center formation correlate with lower viral load set points and better prognosis of simian immunodeficiency virus infection. J Immunol. 2014;193:797-806 pubmed 出版商
  67. Gros A, Robbins P, Yao X, Li Y, Turcotte S, Tran E, et al. PD-1 identifies the patient-specific CD8? tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124:2246-59 pubmed 出版商
  68. Mathew R, Seiler M, Scanlon S, Mao A, Constantinides M, Bertozzi Villa C, et al. BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature. 2012;491:618-21 pubmed 出版商
  69. Nakae S, Iwakura Y, Suto H, Galli S. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. J Leukoc Biol. 2007;81:1258-68 pubmed
  70. Onlamoon N, Hudson K, Bryan P, Mayne A, Bonyhadi M, Berenson R, et al. Optimization of in vitro expansion of macaque CD4 T cells using anti-CD3 and co-stimulation for autotransfusion therapy. J Med Primatol. 2006;35:178-93 pubmed
  71. Smith P, Walsh C, Mangan N, Fallon R, Sayers J, McKenzie A, et al. Schistosoma mansoni worms induce anergy of T cells via selective up-regulation of programmed death ligand 1 on macrophages. J Immunol. 2004;173:1240-8 pubmed