这是一篇来自已证抗体库的有关大鼠 Itgam的综述,是根据157篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Itgam 抗体。
Itgam 同义词: Cd11b

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:1000
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上浓度为1:1000. Theranostics (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 5e
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, 33357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 5e). Mol Cancer Ther (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 s8a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s8a). Commun Biol (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 人类; 1:800; 图 4e
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:800 (图 4e). EBioMedicine (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 5f). J Cell Sci (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫印迹; 小鼠; 1:500; 图 6a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6a). Cell Rep (2022) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上 (图 4c). Nat Commun (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:50,000; 图 s5d
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上浓度为1:50,000 (图 s5d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:3000; 图 5b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上浓度为1:3000 (图 5b). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 流式细胞仪; 小鼠; 图 s3b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于流式细胞仪在小鼠样本上 (图 s3b). Mol Cancer (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 大鼠; 1:50; 图 6a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 6a). J Neuroinflammation (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 6
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6). Front Cell Dev Biol (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫印迹; 人类; 1:1000; 图 2c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2c). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 4c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 抑制或激活实验; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于抑制或激活实验在小鼠样本上 (图 4a). J Am Heart Assoc (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 图 7f
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, Ab133357)被用于被用于免疫组化在小鼠样本上 (图 7f). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). NPJ Parkinsons Dis (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:4000; 图 2
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 2). NPJ Breast Cancer (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 流式细胞仪; 小鼠; 图 2d
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于流式细胞仪在小鼠样本上 (图 2d). Clin Transl Med (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 4o, 4p
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4o, 4p). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 1:200
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上浓度为1:200. elife (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 流式细胞仪; 小鼠; 1:200-1:1000; 图 1c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于流式细胞仪在小鼠样本上浓度为1:200-1:1000 (图 1c). elife (2020) ncbi
小鼠 单克隆(OX42)
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于. Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫印迹; 小鼠; 1:10,000; 图 5
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 5). J Virol (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 8b
  • 免疫印迹; 小鼠; 1:1000; 图 3f
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 8b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3f). PLoS Pathog (2020) ncbi
小鼠 单克隆(OX42)
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Biol Proced Online (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫印迹; 人类; 图 6c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫印迹在人类样本上 (图 6c). Front Immunol (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 人类; 1:4000; 图 1a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, Ab133357)被用于被用于免疫组化在人类样本上浓度为1:4000 (图 1a). Nat Commun (2020) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1e
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1e). J Neuroinflammation (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Theranostics (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 图 3c
艾博抗(上海)贸易有限公司 Itgam抗体(AbCam, EPR1334)被用于被用于免疫组化在小鼠样本上 (图 3c). BMC Genomics (2020) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 4d
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 4d). Nat Commun (2019) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-冰冻切片; 大鼠; 1:50; 图 6c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:50 (图 6c). J Pain Res (2019) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 3a
  • 免疫细胞化学; 小鼠; 1:100; 图 10b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 3a) 和 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 10b). Biomolecules (2019) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-石蜡切片; 人类; 图 s1a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1121)被用于被用于免疫组化-石蜡切片在人类样本上 (图 s1a). Cell (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2a). J Immunother Cancer (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 人类; 图 2a, 2b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在人类样本上 (图 2a, 2b). Nanomedicine (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 e5c
  • 流式细胞仪; 小鼠; 图 e5b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 e5c) 和 被用于流式细胞仪在小鼠样本上 (图 e5b). Nature (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1d
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1d). J Exp Med (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 图 2a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化在小鼠样本上 (图 2a). J Immunol (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 6c). Autophagy (2019) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:2000; 图 3c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:2000 (图 3c). Immunity (2018) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 4b
  • 流式细胞仪; 小鼠; 图 4a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b) 和 被用于流式细胞仪在小鼠样本上 (图 4a). Front Microbiol (2018) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5c). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 小鼠; 1:3,500; 图 2
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:3,500 (图 2). J Immunol (2018) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫细胞化学; 小鼠; 图 5c
  • 免疫印迹; 小鼠; 图 5b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫细胞化学在小鼠样本上 (图 5c) 和 被用于免疫印迹在小鼠样本上 (图 5b). Nature (2017) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 7b
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 7b). Ann Neurol (2017) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫细胞化学; 人类; 1:250; 图 s7a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, 133357)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 s7a). Mol Psychiatry (2017) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6a
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 4
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 4). J Drug Target (2016) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 人类; 0.5 ug/ml; 图 3f
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在人类样本上浓度为0.5 ug/ml (图 3f). Sci Transl Med (2016) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8e
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, EPR1344)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8e). Nat Commun (2016) ncbi
domestic rabbit 单克隆(EPR1344)
  • 免疫组化; 小鼠; 图 5c
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab133357)被用于被用于免疫组化在小鼠样本上 (图 5c). Sci Rep (2015) ncbi
小鼠 单克隆(OX42)
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(OX42)
  • 免疫组化; 人类
艾博抗(上海)贸易有限公司 Itgam抗体(abcam, ab1211)被用于被用于免疫组化在人类样本上. Biomaterials (2015) ncbi
小鼠 单克隆(OX42)
  • 免疫细胞化学; 大鼠; 1:200; 图 s4
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s4). Nat Commun (2015) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 4
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 4). J Neurosci (2014) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-自由浮动切片; 大鼠; 1:5000
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, Ab1211-100)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:5000. Pain (2014) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 小鼠; 1:100
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100. Anesthesiology (2014) ncbi
小鼠 单克隆(OX42)
  • 免疫组化-自由浮动切片; 大鼠; 1:100
艾博抗(上海)贸易有限公司 Itgam抗体(Abcam, ab1211)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:100. J Neuroinflammation (2013) ncbi
伯乐(Bio-Rad)公司
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:250; 图 s3a
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275G)被用于被用于免疫组化在大鼠样本上浓度为1:250 (图 s3a). Cell Transplant (2021) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:1000; 图 7a
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275G)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 7a). J Neuroinflammation (2020) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 7c
伯乐(Bio-Rad)公司 Itgam抗体(Bio-Rad, MCA215G)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 7c). Exp Ther Med (2020) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 s2c
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 s2c). Sci Rep (2020) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:200; 图 s1l
伯乐(Bio-Rad)公司 Itgam抗体(Bio-rad, MCA275R)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 s1l). Cell Stem Cell (2019) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1h
伯乐(Bio-Rad)公司 Itgam抗体(BioRad, MCA275)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1h). Brain Behav Immun (2018) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:50; 图 3
伯乐(Bio-Rad)公司 Itgam抗体(bio-rad, MCA275GA)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 3). J Comp Neurol (2018) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 s7
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 s7). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 6c
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, mca275g)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 6c). Dis Model Mech (2017) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 图 3
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275G)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
伯乐(Bio-Rad)公司 Itgam抗体(AbDsreotec, MCA275G)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2). Sci Rep (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:1000; 图 4
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275G)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 4). Exp Neurol (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 3
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 3). Brain (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 图 2
  • 免疫印迹; 大鼠; 1:3000; 图 2
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 2) 和 被用于免疫印迹在大鼠样本上浓度为1:3000 (图 2). Inflammation (2016) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 s6e
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, Ox-42)被用于被用于流式细胞仪在大鼠样本上 (图 s6e). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 1
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275FT)被用于被用于流式细胞仪在大鼠样本上 (图 1). Sci Rep (2016) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, OX-42)被用于被用于流式细胞仪在大鼠样本上. Nature (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 5
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 5). Neuroimage (2016) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 2
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275GA)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:1000; 表 1
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275G)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (表 1). Sci Rep (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 图 4
  • 免疫印迹; 人类; 图 1
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275GA)被用于被用于免疫组化在大鼠样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:100
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275R)被用于被用于免疫组化在大鼠样本上浓度为1:100. Neuroscience (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275)被用于被用于免疫组化在大鼠样本上. CNS Neurosci Ther (2015) ncbi
小鼠 单克隆(ED8)
  • 流式细胞仪; 大鼠; 图 7a
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, ED8)被用于被用于流式细胞仪在大鼠样本上 (图 7a). Brain Behav Immun (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 10A
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275A700)被用于被用于流式细胞仪在大鼠样本上 (图 10A). Transplantation (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 小鼠; 1:100; 图 4
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275GA)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4). J Neuroinflammation (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:200
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA 275R)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 1:30; 图 2
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275PB)被用于被用于流式细胞仪在大鼠样本上浓度为1:30 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:300; 图 5
伯乐(Bio-Rad)公司 Itgam抗体(SEROTEC Immunological Excellence, MCA275GA)被用于被用于免疫组化在大鼠样本上浓度为1:300 (图 5). Neuroscience (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 3e
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 3e). Mol Cell Neurosci (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 1:100; 表 2
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275FT)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 (表 2). Mol Med Rep (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275G)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Front Neurosci (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:400; 图 1b
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:400 (图 1b). J Cereb Blood Flow Metab (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275R)被用于被用于免疫细胞化学在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 图 2a
伯乐(Bio-Rad)公司 Itgam抗体(Abd Serotec, MCA275PE)被用于被用于免疫细胞化学在大鼠样本上 (图 2a). Exp Neurol (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, OX-42)被用于被用于流式细胞仪在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-自由浮动切片; 大鼠; 1:500; 图 5
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275G)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:500 (图 5). Brain Struct Funct (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275R)被用于被用于免疫组化在大鼠样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 人类
  • 免疫细胞化学; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275G)被用于被用于免疫细胞化学在人类样本上 和 被用于免疫细胞化学在大鼠样本上. J Mol Neurosci (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-石蜡切片; 大鼠; 1:2000
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA 275R)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000. Biomaterials (2013) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-石蜡切片; 大鼠; 1:1000
  • 免疫印迹; 大鼠; 1:1000
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1000 和 被用于免疫印迹在大鼠样本上浓度为1:1000. Exp Neurol (2013) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠
伯乐(Bio-Rad)公司 Itgam抗体(AbD Serotec, MCA275R)被用于被用于免疫组化在大鼠样本上. J Neurochem (2012) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠
  • 免疫组化-冰冻切片; 小鼠
伯乐(Bio-Rad)公司 Itgam抗体(Serotec, MCA275R)被用于被用于免疫组化-冰冻切片在大鼠样本上 和 被用于免疫组化-冰冻切片在小鼠样本上. J Comp Neurol (2006) ncbi
赛默飞世尔
小鼠 单克隆(OX42)
  • 流式细胞仪; 大鼠; 图 4
赛默飞世尔 Itgam抗体(eBioscience, 46-0110)被用于被用于流式细胞仪在大鼠样本上 (图 4). PLoS ONE (2017) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; Epinephelus; 图 1a
赛默飞世尔 Itgam抗体(Thermo Fisher Scientific, MA5-17506)被用于被用于免疫细胞化学在Epinephelus样本上 (图 1a). Dev Comp Immunol (2017) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 6e
赛默飞世尔 Itgam抗体(eBiosciences, OX42)被用于被用于流式细胞仪在大鼠样本上 (图 6e). Eur J Immunol (2017) ncbi
小鼠 单克隆(OX42)
  • 流式细胞仪; 大鼠; 图 2
赛默飞世尔 Itgam抗体(eBioscience, OX42)被用于被用于流式细胞仪在大鼠样本上 (图 2). Hum Mol Genet (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 1
赛默飞世尔 Itgam抗体(Invitrogen, OX-42)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 1). J Neurotrauma (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(Caltag, OX-42)被用于被用于流式细胞仪在大鼠样本上. PLoS ONE (2012) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-自由浮动切片; 大鼠; 1:50; 图 5
赛默飞世尔 Itgam抗体(Biosource, OX-42)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:50 (图 5). Neuropathology (2011) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔 Itgam抗体(Invitrogen, BioSource, OX-42)被用于被用于免疫组化在大鼠样本上浓度为1:100. Neuroscience (2007) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2
赛默飞世尔 Itgam抗体(Biosource International, clone OX-42)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2). J Neurochem (2005) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 3
赛默飞世尔 Itgam抗体(Biosource, MRC OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 3). Am J Respir Cell Mol Biol (2004) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 5
赛默飞世尔 Itgam抗体(Biosource International, clone OX-42)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 5). J Neurochem (2003) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 1:100
赛默飞世尔 Itgam抗体(Biosource, OX-42)被用于被用于免疫组化在大鼠样本上浓度为1:100. Neuroreport (2003) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(Caltag, OX-42)被用于被用于流式细胞仪在大鼠样本上. Transpl Immunol (2002) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(Caltag, OX-42)被用于被用于流式细胞仪在大鼠样本上. Anesth Analg (2001) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:100; 图 2
赛默飞世尔 Itgam抗体(BioSource, OX-42)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 2). Brain Res Brain Res Protoc (2000) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化; 大鼠; 图 3
赛默飞世尔 Itgam抗体(Biosource, clone OX-42)被用于被用于免疫组化在大鼠样本上 (图 3). J Neuropathol Exp Neurol (2000) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(caltag, ox42)被用于被用于流式细胞仪在大鼠样本上. Transplantation (2000) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 1
赛默飞世尔 Itgam抗体(Caltag, OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 1). Transplantation (1999) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(Caltag, ox-42)被用于被用于流式细胞仪在大鼠样本上. Transplantation (1998) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
赛默飞世尔 Itgam抗体(caltag, ox-42)被用于被用于流式细胞仪在大鼠样本上. Transplantation (1998) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠
赛默飞世尔 Itgam抗体(Biosource, OX-42)被用于被用于免疫组化-冰冻切片在大鼠样本上. Int J Cancer (1998) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
  • 免疫沉淀; 大鼠
赛默飞世尔 Itgam抗体(noco, OX42)被用于被用于流式细胞仪在大鼠样本上 和 被用于免疫沉淀在大鼠样本上. Eur J Immunol (1991) ncbi
BioLegend
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 4a
BioLegend Itgam抗体(Biolegend, 201817)被用于被用于流式细胞仪在大鼠样本上 (图 4a). Stem Cell Res Ther (2022) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 3d
BioLegend Itgam抗体(BioLegend, 201807)被用于被用于流式细胞仪在大鼠样本上 (图 3d). J Immunother Cancer (2022) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 2b
BioLegend Itgam抗体(Biolegend, 201805)被用于被用于流式细胞仪在大鼠样本上 (图 2b). J Neuroinflammation (2021) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 1:1000; 图 s1b
BioLegend Itgam抗体(Biolegend, 201819)被用于被用于流式细胞仪在大鼠样本上浓度为1:1000 (图 s1b). Cell Stem Cell (2019) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 1:500; 图 9a
BioLegend Itgam抗体(BioLegend, OX-42)被用于被用于流式细胞仪在大鼠样本上浓度为1:500 (图 9a). J Immunol (2018) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 1a
BioLegend Itgam抗体(Biolegend, OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 1a). Front Cell Neurosci (2017) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 小鼠; 图 3a
BioLegend Itgam抗体(BioLegend, OX-42)被用于被用于流式细胞仪在小鼠样本上 (图 3a). Cell Mol Immunol (2018) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 4
BioLegend Itgam抗体(biolegend, OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
BioLegend Itgam抗体(BioLegend, OX-42)被用于被用于流式细胞仪在大鼠样本上. Eur J Immunol (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 小鼠
BioLegend Itgam抗体(BioLegend, OX-42)被用于被用于流式细胞仪在小鼠样本上. Cell Res (2014) ncbi
小鼠 单克隆(OX-42)
BioLegend Itgam抗体(BioLegend, OX-42)被用于. J Immunol (2014) ncbi
圣克鲁斯生物技术
小鼠 单克隆(OX42)
  • 免疫组化; 大鼠; 1:200; 图 2
圣克鲁斯生物技术 Itgam抗体(Santa Cruz Biotechnology, sc-53086)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 2). Eur J Histochem (2021) ncbi
小鼠 单克隆(44)
  • 免疫印迹; 人类; 图 s2b
圣克鲁斯生物技术 Itgam抗体(SantaCruz Biotechnology, sc-1186)被用于被用于免疫印迹在人类样本上 (图 s2b). EMBO Rep (2018) ncbi
小鼠 单克隆(44)
  • 免疫组化; 人类; 1:250; 图 2
圣克鲁斯生物技术 Itgam抗体(Santa Cruz, sc-1186)被用于被用于免疫组化在人类样本上浓度为1:250 (图 2). Oncotarget (2015) ncbi
小鼠 单克隆(44)
  • 免疫细胞化学; 人类; 1:100; 图 2
圣克鲁斯生物技术 Itgam抗体(Santa Cruz, sc-1186)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 2). Int J Oncol (2015) ncbi
小鼠 单克隆(OX42)
  • 免疫印迹; 小鼠; 1:500; 图 5e
圣克鲁斯生物技术 Itgam抗体(Santa Cruz, sc-53086)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5e). Mol Neurobiol (2016) ncbi
小鼠 单克隆(OX42)
  • 免疫细胞化学; 大鼠; 1:50
圣克鲁斯生物技术 Itgam抗体(Santa Cruz Biotechnology, sc-53086)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50. J Neuroinflammation (2014) ncbi
小鼠 单克隆(44)
  • 流式细胞仪; 人类
圣克鲁斯生物技术 Itgam抗体(Santa Cruz Biotechnologies, sc-1186)被用于被用于流式细胞仪在人类样本上. Food Funct (2014) ncbi
Novus Biologicals
domestic rabbit 多克隆(6H12)
  • 免疫组化-冰冻切片; 小鼠; 1:300; 图 1d
Novus Biologicals Itgam抗体(Novus, NB110-89474)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:300 (图 1d). J Biol Chem (2022) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 大鼠; 1:100; 图 1c
Novus Biologicals Itgam抗体(Novous, NB110-40766)被用于被用于流式细胞仪在大鼠样本上浓度为1:100 (图 1c). Stem Cell Res Ther (2021) ncbi
domestic rabbit 多克隆(6H12)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 8a
Novus Biologicals Itgam抗体(Novus, NB110-89474)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 8a). Int J Biol Macromol (2018) ncbi
domestic rabbit 多克隆(6H12)
  • 免疫组化; 小鼠; 图 1
Novus Biologicals Itgam抗体(Novus Biologicals, NB110-89474)被用于被用于免疫组化在小鼠样本上 (图 1). Cell Mol Immunol (2017) ncbi
domestic rabbit 多克隆(6H12)
Novus Biologicals Itgam抗体(Novus, NB110-89474)被用于. J Proteome Res (2015) ncbi
碧迪BD
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:500; 图 1h
碧迪BD Itgam抗体(BD, 550299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500 (图 1h). J Exp Med (2016) ncbi
小鼠 单克隆(WT.5)
  • 免疫组化; 大鼠; 1:1000; 图 5
碧迪BD Itgam抗体(BD Pharmingen, 554980)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 5). Exp Ther Med (2016) ncbi
小鼠 单克隆(WT.5)
  • 流式细胞仪; 大鼠; 图 7a
碧迪BD Itgam抗体(BD Biosciences, WT.5)被用于被用于流式细胞仪在大鼠样本上 (图 7a). Brain Behav Immun (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠; 图 1
碧迪BD Itgam抗体(BD Biosciences, OX-42)被用于被用于流式细胞仪在大鼠样本上 (图 1). Cell Immunol (2015) ncbi
小鼠 单克隆(OX-42)
  • 流式细胞仪; 大鼠
碧迪BD Itgam抗体(BD Pharmingen, OX-42)被用于被用于流式细胞仪在大鼠样本上. Neuroimmunomodulation (2015) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:1000; 图 4
碧迪BD Itgam抗体(BD Biosciences, 550299)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 4). Pain (2014) ncbi
小鼠 单克隆(WT.5)
  • 流式细胞仪; 大鼠
碧迪BD Itgam抗体(BD Pharmingen, WT.5)被用于被用于流式细胞仪在大鼠样本上. Neuroscience (2014) ncbi
小鼠 单克隆(WT.5)
  • 流式细胞仪; 小鼠
碧迪BD Itgam抗体(BD Pharmingen, 562102)被用于被用于流式细胞仪在小鼠样本上. J Gerontol A Biol Sci Med Sci (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫组化-冰冻切片; 大鼠; 1:100
碧迪BD Itgam抗体(BD Pharmigen, 550299)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. Glia (2014) ncbi
小鼠 单克隆(OX-42)
  • 免疫细胞化学; 大鼠; 1:50
碧迪BD Itgam抗体(BD Biosciences, MRC OX-42)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50. Mol Pharmacol (2013) ncbi
小鼠 单克隆(WT.5)
  • 流式细胞仪; 仓鼠
碧迪BD Itgam抗体(BD, 562105)被用于被用于流式细胞仪在仓鼠样本上. J Mol Neurosci (2013) ncbi
文章列表
  1. Ye Y, Zhang X, Su D, Ren Y, Cheng F, Yao Y, et al. Therapeutic efficacy of human adipose mesenchymal stem cells in Crohn's colon fibrosis is improved by IFN-γ and kynurenic acid priming through indoleamine 2,3-dioxygenase-1 signaling. Stem Cell Res Ther. 2022;13:465 pubmed 出版商
  2. Cao S, Hung Y, Wang Y, Chung Y, Qi Y, Ouyang C, et al. Glutamine is essential for overcoming the immunosuppressive microenvironment in malignant salivary gland tumors. Theranostics. 2022;12:6038-6056 pubmed 出版商
  3. Sullivan P, Kumar R, Li W, Hoglund V, Wang L, Zhang Y, et al. FGFR4-Targeted Chimeric Antigen Receptors Combined with Anti-Myeloid Polypharmacy Effectively Treat Orthotopic Rhabdomyosarcoma. Mol Cancer Ther. 2022;21:1608-1621 pubmed 出版商
  4. Xia Y, Prokop S, Bell B, Gorion K, Croft C, Nasif L, et al. Pathogenic tau recruits wild-type tau into brain inclusions and induces gut degeneration in transgenic SPAM mice. Commun Biol. 2022;5:446 pubmed 出版商
  5. Yang J, Zhang Q, Wang J, Lou Y, Hong Z, Wei S, et al. Dynamic profiling of immune microenvironment during pancreatic cancer development suggests early intervention and combination strategy of immunotherapy. EBioMedicine. 2022;78:103958 pubmed 出版商
  6. Pantasis S, Friemel J, Brütsch S, Hu Z, Krautbauer S, Liebisch G, et al. Vertebrate lonesome kinase modulates the hepatocyte secretome to prevent perivascular liver fibrosis and inflammation. J Cell Sci. 2022;135: pubmed 出版商
  7. Cha J, Chan L, Wang Y, Chu Y, Wang C, Lee H, et al. Ephrin receptor A10 monoclonal antibodies and the derived chimeric antigen receptor T cells exert an antitumor response in mouse models of triple-negative breast cancer. J Biol Chem. 2022;298:101817 pubmed 出版商
  8. Thakkar D, Paliwal S, Dharmadhikari B, Guan S, Liu L, Kar S, et al. Rationally targeted anti-VISTA antibody that blockades the C-C' loop region can reverse VISTA immune suppression and remodel the immune microenvironment to potently inhibit tumor growth in an Fc independent manner. J Immunother Cancer. 2022;10: pubmed 出版商
  9. Qureshi Y, Berman D, Marsh S, Klein R, Patel V, Simoes S, et al. The neuronal retromer can regulate both neuronal and microglial phenotypes of Alzheimer's disease. Cell Rep. 2022;38:110262 pubmed 出版商
  10. Xu B, Tian L, Chen J, Wang J, Ma R, Dong W, et al. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat Commun. 2021;12:5908 pubmed 出版商
  11. Li E, Huang X, Zhang G, Liang T. Combinational blockade of MET and PD-L1 improves pancreatic cancer immunotherapeutic efficacy. J Exp Clin Cancer Res. 2021;40:279 pubmed 出版商
  12. Bruno K, Macomb L, Morales Lara A, Mathews J, Frisancho J, Yang A, et al. Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci. 2021;22: pubmed 出版商
  13. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, et al. N6-methyladenosine-modified circIGF2BP3 inhibits CD8+ T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105 pubmed 出版商
  14. Xiao J, Cai T, Fang Y, Liu R, Flores J, Wang W, et al. Activation of GPR40 attenuates neuroinflammation and improves neurological function via PAK4/CREB/KDM6B pathway in an experimental GMH rat model. J Neuroinflammation. 2021;18:160 pubmed 出版商
  15. Zhang J, Qi J, Wei H, Lei Y, Yu H, Liu N, et al. TGFβ1 in Cancer-Associated Fibroblasts Is Associated With Progression and Radiosensitivity in Small-Cell Lung Cancer. Front Cell Dev Biol. 2021;9:667645 pubmed 出版商
  16. García Arguinzonis M, Diaz Riera E, Pena E, Escate R, Juan Babot O, Mata P, et al. Alternative C3 Complement System: Lipids and Atherosclerosis. Int J Mol Sci. 2021;22: pubmed 出版商
  17. Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, et al. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther. 2021;12:312 pubmed 出版商
  18. Iwama H, Mehanna S, Imasaka M, Hashidume S, Nishiura H, Yamamura K, et al. Cathepsin B and D deficiency in the mouse pancreas induces impaired autophagy and chronic pancreatitis. Sci Rep. 2021;11:6596 pubmed 出版商
  19. Zhou M, Wang X, Shi Y, Ding Y, Li X, Xie T, et al. Deficiency of ITGAM Attenuates Experimental Abdominal Aortic Aneurysm in Mice. J Am Heart Assoc. 2021;10:e019900 pubmed 出版商
  20. Reyes J, Ekmark Lewén S, Perdiki M, Klingstedt T, Hoffmann A, Wiechec E, et al. Accumulation of alpha-synuclein within the liver, potential role in the clearance of brain pathology associated with Parkinson's disease. Acta Neuropathol Commun. 2021;9:46 pubmed 出版商
  21. Cockey S, McFarland K, Koller E, Brooks M, Gonzalez De La Cruz E, Cruz P, et al. Il-10 signaling reduces survival in mouse models of synucleinopathy. NPJ Parkinsons Dis. 2021;7:30 pubmed 出版商
  22. Steenbrugge J, Vander Elst N, Demeyere K, De Wever O, Sanders N, van den Broeck W, et al. OMO-1 reduces progression and enhances cisplatin efficacy in a 4T1-based non-c-MET addicted intraductal mouse model for triple-negative breast cancer. NPJ Breast Cancer. 2021;7:27 pubmed 出版商
  23. Li X, Ye Z, Guo Q, Wang E, Pan Y. PDTC ameliorates neuropathic pain by inhibiting microglial activation <em>via</em> blockage of the TNFα-CX3CR1 pathway. Eur J Histochem. 2021;65: pubmed 出版商
  24. Sorrentino C, Ciummo S, D Antonio L, Lanuti P, Abrams S, Yin Z, et al. Hindering triple negative breast cancer progression by targeting endogenous interleukin-30 requires IFNγ signaling. Clin Transl Med. 2021;11:e278 pubmed 出版商
  25. Liang H, Matei N, McBride D, Xu Y, Zhou Z, Tang J, et al. TGR5 activation attenuates neuroinflammation via Pellino3 inhibition of caspase-8/NLRP3 after middle cerebral artery occlusion in rats. J Neuroinflammation. 2021;18:40 pubmed 出版商
  26. Jones I, Novikova L, Wiberg M, Carlsson L, Novikov L. Human Embryonic Stem Cell-derived Neural Crest Cells Promote Sprouting and Motor Recovery Following Spinal Cord Injury in Adult Rats. Cell Transplant. 2021;30:963689720988245 pubmed 出版商
  27. Costa B, Fletcher M, Boskovic P, Ivanova E, Eisemann T, Lohr S, et al. A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors. Cancers (Basel). 2021;13: pubmed 出版商
  28. Li J, Zhang L, Zheng Y, Shao R, Liang Q, Yu W, et al. BAD inactivation exacerbates rheumatoid arthritis pathology by promoting survival of sublining macrophages. elife. 2020;9: pubmed 出版商
  29. Kalinski A, Yoon C, Huffman L, Duncker P, Kohen R, Passino R, et al. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. elife. 2020;9: pubmed 出版商
  30. Chen Y, Li J, Ma B, Li N, Wang S, Sun Z, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat. Aging (Albany NY). 2020;12:18274-18296 pubmed 出版商
  31. Chakravarty D, Saadi F, Kundu S, Bose A, Khan R, Dine K, et al. CD4 Deficiency Causes Poliomyelitis and Axonal Blebbing in Murine Coronavirus-Induced Neuroinflammation. J Virol. 2020;94: pubmed 出版商
  32. Choudhuri S, Garg N. PARP1-cGAS-NF-κB pathway of proinflammatory macrophage activation by extracellular vesicles released during Trypanosoma cruzi infection and Chagas disease. PLoS Pathog. 2020;16:e1008474 pubmed 出版商
  33. Mecha M, Yanguas Casás N, Feliú A, Mestre L, Carrillo Salinas F, Riecken K, et al. Involvement of Wnt7a in the role of M2c microglia in neural stem cell oligodendrogenesis. J Neuroinflammation. 2020;17:88 pubmed 出版商
  34. Aaltonen N, Singha P, Jakupović H, Wirth T, Samaranayake H, Pasonen Seppänen S, et al. High-Resolution Confocal Fluorescence Imaging of Serine Hydrolase Activity in Cryosections - Application to Glioma Brain Unveils Activity Hotspots Originating from Tumor-Associated Neutrophils. Biol Proced Online. 2020;22:6 pubmed 出版商
  35. Shahulhameed S, Vishwakarma S, Chhablani J, Tyagi M, Pappuru R, Jakati S, et al. A Systematic Investigation on Complement Pathway Activation in Diabetic Retinopathy. Front Immunol. 2020;11:154 pubmed 出版商
  36. Liu J, Liu Z, Liu G, Gao K, Zhou H, Zhao Y, et al. Spinal cord injury and its underlying mechanism in rats with temporal lobe epilepsy. Exp Ther Med. 2020;19:2103-2112 pubmed 出版商
  37. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  38. Nomura Komoike K, Saitoh F, Fujieda H. Phosphatidylserine recognition and Rac1 activation are required for Müller glia proliferation, gliosis and phagocytosis after retinal injury. Sci Rep. 2020;10:1488 pubmed 出版商
  39. Yu M, Guo G, Huang L, Deng L, Chang C, Achyut B, et al. CD73 on cancer-associated fibroblasts enhanced by the A2B-mediated feedforward circuit enforces an immune checkpoint. Nat Commun. 2020;11:515 pubmed 出版商
  40. Ding H, Chen J, Su M, Lin Z, Zhan H, Yang F, et al. BDNF promotes activation of astrocytes and microglia contributing to neuroinflammation and mechanical allodynia in cyclophosphamide-induced cystitis. J Neuroinflammation. 2020;17:19 pubmed 出版商
  41. Zhang L, Pan J, Mamtilahun M, Zhu Y, Wang L, Venkatesh A, et al. Microglia exacerbate white matter injury via complement C3/C3aR pathway after hypoperfusion. Theranostics. 2020;10:74-90 pubmed 出版商
  42. Zhong W, Myers J, Wang F, Wang K, Lucas J, Rosfjord E, et al. Comparison of the molecular and cellular phenotypes of common mouse syngeneic models with human tumors. BMC Genomics. 2020;21:2 pubmed 出版商
  43. Shi L, Wang J, Ding N, Zhang Y, Zhu Y, Dong S, et al. Inflammation induced by incomplete radiofrequency ablation accelerates tumor progression and hinders PD-1 immunotherapy. Nat Commun. 2019;10:5421 pubmed 出版商
  44. Xia Y, Xue M, Wang Y, Huang Z, Huang C. Electroacupuncture Alleviates Spared Nerve Injury-Induced Neuropathic Pain And Modulates HMGB1/NF-κB Signaling Pathway In The Spinal Cord. J Pain Res. 2019;12:2851-2863 pubmed 出版商
  45. Neumann B, Baror R, Zhao C, SEGEL M, Dietmann S, Rawji K, et al. Metformin Restores CNS Remyelination Capacity by Rejuvenating Aged Stem Cells. Cell Stem Cell. 2019;25:473-485.e8 pubmed 出版商
  46. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  47. Xu M, Xu H, Lin Y, Sun X, Wang L, Fang Z, et al. LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis. Cell. 2019;178:1478-1492.e20 pubmed 出版商
  48. Sorrentino C, Yin Z, Ciummo S, Lanuti P, Lu L, Marchisio M, et al. Targeting Interleukin(IL)-30/IL-27p28 signaling in cancer stem-like cells and host environment synergistically inhibits prostate cancer growth and improves survival. J Immunother Cancer. 2019;7:201 pubmed 出版商
  49. Ortega F, Roefs M, De Miguel Pérez D, Kooijmans S, de Jong O, Sluijter J, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomedicine. 2019;:102014 pubmed 出版商
  50. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  51. Rowe R, Lummertz da Rocha E, Sousa P, Missios P, Morse M, Marion W, et al. The developmental stage of the hematopoietic niche regulates lineage in MLL-rearranged leukemia. J Exp Med. 2019;216:527-538 pubmed 出版商
  52. Sorrelle N, Ganguly D, Dominguez A, Zhang Y, Huang H, Dahal L, et al. Improved Multiplex Immunohistochemistry for Immune Microenvironment Evaluation of Mouse Formalin-Fixed, Paraffin-Embedded Tissues. J Immunol. 2019;202:292-299 pubmed 出版商
  53. Rai S, Arasteh M, Jefferson M, Pearson T, Wang Y, Zhang W, et al. The ATG5-binding and coiled coil domains of ATG16L1 maintain autophagy and tissue homeostasis in mice independently of the WD domain required for LC3-associated phagocytosis. Autophagy. 2019;15:599-612 pubmed 出版商
  54. Mollaoglu G, Jones A, Wait S, Mukhopadhyay A, Jeong S, Arya R, et al. The Lineage-Defining Transcription Factors SOX2 and NKX2-1 Determine Lung Cancer Cell Fate and Shape the Tumor Immune Microenvironment. Immunity. 2018;49:764-779.e9 pubmed 出版商
  55. Brun P, Scarpa M, Marchiori C, Conti J, Kotsafti A, Porzionato A, et al. Herpes Simplex Virus Type 1 Engages Toll Like Receptor 2 to Recruit Macrophages During Infection of Enteric Neurons. Front Microbiol. 2018;9:2148 pubmed 出版商
  56. Pridans C, Raper A, Davis G, Alves J, Sauter K, Lefèvre L, et al. Pleiotropic Impacts of Macrophage and Microglial Deficiency on Development in Rats with Targeted Mutation of the Csf1r Locus. J Immunol. 2018;201:2683-2699 pubmed 出版商
  57. Xu Y, Xu J, Ge K, Tian Q, Zhao P, Guo Y. Anti-inflammatory effect of low molecular weight fucoidan from Saccharina japonica on atherosclerosis in apoE-knockout mice. Int J Biol Macromol. 2018;118:365-374 pubmed 出版商
  58. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  59. Liu H, Dai X, Cao X, Yan H, Ji X, Zhang H, et al. PRDM4 mediates YAP-induced cell invasion by activating leukocyte-specific integrin β2 expression. EMBO Rep. 2018;19: pubmed 出版商
  60. Beazley Long N, Moss C, Ashby W, Bestall S, Almahasneh F, Durrant A, et al. VEGFR2 promotes central endothelial activation and the spread of pain in inflammatory arthritis. Brain Behav Immun. 2018;74:49-67 pubmed 出版商
  61. Lin Z, Wang S, Chen L, Zhuang J, Ke Q, Xiao D, et al. Methylene Blue Mitigates Acute Neuroinflammation after Spinal Cord Injury through Inhibiting NLRP3 Inflammasome Activation in Microglia. Front Cell Neurosci. 2017;11:391 pubmed 出版商
  62. Krishnan B, Massilamany C, Basavalingappa R, Gangaplara A, Rajasekaran R, Afzal M, et al. Epitope Mapping of SERCA2a Identifies an Antigenic Determinant That Induces Mainly Atrial Myocarditis in A/J Mice. J Immunol. 2018;200:523-537 pubmed 出版商
  63. Liang F, Hwang J, Tang N, Hunziker W. Juxtanodin in retinal pigment epithelial cells: Expression and biological activities in regulating cell morphology and actin cytoskeleton organization. J Comp Neurol. 2018;526:205-215 pubmed 出版商
  64. Kyratsous N, Bauer I, Zhang G, Pesic M, Bartholomäus I, Mues M, et al. Visualizing context-dependent calcium signaling in encephalitogenic T cells in vivo by two-photon microscopy. Proc Natl Acad Sci U S A. 2017;114:E6381-E6389 pubmed 出版商
  65. Zhang C, Feng J, Du J, Zhuo Z, Yang S, Zhang W, et al. Macrophage-derived IL-1α promotes sterile inflammation in a mouse model of acetaminophen hepatotoxicity. Cell Mol Immunol. 2018;15:973-982 pubmed 出版商
  66. Chen J, Zhong M, Guo H, Davidson D, Mishel S, Lu Y, et al. SLAMF7 is critical for phagocytosis of haematopoietic tumour cells via Mac-1 integrin. Nature. 2017;544:493-497 pubmed 出版商
  67. Xie L, Zhang K, Rasmussen D, Wang J, Wu D, Roemmich J, et al. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring. PLoS ONE. 2017;12:e0169581 pubmed 出版商
  68. Cho K, Yoon D, Qiu S, Danziger Z, Grill W, Wetsel W, et al. Loss of Ranbp2 in motoneurons causes disruption of nucleocytoplasmic and chemokine signaling, proteostasis of hnRNPH3 and Mmp28, and development of amyotrophic lateral sclerosis-like syndromes. Dis Model Mech. 2017;10:559-579 pubmed 出版商
  69. Chiang Y, Wu Y, Chi S. Interleukin-1β secreted from betanodavirus-infected microglia caused the death of neurons in giant grouper brains. Dev Comp Immunol. 2017;70:19-26 pubmed 出版商
  70. Tuncel J, Haag S, Holmdahl R. MHC class II alleles associated with Th1 rather than Th17 type immunity drive the onset of early arthritis in a rat model of rheumatoid arthritis. Eur J Immunol. 2017;47:563-574 pubmed 出版商
  71. Kemp K, Cerminara N, Hares K, Redondo J, Cook A, Haynes H, et al. Cytokine therapy-mediated neuroprotection in a Friedreich's ataxia mouse model. Ann Neurol. 2017;81:212-226 pubmed 出版商
  72. Sellgren C, Sheridan S, Gracias J, Xuan D, Fu T, Perlis R. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170-177 pubmed 出版商
  73. Hayano Y, Takasu K, Koyama Y, Yamada M, Ogawa K, Minami K, et al. Dorsal horn interneuron-derived Netrin-4 contributes to spinal sensitization in chronic pain via Unc5B. J Exp Med. 2016;213:2949-2966 pubmed
  74. Jia H, Xu S, Liu Q, Liu J, Xu J, Li W, et al. Effect of pioglitazone on neuropathic pain and spinal expression of TLR-4 and cytokines. Exp Ther Med. 2016;12:2644-2650 pubmed
  75. Szunyogova E, Zhou H, Maxwell G, Powis R, Muntoni F, Gillingwater T, et al. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep. 2016;6:34635 pubmed 出版商
  76. Bednarczyk J, Dębski K, Bot A, Lukasiuk K. MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci Rep. 2016;6:33736 pubmed 出版商
  77. Dou Y, Dunne M, Huang H, McKee T, Chang M, Jaffray D, et al. Thermosensitive liposomal cisplatin in combination with local hyperthermia results in tumor growth delay and changes in tumor microenvironment in xenograft models of lung carcinoma. J Drug Target. 2016;24:865-877 pubmed
  78. Xu Y, Liu J, He M, Liu R, Belegu V, Dai P, et al. Mechanisms of PDGF siRNA-mediated inhibition of bone cancer pain in the spinal cord. Sci Rep. 2016;6:27512 pubmed 出版商
  79. Heuer A, Kirkeby A, Pfisterer U, Jönsson M, Parmar M. hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation. Exp Neurol. 2016;282:78-85 pubmed 出版商
  80. Shono Y, Docampo M, Peled J, Perobelli S, Velardi E, Tsai J, et al. Increased GVHD-related mortality with broad-spectrum antibiotic use after allogeneic hematopoietic stem cell transplantation in human patients and mice. Sci Transl Med. 2016;8:339ra71 pubmed 出版商
  81. Göbel K, Pankratz S, Asaridou C, Herrmann A, Bittner S, Merker M, et al. Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells. Nat Commun. 2016;7:11626 pubmed 出版商
  82. Xu X, Meng Q, Erben U, Wang P, Glauben R, Kuhl A, et al. Myeloid-derived suppressor cells promote B-cell production of IgA in a TNFR2-dependent manner. Cell Mol Immunol. 2017;14:597-606 pubmed 出版商
  83. Delbary Gossart S, Lee S, Baroni M, Lamarche I, Arnone M, Canolle B, et al. A novel inhibitor of p75-neurotrophin receptor improves functional outcomes in two models of traumatic brain injury. Brain. 2016;139:1762-82 pubmed 出版商
  84. Liu Z, Wang S, Liu J, Wang F, Liu Y, Zhao Y. Leukocyte Infiltration Triggers Seizure Recurrence in a Rat Model of Temporal Lobe Epilepsy. Inflammation. 2016;39:1090-8 pubmed 出版商
  85. Flach A, Litke T, Strauss J, Haberl M, Gómez C, Reindl M, et al. Autoantibody-boosted T-cell reactivation in the target organ triggers manifestation of autoimmune CNS disease. Proc Natl Acad Sci U S A. 2016;113:3323-8 pubmed 出版商
  86. Jung M, Brüne B, Hotter G, Sola A. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury. Sci Rep. 2016;6:21950 pubmed 出版商
  87. Zhao W, Wang C, Liu R, Wei C, Duan J, Liu K, et al. Effect of TGF-β1 on the Migration and Recruitment of Mesenchymal Stem Cells after Vascular Balloon Injury: Involvement of Matrix Metalloproteinase-14. Sci Rep. 2016;6:21176 pubmed 出版商
  88. Schläger C, Körner H, Krueger M, Vidoli S, Haberl M, Mielke D, et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature. 2016;530:349-53 pubmed 出版商
  89. Backes H, Walberer M, Ladwig A, Rueger M, Neumaier B, Endepols H, et al. Glucose consumption of inflammatory cells masks metabolic deficits in the brain. Neuroimage. 2016;128:54-62 pubmed 出版商
  90. Frankowski J, Demars K, Ahmad A, Hawkins K, Yang C, Leclerc J, et al. Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Sci Rep. 2015;5:17956 pubmed 出版商
  91. Qiao J, Huang Y, Xia Y, Chu P, Yao H, Xu L, et al. Busulfan and cyclosphamide induce liver inflammation through NLRP3 activation in mice after hematopoietic stem cell transplantation. Sci Rep. 2015;5:17828 pubmed 出版商
  92. Ang S, Lee A, Foo F, Ng L, Low C, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep. 2015;5:15419 pubmed 出版商
  93. Shin W, Jeon M, Leem E, Won S, Jeong K, Park S, et al. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease. Sci Rep. 2015;5:14764 pubmed 出版商
  94. Zheng Y, Smithies H, Aitken P, Gliddon C, Stiles L, Darlington C, et al. Cell proliferation in the cochlear nucleus following acoustic trauma in rat. Neuroscience. 2015;303:524-34 pubmed 出版商
  95. Chen W, Chen C, Chen N, Sung C, Wen Z. Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury. CNS Neurosci Ther. 2015;21:698-707 pubmed 出版商
  96. Stiess M, Wegehingel S, Nguyen C, Nickel W, Bradke F, Cambridge S. A Dual SILAC Proteomic Labeling Strategy for Quantifying Constitutive and Cell-Cell Induced Protein Secretion. J Proteome Res. 2015;14:3229-38 pubmed 出版商
  97. Krossa S, Schmitt A, Hattermann K, Fritsch J, Scheidig A, Mehdorn H, et al. Down regulation of Akirin-2 increases chemosensitivity in human glioblastomas more efficiently than Twist-1. Oncotarget. 2015;6:21029-45 pubmed
  98. Nacka Aleksić M, Djikić J, Pilipović I, Stojić Vukanić Z, Kosec D, Bufan B, et al. Male rats develop more severe experimental autoimmune encephalomyelitis than female rats: sexual dimorphism and diergism at the spinal cord level. Brain Behav Immun. 2015;49:101-18 pubmed 出版商
  99. Liu R, Wang Z, Gou L, Xu H. A cortical astrocyte subpopulation inhibits axon growth in vitro and in vivo. Mol Med Rep. 2015;12:2598-606 pubmed 出版商
  100. Reese S, Wilson N, Huang G, Redfield R, Zhong W, Djamali A. Calcineurin Inhibitor Minimization With Ixazomib, an Investigational Proteasome Inhibitor, for the Prevention of Antibody Mediated Rejection in a Preclinical Model. Transplantation. 2015;99:1785-95 pubmed 出版商
  101. Boddu R, Hull T, Bolisetty S, Hu X, Moehle M, Daher J, et al. Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet. 2015;24:4078-93 pubmed 出版商
  102. Blocki A, Beyer S, Dewavrin J, Goralczyk A, Wang Y, Peh P, et al. Microcapsules engineered to support mesenchymal stem cell (MSC) survival and proliferation enable long-term retention of MSCs in infarcted myocardium. Biomaterials. 2015;53:12-24 pubmed 出版商
  103. Sheean R, Weston R, Perera N, D Amico A, Nutt S, Turner B. Effect of thymic stimulation of CD4+ T cell expansion on disease onset and progression in mutant SOD1 mice. J Neuroinflammation. 2015;12:40 pubmed 出版商
  104. Greenlee J, Clawson S, Hill K, Wood B, Clardy S, Tsunoda I, et al. Anti-Yo antibody uptake and interaction with its intracellular target antigen causes Purkinje cell death in rat cerebellar slice cultures: a possible mechanism for paraneoplastic cerebellar degeneration in humans with gynecological or breast cancers. PLoS ONE. 2015;10:e0123446 pubmed 出版商
  105. Gu Q, Yu D, Hu Z, Liu X, Yang Y, Luo Y, et al. miR-26a and miR-384-5p are required for LTP maintenance and spine enlargement. Nat Commun. 2015;6:6789 pubmed 出版商
  106. Kubelt C, Hattermann K, Sebens S, Mehdorn H, Held Feindt J. Epithelial-to-mesenchymal transition in paired human primary and recurrent glioblastomas. Int J Oncol. 2015;46:2515-25 pubmed 出版商
  107. Doorn K, Brevé J, Drukarch B, Boddeke H, Huitinga I, Lucassen P, et al. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci. 2015;9:84 pubmed 出版商
  108. Dölen Y, Gunaydin G, Esendagli G, Guc D. Granulocytic subset of myeloid derived suppressor cells in rats with mammary carcinoma. Cell Immunol. 2015;295:29-35 pubmed 出版商
  109. Nakadate K. Developmental changes in the flotillin-1 expression pattern of the rat visual cortex. Neuroscience. 2015;292:101-11 pubmed 出版商
  110. Fernández Hurst N, Bibolini M, Roth G. Diazepam Inhibits Proliferation of Lymph Node Cells Isolated from Rats with Experimental Autoimmune Encephalomyelitis. Neuroimmunomodulation. 2015;22:293-302 pubmed 出版商
  111. Sunkaria A, Bhardwaj S, Halder A, Yadav A, Sandhir R. Migration and Phagocytic Ability of Activated Microglia During Post-natal Development is Mediated by Calcium-Dependent Purinergic Signalling. Mol Neurobiol. 2016;53:944-54 pubmed 出版商
  112. Gaudet A, Sweet D, Polinski N, Guan Z, Popovich P. Galectin-1 in injured rat spinal cord: implications for macrophage phagocytosis and neural repair. Mol Cell Neurosci. 2015;64:84-94 pubmed 出版商
  113. Wong H, Siu W, Fung C, Zhang C, Shum W, Zhou X, et al. Characteristics of stem cells derived from rat fascia: in vitro proliferative and multilineage potential assessment. Mol Med Rep. 2015;11:1982-90 pubmed 出版商
  114. Zhang J, Hu M, Teng Z, Tang Y, Chen C. Synaptic and cognitive improvements by inhibition of 2-AG metabolism are through upregulation of microRNA-188-3p in a mouse model of Alzheimer's disease. J Neurosci. 2014;34:14919-33 pubmed 出版商
  115. Lee J, Kang S, Yune T. Fluoxetine prevents oligodendrocyte cell death by inhibiting microglia activation after spinal cord injury. J Neurotrauma. 2015;32:633-44 pubmed 出版商
  116. Fuentes Santamaría V, Alvarado J, López Muñoz D, Melgar Rojas P, Gabaldón Ull M, Juiz J. Glia-related mechanisms in the anteroventral cochlear nucleus of the adult rat in response to unilateral conductive hearing loss. Front Neurosci. 2014;8:319 pubmed 出版商
  117. Emmrich J, Ejaz S, Neher J, Williamson D, Baron J. Regional distribution of selective neuronal loss and microglial activation across the MCA territory after transient focal ischemia: quantitative versus semiquantitative systematic immunohistochemical assessment. J Cereb Blood Flow Metab. 2015;35:20-7 pubmed 出版商
  118. Xie L, Choudhury G, Winters A, Yang S, Jin K. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10. Eur J Immunol. 2015;45:180-91 pubmed 出版商
  119. Zhang J, Sun X, Zheng S, Liu X, Jin J, Ren Y, et al. Myelin basic protein induces neuron-specific toxicity by directly damaging the neuronal plasma membrane. PLoS ONE. 2014;9:e108646 pubmed 出版商
  120. Broom L, Jenner P, Rose S. Increased neurotrophic factor levels in ventral mesencephalic cultures do not explain the protective effect of osteopontin and the synthetic 15-mer RGD domain against MPP+ toxicity. Exp Neurol. 2015;263:1-7 pubmed 出版商
  121. Galán Arriero I, Avila Martin G, Ferrer Donato A, Gómez Soriano J, Bravo Esteban E, Taylor J. Oral administration of the p38α MAPK inhibitor, UR13870, inhibits affective pain behavior after spinal cord injury. Pain. 2014;155:2188-98 pubmed 出版商
  122. Garraway S, Woller S, Huie J, Hartman J, Hook M, Miranda R, et al. Peripheral noxious stimulation reduces withdrawal threshold to mechanical stimuli after spinal cord injury: role of tumor necrosis factor alpha and apoptosis. Pain. 2014;155:2344-59 pubmed 出版商
  123. Quintas C, Pinho D, Pereira C, Saraiva L, Gonçalves J, Queiroz G. Microglia P2Y₆ receptors mediate nitric oxide release and astrocyte apoptosis. J Neuroinflammation. 2014;11:141 pubmed 出版商
  124. Lehmann J, Härtig W, Seidel A, Füldner C, Hobohm C, Grosche J, et al. Inflammatory cell recruitment after experimental thromboembolic stroke in rats. Neuroscience. 2014;279:139-54 pubmed 出版商
  125. Chen J, Zhao Y, Zhang C, Chen H, Feng J, Chi X, et al. Persistent hepatitis C virus infections and hepatopathological manifestations in immune-competent humanized mice. Cell Res. 2014;24:1050-66 pubmed 出版商
  126. D cs K, Hegyi Z, Holl K, Kis G, Heged s K, Antal M. Selective axonal and glial distribution of monoacylglycerol lipase immunoreactivity in the superficial spinal dorsal horn of rodents. Brain Struct Funct. 2015;220:2625-37 pubmed 出版商
  127. Xie L, Sun F, Wang J, Mao X, Xie L, Yang S, et al. mTOR signaling inhibition modulates macrophage/microglia-mediated neuroinflammation and secondary injury via regulatory T cells after focal ischemia. J Immunol. 2014;192:6009-19 pubmed 出版商
  128. Codeluppi S, Fernández Zafra T, Sandor K, Kjell J, Liu Q, Abrams M, et al. Interleukin-6 secretion by astrocytes is dynamically regulated by PI3K-mTOR-calcium signaling. PLoS ONE. 2014;9:e92649 pubmed 出版商
  129. Muirhead G, Dev K. The expression of neuronal sorting nexin 8 (SNX8) exacerbates abnormal cholesterol levels. J Mol Neurosci. 2014;53:125-34 pubmed 出版商
  130. Tucsek Z, Toth P, Sosnowska D, Gautam T, Mitschelen M, Koller A, et al. Obesity in aging exacerbates blood-brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212-26 pubmed 出版商
  131. Walker J, Schueller K, Schaefer L, Pignitter M, Esefelder L, Somoza V. Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations. Food Funct. 2014;5:74-84 pubmed 出版商
  132. Lankford K, Brown R, Sasaki M, Kocsis J. Olfactory ensheathing cells, but not Schwann cells, proliferate and migrate extensively within moderately X-irradiated juvenile rat brain. Glia. 2014;62:52-63 pubmed 出版商
  133. Rousseau E, Michel P, Hirsch E. The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis. Mol Pharmacol. 2013;84:888-98 pubmed 出版商
  134. Haastert Talini K, Geuna S, Dahlin L, Meyer C, Stenberg L, Freier T, et al. Chitosan tubes of varying degrees of acetylation for bridging peripheral nerve defects. Biomaterials. 2013;34:9886-904 pubmed 出版商
  135. Gong N, Li X, Xiao Q, Wang Y. Identification of a novel spinal dorsal horn astroglial D-amino acid oxidase-hydrogen peroxide pathway involved in morphine antinociceptive tolerance. Anesthesiology. 2014;120:962-75 pubmed 出版商
  136. Xie W, Shi Q, Zhang J, Zhang B, Gong H, Guo Y, et al. Abnormal activation of microglia accompanied with disrupted CX3CR1/CX3CL1 pathway in the brains of the hamsters infected with scrapie agent 263K. J Mol Neurosci. 2013;51:919-32 pubmed 出版商
  137. Hung Y, Lai M, Tseng Y, Chou C, Lin Y. Monocyte chemoattractant protein-1 affects migration of hippocampal neural progenitors following status epilepticus in rats. J Neuroinflammation. 2013;10:11 pubmed 出版商
  138. Weinberg M, Blake B, McCown T. Opposing actions of hippocampus TNF? receptors on limbic seizure susceptibility. Exp Neurol. 2013;247:429-37 pubmed 出版商
  139. Oliva A, Kang Y, Furones C, Alonso O, Bruno O, Dietrich W, et al. Phosphodiesterase isoform-specific expression induced by traumatic brain injury. J Neurochem. 2012;123:1019-29 pubmed 出版商
  140. Castelo Branco M, Soares I, Lopes D, Buongusto F, Martinusso C, do Rosario A, et al. Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis. PLoS ONE. 2012;7:e33360 pubmed 出版商
  141. Zhang L, Wei W, Li Y, Wang Y. A rat model of mild cognitive impairment associated with vascular factor. Neuropathology. 2011;31:112-21 pubmed 出版商
  142. Samantaray S, Knaryan V, Guyton M, Matzelle D, Ray S, Banik N. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience. 2007;146:741-55 pubmed
  143. Horky L, Galimi F, Gage F, Horner P. Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006;498:525-38 pubmed
  144. Svensson C, Fitzsimmons B, Azizi S, Powell H, Hua X, Yaksh T. Spinal p38beta isoform mediates tissue injury-induced hyperalgesia and spinal sensitization. J Neurochem. 2005;92:1508-20 pubmed
  145. Wright R, Ginger L, Kosila N, Elkins N, Essary B, McManaman J, et al. Mononuclear phagocyte xanthine oxidoreductase contributes to cytokine-induced acute lung injury. Am J Respir Cell Mol Biol. 2004;30:479-90 pubmed
  146. Svensson C, Marsala M, Westerlund A, Calcutt N, Campana W, Freshwater J, et al. Activation of p38 mitogen-activated protein kinase in spinal microglia is a critical link in inflammation-induced spinal pain processing. J Neurochem. 2003;86:1534-44 pubmed
  147. Svensson C, Hua X, Protter A, Powell H, Yaksh T. Spinal p38 MAP kinase is necessary for NMDA-induced spinal PGE(2) release and thermal hyperalgesia. Neuroreport. 2003;14:1153-7 pubmed
  148. Vari F, Lord R, Goto S. LSF-1 may modulate the indirect allorecognition pathway to delay allograft rejection. Transpl Immunol. 2002;10:259-67 pubmed
  149. Inada T, Taniuchi S, Shingu K, Kobayashi Y, Fujisawa J, Nakao S. Propofol depressed neutrophil hydrogen peroxide production more than midazolam, whereas adhesion molecule expression was minimally affected by both anesthetics in rats with abdominal sepsis. Anesth Analg. 2001;92:437-41 pubmed
  150. Ray S, Schaecher K, Shields D, Hogan E, Banik N. Combined TUNEL and double immunofluorescent labeling for detection of apoptotic mononuclear phagocytes in autoimmune demyelinating disease. Brain Res Brain Res Protoc. 2000;5:305-11 pubmed
  151. Sigurdsson E, Permanne B, Soto C, Wisniewski T, Frangione B. In vivo reversal of amyloid-beta lesions in rat brain. J Neuropathol Exp Neurol. 2000;59:11-7 pubmed
  152. Lan F, Hayamizu K, Strober S. Cyclosporine facilitates chimeric and inhibits nonchimeric tolerance after posttransplant total lymphoid irradiation. Transplantation. 2000;69:649-55 pubmed
  153. Hayamizu K, Lan F, Huie P, Sibley R, Strober S. Comparison of chimeric acid and non-chimeric tolerance using posttransplant total lymphoid irradiation: cytokine expression and chronic rejection. Transplantation. 1999;68:1036-44 pubmed
  154. Hayamizu K, Huie P, Sibley R, Strober S. Monocyte-derived dendritic cell precursors facilitate tolerance to heart allografts after total lymphoid irradiation. Transplantation. 1998;66:1285-91 pubmed
  155. Hayamizu K, Zeng D, Huie P, Garcia Ojeda M, Bloch D, Fong L, et al. Donor blood monocytes but not T or B cells facilitate long-term allograft survival after total lymphoid irradiation. Transplantation. 1998;66:585-93 pubmed
  156. Fathallah Shaykh H, Gao W, Cho M, Herrera M. Priming in the brain, an immunologically privileged organ, elicits anti-tumor immunity. Int J Cancer. 1998;75:266-76 pubmed
  157. Tamatani T, Kotani M, Miyasaka M. Characterization of the rat leukocyte integrin, CD11/CD18, by the use of LFA-1 subunit-specific monoclonal antibodies. Eur J Immunol. 1991;21:627-33 pubmed