这是一篇来自已证抗体库的有关大鼠 微管相关蛋白2 (Map2) 的综述,是根据359篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合微管相关蛋白2 抗体。
微管相关蛋白2 同义词: MAP2R; Mtap2

艾博抗(上海)贸易有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2b). Theranostics (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 人类; 1:500; 图 2b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 2b). STAR Protoc (2022) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:10,000; 图 2h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 (图 2h). elife (2022) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; African green monkey; 1:1000; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-自由浮动切片在African green monkey样本上浓度为1:1000 (图 2a). Front Neural Circuits (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 5b
  • 免疫组化; 小鼠; 图 5b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 5b) 和 被用于免疫组化在小鼠样本上 (图 5b). Sci Adv (2021) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:1000; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Ab5392)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1b). Nat Commun (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 7a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 7a). Neurobiol Dis (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4a). EMBO Mol Med (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab183830)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s2a). Aging Cell (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Sci Adv (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5a). JCI Insight (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:10,000; 图 1d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:10,000 (图 1d). J Clin Invest (2021) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:2000; 图 3a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 3a). Science (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化; 小鼠; 1:4000; 图 s4
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab183830)被用于被用于免疫组化在小鼠样本上浓度为1:4000 (图 s4). Proc Jpn Acad Ser B Phys Biol Sci (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 图 2g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2g). Genet Med (2021) ncbi
鸡 多克隆
  • 免疫组化-自由浮动切片; 小鼠; 1:500; 图 3g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500 (图 3g). elife (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆
  • 免疫组化-石蜡切片; 小鼠; 图 2f, 3g, 9i
  • 免疫组化-石蜡切片; 人类; 图 5c, 6c, 6f
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab183830)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2f, 3g, 9i) 和 被用于免疫组化-石蜡切片在人类样本上 (图 5c, 6c, 6f). Cell Biosci (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:10,000; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:10,000 (图 1e). Cells (2021) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4h). Mol Psychiatry (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1b). J Neurochem (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 图 4c
  • 流式细胞仪; 小鼠; 图 4d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 4c) 和 被用于流式细胞仪在小鼠样本上 (图 4d). Aging (Albany NY) (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 1i
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1i). Aging Cell (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 4e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上 (图 4e). Commun Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:800; 图 2g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab32454)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:800 (图 2g). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:250; 图 1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 1a). Cells (2020) ncbi
domestic rabbit 单克隆
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Cambridge, UK, #ab183830)被用于. Int J Mol Sci (2020) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:1000; 图 s1d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s1d). J Neuroinflammation (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 4c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Cambridge, UK, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4c). Front Cell Neurosci (2019) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; pigs ; 1:1000; 图 3a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在pigs 样本上浓度为1:1000 (图 3a). J Neuroinflammation (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 图 4d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 4d). Nat Commun (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 5a). PLoS ONE (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a, 5b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a, 5b). Sci Rep (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Rep (2020) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 2c). Nature (2020) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 2d
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 2d). elife (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫细胞化学在人类样本上 (图 1b). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:400; 图 2j
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 2j). Aging Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:100; 图 s5f
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 s5f). Nat Commun (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000; 图 1c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 (图 1c). Nature (2019) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3e). Nat Commun (2019) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:500 (图 1b). Nat Neurosci (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:5,000; 图 4h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5,000 (图 4h). Sci Rep (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上 (图 1e). Neuron (2019) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:500; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2c). Sci Adv (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 5s1a
  • 免疫细胞化学; African green monkey; 1:500; 图 5s1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5s1a) 和 被用于免疫细胞化学在African green monkey样本上浓度为1:500 (图 5s1a). elife (2019) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 人类; 1:500; 图 s6b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 s6b). Cell (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:300; 图 s1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫印迹在小鼠样本上浓度为1:300 (图 s1b). Mol Ther Nucleic Acids (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 图 s5b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上 (图 s5b). Cell (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 图 1b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 1b). Sci Rep (2018) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s4c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s4c). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:250; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250 (图 2a). J Immunol Methods (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:400; 图 s2g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 s2g). J Cell Biol (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:6000; 图 s2e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上浓度为1:6000 (图 s2e). Nat Commun (2017) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000
  • 免疫细胞化学; 人类; 1:5000; 图 3f
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB5392)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 和 被用于免疫细胞化学在人类样本上浓度为1:5000 (图 3f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在人类样本上. Front Mol Neurosci (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 1g
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上 (图 1g). Mol Cell Neurosci (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500; 表 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (表 2). J Neuroinflammation (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上 (图 7). Sci Rep (2017) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 9a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上 (图 9a). Mol Neurodegener (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 s9a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 s9a). Nat Commun (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:500; 图 6a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:500 (图 6a). J Neurosci Res (2017) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:5000; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:5000 (图 1e). Transl Psychiatry (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1e). J Biol Chem (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 s5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在人类样本上 (图 s5). Stem Cell Reports (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 猫; 1:100; 图 3a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 3a). Cell Cycle (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:10,000; 图 5a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:10,000 (图 5a). Sci Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 s1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 s1a). Cell Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 6
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上 (图 6). elife (2016) ncbi
鸡 多克隆
  • proximity ligation assay; 小鼠; 图 s2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab92434)被用于被用于proximity ligation assay在小鼠样本上 (图 s2). Nat Struct Mol Biol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 1h
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 1h). Nature (2016) ncbi
鸡 多克隆
  • 免疫印迹; roundworm ; 1:1000; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫印迹在roundworm 样本上浓度为1:1000 (图 7). BMC Biol (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s7e
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s7e). Cell Rep (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 1a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 1a). Biochim Biophys Acta (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 斑马鱼; 1:100; 图 7a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, 11268)被用于被用于免疫组化在斑马鱼样本上浓度为1:100 (图 7a). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; black ferret; 1:200; 图 7b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在black ferret样本上浓度为1:200 (图 7b). Shock (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500; 图 2
  • 免疫印迹; 大鼠; 图 s5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, HM-2)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 2) 和 被用于免疫印迹在大鼠样本上 (图 s5). Stem Cells Dev (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab32454)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 图 7
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab11267)被用于被用于免疫组化在大鼠样本上 (图 7). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:100; 图 5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 5). Brain Pathol (2017) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 大鼠; 1:2000; 图 2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 2). J Histochem Cytochem (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 图 2d
  • 免疫印迹; 人类; 图 s3c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, AB11268)被用于被用于免疫细胞化学在人类样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 s3c). Mol Psychiatry (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-石蜡切片; 小鼠; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(abcam, ab11268)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2c). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 5
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上 (图 5). Front Neurosci (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 图 s3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫细胞化学在小鼠样本上 (图 s3). elife (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫印迹; 小鼠; 图 4
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11268)被用于被用于免疫印迹在小鼠样本上 (图 4). Sci Rep (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 s2
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在小鼠样本上 (图 s2). PLoS ONE (2016) ncbi
鸡 多克隆
  • 免疫组化; 小鼠; 1:5000; 图 3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化在小鼠样本上浓度为1:5000 (图 3). Mol Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab32454)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
鸡 多克隆
  • 免疫组化; 人类; 1:2000; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abeam, ab5392)被用于被用于免疫组化在人类样本上浓度为1:2000 (图 2a). Methods (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 小鼠; 图 2c
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab 11267)被用于被用于免疫印迹在小鼠样本上 (图 2c). Transl Psychiatry (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Am J Obstet Gynecol (2015) ncbi
鸡 多克隆
  • 其他; 小鼠; 1:10,000; 图 2b
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, 5392)被用于被用于其他在小鼠样本上浓度为1:10,000 (图 2b). Mol Neurobiol (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:400
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11268)被用于被用于免疫细胞化学在人类样本上浓度为1:400. Ann Clin Transl Neurol (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 人类
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫印迹在人类样本上. J Vis Exp (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 表 1
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 1). Stem Cells Dev (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:500. PLoS ONE (2014) ncbi
鸡 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:1500
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab5392)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:1500. J Tissue Eng Regen Med (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:1000
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Microsc Res Tech (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:200
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 人类; 1:200
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11267)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:200. Stem Cells Dev (2014) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 小鼠
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, ab11268)被用于被用于免疫组化-冰冻切片在小鼠样本上. PLoS ONE (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:200; 图 2a
艾博抗(上海)贸易有限公司微管相关蛋白2抗体(Abcam, Ab11267)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 2a). J Tissue Eng Regen Med (2015) ncbi
Synaptic Systems
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 s7h
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在小鼠样本上 (图 s7h). Sci Adv (2022) ncbi
小鼠 单克隆(198A5)
  • 免疫组化; 小鼠; 1:200; 图 1d
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188011)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1d). Br J Pharmacol (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 s4k
Synaptic Systems微管相关蛋白2抗体(Synaptic systems, 188 004)被用于被用于免疫细胞化学在小鼠样本上 (图 s4k). Cell Rep (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 人类; 1:100
Synaptic Systems微管相关蛋白2抗体(Synaptic System, 188 004)被用于被用于免疫组化在人类样本上浓度为1:100. Nat Commun (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 5d
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 5d). elife (2021) ncbi
豚鼠 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 s1b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 s1b). Nat Commun (2021) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 人类; 1:5000; 图 2b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:5000 (图 2b). Nat Neurosci (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 3b
Synaptic Systems微管相关蛋白2抗体(Synaptic System, 188004)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3b). Hum Mutat (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 6a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6a). J Neural Transm (Vienna) (2021) ncbi
豚鼠 多克隆
  • 免疫组化; 小鼠; 1:1000; 图 3h
Synaptic Systems微管相关蛋白2抗体(Synaptic System, 188004)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3h). Transl Psychiatry (2021) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 4b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Neuron (2021) ncbi
小鼠 单克隆(198A5)
  • 免疫细胞化学; 小鼠; 1:1000; 图 1a1
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188 011)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 1a1). elife (2020) ncbi
豚鼠 多克隆
  • 免疫组化-冰冻切片; 人类; 1:10,000; 图 s1d
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:10,000 (图 s1d). Science (2020) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:1000; 图 s1d
Synaptic Systems微管相关蛋白2抗体(SYSY, 188 004)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s1d). Acta Neuropathol (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 1:500; 图 3c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 8a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188 003)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 8a). Cell Death Differ (2019) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 图 1c
Synaptic Systems微管相关蛋白2抗体(Synaptic systems, 188004)被用于被用于免疫细胞化学在大鼠样本上 (图 1c). Cell (2019) ncbi
小鼠 单克隆(198A5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 3s1a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188011)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 3s1a). elife (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 大鼠; 1:500; 图 2a
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188-004)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 2a). J Cell Biol (2018) ncbi
豚鼠 多克隆
  • 免疫组化; 人类; 1:1000; 图 1c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 1c). Nature (2017) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 大鼠; 图 1b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188004)被用于被用于免疫细胞化学在大鼠样本上 (图 1b). Sci Rep (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 人类; 1:250; 图 3a,3b
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188 004)被用于被用于免疫细胞化学在人类样本上浓度为1:250 (图 3a,3b). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 图 4c
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188002)被用于被用于免疫细胞化学在小鼠样本上 (图 4c). Proc Natl Acad Sci U S A (2016) ncbi
鸡 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
Synaptic Systems微管相关蛋白2抗体(Synaptic System, 188006)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Front Cell Neurosci (2016) ncbi
豚鼠 多克隆
  • 免疫细胞化学; 小鼠; 图 s5
Synaptic Systems微管相关蛋白2抗体(Synaptic systems, 188 004)被用于被用于免疫细胞化学在小鼠样本上 (图 s5). Acta Neuropathol (2016) ncbi
小鼠 单克隆(198A5)
  • 免疫组化; 人类; 图 5
  • 免疫组化; 小鼠; 图 5
Synaptic Systems微管相关蛋白2抗体(Synaptic Systems, 188011)被用于被用于免疫组化在人类样本上 (图 5) 和 被用于免疫组化在小鼠样本上 (图 5). Stem Cell Res Ther (2015) ncbi
赛默飞世尔
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 1:100; 图 1b
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher, 13-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:100 (图 1b). Mol Ther Methods Clin Dev (2022) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:3000; 图 3e
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, PA1-10005)被用于被用于免疫细胞化学在人类样本上浓度为1:3000 (图 3e). Mol Ther Nucleic Acids (2022) ncbi
小鼠 单克隆(AP18)
  • 免疫细胞化学; 小鼠; 图 3f
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher, MA5-12826)被用于被用于免疫细胞化学在小鼠样本上 (图 3f). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:1000; 图 1c
  • 免疫细胞化学; 大鼠; 1:750; 图 2b
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher, MA1-25043)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:1000 (图 1c) 和 被用于免疫细胞化学在大鼠样本上浓度为1:750 (图 2b). elife (2019) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-冰冻切片; 小鼠; 1:200; 图 s7a
赛默飞世尔微管相关蛋白2抗体(Invitrogen, AP20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:200 (图 s7a). Sci Rep (2018) ncbi
小鼠 单克隆(AP18)
  • 免疫组化-石蜡切片; 大鼠; 1:200; 图 st11
  • 免疫组化-石蜡切片; 犬; 1:200; 图 st11
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 st11
赛默飞世尔微管相关蛋白2抗体(Neomarkers, MS-250)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200 (图 st11), 被用于免疫组化-石蜡切片在犬样本上浓度为1:200 (图 st11) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 st11). J Toxicol Pathol (2017) ncbi
小鼠 单克隆(AP18)
  • 免疫细胞化学; 人类; 1:300; 图 3a
赛默飞世尔微管相关蛋白2抗体(ThermoFisher Scientific, MA5-12826)被用于被用于免疫细胞化学在人类样本上浓度为1:300 (图 3a). Neurotoxicology (2016) ncbi
鸡 多克隆
赛默飞世尔微管相关蛋白2抗体(Thermo Fisher Scientific Pierce, PA1-10005)被用于. Mol Neuropsychiatry (2015) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类
赛默飞世尔微管相关蛋白2抗体(生活技术, 13-1500)被用于被用于免疫细胞化学在人类样本上. J Neural Eng (2015) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 1:200
赛默飞世尔微管相关蛋白2抗体(Life Technolgoies, 13-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(AP18)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, MA5-12826)被用于被用于免疫细胞化学在人类样本上 (图 1). Development (2014) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s2a
赛默飞世尔微管相关蛋白2抗体(NeoMarkers, AP20)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s2a). Acta Neuropathol (2014) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 小鼠; 1:6000; 图 7
赛默飞世尔微管相关蛋白2抗体(Thermo Scientific, MS-249)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:6000 (图 7). Neurobiol Dis (2013) ncbi
小鼠 单克隆(M13)
  • 免疫组化; 小鼠; 1:1000; 图 4
赛默飞世尔微管相关蛋白2抗体(Invitrogen, 13-1500)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 4). Pain (2012) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 图 1
赛默飞世尔微管相关蛋白2抗体(Invitrogen, 13-1500)被用于被用于免疫细胞化学在人类样本上 (图 1). PLoS ONE (2011) ncbi
小鼠 单克隆(M13)
  • 免疫组化-石蜡切片; 人类; 1:400; 表 3
赛默飞世尔微管相关蛋白2抗体(Zymed, M13)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (表 3). J Clin Neurosci (2011) ncbi
小鼠 单克隆(M13)
  • 免疫组化-冰冻切片; 人类; 图 2
赛默飞世尔微管相关蛋白2抗体(Zymed, M13)被用于被用于免疫组化-冰冻切片在人类样本上 (图 2). Neuropathology (2008) ncbi
小鼠 单克隆(M13)
  • 免疫细胞化学; 人类; 1:500; 图 3
赛默飞世尔微管相关蛋白2抗体(Zymed Laboratories, 13-1500)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 3). J Neurochem (2004) ncbi
小鼠 单克隆(M13)
  • 免疫沉淀; 大鼠
  • 免疫印迹; 大鼠
赛默飞世尔微管相关蛋白2抗体(Zymed, 13-1500)被用于被用于免疫沉淀在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Brain Res (2003) ncbi
圣克鲁斯生物技术
小鼠 单克隆(AP20)
  • 免疫组化; 小鼠
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-32791)被用于被用于免疫组化在小鼠样本上. iScience (2021) ncbi
小鼠 单克隆(A-8)
  • 免疫细胞化学; 小鼠; 图 3e
  • 免疫组化; 小鼠; 图 11a
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74422)被用于被用于免疫细胞化学在小鼠样本上 (图 3e) 和 被用于免疫组化在小鼠样本上 (图 11a). Theranostics (2020) ncbi
小鼠 单克隆(A-4)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4e
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74421)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4e). elife (2020) ncbi
小鼠 单克隆(AA5)
  • 免疫印迹; 小鼠; 1:250; 图 3b
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, SC80012)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 3b). Brain (2019) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 人类; 图 3
圣克鲁斯生物技术微管相关蛋白2抗体(SantaCruz, sc-74421)被用于被用于免疫细胞化学在人类样本上 (图 3). Cell Biol Int (2018) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3a
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 2a
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-32791)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3a) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 2a). Acta Neuropathol Commun (2017) ncbi
小鼠 单克隆(A-4)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 2a
  • 免疫印迹; 大鼠; 图 2c
圣克鲁斯生物技术微管相关蛋白2抗体(SantaCruz, sc-74421)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 2a) 和 被用于免疫印迹在大鼠样本上 (图 2c). Sci Rep (2017) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 s4b
  • 免疫组化-石蜡切片; 小鼠; 1:200; 图 s3c
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, sc-32791)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 s4b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:200 (图 s3c). Sci Rep (2016) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-冰冻切片; 大鼠
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, SC32791)被用于被用于免疫组化-冰冻切片在大鼠样本上. Brain Inj (2015) ncbi
小鼠 单克隆(A-8)
  • 免疫组化-冰冻切片; 人类; 1:100
  • 免疫组化-冰冻切片; 大鼠; 1:100
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, sc-74422)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:100 和 被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100. J Neurochem (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫印迹; 大鼠; 图 7
圣克鲁斯生物技术微管相关蛋白2抗体(santa Cruz, sc-74421)被用于被用于免疫印迹在大鼠样本上 (图 7). Int J Mol Med (2015) ncbi
小鼠 单克隆(A-4)
  • 免疫细胞化学; 大鼠; 1:100; 图 4
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz, sc-74421)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100 (图 4). Int J Mol Med (2015) ncbi
小鼠 单克隆(AP20)
  • 免疫组化; 大鼠
圣克鲁斯生物技术微管相关蛋白2抗体(Santa Cruz Biotechnology, SC32791)被用于被用于免疫组化在大鼠样本上. J Cereb Blood Flow Metab (2014) ncbi
Novus Biologicals
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:5000; 图 s5d
Novus Biologicals微管相关蛋白2抗体(Novus, NB300-213)被用于被用于免疫细胞化学在小鼠样本上浓度为1:5000 (图 s5d). Theranostics (2022) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 s1e
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 s1e). Nat Commun (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 大鼠; 图 1e
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于被用于免疫细胞化学在大鼠样本上 (图 1e). Cell Rep (2019) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:500; 图 6c
Novus Biologicals微管相关蛋白2抗体(Novus, NB300-213)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 6c). Neuron (2019) ncbi
鸡 多克隆
  • 免疫组化; 人类; 图 s7c
Novus Biologicals微管相关蛋白2抗体(Novus, 300-312)被用于被用于免疫组化在人类样本上 (图 s7c). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(4H5)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 5
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NBP2-25156)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 5). Front Cell Neurosci (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 s8
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 s8). Brain (2016) ncbi
鸡 多克隆
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于. J Clin Invest (2015) ncbi
鸡 多克隆
Novus Biologicals微管相关蛋白2抗体(Novus Biologicals, NB300-213)被用于. Nucleic Acids Res (2012) ncbi
BioLegend
鸡 多克隆(Poly28225)
  • 免疫组化-冰冻切片; 人类; 1:1000; 图 s2c
BioLegend微管相关蛋白2抗体(Biolegend, 822,501)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:1000 (图 s2c). Neurotherapeutics (2022) ncbi
鸡 多克隆(Poly28225)
  • 免疫细胞化学; 人类; 图 s3a
BioLegend微管相关蛋白2抗体(Biolegend, 822,501)被用于被用于免疫细胞化学在人类样本上 (图 s3a). Acta Neuropathol Commun (2019) ncbi
小鼠 单克隆(SMI 52)
  • 免疫组化-冰冻切片; 大鼠; 1:1000; 图 4e
  • 免疫组化; 大鼠; 1:1000; 图 4b
BioLegend微管相关蛋白2抗体(BioLegend, 801801)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:1000 (图 4e) 和 被用于免疫组化在大鼠样本上浓度为1:1000 (图 4b). J Comp Neurol (2019) ncbi
小鼠 单克隆(SMI 52)
  • 免疫印迹; 人类; 1:1000; 图 6h
BioLegend微管相关蛋白2抗体(Covance, SMI-52R)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6h). Nat Commun (2017) ncbi
小鼠 单克隆(SMI 52)
  • 免疫组化; 小鼠; 图 st1
BioLegend微管相关蛋白2抗体(BioLegend, 801801)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
小鼠 单克隆(SMI 52)
  • 免疫细胞化学; 人类
BioLegend微管相关蛋白2抗体(Covance, SMI-52R)被用于被用于免疫细胞化学在人类样本上. FASEB J (2013) ncbi
小鼠 单克隆(SMI 52)
  • 免疫组化-自由浮动切片; 小鼠; 1:500
BioLegend微管相关蛋白2抗体(Sternberger Monoclonals, SMI52)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
EnCor Biotechnology
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3a
EnCor Biotechnology微管相关蛋白2抗体(Encor, CPCA MAP2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3a). elife (2021) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:500; 图 2a
EnCor Biotechnology微管相关蛋白2抗体(Encor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 2a). elife (2020) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 图 5d
EnCor Biotechnology微管相关蛋白2抗体(Encor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在人类样本上 (图 5d). Cell (2018) ncbi
鸡 多克隆
  • 免疫细胞化学; 小鼠; 1:2000; 图 3
EnCor Biotechnology微管相关蛋白2抗体(EnCor Biotech, CPCA-MAP2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:2000 (图 3). FASEB J (2016) ncbi
鸡 多克隆
  • 免疫细胞化学; 人类; 1:2000; 图 1
EnCor Biotechnology微管相关蛋白2抗体(EnCor, CPCA-MAP2)被用于被用于免疫细胞化学在人类样本上浓度为1:2000 (图 1). J Exp Med (2016) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 4m
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 4544)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 4m). Int J Mol Sci (2022) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫细胞化学; 人类; 1:200; 图 7f
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707S)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 7f). Front Aging Neurosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:150; 图 1e
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling Technologies, 4542)被用于被用于免疫细胞化学在小鼠样本上浓度为1:150 (图 1e). J Biol Chem (2021) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化; 小鼠; 1:300; 图 5d
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(CST, 8707T)被用于被用于免疫组化在小鼠样本上浓度为1:300 (图 5d). Front Cell Dev Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 人类; 1:50; 图 s6
  • 免疫组化-冰冻切片; 小鼠; 1:50; 图 2d
  • 免疫印迹; 小鼠; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542)被用于被用于免疫组化-冰冻切片在人类样本上浓度为1:50 (图 s6), 被用于免疫组化-冰冻切片在小鼠样本上浓度为1:50 (图 2d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫细胞化学; 小鼠; 1:200; 图 s6d
  • 免疫印迹; 小鼠; 1:1000; 图 10b, 10i
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 s6d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 10b, 10i). Cell Biosci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signalling, 4542S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4c). Front Cell Neurosci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 4542)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Mol Med Rep (2020) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫细胞化学; 人类; 图 1b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling Technology, D5G1)被用于被用于免疫细胞化学在人类样本上 (图 1b). Cell Death Dis (2019) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 3e
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707S)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 3e). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:200; 图 1c
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 1c). Stem Cell Res (2019) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化; 大鼠; 1:200; 图 4a
  • 免疫印迹; 大鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 4a) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Sci Rep (2018) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫印迹; 小鼠; 图 s1b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707)被用于被用于免疫印迹在小鼠样本上 (图 s1b). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 4542)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 2a). Mol Neurobiol (2017) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling, 8707S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Dis Model Mech (2016) ncbi
domestic rabbit 单克隆(D5G1)
  • 免疫组化; 小鼠; 图 st1
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signalling, 8707)被用于被用于免疫组化在小鼠样本上 (图 st1). Nat Biotechnol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 6b
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 6b). BMC Complement Altern Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell Signaling Technology, 45425)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). Transl Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Cell signaling, 4542S)被用于被用于免疫细胞化学在人类样本上 (图 2). Life Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 大鼠; 1:200
赛信通(上海)生物试剂有限公司微管相关蛋白2抗体(Sigma Chemical, 4542S)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:200. Mol Neurobiol (2016) ncbi
西格玛奥德里奇
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 2a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 2a). Mol Neurobiol (2022) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s4h
  • 免疫印迹; 小鼠; 1:1000; 图 4a, 4d
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s4h) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a, 4d). Nat Commun (2022) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:300; 图 4a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:300 (图 4a). Nat Commun (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4c
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4c). ASN Neuro (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:2000; 图 1s3a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:2000 (图 1s3a). elife (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 5f
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 5f). Front Neurosci (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 3d
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 3d). elife (2022) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:80; 图 2h
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:80 (图 2h). J Neurosci (2022) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 小鼠; 1:500; 图 s2a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 s2a). Cell Rep (2021) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:200; 图 s1a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 s1a). Environ Health Perspect (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 s5b
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在小鼠样本上 (图 s5b). PLoS Biol (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 人类; 1:500; 图 3c
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在人类样本上浓度为1:500 (图 3c). Brain Commun (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:200; 图 1e
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在小鼠样本上浓度为1:200 (图 1e). Acta Neuropathol Commun (2021) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 人类; 1:1000; 图 5c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 5c). Int J Mol Sci (2021) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:200; 图 3b
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 3b). Nat Neurosci (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 图 3d
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化在小鼠样本上 (图 3d). Sci Rep (2021) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 4b
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在小鼠样本上 (图 4b). Neuron (2021) ncbi
小鼠 单克隆(HM-2)
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于. Transl Psychiatry (2020) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:200; 图 6g
西格玛奥德里奇微管相关蛋白2抗体(Sigma, 1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 6g). elife (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5a). elife (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:1000; 图 3d
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 3d). Front Immunol (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000; 图 1m
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000 (图 1m). Nat Commun (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 1a, b, 8a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, #M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 1a, b, 8a). Eneuro (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:1000; 图 1b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 1b). Cell Stem Cell (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 3a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 3a). Cell Death Dis (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 图 5f
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5f). Nat Commun (2020) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 图 3b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在人类样本上 (图 3b). FEBS Open Bio (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:500; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 3). Nat Commun (2020) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化在小鼠样本上浓度为1:1000. elife (2019) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 大鼠; 图 1f
  • 免疫组化-冰冻切片; 小鼠; 图 1b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化-冰冻切片在大鼠样本上 (图 1f) 和 被用于免疫组化-冰冻切片在小鼠样本上 (图 1b). PLoS Biol (2019) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 1f
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上 (图 1f). Genes Dev (2019) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 10a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 10a). J Comp Neurol (2019) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:1500; 图 s2a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1500 (图 s2a). Sci Rep (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 人类; 图 3b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在人类样本上 (图 3b). J Biol Chem (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 5a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在大鼠样本上 (图 5a). Dev Cell (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 家羊; 1:500; 图 6a, 6b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-石蜡切片在家羊样本上浓度为1:500 (图 6a, 6b). J Neuroinflammation (2018) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 4d
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 4d). Exp Mol Med (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:750; 图 1a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在人类样本上浓度为1:750 (图 1a). Nat Neurosci (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:200; 图 1
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在大鼠样本上浓度为1:200 (图 1). J Comp Neurol (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:400; 图 6
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 6). Sci Rep (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 4e
  • 免疫细胞化学; 小鼠; 1:100; 图 s2d
  • 免疫印迹; 小鼠; 图 s2f
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, AP-20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 4e), 被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 s2d) 和 被用于免疫印迹在小鼠样本上 (图 s2f). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Exp Ther Med (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Sci Rep (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:1000; 图 5d
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在大鼠样本上浓度为1:1000 (图 5d). PLoS Biol (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:1000; 图 5e
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 5e). J Cell Biol (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:500; 图 5c
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 5c). Sci Rep (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1500; 图 S7
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1500 (图 S7). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 人类; 图 3d
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫组化-冰冻切片在人类样本上 (图 3d). Peerj (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 图 2b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2b). Sci Rep (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 小鼠; 1:2000; 图 3b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 3b). Front Mol Neurosci (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 图 s4c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上 (图 s4c). Sci Rep (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:1000; 图 st4
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 st4). Nat Biotechnol (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 小鼠; 1:250; 图 s1a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, HM-2)被用于被用于免疫印迹在小鼠样本上浓度为1:250 (图 s1a). J Cell Sci (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 小鼠; 1:200; 图 5b
  • 免疫细胞化学; 大鼠; 1:200; 图 5d
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M-4403)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:200 (图 5b) 和 被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 5d). elife (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 S1
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 S1). Redox Biol (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:400; 图 7e,7f
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:400 (图 7e,7f). J Mol Neurosci (2017) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 人类; 1:3000; 图 2c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, AP-20)被用于被用于免疫组化在人类样本上浓度为1:3000 (图 2c). Brain Pathol (2018) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 图 s1a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在人类样本上 (图 s1a). Cell Chem Biol (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 猫; 1:100; 图 3c
西格玛奥德里奇微管相关蛋白2抗体(Sigma Aldrich, M4403)被用于被用于免疫组化-石蜡切片在猫样本上浓度为1:100 (图 3c). Cell Cycle (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 1c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 1c). RNA Biol (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:200; 图 1c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200 (图 1c). Oncotarget (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:500; 表 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (表 2). Lab Chip (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:1000; 图 6b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 6b). Dev Growth Differ (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 s5
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 s5). Sci Rep (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500. Methods Mol Biol (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:200; 表 s4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (表 s4). Stem Cell Res (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 图 8
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上 (图 8). Sci Rep (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 小鼠; 1:2000; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:2000 (图 3). Mol Neurodegener (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500. Biomed Res Int (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 2). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 1a
  • 免疫组化-石蜡切片; 猕猴; 1:50; 图 1c
  • 免疫组化-石蜡切片; 人类; 1:50; 图 1e
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 1a), 被用于免疫组化-石蜡切片在猕猴样本上浓度为1:50 (图 1c) 和 被用于免疫组化-石蜡切片在人类样本上浓度为1:50 (图 1e). Mov Disord (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 图 s3a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上 (图 s3a). Nature (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 6
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5d
  • 免疫印迹; 小鼠; 1:1000; 图 7b
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5d) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s5c
  • 免疫印迹; 小鼠; 1:1000; 图 7b
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s5c) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Proc Natl Acad Sci U S A (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:400; 图 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400 (图 2). Nat Commun (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 图 4
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在人类样本上 (图 4) 和 被用于免疫印迹在人类样本上 (图 1). Brain Pathol (2017) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 2). Front Neuroanat (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 图 1b
西格玛奥德里奇微管相关蛋白2抗体(Sigma Aldrich, M1406)被用于被用于免疫细胞化学在人类样本上 (图 1b). PLoS ONE (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:200; 图 8e
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 8e). Nat Neurosci (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 大鼠; 1:400; 图 5
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在大鼠样本上浓度为1:400 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:100; 表 1
西格玛奥德里奇微管相关蛋白2抗体(SIGMA, HM-2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (表 1). Neuropathology (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:1000; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 3). Sci Rep (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 大鼠; 2 ug/ml; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为2 ug/ml (图 3). Front Syst Neurosci (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化在大鼠样本上浓度为1:500. Acta Biomater (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 人类; 图 1
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫印迹在人类样本上 (图 1). Nat Commun (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 s2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 大鼠; 1:500; 图 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:500 (图 2). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:500; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Millipore, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 3). Nat Commun (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 大鼠; 1:500; 图 4
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 4). PLoS ONE (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 图 2
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在小鼠样本上 (图 2). Sci Rep (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:500; 图 1a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在大鼠样本上浓度为1:500 (图 1a). J Neurosci (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 人类; 图 2a
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M1406)被用于被用于免疫组化在人类样本上 (图 2a). Methods (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:100; 图 4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:100 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:1000; 图 4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 4). Cell Death Dis (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 图 1
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上 (图 1). Sci Rep (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 s5
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 s5). Development (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化; 人类; 1:1000; 图 4b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫组化在人类样本上浓度为1:1000 (图 4b). Stem Cells (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 仓鼠; 1:300; 图 4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在仓鼠样本上浓度为1:300 (图 4). Hippocampus (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, m4403)被用于被用于免疫组化在小鼠样本上浓度为1:500. J Neurosci (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 2 ug/ml; 图 1b
  • 免疫印迹; 大鼠; 1:2000; 图 5f
  • 免疫细胞化学; 人类; 2 ug/ml; 图 1b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为2 ug/ml (图 1b), 被用于免疫印迹在大鼠样本上浓度为1:2000 (图 5f) 和 被用于免疫细胞化学在人类样本上浓度为2 ug/ml (图 1b). Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在大鼠样本上浓度为1:200. Cell J (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 s8
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 s8). Nat Med (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:100
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Acta Neuropathol (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:500; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:500 (图 3). Front Cell Neurosci (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:200; 图 4c
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 4c). Cell Death Dis (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:500; 图 2Ag
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在人类样本上浓度为1:500 (图 2Ag). Eur J Hum Genet (2016) ncbi
小鼠 单克隆(AP-20)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 S2d
西格玛奥德里奇微管相关蛋白2抗体(Sigma, clone AP-20)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 S2d). PLoS ONE (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 人类; 1:10,000; 图 5b
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在人类样本上浓度为1:10,000 (图 5b). Front Neurosci (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1.5 ug/ml; 图 6a
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化在大鼠样本上浓度为1.5 ug/ml (图 6a). PLoS ONE (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Brain Pathol (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Neurosci (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在大鼠样本上浓度为1:1000. Neuroscience (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 s4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在小鼠样本上 (图 s4). Sci Rep (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma, AP-20)被用于被用于免疫细胞化学在小鼠样本上. Hum Mutat (2015) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 小鼠; 1:250
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M1406)被用于被用于免疫细胞化学在小鼠样本上浓度为1:250. Dev Neurobiol (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:1000; 图 s4
西格玛奥德里奇微管相关蛋白2抗体(Sigma, HM-2)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000 (图 s4). PLoS ONE (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 大鼠; 1:2000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:2000. Adv Alzheimer Dis (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Neurosci (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:200
  • 免疫细胞化学; 大鼠; 1:200
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M9942)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 和 被用于免疫细胞化学在大鼠样本上浓度为1:200. J Neurosci (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 人类; 1:500; 图 4
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在人类样本上浓度为1:500 (图 4). PLoS ONE (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 图 2
西格玛奥德里奇微管相关蛋白2抗体(sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上 (图 2). Acta Neuropathol Commun (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:100
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在大鼠样本上浓度为1:100. Pflugers Arch (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000 (图 3). Acta Neuropathol (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 人类
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在人类样本上. Cereb Cortex (2016) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:100; 图 6
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, HM-2)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:100 (图 6). Nat Commun (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 人类; 1:3000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在人类样本上浓度为1:3000. Brain Pathol (2015) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:200
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:200. J Vis Exp (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:150
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在小鼠样本上浓度为1:150. Neurobiol Dis (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 人类; 1:100
西格玛奥德里奇微管相关蛋白2抗体(SIGMA, HM2)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. Neuropathology (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 大鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在大鼠样本上浓度为1:1000. Neuroreport (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 人类; 1:100
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在人类样本上浓度为1:100. J Neurosci Methods (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 大鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-石蜡切片在大鼠样本上. Mol Cancer Res (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫印迹; 猕猴; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫印迹在猕猴样本上浓度为1:500. Neurosci Lett (2014) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 图 8
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上 (图 8). PLoS ONE (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上. Acta Neuropathol Commun (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M9942)被用于被用于免疫组化-自由浮动切片在小鼠样本上. Neurobiol Dis (2014) ncbi
小鼠 单克隆(AP-20)
  • 免疫细胞化学; 大鼠; 1:50
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, AP20)被用于被用于免疫细胞化学在大鼠样本上浓度为1:50. Mol Pharmacol (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化在小鼠样本上. J Neurosci (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 人类; 1:500
  • 免疫细胞化学; 人类; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 和 被用于免疫细胞化学在人类样本上浓度为1:500. Glia (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上. Mol Cell Biol (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-自由浮动切片; 大鼠; 1:25,000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-自由浮动切片在大鼠样本上浓度为1:25,000. J Comp Neurol (2012) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:400
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:400. Age (Dordr) (2013) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 图 4
  • 免疫细胞化学; 小鼠; 图 3
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, HM-2)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4) 和 被用于免疫细胞化学在小鼠样本上 (图 3). PLoS ONE (2011) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:5000
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:500. J Comp Neurol (2011) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2010) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2010) ncbi
小鼠 单克隆(HM-2)
  • 免疫细胞化学; 小鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫细胞化学在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:1000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:1000. J Comp Neurol (2009) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:500. J Comp Neurol (2008) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 大鼠; 1:500
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在大鼠样本上浓度为1:500. J Comp Neurol (2007) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-石蜡切片; 小鼠; 1:5000
  • 免疫细胞化学; 小鼠; 1:500
  • 免疫印迹; 小鼠; 1:20,000
西格玛奥德里奇微管相关蛋白2抗体(Sigma-Aldrich, M4403)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:5000, 被用于免疫细胞化学在小鼠样本上浓度为1:500 和 被用于免疫印迹在小鼠样本上浓度为1:20,000. J Comp Neurol (2007) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化-冰冻切片; 小鼠; 1:800
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M 4403)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:800. J Comp Neurol (2006) ncbi
小鼠 单克隆(HM-2)
  • 免疫组化; 小鼠; 1:100
西格玛奥德里奇微管相关蛋白2抗体(Sigma, M4403)被用于被用于免疫组化在小鼠样本上浓度为1:100. J Comp Neurol (2005) ncbi
碧迪BD
小鼠 单克隆(AP20)
  • 免疫组化-石蜡切片; 人类; 1:300; 图 9d
碧迪BD微管相关蛋白2抗体(BD Pharmingen, 556320)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:300 (图 9d). Acta Neuropathol Commun (2022) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-自由浮动切片; 人类; 1:500; 图 8a
碧迪BD微管相关蛋白2抗体(BD Bioscience, 556320)被用于被用于免疫组化-自由浮动切片在人类样本上浓度为1:500 (图 8a). Exp Neurol (2019) ncbi
小鼠 单克隆(AP20)
  • 免疫组化-冰冻切片; 小鼠; 1:500; 图 s1c
碧迪BD微管相关蛋白2抗体(BD Biosciences, 566320)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:500 (图 s1c). J Pineal Res (2019) ncbi
小鼠 单克隆(18/MAP2B)
  • 免疫细胞化学; 大鼠; 图 3d
碧迪BD微管相关蛋白2抗体(BD Biosciences, 560399)被用于被用于免疫细胞化学在大鼠样本上 (图 3d). Nat Commun (2018) ncbi
小鼠 单克隆(18/MAP2B)
  • 免疫印迹; 小鼠; 表 1
碧迪BD微管相关蛋白2抗体(BD biosciences, 610460)被用于被用于免疫印迹在小鼠样本上 (表 1). Neuron (2017) ncbi
小鼠 单克隆(18/MAP2B)
  • 免疫印迹; 小鼠; 图 7
碧迪BD微管相关蛋白2抗体(BD Biosciences, 610460)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
小鼠 单克隆(18/MAP2B)
  • 流式细胞仪; 大鼠; 图 6
碧迪BD微管相关蛋白2抗体(Becton, Dickinson and Company, 560399)被用于被用于流式细胞仪在大鼠样本上 (图 6). Sci Rep (2016) ncbi
小鼠 单克隆(AP20)
  • 免疫细胞化学; 人类; 图 s1
碧迪BD微管相关蛋白2抗体(BD Pharmingen, 556320)被用于被用于免疫细胞化学在人类样本上 (图 s1). PLoS ONE (2015) ncbi
小鼠 单克隆(AP20)
  • 酶联免疫吸附测定; 人类; 图 2
碧迪BD微管相关蛋白2抗体(BD Bioscience, clone AP20)被用于被用于酶联免疫吸附测定在人类样本上 (图 2). Neurocrit Care (2015) ncbi
小鼠 单克隆(AP20)
  • 免疫细胞化学; 人类; 1:500
碧迪BD微管相关蛋白2抗体(BD Bioscience, 556320)被用于被用于免疫细胞化学在人类样本上浓度为1:500. Stem Cell Rev (2013) ncbi
文章列表
  1. Zhu L, Tan B, Dwight S, Beahm B, Wilsey M, Crawford B, et al. AAV9-NGLY1 gene replacement therapy improves phenotypic and biomarker endpoints in a rat model of NGLY1 Deficiency. Mol Ther Methods Clin Dev. 2022;27:259-271 pubmed 出版商
  2. Easton A, Jensen M, Wang C, Hagedorn P, Li Y, WEED M, et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol Ther Nucleic Acids. 2022;29:625-642 pubmed 出版商
  3. Li T, Sun Y, Zhang S, Xu Y, Li K, Xie C, et al. AIF Overexpression Aggravates Oxidative Stress in Neonatal Male Mice After Hypoxia-Ischemia Injury. Mol Neurobiol. 2022;59:6613-6631 pubmed 出版商
  4. Hausrat T, Janiesch P, Breiden P, Lutz D, Hoffmeister Ullerich S, Hermans Borgmeyer I, et al. Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat Commun. 2022;13:4192 pubmed 出版商
  5. El Chehadeh S, Han K, Kim D, Jang G, Bakhtiari S, Lim D, et al. SLITRK2 variants associated with neurodevelopmental disorders impair excitatory synaptic function and cognition in mice. Nat Commun. 2022;13:4112 pubmed 出版商
  6. Shi H, Wu D, Chen R, Li N, Zhu L. Requirement of hippocampal DG nNOS-CAPON dissociation for the anxiolytic and antidepressant effects of fluoxetine. Theranostics. 2022;12:3656-3675 pubmed 出版商
  7. Azarnia Tehran D, Kochlamazashvili G, Pampaloni N, Sposini S, Shergill J, Lehmann M, et al. Selective endocytosis of Ca2+-permeable AMPARs by the Alzheimer's disease risk factor CALM bidirectionally controls synaptic plasticity. Sci Adv. 2022;8:eabl5032 pubmed 出版商
  8. Dragić M, Mihajlovic K, Adzic M, Jakovljevic M, Kontic M, Mitrovi x107 N, et al. Expression of Ectonucleoside Triphosphate Diphosphohydrolase 2 (NTPDase2) Is Negatively Regulated Under Neuroinflammatory Conditions In Vivo and In Vitro. ASN Neuro. 2022;14:17590914221102068 pubmed 出版商
  9. Li J, Chordia M, Zhang Y, Zong H, Pan D, Zuo Z. Critical role of FPR1 in splenocyte migration into brain to worsen inflammation and ischemic brain injury in mice. Theranostics. 2022;12:3024-3044 pubmed 出版商
  10. Toledo A, Letellier M, Bimbi G, Tessier B, Daburon S, Favereaux A, et al. MDGAs are fast-diffusing molecules that delay excitatory synapse development by altering neuroligin behavior. elife. 2022;11: pubmed 出版商
  11. Moore A, Chinnaiya K, Kim D, Brown S, Stewart I, Robins S, et al. Loss of Function of the Neural Cell Adhesion Molecule NrCAM Regulates Differentiation, Proliferation and Neurogenesis in Early Postnatal Hypothalamic Tanycytes. Front Neurosci. 2022;16:832961 pubmed 出版商
  12. Nuber S, Chung C, Tardiff D, Bechade P, McCaffery T, Shimanaka K, et al. A Brain-Penetrant Stearoyl-CoA Desaturase Inhibitor Reverses α-Synuclein Toxicity. Neurotherapeutics. 2022;19:1018-1036 pubmed 出版商
  13. Drummond E, Kavanagh T, Pires G, Martá Ariza M, Kanshin E, Nayak S, et al. The amyloid plaque proteome in early onset Alzheimer's disease and Down syndrome. Acta Neuropathol Commun. 2022;10:53 pubmed 出版商
  14. Daswani R, Gilardi C, Soutschek M, Nanda P, Weiss K, Bicker S, et al. MicroRNA-138 controls hippocampal interneuron function and short-term memory in mice. elife. 2022;11: pubmed 出版商
  15. Anastasaki C, Wilson A, Chen A, Wegscheid M, Gutmann D. Generation of human induced pluripotent stem cell-derived cerebral organoids for cellular and molecular characterization. STAR Protoc. 2022;3:101173 pubmed 出版商
  16. Zheng R, Du Y, Wang X, Liao T, Zhang Z, Wang N, et al. KIF2C regulates synaptic plasticity and cognition in mice through dynamic microtubule depolymerization. elife. 2022;11: pubmed 出版商
  17. Matsuura K, Kobayashi S, Konno K, Yamasaki M, Horiuchi T, Senda T, et al. SIPA1L1/SPAR1 Interacts with the Neurabin Family of Proteins and is Involved in GPCR Signaling. J Neurosci. 2022;42:2448-2473 pubmed 出版商
  18. Tsolias A, Medalla M. Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey. Front Neural Circuits. 2021;15:795325 pubmed 出版商
  19. Andr xe9 s Benito P, Carmona M, Jord xe1 n M, Fern xe1 ndez Irigoyen J, Santamar xed a E, Del Rio J, et al. Host Tau Genotype Specifically Designs and Regulates Tau Seeding and Spreading and Host Tau Transformation Following Intrahippocampal Injection of Identical Tau AD Inoculum. Int J Mol Sci. 2022;23: pubmed 出版商
  20. Yang C, Wang W, Deng P, Li C, Zhao L, Gao H. Fibroblast Growth Factor 21 Modulates Microglial Polarization That Attenuates Neurodegeneration in Mice and Cellular Models of Parkinson's Disease. Front Aging Neurosci. 2021;13:778527 pubmed 出版商
  21. Ban Y, Yu T, Feng B, Lorenz C, Wang X, Baker C, et al. Prickle promotes the formation and maintenance of glutamatergic synapses by stabilizing the intercellular planar cell polarity complex. Sci Adv. 2021;7:eabh2974 pubmed 出版商
  22. Nies S, Takahashi H, Herber C, Huttner A, Chase A, Strittmatter S. Spreading of Alzheimer tau seeds is enhanced by aging and template matching with limited impact of amyloid-β. J Biol Chem. 2021;297:101159 pubmed 出版商
  23. de Jong J, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087 pubmed 出版商
  24. Hu Y, Li C, Wang X, Chen W, Qian Y, Dai X. TREM2, Driving the Microglial Polarization, Has a TLR4 Sensitivity Profile After Subarachnoid Hemorrhage. Front Cell Dev Biol. 2021;9:693342 pubmed 出版商
  25. Wu Y, Shao W, Todd T, Tong J, Yue M, Koga S, et al. Microglial lysosome dysfunction contributes to white matter pathology and TDP-43 proteinopathy in GRN-associated FTD. Cell Rep. 2021;36:109581 pubmed 出版商
  26. Albanese F, Mercatelli D, Finetti L, Lamonaca G, Pizzi S, Shimshek D, et al. Constitutive silencing of LRRK2 kinase activity leads to early glucocerebrosidase deregulation and late impairment of autophagy in vivo. Neurobiol Dis. 2021;159:105487 pubmed 出版商
  27. Araya A, Gallegos S, Viveros R, San Martin L, Muñoz B, Harvey R, et al. Presence of ethanol-sensitive and ethanol-insensitive glycine receptors in the ventral tegmental area and prefrontal cortex in mice. Br J Pharmacol. 2021;178:4691-4707 pubmed 出版商
  28. Emmenegger M, De Cecco E, Hruska Plochan M, Eninger T, Schneider M, Barth M, et al. LAG3 is not expressed in human and murine neurons and does not modulate α-synucleinopathies. EMBO Mol Med. 2021;13:e14745 pubmed 出版商
  29. Swarnkar S, Avchalumov Y, Espadas I, Grinman E, Liu X, Raveendra B, et al. Molecular motor protein KIF5C mediates structural plasticity and long-term memory by constraining local translation. Cell Rep. 2021;36:109369 pubmed 出版商
  30. Modafferi S, Zhong X, Kleensang A, Murata Y, Fagiani F, Pamies D, et al. Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environ Health Perspect. 2021;129:77001 pubmed 出版商
  31. Lin K, Bieri G, Gontier G, Müller S, Smith L, Snethlage C, et al. MHC class I H2-Kb negatively regulates neural progenitor cell proliferation by inhibiting FGFR signaling. PLoS Biol. 2021;19:e3001311 pubmed 出版商
  32. Zhang J, Wu N, Wang S, Yao Z, Xiao F, Lu J, et al. Neuronal loss and microgliosis are restricted to the core of Aβ deposits in mouse models of Alzheimer's disease. Aging Cell. 2021;20:e13380 pubmed 出版商
  33. Haytural H, Jordà Siquier T, Winblad B, Mulle C, Tjernberg L, Granholm A, et al. Distinctive alteration of presynaptic proteins in the outer molecular layer of the dentate gyrus in Alzheimer's disease. Brain Commun. 2021;3:fcab079 pubmed 出版商
  34. Galán Ganga M, Rodríguez Cueto C, Merchán Rubira J, Hernandez F, Avila J, Posada Ayala M, et al. Cannabinoid receptor CB2 ablation protects against TAU induced neurodegeneration. Acta Neuropathol Commun. 2021;9:90 pubmed 出版商
  35. Seol B, Kim Y, Cho Y. Modeling Sialidosis with Neural Precursor Cells Derived from Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci. 2021;22: pubmed 出版商
  36. Park J, Kam T, Lee S, Park H, Oh Y, Kwon S, et al. Blocking microglial activation of reactive astrocytes is neuroprotective in models of Alzheimer's disease. Acta Neuropathol Commun. 2021;9:78 pubmed 出版商
  37. Trinkaus V, Riera Tur I, Martinez Sanchez A, Bäuerlein F, Guo Q, Arzberger T, et al. In situ architecture of neuronal α-Synuclein inclusions. Nat Commun. 2021;12:2110 pubmed 出版商
  38. Yoshinaga S, Shin M, Kitazawa A, Ishii K, Tanuma M, Kasai A, et al. Comprehensive characterization of migration profiles of murine cerebral cortical neurons during development using FlashTag labeling. iScience. 2021;24:102277 pubmed 出版商
  39. Inak G, Rybak Wolf A, Lisowski P, Pentimalli T, Jüttner R, Glažar P, et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 2021;12:1929 pubmed 出版商
  40. Courtland J, Bradshaw T, Waitt G, Soderblom E, Ho T, Rajab A, et al. Genetic disruption of WASHC4 drives endo-lysosomal dysfunction and cognitive-movement impairments in mice and humans. elife. 2021;10: pubmed 出版商
  41. Wegmann S, DeVos S, Zeitler B, Marlen K, Bennett R, Pérez Rando M, et al. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. Sci Adv. 2021;7: pubmed 出版商
  42. Zhang C, Yan Z, Maknojia A, Riquelme M, Gu S, Booher G, et al. Inhibition of astrocyte hemichannel improves recovery from spinal cord injury. JCI Insight. 2021;6: pubmed 出版商
  43. Schiweck J, Murk K, Ledderose J, Münster Wandowski A, Ornaghi M, Vida I, et al. Drebrin controls scar formation and astrocyte reactivity upon traumatic brain injury by regulating membrane trafficking. Nat Commun. 2021;12:1490 pubmed 出版商
  44. Sando R, Sudhof T. Latrophilin GPCR signaling mediates synapse formation. elife. 2021;10: pubmed 出版商
  45. Wang L, Liu Y, Stratigopoulos G, Panigrahi S, Sui L, Zhang Y, et al. Bardet-Biedl syndrome proteins regulate intracellular signaling and neuronal function in patient-specific iPSC-derived neurons. J Clin Invest. 2021;131: pubmed 出版商
  46. Gordon A, Yoon S, Tran S, Makinson C, Park J, Andersen J, et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat Neurosci. 2021;24:331-342 pubmed 出版商
  47. Trujillo C, Rice E, Schaefer N, Chaim I, Wheeler E, Madrigal A, et al. Reintroduction of the archaic variant of NOVA1 in cortical organoids alters neurodevelopment. Science. 2021;371: pubmed 出版商
  48. van Woerden G, Bos M, de Konink C, Distel B, Trezza R, Shur N, et al. TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Hum Mutat. 2021;: pubmed 出版商
  49. Asahina M, Fujinawa R, Fujihira H, Masahara Negishi Y, Andou T, Tozawa R, et al. JF1/B6F1 Ngly1-/- mouse as an isogenic animal model of NGLY1 deficiency. Proc Jpn Acad Ser B Phys Biol Sci. 2021;97:89-102 pubmed 出版商
  50. Jansch C, Ziegler G, Forero A, Gredy S, W xe4 ldchen S, Vitale M, et al. Serotonin-specific neurons differentiated from human iPSCs form distinct subtypes with synaptic protein assembly. J Neural Transm (Vienna). 2021;128:225-241 pubmed 出版商
  51. GUTTIKONDA S, Sikkema L, Tchieu J, Saurat N, Walsh R, Harschnitz O, et al. Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci. 2021;24:343-354 pubmed 出版商
  52. Shao D, Straussberg R, Ahmed H, Khan A, Tian S, Hill R, et al. A recurrent, homozygous EMC10 frameshift variant is associated with a syndrome of developmental delay with variable seizures and dysmorphic features. Genet Med. 2021;23:1158-1162 pubmed 出版商
  53. Li Y, Ritchie E, Steinke C, Qi C, Chen L, Zheng B, et al. Activation of MAP3K DLK and LZK in Purkinje cells causes rapid and slow degeneration depending on signaling strength. elife. 2021;10: pubmed 出版商
  54. Choi G, Lee H, Chae C, Cho J, Jung Y, Kim J, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects. Nat Commun. 2021;12:487 pubmed 出版商
  55. Xu L, Zhang M, Shi L, Yang X, Chen L, Cao N, et al. Neural stemness contributes to cell tumorigenicity. Cell Biosci. 2021;11:21 pubmed 出版商
  56. Nilsson F, Storm P, Sozzi E, Hidalgo Gil D, Birtele M, Sharma Y, et al. Single-Cell Profiling of Coding and Noncoding Genes in Human Dopamine Neuron Differentiation. Cells. 2021;10: pubmed 出版商
  57. Yoon S, Bae Y, Oh S, Song W, Chang H, Kim M. Altered hippocampal gene expression, glial cell population, and neuronal excitability in aminopeptidase P1 deficiency. Sci Rep. 2021;11:932 pubmed 出版商
  58. Heaney C, Namjoshi S, Uneri A, Bach E, Weiner J, Raab Graham K. Role of FMRP in rapid antidepressant effects and synapse regulation. Mol Psychiatry. 2021;26:2350-2362 pubmed 出版商
  59. Xiao L, Sharma V, Toulabi L, Yang X, Lee C, Abebe D, et al. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry. 2021;11:24 pubmed 出版商
  60. van Berkel A, Santos T, Shaweis H, van Weering J, Toonen R, Verhage M. Loss of MUNC18-1 leads to retrograde transport defects in neurons. J Neurochem. 2021;157:450-466 pubmed 出版商
  61. Kuijpers M, Kochlamazashvili G, Stumpf A, Puchkov D, Swaminathan A, Lucht M, et al. Neuronal Autophagy Regulates Presynaptic Neurotransmission by Controlling the Axonal Endoplasmic Reticulum. Neuron. 2021;109:299-313.e9 pubmed 出版商
  62. Morales Garcia J, Calleja Conde J, Lopez Moreno J, Alonso Gil S, Sanz Sancristobal M, Riba J, et al. N,N-dimethyltryptamine compound found in the hallucinogenic tea ayahuasca, regulates adult neurogenesis in vitro and in vivo. Transl Psychiatry. 2020;10:331 pubmed 出版商
  63. Gao J, Wu Y, He D, Zhu X, Li H, Liu H, et al. Anti-aging effects of Ribes meyeri anthocyanins on neural stem cells and aging mice. Aging (Albany NY). 2020;12:17738-17753 pubmed 出版商
  64. Yang C, Qiu Y, Qing Y, Xu J, Dai W, Hu X, et al. Synergistic effect of electric stimulation and mesenchymal stem cells against Parkinson's disease. Aging (Albany NY). 2020;12:16062-16071 pubmed 出版商
  65. Sase S, Almad A, Boecker C, Guedes Dias P, Li J, Takanohashi A, et al. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. elife. 2020;9: pubmed 出版商
  66. Mondal B, Jin H, Kallappagoudar S, Sedkov Y, Martinez T, Sentmanat M, et al. The histone deacetylase complex MiDAC regulates a neurodevelopmental gene expression program to control neurite outgrowth. elife. 2020;9: pubmed 出版商
  67. Zhang W, Zhou M, Lu W, Gong J, Gao F, Li Y, et al. CNTNAP4 deficiency in dopaminergic neurons initiates parkinsonian phenotypes. Theranostics. 2020;10:3000-3021 pubmed 出版商
  68. Sarkar S, Li Y, Mirzaei R, Rawji K, Poon C, Wang J, et al. Demeclocycline Reduces the Growth of Human Brain Tumor-Initiating Cells: Direct Activity and Through Monocytes. Front Immunol. 2020;11:272 pubmed 出版商
  69. Wakhloo D, Scharkowski F, Curto Y, Javed Butt U, Bansal V, Steixner Kumar A, et al. Functional hypoxia drives neuroplasticity and neurogenesis via brain erythropoietin. Nat Commun. 2020;11:1313 pubmed 出版商
  70. McCabe M, Cullen E, Barrows C, Shore A, Tooke K, Laprade K, et al. Genetic inactivation of mTORC1 or mTORC2 in neurons reveals distinct functions in glutamatergic synaptic transmission. elife. 2020;9: pubmed 出版商
  71. Rodriguez Ortiz C, Prieto G, Martini A, Forner S, Trujillo Estrada L, LaFerla F, et al. miR-181a negatively modulates synaptic plasticity in hippocampal cultures and its inhibition rescues memory deficits in a mouse model of Alzheimer's disease. Aging Cell. 2020;19:e13118 pubmed 出版商
  72. Zeng S, Bai J, Jiang H, Zhu J, Fu C, He M, et al. Treatment With Liraglutide Exerts Neuroprotection After Hypoxic-Ischemic Brain Injury in Neonatal Rats via the PI3K/AKT/GSK3β Pathway. Front Cell Neurosci. 2019;13:585 pubmed 出版商
  73. Hughes C, Choi M, Yi J, Kim S, Drews A, George Hyslop P, et al. Beta amyloid aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal cell death. Commun Biol. 2020;3:79 pubmed 出版商
  74. Wang X, Ma M, Zhou L, Jiang X, Hao M, Teng R, et al. Autonomic ganglionic injection of α-synuclein fibrils as a model of pure autonomic failure α-synucleinopathy. Nat Commun. 2020;11:934 pubmed 出版商
  75. Potratz M, Zaeck L, Christen M, Te Kamp V, Klein A, Nolden T, et al. Astrocyte Infection during Rabies Encephalitis Depends on the Virus Strain and Infection Route as Demonstrated by Novel Quantitative 3D Analysis of Cell Tropism. Cells. 2020;9: pubmed 出版商
  76. Shibahara T, Ago T, Nakamura K, Tachibana M, Yoshikawa Y, Komori M, et al. Pericyte-Mediated Tissue Repair through PDGFRβ Promotes Peri-Infarct Astrogliosis, Oligodendrogenesis, and Functional Recovery after Acute Ischemic Stroke. Eneuro. 2020;7: pubmed 出版商
  77. Polis B, Srikanth K, Gurevich V, Bloch N, Gil Henn H, Samson A. Arginase Inhibition Supports Survival and Differentiation of Neuronal Precursors in Adult Alzheimer's Disease Mice. Int J Mol Sci. 2020;21: pubmed 出版商
  78. Moruno Manchon J, Lejault P, Wang Y, McCauley B, Honarpisheh P, Morales Scheihing D, et al. Small-molecule G-quadruplex stabilizers reveal a novel pathway of autophagy regulation in neurons. elife. 2020;9: pubmed 出版商
  79. Kjell J, Fischer Sternjak J, Thompson A, Friess C, Sticco M, Salinas F, et al. Defining the Adult Neural Stem Cell Niche Proteome Identifies Key Regulators of Adult Neurogenesis. Cell Stem Cell. 2020;26:277-293.e8 pubmed 出版商
  80. Hou K, Li G, Zhao J, Xu B, Zhang Y, Yu J, et al. Bone mesenchymal stem cell-derived exosomal microRNA-29b-3p prevents hypoxic-ischemic injury in rat brain by activating the PTEN-mediated Akt signaling pathway. J Neuroinflammation. 2020;17:46 pubmed 出版商
  81. Cicvaric A, Sachernegg H, Stojanovic T, Symmank D, Smani T, Moeslinger T, et al. Podoplanin Gene Disruption in Mice Promotes in vivo Neural Progenitor Cells Proliferation, Selectively Impairs Dentate Gyrus Synaptic Depression and Induces Anxiety-Like Behaviors. Front Cell Neurosci. 2019;13:561 pubmed 出版商
  82. Grovola M, Paleologos N, Wofford K, Harris J, Browne K, Johnson V, et al. Mossy cell hypertrophy and synaptic changes in the hilus following mild diffuse traumatic brain injury in pigs. J Neuroinflammation. 2020;17:44 pubmed 出版商
  83. Li T, Li K, Zhang S, Wang Y, Xu Y, Cronin S, et al. Overexpression of apoptosis inducing factor aggravates hypoxic-ischemic brain injury in neonatal mice. Cell Death Dis. 2020;11:77 pubmed 出版商
  84. Sclip A, Sudhof T. LAR receptor phospho-tyrosine phosphatases regulate NMDA-receptor responses. elife. 2020;9: pubmed 出版商
  85. Kielkowski P, Buchsbaum I, Kirsch V, Bach N, Drukker M, Cappello S, et al. FICD activity and AMPylation remodelling modulate human neurogenesis. Nat Commun. 2020;11:517 pubmed 出版商
  86. Tanaka H, Homma H, Fujita K, Kondo K, Yamada S, Jin X, et al. YAP-dependent necrosis occurs in early stages of Alzheimer's disease and regulates mouse model pathology. Nat Commun. 2020;11:507 pubmed 出版商
  87. Yang F, Yang L, Wataya Kaneda M, Teng L, Katayama I. Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model. PLoS ONE. 2020;15:e0228204 pubmed 出版商
  88. Trevino A, Sinnott Armstrong N, Andersen J, Yoon S, Huber N, Pritchard J, et al. Chromatin accessibility dynamics in a model of human forebrain development. Science. 2020;367: pubmed 出版商
  89. Cha M, Lee K, Lee B. Astroglial changes in the zona incerta in response to motor cortex stimulation in a rat model of chronic neuropathy. Sci Rep. 2020;10:943 pubmed 出版商
  90. Nickolls A, Lee M, Espinoza D, Szczot M, Lam R, Wang Q, et al. Transcriptional Programming of Human Mechanosensory Neuron Subtypes from Pluripotent Stem Cells. Cell Rep. 2020;30:932-946.e7 pubmed 出版商
  91. Cifelli J, Berg K, Yang J. Benzothiazole amphiphiles promote RasGRF1-associated dendritic spine formation in human stem cell-derived neurons. FEBS Open Bio. 2020;10:386-395 pubmed 出版商
  92. Zhu Q, Zhang N, Hu N, Jiang R, Lu H, Xuan A, et al. Neural stem cell transplantation improves learning and memory by protecting cholinergic neurons and restoring synaptic impairment in an amyloid precursor protein/presenilin 1 transgenic mouse model of Alzheimer's disease. Mol Med Rep. 2020;21:1172-1180 pubmed 出版商
  93. Marina N, Christie I, Korsak A, Doronin M, Brazhe A, Hosford P, et al. Astrocytes monitor cerebral perfusion and control systemic circulation to maintain brain blood flow. Nat Commun. 2020;11:131 pubmed 出版商
  94. Gate D, Saligrama N, Leventhal O, Yang A, Unger M, Middeldorp J, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature. 2020;577:399-404 pubmed 出版商
  95. Evans H, Bodea L, Götz J. Cell-specific non-canonical amino acid labelling identifies changes in the de novo proteome during memory formation. elife. 2020;9: pubmed 出版商
  96. Sun A, Yuan Q, Fukuda M, Yu W, Yan H, Lim G, et al. Potassium channel dysfunction in human neuronal models of Angelman syndrome. Science. 2019;366:1486-1492 pubmed 出版商
  97. Ercan Herbst E, Ehrig J, Schöndorf D, Behrendt A, Klaus B, Gomez Ramos B, et al. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun. 2019;7:192 pubmed 出版商
  98. Herring S, Moon H, Rawal P, Chhibber A, Zhao L. Brain clusterin protein isoforms and mitochondrial localization. elife. 2019;8: pubmed 出版商
  99. Ye J, Yin Y, Liu H, Fang L, Tao X, Wei L, et al. Tau inhibits PKA by nuclear proteasome-dependent PKAR2α elevation with suppressed CREB/GluA1 phosphorylation. Aging Cell. 2020;19:e13055 pubmed 出版商
  100. Javier Torrent M, Marco S, Rocandio D, Pons Vizcarra M, Janes P, Lackmann M, et al. Presenilin/γ-secretase-dependent EphA3 processing mediates axon elongation through non-muscle myosin IIA. elife. 2019;8: pubmed 出版商
  101. Diéguez Hurtado R, Kato K, Giaimo B, Nieminen Kelhä M, Arf H, Ferrante F, et al. Loss of the transcription factor RBPJ induces disease-promoting properties in brain pericytes. Nat Commun. 2019;10:2817 pubmed 出版商
  102. Donadoni M, Cicalese S, Sarkar D, Chang S, Sariyer I. Alcohol exposure alters pre-mRNA splicing of antiapoptotic Mcl-1L isoform and induces apoptosis in neural progenitors and immature neurons. Cell Death Dis. 2019;10:447 pubmed 出版商
  103. Velasco S, Kedaigle A, Simmons S, Nash A, Rocha M, Quadrato G, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 2019;: pubmed 出版商
  104. Rhee H, Shaib A, Rehbach K, Lee C, Seif P, Thomas C, et al. An Autaptic Culture System for Standardized Analyses of iPSC-Derived Human Neurons. Cell Rep. 2019;27:2212-2228.e7 pubmed 出版商
  105. Bertrand L, Méroth F, Tournebize M, Leda A, Sun E, Toborek M. Targeting the HIV-infected brain to improve ischemic stroke outcome. Nat Commun. 2019;10:2009 pubmed 出版商
  106. Rojek K, Krzemien J, Dolezyczek H, Boguszewski P, Kaczmarek L, Konopka W, et al. Amot and Yap1 regulate neuronal dendritic tree complexity and locomotor coordination in mice. PLoS Biol. 2019;17:e3000253 pubmed 出版商
  107. Vogel S, Schäfer C, Hess S, Folz Donahue K, Nelles M, Minassian A, et al. The in vivo timeline of differentiation of engrafted human neural progenitor cells. Stem Cell Res. 2019;37:101429 pubmed 出版商
  108. Bieri G, Brahic M, Bousset L, Couthouis J, Kramer N, Ma R, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol. 2019;137:961-980 pubmed 出版商
  109. Giandomenico S, Mierau S, Gibbons G, Wenger L, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669-679 pubmed 出版商
  110. Walton C, Zhang W, Patiño Parrado I, Barrio Alonso E, Garrido J, Frade J. Primary neurons can enter M-phase. Sci Rep. 2019;9:4594 pubmed 出版商
  111. Rademacher N, Kuropka B, Kunde S, Wahl M, Freund C, Shoichet S. Intramolecular domain dynamics regulate synaptic MAGUK protein interactions. elife. 2019;8: pubmed 出版商
  112. Aprile D, Fruscione F, Baldassari S, Fadda M, Ferrante D, Falace A, et al. TBC1D24 regulates axonal outgrowth and membrane trafficking at the growth cone in rodent and human neurons. Cell Death Differ. 2019;: pubmed 出版商
  113. Gasset Rosa F, Lu S, Yu H, Chen C, Melamed Z, Guo L, et al. Cytoplasmic TDP-43 De-mixing Independent of Stress Granules Drives Inhibition of Nuclear Import, Loss of Nuclear TDP-43, and Cell Death. Neuron. 2019;102:339-357.e7 pubmed 出版商
  114. Shimojo M, Madara J, Pankow S, Liu X, Yates J, Sudhof T, et al. Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev. 2019;33:365-376 pubmed 出版商
  115. Farías G, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S, et al. Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron. 2019;102:184-201.e8 pubmed 出版商
  116. Dominy S, LYNCH C, Ermini F, Benedyk M, Marczyk A, Konradi A, et al. Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333 pubmed 出版商
  117. Marchetto M, Hrvoj Mihic B, Kerman B, Yu D, Vadodaria K, Linker S, et al. Species-specific maturation profiles of human, chimpanzee and bonobo neural cells. elife. 2019;8: pubmed 出版商
  118. Zheng Y, Liu A, Wang Z, Cao Q, Wang W, Lin L, et al. Inhibition of EHMT1/2 rescues synaptic and cognitive functions for Alzheimer's disease. Brain. 2019;142:787-807 pubmed 出版商
  119. Wheeler M, Jaronen M, Covacu R, Zandee S, Scalisi G, Rothhammer V, et al. Environmental Control of Astrocyte Pathogenic Activities in CNS Inflammation. Cell. 2019;176:581-596.e18 pubmed 出版商
  120. Lien B, Tuszynski M, Lu P. Astrocytes migrate from human neural stem cell grafts and functionally integrate into the injured rat spinal cord. Exp Neurol. 2019;314:46-57 pubmed 出版商
  121. Jilg A, Bechstein P, Saade A, Dick M, Li T, Tosini G, et al. Melatonin modulates daytime-dependent synaptic plasticity and learning efficiency. J Pineal Res. 2019;66:e12553 pubmed 出版商
  122. Rangaraju V, Lauterbach M, Schuman E. Spatially Stable Mitochondrial Compartments Fuel Local Translation during Plasticity. Cell. 2019;176:73-84.e15 pubmed 出版商
  123. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018;362: pubmed 出版商
  124. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada Kakuda S, Takashima A, et al. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527:985-998 pubmed 出版商
  125. Wang N, Dhumale P, Chiang J, Püschel A. The Sema3A receptor Plexin-A1 suppresses supernumerary axons through Rap1 GTPases. Sci Rep. 2018;8:15647 pubmed 出版商
  126. Rahman A, Weber J, Labin E, Lai C, Prieto A. Developmental expression of Neuregulin-3 in the rat central nervous system. J Comp Neurol. 2019;527:797-817 pubmed 出版商
  127. Shen C, Liu Y, Yu H, Gulbranson D, Kogut I, Bilousova G, et al. The N-peptide-binding mode is critical to Munc18-1 function in synaptic exocytosis. J Biol Chem. 2018;293:18309-18317 pubmed 出版商
  128. Kaczmarek Hájek K, Zhang J, Kopp R, Grosche A, Rissiek B, Saul A, et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. elife. 2018;7: pubmed 出版商
  129. Ludtmann M, Angelova P, Horrocks M, Choi M, Rodrigues M, Baev A, et al. α-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson's disease. Nat Commun. 2018;9:2293 pubmed 出版商
  130. Fukuoka M, Takahashi M, Fujita H, Chiyo T, Popiel H, Watanabe S, et al. Supplemental Treatment for Huntington's Disease with miR-132 that Is Deficient in Huntington's Disease Brain. Mol Ther Nucleic Acids. 2018;11:79-90 pubmed 出版商
  131. Hou W, Nemitz S, Schopper S, Nielsen M, Kessels M, Qualmann B. Arginine Methylation by PRMT2 Controls the Functions of the Actin Nucleator Cobl. Dev Cell. 2018;45:262-275.e8 pubmed 出版商
  132. Gussenhoven R, Westerlaken R, Ophelders D, Jobe A, Kemp M, Kallapur S, et al. Chorioamnionitis, neuroinflammation, and injury: timing is key in the preterm ovine fetus. J Neuroinflammation. 2018;15:113 pubmed 出版商
  133. Tamaki Y, Shodai A, Morimura T, Hikiami R, Minamiyama S, Ayaki T, et al. Elimination of TDP-43 inclusions linked to amyotrophic lateral sclerosis by a misfolding-specific intrabody with dual proteolytic signals. Sci Rep. 2018;8:6030 pubmed 出版商
  134. Zhao X, Peng Z, Long L, Chen N, Zheng H, Deng D, et al. Lentiviral vector delivery of short hairpin RNA to NgR1 promotes nerve regeneration and locomotor recovery in injured rat spinal cord. Sci Rep. 2018;8:5447 pubmed 出版商
  135. Wang S, Ko S, Kim Y, Jo S, Lee S, Jung S, et al. Capsaicin upregulates HDAC2 via TRPV1 and impairs neuronal maturation in mice. Exp Mol Med. 2018;50:e455 pubmed 出版商
  136. Aneichyk T, Hendriks W, Yadav R, Shin D, Gao D, Vaine C, et al. Dissecting the Causal Mechanism of X-Linked Dystonia-Parkinsonism by Integrating Genome and Transcriptome Assembly. Cell. 2018;172:897-909.e21 pubmed 出版商
  137. Liu X, Wu H, Krzisch M, Wu X, Graef J, Muffat J, et al. Rescue of Fragile X Syndrome Neurons by DNA Methylation Editing of the FMR1 Gene. Cell. 2018;172:979-992.e6 pubmed 出版商
  138. Victor M, Richner M, Olsen H, Lee S, Monteys A, Ma C, et al. Striatal neurons directly converted from Huntington's disease patient fibroblasts recapitulate age-associated disease phenotypes. Nat Neurosci. 2018;21:341-352 pubmed 出版商
  139. Fukuda T, Ishizawa Y, Donai K, Sugano E, Tomita H. The poly-cistronic expression of four transcriptional factors (CRX, RAX, NEURO-D, OTX2) in fibroblasts via retro- or lentivirus causes partial reprogramming into photoreceptor cells. Cell Biol Int. 2018;42:608-614 pubmed 出版商
  140. Paik E, O Neil A, Ng S, Sun C, Rubin L. Using intracellular markers to identify a novel set of surface markers for live cell purification from a heterogeneous hIPSC culture. Sci Rep. 2018;8:804 pubmed 出版商
  141. Pastuzyn E, Day C, Kearns R, Kyrke Smith M, Taibi A, McCormick J, et al. The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell. 2018;172:275-288.e18 pubmed 出版商
  142. Wigerius M, Quinn D, Diab A, Clattenburg L, Kolar A, Qi J, et al. The polarity protein Angiomotin p130 controls dendritic spine maturation. J Cell Biol. 2018;217:715-730 pubmed 出版商
  143. Yadirgi G, Stickings P, Rajagopal S, Liu Y, Sesardic D. Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J Immunol Methods. 2017;451:90-99 pubmed 出版商
  144. Qu X, Yuan F, Corona C, Pasini S, Pero M, Gundersen G, et al. Stabilization of dynamic microtubules by mDia1 drives Tau-dependent Aβ1-42 synaptotoxicity. J Cell Biol. 2017;216:3161-3178 pubmed 出版商
  145. Tanabe Y, Naito Y, Vasuta C, Lee A, Soumounou Y, Linhoff M, et al. IgSF21 promotes differentiation of inhibitory synapses via binding to neurexin2?. Nat Commun. 2017;8:408 pubmed 出版商
  146. Liang F, Hwang J, Tang N, Hunziker W. Juxtanodin in retinal pigment epithelial cells: Expression and biological activities in regulating cell morphology and actin cytoskeleton organization. J Comp Neurol. 2018;526:205-215 pubmed 出版商
  147. Zhao Y, Tian J, Sui S, Yuan X, Chen H, Qu C, et al. Loss of succinyl-CoA synthase ADP-forming β subunit disrupts mtDNA stability and mitochondrial dynamics in neurons. Sci Rep. 2017;7:7169 pubmed 出版商
  148. Shi Y, Ping Y, Zhou W, He Z, Chen C, Bian B, et al. Tumour-associated macrophages secrete pleiotrophin to promote PTPRZ1 signalling in glioblastoma stem cells for tumour growth. Nat Commun. 2017;8:15080 pubmed 出版商
  149. Mews P, Donahue G, Drake A, Luczak V, Abel T, Berger S. Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature. 2017;546:381-386 pubmed 出版商
  150. Birey F, Andersen J, Makinson C, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54-59 pubmed 出版商
  151. Quadrato G, Nguyen T, Macosko E, Sherwood J, Min Yang S, Berger D, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017;545:48-53 pubmed 出版商
  152. Bobo Jiménez V, Delgado Esteban M, Angibaud J, Sánchez Morán I, de la Fuente A, Yajeya J, et al. APC/CCdh1-Rock2 pathway controls dendritic integrity and memory. Proc Natl Acad Sci U S A. 2017;114:4513-4518 pubmed 出版商
  153. Poulsen E, Iannuzzi F, Rasmussen H, Maier T, Enghild J, Jørgensen A, et al. An Aberrant Phosphorylation of Amyloid Precursor Protein Tyrosine Regulates Its Trafficking and the Binding to the Clathrin Endocytic Complex in Neural Stem Cells of Alzheimer's Disease Patients. Front Mol Neurosci. 2017;10:59 pubmed 出版商
  154. Luo L, Guo K, Fan W, Lu Y, Chen L, Wang Y, et al. Niche astrocytes promote the survival, proliferation and neuronal differentiation of co-transplanted neural stem cells following ischemic stroke in rats. Exp Ther Med. 2017;13:645-650 pubmed 出版商
  155. Loss O, Stephenson F. Developmental changes in trak-mediated mitochondrial transport in neurons. Mol Cell Neurosci. 2017;80:134-147 pubmed 出版商
  156. Han Q, Lin Q, Huang P, Chen M, Hu X, Fu H, et al. Microglia-derived IL-1? contributes to axon development disorders and synaptic deficit through p38-MAPK signal pathway in septic neonatal rats. J Neuroinflammation. 2017;14:52 pubmed 出版商
  157. Fowke T, Karunasinghe R, Bai J, Jordan S, Gunn A, Dean J. Hyaluronan synthesis by developing cortical neurons in vitro. Sci Rep. 2017;7:44135 pubmed 出版商
  158. Yamanishi E, Hasegawa K, Fujita K, Ichinose S, Yagishita S, Murata M, et al. A novel form of necrosis, TRIAD, occurs in human Huntington's disease. Acta Neuropathol Commun. 2017;5:19 pubmed 出版商
  159. de Oliveira R, Vicente Miranda H, Francelle L, Pinho R, Szego E, Martinho R, et al. The mechanism of sirtuin 2-mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15:e2000374 pubmed 出版商
  160. Moradi M, Sivadasan R, Saal L, Lüningschrör P, Dombert B, Rathod R, et al. Differential roles of α-, β-, and γ-actin in axon growth and collateral branch formation in motoneurons. J Cell Biol. 2017;216:793-814 pubmed 出版商
  161. Cao M, Wu Y, Ashrafi G, McCartney A, Wheeler H, Bushong E, et al. Parkinson Sac Domain Mutation in Synaptojanin 1 Impairs Clathrin Uncoating at Synapses and Triggers Dystrophic Changes in Dopaminergic Axons. Neuron. 2017;93:882-896.e5 pubmed 出版商
  162. Menges S, Minakaki G, Schaefer P, Meixner H, Prots I, Schlötzer Schrehardt U, et al. Alpha-synuclein prevents the formation of spherical mitochondria and apoptosis under oxidative stress. Sci Rep. 2017;7:42942 pubmed 出版商
  163. Eliscovich C, Shenoy S, Singer R. Imaging mRNA and protein interactions within neurons. Proc Natl Acad Sci U S A. 2017;114:E1875-E1884 pubmed 出版商
  164. Vazquez Cintron E, Beske P, Tenezaca L, Tran B, Oyler J, Glotfelty E, et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci Rep. 2017;7:42923 pubmed 出版商
  165. Zhu Y, Zhang Q, Zhang W, Li N, Dai Y, Tu J, et al. Protective Effect of 17β-Estradiol Upon Hippocampal Spine Density and Cognitive Function in an Animal Model of Vascular Dementia. Sci Rep. 2017;7:42660 pubmed 出版商
  166. Sartore R, Cardoso S, Lages Y, Paraguassu J, Stelling M, Madeiro da Costa R, et al. Trace elements during primordial plexiform network formation in human cerebral organoids. Peerj. 2017;5:e2927 pubmed 出版商
  167. Zoltowska K, Maesako M, Lushnikova I, Takeda S, Keller L, Skibo G, et al. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener. 2017;12:15 pubmed 出版商
  168. Furukawa S, Nagaike M, Ozaki K. Databases for technical aspects of immunohistochemistry. J Toxicol Pathol. 2017;30:79-107 pubmed 出版商
  169. Kim S, Im S, Oh S, Jeong S, Yoon E, Lee C, et al. Anisotropically organized three-dimensional culture platform for reconstruction of a hippocampal neural network. Nat Commun. 2017;8:14346 pubmed 出版商
  170. Mooney C, Jimenez Mateos E, Engel T, Mooney C, Diviney M, Venø M, et al. RNA sequencing of synaptic and cytoplasmic Upf1-bound transcripts supports contribution of nonsense-mediated decay to epileptogenesis. Sci Rep. 2017;7:41517 pubmed 出版商
  171. Biever A, Boubaker Vitre J, Cutando L, Gracia Rubio I, Costa Mattioli M, Puighermanal E, et al. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci. 2016;9:165 pubmed 出版商
  172. Valkova C, Liebmann L, Kramer A, Hübner C, Kaether C. The sorting receptor Rer1 controls Purkinje cell function via voltage gated sodium channels. Sci Rep. 2017;7:41248 pubmed 出版商
  173. Qi Y, Zhang X, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154-163 pubmed 出版商
  174. Behm M, Wahlstedt H, Widmark A, Eriksson M, Ohman M. Accumulation of nuclear ADAR2 regulates adenosine-to-inosine RNA editing during neuronal development. J Cell Sci. 2017;130:745-753 pubmed 出版商
  175. Ilouz R, Lev Ram V, Bushong E, Stiles T, Friedmann Morvinski D, Douglas C, et al. Isoform-specific subcellular localization and function of protein kinase A identified by mosaic imaging of mouse brain. elife. 2017;6: pubmed 出版商
  176. Redmann M, Wani W, Volpicelli Daley L, Darley Usmar V, Zhang J. Trehalose does not improve neuronal survival on exposure to alpha-synuclein pre-formed fibrils. Redox Biol. 2017;11:429-437 pubmed 出版商
  177. Perland E, Hellsten S, Lekholm E, Eriksson M, Arapi V, Fredriksson R. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake. J Mol Neurosci. 2017;61:199-214 pubmed 出版商
  178. Ronellenfitsch M, Oh J, Satomi K, Sumi K, Harter P, Steinbach J, et al. CASP9 germline mutation in a family with multiple brain tumors. Brain Pathol. 2018;28:94-102 pubmed 出版商
  179. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  180. Gisabella B, Farah S, Peng X, Burgos Robles A, Lim S, Goosens K. Growth hormone biases amygdala network activation after fear learning. Transl Psychiatry. 2016;6:e960 pubmed 出版商
  181. FINAN G, Realubit R, Chung S, Lutjohann D, Wang N, Cirrito J, et al. Bioactive Compound Screen for Pharmacological Enhancers of Apolipoprotein E in Primary Human Astrocytes. Cell Chem Biol. 2016;23:1526-1538 pubmed 出版商
  182. Kilpatrick C, Murakami S, Feng M, Wu X, Lal R, Chen G, et al. Dissociation of Golgi-associated DHHC-type Zinc Finger Protein (GODZ)- and Sertoli Cell Gene with a Zinc Finger Domain-? (SERZ-?)-mediated Palmitoylation by Loss of Function Analyses in Knock-out Mice. J Biol Chem. 2016;291:27371-27386 pubmed 出版商
  183. Hill S, Mordes D, Cameron L, Neuberg D, Landini S, Eggan K, et al. Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc Natl Acad Sci U S A. 2016;113:E7701-E7709 pubmed
  184. Park J, Kim S, Yoo J, Jang J, Lee A, Oh J, et al. Novel Neuroprotective Effects of Melanin-Concentrating Hormone in Parkinson's Disease. Mol Neurobiol. 2017;54:7706-7721 pubmed 出版商
  185. Brykczynska U, Pecho Vrieseling E, Thiemeyer A, Klein J, Fruh I, Doll T, et al. CGG Repeat-Induced FMR1 Silencing Depends on the Expansion Size in Human iPSCs and Neurons Carrying Unmethylated Full Mutations. Stem Cell Reports. 2016;7:1059-1071 pubmed 出版商
  186. Poncelet L, Garigliany M, Ando K, Franssen M, Desmecht D, Brion J. Cell cycle S phase markers are expressed in cerebral neuron nuclei of cats infected by the Feline Panleukopenia Virus. Cell Cycle. 2016;15:3482-3489 pubmed 出版商
  187. Akbalik G, Langebeck Jensen K, Tushev G, Sambandan S, Rinne J, Epstein I, et al. Visualization of newly synthesized neuronal RNA in vitro and in vivo using click-chemistry. RNA Biol. 2017;14:20-28 pubmed 出版商
  188. Piechota M, Sunderland P, Wysocka A, Nalberczak M, Sliwinska M, Radwanska K, et al. Is senescence-associated β-galactosidase a marker of neuronal senescence?. Oncotarget. 2016;7:81099-81109 pubmed 出版商
  189. Kaneko Y, Pappas C, Tajiri N, Borlongan C. Oxytocin modulates GABAAR subunits to confer neuroprotection in stroke in vitro. Sci Rep. 2016;6:35659 pubmed 出版商
  190. Rademacher N, Schmerl B, Lardong J, Wahl M, Shoichet S. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci Rep. 2016;6:35283 pubmed 出版商
  191. Woodruff G, Reyna S, Dunlap M, van der Kant R, Callender J, Young J, et al. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep. 2016;17:759-773 pubmed 出版商
  192. Kilic O, Pamies D, Lavell E, Schiapparelli P, Feng Y, Hartung T, et al. Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab Chip. 2016;16:4152-4162 pubmed
  193. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert D. Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ. 2016;58:664-676 pubmed 出版商
  194. Wolfe S, Workman E, Heaney C, Niere F, Namjoshi S, Cacheaux L, et al. FMRP regulates an ethanol-dependent shift in GABABR function and expression with rapid antidepressant properties. Nat Commun. 2016;7:12867 pubmed 出版商
  195. Dragich J, Kuwajima T, Hirose Ikeda M, Yoon M, Eenjes E, Bosco J, et al. Autophagy linked FYVE (Alfy/WDFY3) is required for establishing neuronal connectivity in the mammalian brain. elife. 2016;5: pubmed 出版商
  196. Chen P, Qin L, Li G, Tellides G, Simons M. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGF?)-dependent smooth muscle cell phenotype modulation. Sci Rep. 2016;6:33407 pubmed 出版商
  197. Bisbal M, Quassollo G, Caceres A. Imaging Golgi Outposts in Fixed and Living Neurons. Methods Mol Biol. 2016;1496:31-9 pubmed 出版商
  198. Hansen S, Stummann T, Borland H, Hasholt L, Tumer Z, Nielsen J, et al. Induced pluripotent stem cell - derived neurons for the study of spinocerebellar ataxia type 3. Stem Cell Res. 2016;17:306-317 pubmed 出版商
  199. Clairfeuille T, Mas C, Chan A, Yang Z, Tello Lafoz M, Chandra M, et al. A molecular code for endosomal recycling of phosphorylated cargos by the SNX27-retromer complex. Nat Struct Mol Biol. 2016;23:921-932 pubmed 出版商
  200. Begum A, Aguilar J, Elias L, Hong Y. Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells. Neurotoxicology. 2016;57:45-53 pubmed 出版商
  201. Fujita K, Motoki K, Tagawa K, Chen X, Hama H, Nakajima K, et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer's disease. Sci Rep. 2016;6:31895 pubmed 出版商
  202. Chailangkarn T, Trujillo C, Freitas B, Hrvoj Mihic B, Herai R, Yu D, et al. A human neurodevelopmental model for Williams syndrome. Nature. 2016;536:338-43 pubmed
  203. Waaijers S, Muñoz J, Berends C, Ramalho J, Goerdayal S, Low T, et al. A tissue-specific protein purification approach in Caenorhabditis elegans identifies novel interaction partners of DLG-1/Discs large. BMC Biol. 2016;14:66 pubmed 出版商
  204. Westbroek W, Nguyen M, Siebert M, Lindstrom T, Burnett R, Aflaki E, et al. A new glucocerebrosidase-deficient neuronal cell model provides a tool to probe pathophysiology and therapeutics for Gaucher disease. Dis Model Mech. 2016;9:769-78 pubmed 出版商
  205. Hamada N, Ito H, Nishijo T, Iwamoto I, Morishita R, Tabata H, et al. Essential role of the nuclear isoform of RBFOX1, a candidate gene for autism spectrum disorders, in the brain development. Sci Rep. 2016;6:30805 pubmed 出版商
  206. Lee S, Le Pichon C, Adolfsson O, Gafner V, Pihlgren M, Lin H, et al. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement. Cell Rep. 2016;16:1690-1700 pubmed 出版商
  207. Alves S, Marais T, Biferi M, Furling D, Marinello M, El Hachimi K, et al. Lentiviral vector-mediated overexpression of mutant ataxin-7 recapitulates SCA7 pathology and promotes accumulation of the FUS/TLS and MBNL1 RNA-binding proteins. Mol Neurodegener. 2016;11:58 pubmed 出版商
  208. Sun Y, Paşca S, Portmann T, Goold C, Worringer K, Guan W, et al. A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients. elife. 2016;5: pubmed 出版商
  209. Ku T, Swaney J, Park J, Albanese A, Murray E, Cho J, et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat Biotechnol. 2016;34:973-81 pubmed 出版商
  210. Skytt D, Toft Kehler A, Brændstrup C, Cejvanovic S, Gurubaran I, Bergersen L, et al. Glia-Neuron Interactions in the Retina Can Be Studied in Cocultures of Müller Cells and Retinal Ganglion Cells. Biomed Res Int. 2016;2016:1087647 pubmed 出版商
  211. Diez H, Benitez M, Fernandez S, Torres Aleman I, Garrido J, Wandosell F. Class I PI3-kinase or Akt inhibition do not impair axonal polarization, but slow down axonal elongation. Biochim Biophys Acta. 2016;1863:2574-2583 pubmed 出版商
  212. Sun Z, Zhan L, Liang L, Sui H, Zheng L, Sun X, et al. ZiBu PiYin recipe prevents diabetes-associated cognitive decline in rats: possible involvement of ameliorating mitochondrial dysfunction, insulin resistance pathway and histopathological changes. BMC Complement Altern Med. 2016;16:200 pubmed 出版商
  213. Cacialli P, Gueguen M, Coumailleau P, D angelo L, Kah O, Lucini C, et al. BDNF Expression in Larval and Adult Zebrafish Brain: Distribution and Cell Identification. PLoS ONE. 2016;11:e0158057 pubmed 出版商
  214. Yin Y, Gao D, Wang Y, Wang Z, Wang X, Ye J, et al. Tau accumulation induces synaptic impairment and memory deficit by calcineurin-mediated inactivation of nuclear CaMKIV/CREB signaling. Proc Natl Acad Sci U S A. 2016;113:E3773-81 pubmed 出版商
  215. Peneder T, Bauer J, Pifl C. Apoptosis-inducing factor in nigral dopamine neurons: Higher levels in primates than in mice. Mov Disord. 2016;31:1729-1733 pubmed 出版商
  216. Hutchinson E, Schwerin S, Radomski K, Irfanoglu M, Juliano S, Pierpaoli C. Quantitative MRI and DTI Abnormalities During the Acute Period Following CCI in the Ferret. Shock. 2016;46:167-76 pubmed 出版商
  217. Treutlein B, Lee Q, Camp J, Mall M, Koh W, Shariati S, et al. Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq. Nature. 2016;534:391-5 pubmed 出版商
  218. Perland E, Lekholm E, Eriksson M, Bagchi S, Arapi V, Fredriksson R. The Putative SLC Transporters Mfsd5 and Mfsd11 Are Abundantly Expressed in the Mouse Brain and Have a Potential Role in Energy Homeostasis. PLoS ONE. 2016;11:e0156912 pubmed 出版商
  219. Lin S, Gou G, Hsia C, Ho C, Huang K, Wu Y, et al. Simulated Microgravity Disrupts Cytoskeleton Organization and Increases Apoptosis of Rat Neural Crest Stem Cells Via Upregulating CXCR4 Expression and RhoA-ROCK1-p38 MAPK-p53 Signaling. Stem Cells Dev. 2016;25:1172-93 pubmed 出版商
  220. Gibon J, Unsain N, Gamache K, Thomas R, de León A, Johnstone A, et al. The X-linked inhibitor of apoptosis regulates long-term depression and learning rate. FASEB J. 2016;30:3083-90 pubmed 出版商
  221. Itoh Y, Higuchi M, Oishi K, Kishi Y, Okazaki T, Sakai H, et al. PDK1-Akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Natl Acad Sci U S A. 2016;113:E2955-64 pubmed 出版商
  222. He J, Zhou R, Wu Z, Carrasco M, Kurshan P, Farley J, et al. Prevalent presence of periodic actin-spectrin-based membrane skeleton in a broad range of neuronal cell types and animal species. Proc Natl Acad Sci U S A. 2016;113:6029-34 pubmed 出版商
  223. Hochmeister S, Engel O, Adzemovic M, Pekar T, Kendlbacher P, Zeitelhofer M, et al. Lipocalin-2 as an Infection-Related Biomarker to Predict Clinical Outcome in Ischemic Stroke. PLoS ONE. 2016;11:e0154797 pubmed 出版商
  224. Beck S, Guo L, Phensy A, Tian J, Wang L, Tandon N, et al. Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat Commun. 2016;7:11483 pubmed 出版商
  225. Frank R, Komiyama N, Ryan T, Zhu F, O Dell T, Grant S. NMDA receptors are selectively partitioned into complexes and supercomplexes during synapse maturation. Nat Commun. 2016;7:11264 pubmed 出版商
  226. Ren M, Du C, Herrero Acero E, Tang Schomer M, Ozkucur N. A biofidelic 3D culture model to study the development of brain cellular systems. Sci Rep. 2016;6:24953 pubmed 出版商
  227. Cabrera J, Lucas J. MAP2 Splicing is Altered in Huntington's Disease. Brain Pathol. 2017;27:181-189 pubmed 出版商
  228. Tkachenko L, Zykin P, Nasyrov R, Krasnoshchekova E. Distinctive Features of the Human Marginal Zone and Cajal-Retzius Cells: Comparison of Morphological and Immunocytochemical Features at Midgestation. Front Neuroanat. 2016;10:26 pubmed 出版商
  229. Garcia C, Videla Richardson G, Dimopoulos N, Fernandez Espinosa D, Miriuka S, Sevlever G, et al. Human Pluripotent Stem Cells and Derived Neuroprogenitors Display Differential Degrees of Susceptibility to BH3 Mimetics ABT-263, WEHI-539 and ABT-199. PLoS ONE. 2016;11:e0152607 pubmed 出版商
  230. Kos A, Wanke K, Gioio A, Martens G, Kaplan B, Aschrafi A. Monitoring mRNA Translation in Neuronal Processes Using Fluorescent Non-Canonical Amino Acid Tagging. J Histochem Cytochem. 2016;64:323-33 pubmed 出版商
  231. Fujiwara K, Fujita Y, Kasai A, Onaka Y, Hashimoto H, Okada H, et al. Deletion of JMJD2B in neurons leads to defective spine maturation, hyperactive behavior and memory deficits in mouse. Transl Psychiatry. 2016;6:e766 pubmed 出版商
  232. Vicidomini C, Ponzoni L, Lim D, Schmeisser M, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689-702 pubmed 出版商
  233. Connell J, Allison R, Reid E. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin. PLoS ONE. 2016;11:e0152413 pubmed 出版商
  234. Wang X, Zhang X, Zhou T, Li N, Jang C, Xiao Z, et al. Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1-42. Front Neurosci. 2016;10:94 pubmed 出版商
  235. Patzke C, Acuna C, Giam L, Wernig M, Südhof T. Conditional deletion of L1CAM in human neurons impairs both axonal and dendritic arborization and action potential generation. J Exp Med. 2016;213:499-515 pubmed 出版商
  236. Zhang Y, Gendron T, Grima J, Sasaguri H, Jansen West K, Xu Y, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins. Nat Neurosci. 2016;19:668-677 pubmed 出版商
  237. Cui Y, Han J, Xiao Z, Chen T, Wang B, Chen B, et al. The miR-20-Rest-Wnt signaling axis regulates neural progenitor cell differentiation. Sci Rep. 2016;6:23300 pubmed 出版商
  238. Ito M, Nakamura K, Mori F, Miki Y, Tanji K, Wakabayashi K. Novel eosinophilic neuronal cytoplasmic inclusions in the external cuneate nucleus of humans. Neuropathology. 2016;36:441-447 pubmed 出版商
  239. Leon J, Sakumi K, Castillo E, Sheng Z, Oka S, Nakabeppu Y. 8-Oxoguanine accumulation in mitochondrial DNA causes mitochondrial dysfunction and impairs neuritogenesis in cultured adult mouse cortical neurons under oxidative conditions. Sci Rep. 2016;6:22086 pubmed 出版商
  240. Alshammari M, Alshammari T, Laezza F. Improved Methods for Fluorescence Microscopy Detection of Macromolecules at the Axon Initial Segment. Front Cell Neurosci. 2016;10:5 pubmed 出版商
  241. Wilson N, Titus D, Oliva A, Furones C, Atkins C. Traumatic Brain Injury Upregulates Phosphodiesterase Expression in the Hippocampus. Front Syst Neurosci. 2016;10:5 pubmed 出版商
  242. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  243. Collazos Castro J, García Rama C, Alves Sampaio A. Glial progenitor cell migration promotes CNS axon growth on functionalized electroconducting microfibers. Acta Biomater. 2016;35:42-56 pubmed 出版商
  244. Zhang W, Kim P, Chen Z, Lokman H, Qiu L, Zhang K, et al. MiRNA-128 regulates the proliferation and neurogenesis of neural precursors by targeting PCM1 in the developing cortex. elife. 2016;5: pubmed 出版商
  245. Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan N, Yang N, et al. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nat Commun. 2016;7:10640 pubmed 出版商
  246. Xu J, Wang N, Luo J, Xia J. Syntabulin regulates the trafficking of PICK1-containing vesicles in neurons. Sci Rep. 2016;6:20924 pubmed 出版商
  247. Liu B, Ma A, Zhang F, Wang Y, Li Z, Li Q, et al. MAZ mediates the cross-talk between CT-1 and NOTCH1 signaling during gliogenesis. Sci Rep. 2016;6:21534 pubmed 出版商
  248. Nawaz M, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, et al. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS ONE. 2016;11:e0148634 pubmed 出版商
  249. Schoen M, Reichel J, Demestre M, Putz S, Deshpande D, Proepper C, et al. Super-Resolution Microscopy Reveals Presynaptic Localization of the ALS/FTD Related Protein FUS in Hippocampal Neurons. Front Cell Neurosci. 2015;9:496 pubmed 出版商
  250. Canetta S, Bolkan S, Padilla Coreano N, Song L, Sahn R, Harrison N, et al. Maternal immune activation leads to selective functional deficits in offspring parvalbumin interneurons. Mol Psychiatry. 2016;21:956-68 pubmed 出版商
  251. Kishi N, MacDonald J, Ye J, Molyneaux B, Azim E, Macklis J. Reduction of aberrant NF-κB signalling ameliorates Rett syndrome phenotypes in Mecp2-null mice. Nat Commun. 2016;7:10520 pubmed 出版商
  252. Brahic M, Bousset L, Bieri G, Melki R, Gitler A. Axonal transport and secretion of fibrillar forms of α-synuclein, Aβ42 peptide and HTTExon 1. Acta Neuropathol. 2016;131:539-48 pubmed 出版商
  253. Wang Y, Wu Q, Yang P, Wang C, Liu J, Ding W, et al. LSD1 co-repressor Rcor2 orchestrates neurogenesis in the developing mouse brain. Nat Commun. 2016;7:10481 pubmed 出版商
  254. Müller A, Stellmacher A, Freitag C, Landgraf P, Dieterich D. Monitoring Astrocytic Proteome Dynamics by Cell Type-Specific Protein Labeling. PLoS ONE. 2015;10:e0145451 pubmed 出版商
  255. Haas L, Salazar S, Kostylev M, Um J, Kaufman A, Strittmatter S. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer's disease. Brain. 2016;139:526-46 pubmed 出版商
  256. Scandaglia M, Benito E, Morenilla Palao C, Fiorenza A, Del Blanco B, Coca Y, et al. Fine-tuned SRF activity controls asymmetrical neuronal outgrowth: implications for cortical migration, neural tissue lamination and circuit assembly. Sci Rep. 2015;5:17470 pubmed 出版商
  257. Stephen T, Higgs N, Sheehan D, Al Awabdh S, López Doménech G, Arancibia Carcamo I, et al. Miro1 Regulates Activity-Driven Positioning of Mitochondria within Astrocytic Processes Apposed to Synapses to Regulate Intracellular Calcium Signaling. J Neurosci. 2015;35:15996-6011 pubmed 出版商
  258. Ho S, Hartley B, TCW J, Beaumont M, Stafford K, Slesinger P, et al. Rapid Ngn2-induction of excitatory neurons from hiPSC-derived neural progenitor cells. Methods. 2016;101:113-24 pubmed 出版商
  259. Leshchyns ka I, Liew H, Shepherd C, Halliday G, Stevens C, Ke Y, et al. Aβ-dependent reduction of NCAM2-mediated synaptic adhesion contributes to synapse loss in Alzheimer's disease. Nat Commun. 2015;6:8836 pubmed 出版商
  260. Oliveira L, Falomir Lockhart L, Botelho M, Lin K, Wales P, Koch J, et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal differentiation and maturation in Parkinson's patient-derived induced pluripotent stem cells. Cell Death Dis. 2015;6:e1994 pubmed 出版商
  261. Hajj R, Milet A, Toulorge D, Cholet N, Laffaire J, Foucquier J, et al. Combination of acamprosate and baclofen as a promising therapeutic approach for Parkinson's disease. Sci Rep. 2015;5:16084 pubmed 出版商
  262. Das D, Tapias V, D Aiuto L, Chowdari K, Francis L, Zhi Y, et al. Genetic and morphological features of human iPSC-derived neurons with chromosome 15q11.2 (BP1-BP2) deletions. Mol Neuropsychiatry. 2015;1:116-123 pubmed
  263. Taylor A, Vagaska B, Edgington R, Hébert C, Ferretti P, Bergonzo P, et al. Biocompatibility of nanostructured boron doped diamond for the attachment and proliferation of human neural stem cells. J Neural Eng. 2015;12:066016 pubmed 出版商
  264. Corcoran K, Leaderbrand K, Jovasevic V, Guedea A, Kassam F, Radulovic J. Regulation of fear extinction versus other affective behaviors by discrete cortical scaffolding complexes associated with NR2B and PKA signaling. Transl Psychiatry. 2015;5:e657 pubmed 出版商
  265. Chen F, Rosiene J, Che A, Becker A, LoTurco J. Tracking and transforming neocortical progenitors by CRISPR/Cas9 gene targeting and piggyBac transposase lineage labeling. Development. 2015;142:3601-11 pubmed 出版商
  266. Uchida H, Morita T, Niizuma K, Kushida Y, Kuroda Y, Wakao S, et al. Transplantation of Unique Subpopulation of Fibroblasts, Muse Cells, Ameliorates Experimental Stroke Possibly via Robust Neuronal Differentiation. Stem Cells. 2016;34:160-73 pubmed 出版商
  267. Bullmann T, Seeger G, Stieler J, Hanics J, Reimann K, Kretzschmann T, et al. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters. Hippocampus. 2016;26:301-18 pubmed 出版商
  268. Kraushar M, Viljetić B, Wijeratne H, Thompson K, Jiao X, Pike J, et al. Thalamic WNT3 Secretion Spatiotemporally Regulates the Neocortical Ribosome Signature and mRNA Translation to Specify Neocortical Cell Subtypes. J Neurosci. 2015;35:10911-26 pubmed 出版商
  269. Ohnishi T, Yanazawa M, Sasahara T, Kitamura Y, Hiroaki H, Fukazawa Y, et al. Na, K-ATPase α3 is a death target of Alzheimer patient amyloid-β assembly. Proc Natl Acad Sci U S A. 2015;112:E4465-74 pubmed 出版商
  270. Mohammadi A, Attari F, Babapour V, Hassani S, Masoudi N, Shahverdi A, et al. Generation of Rat Embryonic Germ Cells via Inhibition of TGFß and MEK Pathways. Cell J. 2015;17:288-95 pubmed
  271. Smith L, He Y, Park J, Bieri G, Snethlage C, Lin K, et al. β2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015;21:932-7 pubmed 出版商
  272. Licht Mayer S, Wimmer I, Traffehn S, Metz I, Brück W, Bauer J, et al. Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol. 2015;130:263-77 pubmed 出版商
  273. Tang H, Hua F, Wang J, Yousuf S, Atif F, Sayeed I, et al. Progesterone and vitamin D combination therapy modulates inflammatory response after traumatic brain injury. Brain Inj. 2015;29:1165-1174 pubmed 出版商
  274. Bijata M, Wlodarczyk J, Figiel I. Dystroglycan controls dendritic morphogenesis of hippocampal neurons in vitro. Front Cell Neurosci. 2015;9:199 pubmed 出版商
  275. Dell Ovo V, Rosenzweig J, Burd I, Merabova N, Darbinian N, Goetzl L. An animal model for chorioamnionitis at term. Am J Obstet Gynecol. 2015;213:387.e1-10 pubmed 出版商
  276. Poletti V, Delli Carri A, Malagoli Tagliazucchi G, Faedo A, Petiti L, Mazza E, et al. Genome-Wide Definition of Promoter and Enhancer Usage during Neural Induction of Human Embryonic Stem Cells. PLoS ONE. 2015;10:e0126590 pubmed 出版商
  277. Zhou F, Gao S, Wang L, Sun C, Chen L, Yuan P, et al. Human adipose-derived stem cells partially rescue the stroke syndromes by promoting spatial learning and memory in mouse middle cerebral artery occlusion model. Stem Cell Res Ther. 2015;6:92 pubmed 出版商
  278. Meganathan K, Jagtap S, Srinivasan S, Wagh V, Hescheler J, Hengstler J, et al. Neuronal developmental gene and miRNA signatures induced by histone deacetylase inhibitors in human embryonic stem cells. Cell Death Dis. 2015;6:e1756 pubmed 出版商
  279. Farzana F, Zalm R, Chen N, Li K, Grant S, Smit A, et al. Neurobeachin Regulates Glutamate- and GABA-Receptor Targeting to Synapses via Distinct Pathways. Mol Neurobiol. 2016;53:2112-23 pubmed 出版商
  280. Usui Y, Westenskow P, Kurihara T, Aguilar E, Sakimoto S, Paris L, et al. Neurovascular crosstalk between interneurons and capillaries is required for vision. J Clin Invest. 2015;125:2335-46 pubmed 出版商
  281. Machado C, Griesi Oliveira K, Rosenberg C, Kok F, Martins S, Passos Bueno M, et al. Collybistin binds and inhibits mTORC1 signaling: a potential novel mechanism contributing to intellectual disability and autism. Eur J Hum Genet. 2016;24:59-65 pubmed 出版商
  282. Deleyrolle L, Sabourin J, Rothhut B, Fujita H, Guichet P, Teigell M, et al. OCAM regulates embryonic spinal cord stem cell proliferation by modulating ErbB2 receptor. PLoS ONE. 2015;10:e0122337 pubmed 出版商
  283. Brøchner C, Holst C, MøllgÃ¥rd K. Outer brain barriers in rat and human development. Front Neurosci. 2015;9:75 pubmed 出版商
  284. Balsara R, Dang A, Donahue D, Snow T, Castellino F. Conantokin-G attenuates detrimental effects of NMDAR hyperactivity in an ischemic rat model of stroke. PLoS ONE. 2015;10:e0122840 pubmed 出版商
  285. Videla Richardson G, Garcia C, Roisman A, Slavutsky I, Fernandez Espinosa D, Romorini L, et al. Specific Preferences in Lineage Choice and Phenotypic Plasticity of Glioma Stem Cells Under BMP4 and Noggin Influence. Brain Pathol. 2016;26:43-61 pubmed 出版商
  286. Liu Y, Lee J, Ackerman S. Mutations in the microtubule-associated protein 1A (Map1a) gene cause Purkinje cell degeneration. J Neurosci. 2015;35:4587-98 pubmed 出版商
  287. Nakadate K. Developmental changes in the flotillin-1 expression pattern of the rat visual cortex. Neuroscience. 2015;292:101-11 pubmed 出版商
  288. Arulmoli J, Pathak M, McDonnell L, Nourse J, Tombola F, Earthman J, et al. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci Rep. 2015;5:8499 pubmed 出版商
  289. Xu X, Yang X, Xiong Y, Gu J, He C, Hu Y, et al. Increased expression of receptor for activated C kinase 1 in temporal lobe epilepsy. J Neurochem. 2015;133:134-43 pubmed 出版商
  290. Xue T, Wei L, Zha D, Qiao L, Lu L, Chen F, et al. Exposure to acoustic stimuli promotes the development and differentiation of neural stem cells from the cochlear nuclei through the clusterin pathway. Int J Mol Med. 2015;35:637-44 pubmed 出版商
  291. Cerbini T, Funahashi R, Luo Y, Liu C, Park K, Rao M, et al. Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS ONE. 2015;10:e0116032 pubmed 出版商
  292. Maurya S, Mishra J, Abbas S, Bandyopadhyay S. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators. Mol Neurobiol. 2016;53:968-82 pubmed 出版商
  293. Kumar M, Csaba Z, Peineau S, Srivastava R, Rasika S, Mani S, et al. Endogenous cerebellar neurogenesis in adult mice with progressive ataxia. Ann Clin Transl Neurol. 2014;1:968-81 pubmed 出版商
  294. Wen M, Yan Y, Yan N, Chen X, Liu S, Feng Z. Upregulation of RBFOX1 in the malformed cortex of patients with intractable epilepsy and in cultured rat neurons. Int J Mol Med. 2015;35:597-606 pubmed 出版商
  295. Walkup W, Washburn L, Sweredoski M, Carlisle H, Graham R, Hess S, et al. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. J Biol Chem. 2015;290:4908-27 pubmed 出版商
  296. Riecken L, Tawamie H, Dornblut C, Buchert R, Ismayel A, Schulz A, et al. Inhibition of RAS activation due to a homozygous ezrin variant in patients with profound intellectual disability. Hum Mutat. 2015;36:270-8 pubmed 出版商
  297. Vergaño Vera E, Diaz Guerra E, Rodríguez Traver E, Méndez Gómez H, Solis O, Pignatelli J, et al. Nurr1 blocks the mitogenic effect of FGF-2 and EGF, inducing olfactory bulb neural stem cells to adopt dopaminergic and dopaminergic-GABAergic neuronal phenotypes. Dev Neurobiol. 2015;75:823-41 pubmed 出版商
  298. Chip S, Zhu X, Kapfhammer J. The analysis of neurovascular remodeling in entorhino-hippocampal organotypic slice cultures. J Vis Exp. 2014;:e52023 pubmed 出版商
  299. Goyal U, Renvoisé B, Chang J, Blackstone C. Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development. PLoS ONE. 2014;9:e112428 pubmed 出版商
  300. Deng X, Li M, Ai W, He L, Lu D, Patrylo P, et al. Lipolysaccharide-Induced Neuroinflammation Is Associated with Alzheimer-Like Amyloidogenic Axonal Pathology and Dendritic Degeneration in Rats. Adv Alzheimer Dis. 2014;3:78-93 pubmed
  301. Steward O, Sharp K, Yee K, Hatch M, Bonner J. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury. J Neurosci. 2014;34:14013-21 pubmed 出版商
  302. Jia J, Hu Z, Nordman J, Li Z. The schizophrenia susceptibility gene dysbindin regulates dendritic spine dynamics. J Neurosci. 2014;34:13725-36 pubmed 出版商
  303. Libard S, Popova S, Amini R, Kärjä V, Pietiläinen T, Hämäläinen K, et al. Human cytomegalovirus tegument protein pp65 is detected in all intra- and extra-axial brain tumours independent of the tumour type or grade. PLoS ONE. 2014;9:e108861 pubmed 出版商
  304. Deleglise B, Magnifico S, Duplus E, Vaur P, Soubeyre V, Belle M, et al. β-amyloid induces a dying-back process and remote trans-synaptic alterations in a microfluidic-based reconstructed neuronal network. Acta Neuropathol Commun. 2014;2:145 pubmed 出版商
  305. Bell A, Althaus M, Diener M. Communication between mast cells and rat submucosal neurons. Pflugers Arch. 2015;467:1809-23 pubmed 出版商
  306. Gervois P, Struys T, Hilkens P, Bronckaers A, Ratajczak J, Politis C, et al. Neurogenic maturation of human dental pulp stem cells following neurosphere generation induces morphological and electrophysiological characteristics of functional neurons. Stem Cells Dev. 2015;24:296-311 pubmed 出版商
  307. Chou C, Sinden J, Couraud P, Modo M. In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS ONE. 2014;9:e106346 pubmed 出版商
  308. Watanabe Y, Sakuma C, Yaginuma H. NRP1-mediated Sema3A signals coordinate laminar formation in the developing chick optic tectum. Development. 2014;141:3572-82 pubmed 出版商
  309. Zhang Y, Jansen West K, Xu Y, Gendron T, Bieniek K, Lin W, et al. Aggregation-prone c9FTD/ALS poly(GA) RAN-translated proteins cause neurotoxicity by inducing ER stress. Acta Neuropathol. 2014;128:505-24 pubmed 出版商
  310. Radonjić N, Memi F, Ortega J, Glidden N, Zhan H, Zecevic N. The Role of Sonic Hedgehog in the Specification of Human Cortical Progenitors In Vitro. Cereb Cortex. 2016;26:131-43 pubmed 出版商
  311. Yarchoan M, Toledo J, Lee E, Arvanitakis Z, Kazi H, Han L, et al. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies. Acta Neuropathol. 2014;128:679-89 pubmed 出版商
  312. Papa L, Robertson C, Wang K, Brophy G, Hannay H, Heaton S, et al. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22:52-64 pubmed 出版商
  313. Tyzack G, Sitnikov S, Barson D, Adams Carr K, Lau N, Kwok J, et al. Astrocyte response to motor neuron injury promotes structural synaptic plasticity via STAT3-regulated TSP-1 expression. Nat Commun. 2014;5:4294 pubmed 出版商
  314. Hagel C, Krasemann S, Löffler J, Puschel K, Magnus T, Glatzel M. Upregulation of Shiga toxin receptor CD77/Gb3 and interleukin-1? expression in the brain of EHEC patients with hemolytic uremic syndrome and neurologic symptoms. Brain Pathol. 2015;25:146-56 pubmed 出版商
  315. Karow M, Schichor C, Beckervordersandforth R, Berninger B. Lineage-reprogramming of pericyte-derived cells of the adult human brain into induced neurons. J Vis Exp. 2014;: pubmed 出版商
  316. Wang R, Palavicini J, Wang H, Maiti P, Bianchi E, Xu S, et al. RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer's disease. Neurobiol Dis. 2014;69:169-79 pubmed 出版商
  317. Mori F, Watanabe Y, Miki Y, Tanji K, Odagiri S, Eto K, et al. Ubiquitin-negative, eosinophilic neuronal cytoplasmic inclusions associated with stress granules and autophagy: an immunohistochemical investigation of two cases. Neuropathology. 2014;34:140-7 pubmed
  318. König N, Trolle C, Kapuralin K, Adameyko I, Mitrecic D, Aldskogius H, et al. Murine neural crest stem cells and embryonic stem cell-derived neuron precursors survive and differentiate after transplantation in a model of dorsal root avulsion. J Tissue Eng Regen Med. 2017;11:129-137 pubmed 出版商
  319. Zhang W, R hse H, Rizzoli S, Opazo F. Fluorescent in situ hybridization of synaptic proteins imaged with super-resolution STED microscopy. Microsc Res Tech. 2014;77:517-27 pubmed 出版商
  320. Ishikawa M, Shiota J, Ishibashi Y, Hakamata T, Shoji S, Fukuchi M, et al. Cellular localization and dendritic function of rat isoforms of the SRF coactivator MKL1 in cortical neurons. Neuroreport. 2014;25:585-92 pubmed 出版商
  321. Macdonald C, Unsworth C, Graham E. Enrichment of differentiated hNT neurons and subsequent analysis using flow-cytometry and xCELLigence sensing. J Neurosci Methods. 2014;227:47-56 pubmed 出版商
  322. Chen F, Becker A, LoTurco J. Contribution of tumor heterogeneity in a new animal model of CNS tumors. Mol Cancer Res. 2014;12:742-53 pubmed 出版商
  323. Willard S, Hemby S, Register T, McIntosh S, Shively C. Altered expression of glial and synaptic markers in the anterior hippocampus of behaviorally depressed female monkeys. Neurosci Lett. 2014;563:1-5 pubmed 出版商
  324. Yamanaka T, Tosaki A, Kurosawa M, Akimoto K, Hirose T, Ohno S, et al. Loss of aPKC? in differentiated neurons disrupts the polarity complex but does not induce obvious neuronal loss or disorientation in mouse brains. PLoS ONE. 2013;8:e84036 pubmed 出版商
  325. Yousuf S, Sayeed I, Atif F, Tang H, Wang J, Stein D. Delayed progesterone treatment reduces brain infarction and improves functional outcomes after ischemic stroke: a time-window study in middle-aged rats. J Cereb Blood Flow Metab. 2014;34:297-306 pubmed 出版商
  326. Hu Y, Ru N, Xiao H, Chaturbedi A, Hoa N, Tian X, et al. Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS ONE. 2013;8:e80898 pubmed 出版商
  327. Nguyen H, Ostendorf A, Satz J, Westra S, Ross Barta S, Campbell K, et al. Glial scaffold required for cerebellar granule cell migration is dependent on dystroglycan function as a receptor for basement membrane proteins. Acta Neuropathol Commun. 2013;1:58 pubmed 出版商
  328. Bhaskar K, Maphis N, Xu G, Varvel N, Kokiko Cochran O, Weick J, et al. Microglial derived tumor necrosis factor-? drives Alzheimer's disease-related neuronal cell cycle events. Neurobiol Dis. 2014;62:273-85 pubmed 出版商
  329. Feng N, Han Q, Li J, Wang S, Li H, Yao X, et al. Generation of highly purified neural stem cells from human adipose-derived mesenchymal stem cells by Sox1 activation. Stem Cells Dev. 2014;23:515-29 pubmed 出版商
  330. Rousseau E, Michel P, Hirsch E. The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis. Mol Pharmacol. 2013;84:888-98 pubmed 出版商
  331. Valor L, Guiretti D, Lopez Atalaya J, Barco A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J Neurosci. 2013;33:10471-82 pubmed 出版商
  332. Li Q, Zhang Z, Li Z, Zhou M, Liu B, Pan L, et al. ADAM17 is critical for multipolar exit and radial migration of neuronal intermediate progenitor cells in mice cerebral cortex. PLoS ONE. 2013;8:e65703 pubmed 出版商
  333. Delli Carri A, Onorati M, Castiglioni V, Faedo A, Camnasio S, Toselli M, et al. Human pluripotent stem cell differentiation into authentic striatal projection neurons. Stem Cell Rev. 2013;9:461-74 pubmed 出版商
  334. Valdés Sánchez T, Rodríguez Jiménez F, García Cruz D, Escobar Ivirico J, Alastrue Agudo A, Erceg S, et al. Methacrylate-endcapped caprolactone and FM19G11 provide a proper niche for spinal cord-derived neural cells. J Tissue Eng Regen Med. 2015;9:734-9 pubmed 出版商
  335. Smith A, Gibbons H, Oldfield R, Bergin P, Mee E, Faull R, et al. The transcription factor PU.1 is critical for viability and function of human brain microglia. Glia. 2013;61:929-42 pubmed 出版商
  336. Semerdjieva S, Abdul Razak H, Salim S, Yáñez Muñoz R, Chen P, Tarabykin V, et al. Activation of EphA receptors mediates the recruitment of the adaptor protein Slap, contributing to the downregulation of N-methyl-D-aspartate receptors. Mol Cell Biol. 2013;33:1442-55 pubmed 出版商
  337. Karasinska J, de Haan W, Franciosi S, Ruddle P, Fan J, Kruit J, et al. ABCA1 influences neuroinflammation and neuronal death. Neurobiol Dis. 2013;54:445-55 pubmed 出版商
  338. Lu B, Palacino J. A novel human embryonic stem cell-derived Huntington's disease neuronal model exhibits mutant huntingtin (mHTT) aggregates and soluble mHTT-dependent neurodegeneration. FASEB J. 2013;27:1820-9 pubmed 出版商
  339. Lee D, CHUNG J, Chung K, Kang M. Reactive oxygen species (ROS) modulate AMPA receptor phosphorylation and cell-surface localization in concert with pain-related behavior. Pain. 2012;153:1905-15 pubmed 出版商
  340. Chao H, Lai Y, Lu Y, Lin C, Mai W, Huang Y. NMDAR signaling facilitates the IPO5-mediated nuclear import of CPEB3. Nucleic Acids Res. 2012;40:8484-98 pubmed
  341. Noam Y, Phan L, McClelland S, Manders E, Ehrengruber M, Wadman W, et al. Distinct regional and subcellular localization of the actin-binding protein filamin A in the mature rat brain. J Comp Neurol. 2012;520:3013-34 pubmed 出版商
  342. Walker M, LaFerla F, Oddo S, Brewer G. Reversible epigenetic histone modifications and Bdnf expression in neurons with aging and from a mouse model of Alzheimer's disease. Age (Dordr). 2013;35:519-31 pubmed 出版商
  343. Krajewska M, You Z, Rong J, Kress C, Huang X, Yang J, et al. Neuronal deletion of caspase 8 protects against brain injury in mouse models of controlled cortical impact and kainic acid-induced excitotoxicity. PLoS ONE. 2011;6:e24341 pubmed 出版商
  344. Mouton Liger F, Thomas S, Rattenbach R, Magnol L, Larigaldie V, Ledru A, et al. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-? activation in mouse models of Down syndrome. J Comp Neurol. 2011;519:2779-802 pubmed 出版商
  345. Coyle D, Li J, Baccei M. Regional differentiation of retinoic acid-induced human pluripotent embryonic carcinoma stem cell neurons. PLoS ONE. 2011;6:e16174 pubmed 出版商
  346. Griffin G, Ferri Kolwicz S, Reyes B, Van Bockstaele E, Flanagan Cato L. Ovarian hormone-induced reorganization of oxytocin-labeled dendrites and synapses lateral to the hypothalamic ventromedial nucleus in female rats. J Comp Neurol. 2010;518:4531-45 pubmed 出版商
  347. Han C, Min B, Kim Y, Jeong E, Park C, Woo Y, et al. Immunohistochemical analysis of developmental neural antigen expression in the balloon cells of focal cortical dysplasia. J Clin Neurosci. 2011;18:114-8 pubmed 出版商
  348. Kotani T, Murata Y, Ohnishi H, Mori M, Kusakari S, Saito Y, et al. Expression of PTPRO in the interneurons of adult mouse olfactory bulb. J Comp Neurol. 2010;518:119-36 pubmed 出版商
  349. Nakamura F, Ugajin K, Yamashita N, Okada T, Uchida Y, Taniguchi M, et al. Increased proximal bifurcation of CA1 pyramidal apical dendrites in sema3A mutant mice. J Comp Neurol. 2009;516:360-75 pubmed 出版商
  350. Stillman A, Krsnik Z, Sun J, Rasin M, State M, Sestan N, et al. Developmentally regulated and evolutionarily conserved expression of SLITRK1 in brain circuits implicated in Tourette syndrome. J Comp Neurol. 2009;513:21-37 pubmed 出版商
  351. Sakakibara S, Nakadate K, Tanaka Nakadate S, Yoshida K, Nogami S, Shirataki H, et al. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J Comp Neurol. 2008;511:65-80 pubmed 出版商
  352. Fevre Montange M, Grand S, Champier J, Hoffmann D, Pasquier B, Jouvet A. Bcl-2 expression in a papillary tumor of the pineal region. Neuropathology. 2008;28:660-3 pubmed 出版商
  353. Caminos E, Garcia Pino E, Martinez Galan J, Juiz J. The potassium channel KCNQ5/Kv7.5 is localized in synaptic endings of auditory brainstem nuclei of the rat. J Comp Neurol. 2007;505:363-78 pubmed
  354. Ahlemeyer B, Neubert I, Kovacs W, Baumgart Vogt E. Differential expression of peroxisomal matrix and membrane proteins during postnatal development of mouse brain. J Comp Neurol. 2007;505:1-17 pubmed
  355. Dudanova I, Tabuchi K, Rohlmann A, Sudhof T, Missler M. Deletion of alpha-neurexins does not cause a major impairment of axonal pathfinding or synapse formation. J Comp Neurol. 2007;502:261-74 pubmed
  356. Navarro Quiroga I, Hernandez Valdes M, Lin S, Naegele J. Postnatal cellular contributions of the hippocampus subventricular zone to the dentate gyrus, corpus callosum, fimbria, and cerebral cortex. J Comp Neurol. 2006;497:833-45 pubmed
  357. Treloar H, Uboha U, Jeromin A, Greer C. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol. 2005;482:201-16 pubmed
  358. Trimmer P, Borland M, Keeney P, Bennett J, Parker W. Parkinson's disease transgenic mitochondrial cybrids generate Lewy inclusion bodies. J Neurochem. 2004;88:800-12 pubmed
  359. Buddle M, Eberhardt E, Ciminello L, Levin T, Wing R, DiPasquale K, et al. Microtubule-associated protein 2 (MAP2) associates with the NMDA receptor and is spatially redistributed within rat hippocampal neurons after oxygen-glucose deprivation. Brain Res. 2003;978:38-50 pubmed