这是一篇来自已证抗体库的有关大鼠 Map2k1的综述,是根据160篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Map2k1 抗体。
Map2k1 同义词: Mek1

艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 小鼠; 图 s4i
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在小鼠样本上 (图 s4i). Nat Commun (2021) ncbi
domestic rabbit 单克隆(MEK1S298-H8)
  • 免疫印迹; 人类; 图 7
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab278562)被用于被用于免疫印迹在人类样本上 (图 7). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab194754)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 人类; 图 4a
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab194754)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(E342)
  • 免疫印迹; 人类; 图 e6l
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab32091)被用于被用于免疫印迹在人类样本上 (图 e6l). Nature (2019) ncbi
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 人类; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Mol Carcinog (2019) ncbi
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 小鼠; 1:3000; 图 5a
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 5a). PLoS ONE (2017) ncbi
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 人类; 1:1000; 图 4
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR3338)
  • 免疫印迹; 人类; 1:1000; 图 2a
艾博抗(上海)贸易有限公司 Map2k1抗体(Abcam, ab96379)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Oncotarget (2016) ncbi
赛默飞世尔
domestic rabbit 重组(SR13-07)
  • 免疫印迹; 小鼠; 图 5a
赛默飞世尔 Map2k1抗体(Thermo Fisher, MA5-31998)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Immunol (2022) ncbi
小鼠 单克隆(3D9)
  • proximity ligation assay; 人类; 1:100; 图 8
赛默飞世尔 Map2k1抗体(生活技术, 13-3500)被用于被用于proximity ligation assay在人类样本上浓度为1:100 (图 8). Biomolecules (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Map2k1抗体(Invitrogen, 44460G)被用于. Oncotarget (2015) ncbi
圣克鲁斯生物技术
小鼠 单克隆(9G3)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Map2k1抗体(Santa Cruz Biotechnology, sc-81504)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(H-8)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Map2k1抗体(Santa Cruz, sc-6250)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(B-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Map2k1抗体(Santa Cruz Biotechnology, sc-271914)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 2a, 2c
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 2c). Cell Death Discov (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在人类样本上 (图 2g). Cancer Discov (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 s3d
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上 (图 s3d). J Immunother Cancer (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 4g). J Clin Invest (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 1b, s11a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 1b, s11a). Oncogene (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Life Sci Alliance (2022) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 3958)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Sci Adv (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 5c). Ther Adv Urol (2021) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 1:500-1:1000; 图 s1a
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 2352)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:500-1:1000; 图 s1a
  • 免疫印迹; 小鼠; 1:500-1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:500-1:1000 (图 s1a) 和 被用于免疫印迹在小鼠样本上浓度为1:500-1:1000 (图 1a). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9128S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9124S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7e). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalin, 9121)被用于被用于免疫印迹在人类样本上 (图 1c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7f
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9121s)被用于被用于免疫印迹在大鼠样本上 (图 7f). Circulation (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7e). elife (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2e). Cancers (Basel) (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 3g, s3b, s8
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 3g, s3b, s8). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). Nat Commun (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 8a
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8a). Oxid Med Cell Longev (2021) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上 (图 4c). Redox Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2020) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling technology, 9154)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9121)被用于被用于免疫印迹在人类样本上 (图 4g). Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2500; 图 1a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9121)被用于被用于免疫印迹在人类样本上浓度为1:2500 (图 1a). Oncogene (2020) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 7e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 7e). Mol Cancer (2020) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上. elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 e6d
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e6d). Nature (2019) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 图 s6b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 61B12)被用于被用于免疫印迹在人类样本上 (图 s6b). Science (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上 (图 6b). Braz J Med Biol Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3i
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 3i). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). EMBO J (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在人类样本上 (图 4a). J Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Sci Rep (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 e4e
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上 (图 e4e). Nature (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 e6d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 e6d). Nature (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1e). Science (2019) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 1:2000; 图 8a
  • 免疫印迹; 小鼠; 1:2000; 图 8b
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 2352S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 8a) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 8b). J Cell Sci (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1h
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1h). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d, s1b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 1d, s1b). Cell (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Lab Invest (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:2000; 图 3a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 3a). J Clin Invest (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上 (图 6a). Hepatology (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9121)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Res (2019) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 2352)被用于被用于免疫印迹在人类样本上 (图 5d). Cancer Res (2019) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 2a). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s10c
  • 免疫印迹; 人类; 图 s10b, s10d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在小鼠样本上 (图 s10c) 和 被用于免疫印迹在人类样本上 (图 s10b, s10d). Science (2018) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signaling technology, 9154s)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a). J Mol Cell Cardiol (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s4c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s4c). Cell Stem Cell (2018) ncbi
小鼠 单克隆(61B12)
  • 流式细胞仪; 小鼠; 图 s1a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 61B12)被用于被用于流式细胞仪在小鼠样本上 (图 s1a). Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121S)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(30C8)
  • 免疫印迹; 小鼠; 图 s11a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9146S)被用于被用于免疫印迹在小鼠样本上 (图 s11a). J Clin Invest (2018) ncbi
domestic rabbit 单克隆(41G9)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 1e
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1e). Science (2018) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 5a). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121S)被用于被用于免疫印迹在小鼠样本上 (图 s3b). Cancer Cell (2018) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 s5o
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 s5o). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 2352)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6b). Nat Commun (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 6f). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signal, 9121s)被用于被用于免疫印迹在人类样本上 (图 s1c). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 1b). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 2352)被用于被用于免疫印迹在人类样本上 (图 3b). Oncogene (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 3c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9154)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 41G9)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 3958)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9154)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Death Dis (2017) ncbi
domestic rabbit 单克隆(41G9)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 EV3e
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9154)被用于被用于免疫印迹在人类样本上 (图 EV3e). EMBO J (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Sci Rep (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在小鼠样本上 (图 7a). Sci Rep (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上 (图 5b). Cell (2017) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 2352)被用于被用于免疫印迹在人类样本上 (图 5b). Cell (2017) ncbi
domestic rabbit 单克隆(41G9)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 s4d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 41G9)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4d). J Cell Sci (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 2c). Mol Carcinog (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Neural Plast (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 1c). Oncotarget (2017) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9154)被用于被用于免疫印迹在人类样本上 (图 5a). PLoS Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9121S)被用于被用于免疫印迹在人类样本上 (图 6d). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5f
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5f). Cell Cycle (2016) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹基因敲除验证; 小鼠; 图 6
  • 免疫印迹基因敲除验证; 人类; 图 1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 2352)被用于被用于免疫印迹基因敲除验证在小鼠样本上 (图 6) 和 被用于免疫印迹基因敲除验证在人类样本上 (图 1). Oncotarget (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:5000; 图 4d
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 41G9)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 4d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:200; 图 st1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9124)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 st1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 单克隆(30C8)
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9146)被用于. Dis Model Mech (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9127)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3f
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9124)被用于被用于免疫印迹在人类样本上 (图 3f). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9121)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(cell signalling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 3). FASEB J (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上 (图 2a). Cell Rep (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 2). Autophagy (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154P)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 4c). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 1c). Leukemia (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6a). J Am Heart Assoc (2016) ncbi
domestic rabbit 单克隆(30C8)
  • 免疫印迹; 人类; 1:3000; 图 8
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9146BC)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 8). Nat Commun (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Tech, 9154S)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9121S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5). elife (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫组化-石蜡切片; 人类; 1:400; 图 s1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 (图 s1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 2
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 2). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Tech, 9127S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncol Lett (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Tech, 9154)被用于被用于免疫印迹在人类样本上 (图 1) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9121)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncogenesis (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9121)被用于被用于免疫印迹在人类样本上 (图 3). elife (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 41G9)被用于被用于免疫印迹在人类样本上 (图 2b). Immunol Res (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 5
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上 (图 5) 和 被用于免疫印迹在小鼠样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154p)被用于被用于免疫印迹在小鼠样本上 (图 4). Endocrinology (2016) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 s6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上 (图 s6). Nat Commun (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 仓鼠; 图 2f
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在仓鼠样本上 (图 2f). elife (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Cancers (Basel) (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 1). Oncotarget (2015) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 2352)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上 (图 4). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 S3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上 (图 S3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:400; 图 6g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:400 (图 6g). Biochim Biophys Acta (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 s5b
赛信通(上海)生物试剂有限公司 Map2k1抗体(CST, 9154)被用于被用于免疫印迹在人类样本上 (图 s5b). Oncotarget (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上. Basic Res Cardiol (2015) ncbi
domestic rabbit 单克隆(41G9)
  • reverse phase protein lysate microarray; 人类; 表 s2
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154S)被用于被用于reverse phase protein lysate microarray在人类样本上 (表 s2). Mol Syst Biol (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 s3). Pigment Cell Melanoma Res (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在人类样本上 (图 2a). Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(30C8)
  • 免疫印迹; 人类; 1:1000; 图  6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling Technology, 9146)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  6). Cell Signal (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000; 图  6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling Technology, 9154)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图  6). Cell Signal (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 6). Cell Res (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2g
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 2g). Nat Med (2015) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在大鼠样本上. Int J Mol Med (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signalling, 9154)被用于被用于免疫印迹在人类样本上. Cell Microbiol (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(61B12)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 2352)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在人类样本上. Cell Death Dis (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, #9154P)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Mol Histol (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Biochim Biophys Acta (2014) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154)被用于被用于免疫印迹在人类样本上 (图 2a). Cancer Res (2013) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling, 9154S)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
domestic rabbit 单克隆(41G9)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Map2k1抗体(Cell Signaling Technology, 9154)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
碧迪BD
小鼠 单克隆(25/MEK1)
  • 免疫印迹; 人类; 图 s2
碧迪BD Map2k1抗体(BD Transduction Laboratories, 610121)被用于被用于免疫印迹在人类样本上 (图 s2). Cell Commun Signal (2016) ncbi
文章列表
  1. Mukherjee B, Tiwari A, Palo A, Pattnaik N, Samantara S, Dixit M. Reduced expression of FRG1 facilitates breast cancer progression via GM-CSF/MEK-ERK axis by abating FRG1 mediated transcriptional repression of GM-CSF. Cell Death Discov. 2022;8:442 pubmed 出版商
  2. Chen S, Vedula R, Cuevas Navarro A, Lu B, Hogg S, Wang E, et al. Impaired Proteolysis of Noncanonical RAS Proteins Drives Clonal Hematopoietic Transformation. Cancer Discov. 2022;12:2434-2453 pubmed 出版商
  3. Huang J, Wang X, Li B, Shen S, Wang R, Tao H, et al. L-5-hydroxytryptophan promotes antitumor immunity by inhibiting PD-L1 inducible expression. J Immunother Cancer. 2022;10: pubmed 出版商
  4. Zou Y, Chen Z, Zhang X, Yu J, Xu H, Cui J, et al. Targeting PCSK9 Ameliorates Graft Vascular Disease in Mice by Inhibiting NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells. Front Immunol. 2022;13:894789 pubmed 出版商
  5. Luo Y, Li Z, Kong Y, He W, Zheng H, An M, et al. KRAS mutant-driven SUMOylation controls extracellular vesicle transmission to trigger lymphangiogenesis in pancreatic cancer. J Clin Invest. 2022;132: pubmed 出版商
  6. Kidger A, Saville M, Rushworth L, Davidson J, Stellzig J, Ono M, et al. Suppression of mutant Kirsten-RAS (KRASG12D)-driven pancreatic carcinogenesis by dual-specificity MAP kinase phosphatases 5 and 6. Oncogene. 2022;41:2811-2823 pubmed 出版商
  7. Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, et al. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance. 2022;5: pubmed 出版商
  8. Valussi M, Besser J, Wystub Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7:eabi6648 pubmed 出版商
  9. Kareddula A, Medina D, Petrosky W, Dolfi S, Tereshchenko I, Walton K, et al. The role of chromodomain helicase DNA binding protein 1 (CHD1) in promoting an invasive prostate cancer phenotype. Ther Adv Urol. 2021;13:17562872211022462 pubmed 出版商
  10. Tan X, Tong L, Li L, Xu J, Xie S, Ji L, et al. Loss of Smad4 promotes aggressive lung cancer metastasis by de-repression of PAK3 via miRNA regulation. Nat Commun. 2021;12:4853 pubmed 出版商
  11. Vichas A, Riley A, Nkinsi N, Kamlapurkar S, Parrish P, Lo A, et al. Integrative oncogene-dependency mapping identifies RIT1 vulnerabilities and synergies in lung cancer. Nat Commun. 2021;12:4789 pubmed 出版商
  12. Li L, Yang Q, Jiang Y, Yang W, Jiang Y, Li X, et al. Interplay and cooperation between SREBF1 and master transcription factors regulate lipid metabolism and tumor-promoting pathways in squamous cancer. Nat Commun. 2021;12:4362 pubmed 出版商
  13. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  14. Zhang Y, Ding L, Ni Q, Tao R, Qin J. Transcription factor PAX4 facilitates gastric cancer progression through interacting with miR-27b-3p/Grb2 axis. Aging (Albany NY). 2021;13:16786-16803 pubmed 出版商
  15. Zhang Y, Da Q, Cao S, Yan K, Shi Z, Miao Q, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144:638-654 pubmed 出版商
  16. Li D, Chen J, Guo J, Li L, Cai G, Chen S, et al. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin2α-induced corpus luteum regression. elife. 2021;10: pubmed 出版商
  17. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  18. Xue T, Liu X, Zhang M, E Q, Liu S, Zou M, et al. PADI2-Catalyzed MEK1 Citrullination Activates ERK1/2 and Promotes IGF2BP1-Mediated SOX2 mRNA Stability in Endometrial Cancer. Adv Sci (Weinh). 2021;8:2002831 pubmed 出版商
  19. Ischenko I, D Amico S, Rao M, Li J, Hayman M, Powers S, et al. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat Commun. 2021;12:1482 pubmed 出版商
  20. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  21. Cao Y, Li L, Liu Y, Chen G, Tao Z, Wang R, et al. I-κB Kinase-ε Deficiency Attenuates the Development of Angiotensin II-Induced Myocardial Hypertrophy in Mice. Oxid Med Cell Longev. 2021;2021:6429197 pubmed 出版商
  22. Li S, Zhu Z, Xue M, Pan X, Tong G, Yi X, et al. The protective effects of fibroblast growth factor 10 against hepatic ischemia-reperfusion injury in mice. Redox Biol. 2021;40:101859 pubmed 出版商
  23. Shaaya M, Fauser J, Zhurikhina A, Conage Pough J, Huyot V, Brennan M, et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. elife. 2020;9: pubmed 出版商
  24. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  25. Koundouros N, Karali E, Tripp A, Valle A, Inglese P, Perry N, et al. Metabolic Fingerprinting Links Oncogenic PIK3CA with Enhanced Arachidonic Acid-Derived Eicosanoids. Cell. 2020;181:1596-1611.e27 pubmed 出版商
  26. Wu P, Hong S, Starenki D, Oshima K, Shao H, Gestwicki J, et al. Mortalin/HSPA9 targeting selectively induces KRAS tumor cell death by perturbing mitochondrial membrane permeability. Oncogene. 2020;39:4257-4270 pubmed 出版商
  27. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  28. Goswami D, Chen D, Yang Y, Gudla P, Columbus J, Worthy K, et al. Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior. elife. 2020;9: pubmed 出版商
  29. Amendola C, Mahaffey J, Parker S, Ahearn I, Chen W, Zhou M, et al. KRAS4A directly regulates hexokinase 1. Nature. 2019;576:482-486 pubmed 出版商
  30. Yoon I, Nam M, Kim H, Moon H, Kim S, Jang J, et al. Glucose-dependent control of leucine metabolism by leucyl-tRNA synthetase 1. Science. 2019;: pubmed 出版商
  31. Yang X, Jiang J, Zhang C, Li Y. Baicalein restrains proliferation, migration, and invasion of human malignant melanoma cells by down-regulating colon cancer associated transcript-1. Braz J Med Biol Res. 2019;52:e8934 pubmed 出版商
  32. Canon J, Rex K, Saiki A, Mohr C, Cooke K, Bagal D, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575:217-223 pubmed 出版商
  33. Kondo Y, Ognjenovic J, Banerjee S, Karandur D, Merk A, Kulhanek K, et al. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science. 2019;366:109-115 pubmed 出版商
  34. Gal H, Lysenko M, Stroganov S, Vadai E, Youssef S, Tzadikevitch Geffen K, et al. Molecular pathways of senescence regulate placental structure and function. EMBO J. 2019;38:e100849 pubmed 出版商
  35. Wang N, Fan Y, Yuan C, Song J, Yao Y, Liu W, et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer. 2019;19:764 pubmed 出版商
  36. Gu C, Wang L, Zurawski S, Oh S. Signaling Cascade through DC-ASGPR Induces Transcriptionally Active CREB for IL-10 Induction and Immune Regulation. J Immunol. 2019;: pubmed 出版商
  37. Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, et al. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep. 2019;9:7779 pubmed 出版商
  38. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  39. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  40. Cheng Z, Lei Z, Yang P, Si A, Xiang D, Tang X, et al. Exosome-transmitted p120-catenin suppresses hepatocellular carcinoma progression via STAT3 pathways. Mol Carcinog. 2019;: pubmed 出版商
  41. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  42. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  43. Castel P, Cheng A, Cuevas Navarro A, Everman D, Papageorge A, Simanshu D, et al. RIT1 oncoproteins escape LZTR1-mediated proteolysis. Science. 2019;363:1226-1230 pubmed 出版商
  44. Zhang S, Liu W, Yang Y, Sun K, Li S, Xu H, et al. Tmem30a Deficiency in endothelial cells impairs cell proliferation and angiogenesis. J Cell Sci. 2019;: pubmed 出版商
  45. Stivala S, Codilupi T, Brkic S, Baerenwaldt A, Ghosh N, Hao Shen H, et al. Targeting compensatory MEK/ERK activation increases JAK inhibitor efficacy in myeloproliferative neoplasms. J Clin Invest. 2019;130:1596-1611 pubmed 出版商
  46. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  47. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  48. Duan S, Koziol White C, Jester W, Nycholat C, Macauley M, Panettieri R, et al. CD33 recruitment inhibits IgE-mediated anaphylaxis and desensitizes mast cells to allergen. J Clin Invest. 2019;129:1387-1401 pubmed 出版商
  49. Ye P, Liu J, Xu W, Liu D, Ding X, Le S, et al. Dual-Specificity Phosphatase 26 Protects Against Nonalcoholic Fatty Liver Disease in Mice Through Transforming Growth Factor Beta-Activated Kinase 1 Suppression. Hepatology. 2019;69:1946-1964 pubmed 出版商
  50. Neel D, Allegakoen D, Olivas V, Mayekar M, Hemmati G, Chatterjee N, et al. Differential Subcellular Localization Regulates Oncogenic Signaling by ROS1 Kinase Fusion Proteins. Cancer Res. 2019;79:546-556 pubmed 出版商
  51. Bigenzahn J, Collu G, Kartnig F, Pieraks M, Vladimer G, Heinz L, et al. LZTR1 is a regulator of RAS ubiquitination and signaling. Science. 2018;362:1171-1177 pubmed 出版商
  52. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  53. Cao Y, Xu Y, Auchoybur M, Chen W, He S, Qin W, et al. Regulatory role of IKKɑ in myocardial ischemia/reperfusion injury by the determination of M1 versus M2 polarization of macrophages. J Mol Cell Cardiol. 2018;123:1-12 pubmed 出版商
  54. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  55. Ubil E, Caskey L, Holtzhausen A, Hunter D, Story C, Earp H. Tumor-secreted Pros1 inhibits macrophage M1 polarization to reduce antitumor immune response. J Clin Invest. 2018;128:2356-2369 pubmed 出版商
  56. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  57. Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández Mateos J, Khan K, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920-926 pubmed 出版商
  58. Ambrogio C, Köhler J, Zhou Z, Wang H, Paranal R, Li J, et al. KRAS Dimerization Impacts MEK Inhibitor Sensitivity and Oncogenic Activity of Mutant KRAS. Cell. 2018;172:857-868.e15 pubmed 出版商
  59. Kunimoto H, Meydan C, Nazir A, Whitfield J, Shank K, Rapaport F, et al. Cooperative Epigenetic Remodeling by TET2 Loss and NRAS Mutation Drives Myeloid Transformation and MEK Inhibitor Sensitivity. Cancer Cell. 2018;33:44-59.e8 pubmed 出版商
  60. Macdonald R, Shrimp J, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep. 2017;7:17406 pubmed 出版商
  61. Schafer S, Viswanathan S, Widjaja A, Lim W, Moreno Moral A, Delaughter D, et al. IL-11 is a crucial determinant of cardiovascular fibrosis. Nature. 2017;552:110-115 pubmed 出版商
  62. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  63. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  64. Jiang X, Bao Y, Liu H, Kou X, Zhang Z, Sun F, et al. VPS34 stimulation of p62 phosphorylation for cancer progression. Oncogene. 2017;36:6850-6862 pubmed 出版商
  65. Shaffer S, Dunagin M, Torborg S, Torre E, Emert B, Krepler C, et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546:431-435 pubmed 出版商
  66. Chen X, Wu Q, Depeille P, Chen P, Thornton S, Kalirai H, et al. RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. Cancer Cell. 2017;31:685-696.e6 pubmed 出版商
  67. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  68. Yurugi H, Marini F, Weber C, David K, Zhao Q, Binder H, et al. Targeting prohibitins with chemical ligands inhibits KRAS-mediated lung tumours. Oncogene. 2017;36:4778-4789 pubmed 出版商
  69. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  70. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  71. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  72. Sahu U, Choudhury A, Parvez S, Biswas S, Kar S. Induction of intestinal stemness and tumorigenicity by aberrant internalization of commensal non-pathogenic E. coli. Cell Death Dis. 2017;8:e2667 pubmed 出版商
  73. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  74. Lafont E, Kantari Mimoun C, Dráber P, De Miguel D, Hartwig T, Reichert M, et al. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J. 2017;36:1147-1166 pubmed 出版商
  75. Fu S, Xu H, Gu M, Liu C, Wang Q, Wan X, et al. Adiponectin deficiency contributes to the development and progression of benign prostatic hyperplasia in obesity. Sci Rep. 2017;7:43771 pubmed 出版商
  76. Xiong X, Liu Y, Mei Y, Peng J, Wang Z, Kong B, et al. Novel Protective Role of Myeloid Differentiation 1 in Pathological Cardiac Remodelling. Sci Rep. 2017;7:41857 pubmed 出版商
  77. Wang T, Yu H, Hughes N, Liu B, Kendirli A, Klein K, et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal Interactions with Oncogenic Ras. Cell. 2017;168:890-903.e15 pubmed 出版商
  78. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  79. Jiu Y, Peranen J, Schaible N, Cheng F, Eriksson J, Krishnan R, et al. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci. 2017;130:892-902 pubmed 出版商
  80. Decourtye L, Mire E, Clemessy M, Heurtier V, Ledent T, Robinson I, et al. IGF-1 Induces GHRH Neuronal Axon Elongation during Early Postnatal Life in Mice. PLoS ONE. 2017;12:e0170083 pubmed 出版商
  81. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  82. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  83. Ye Y, Zhao Z, Xu H, Zhang X, Su X, Yang Y, et al. Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway. Neural Plast. 2016;2016:8072156 pubmed 出版商
  84. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  85. Chao M, Guo J, Cheng W, Zhu X, She Z, Huang Z, et al. Loss of Caspase-Activated DNase Protects Against Atherosclerosis in Apolipoprotein E-Deficient Mice. J Am Heart Assoc. 2016;5: pubmed 出版商
  86. Vakana E, Pratt S, Blosser W, Dowless M, Simpson N, Yuan X, et al. LY3009120, a panRAF inhibitor, has significant anti-tumor activity in BRAF and KRAS mutant preclinical models of colorectal cancer. Oncotarget. 2017;8:9251-9266 pubmed 出版商
  87. Li Y, Buijs Gladdines J, Cant Barrett K, Stubbs A, Vroegindeweij E, Smits W, et al. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study. PLoS Med. 2016;13:e1002200 pubmed 出版商
  88. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  89. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  90. Zimmermann M, Arachchige Don A, Donaldson M, Patriarchi T, Horne M. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle. 2016;15:3278-3295 pubmed
  91. Nowacka J, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M. MEK1 is required for the development of NRAS-driven leukemia. Oncotarget. 2016;7:80113-80130 pubmed 出版商
  92. Mitra S, Ghosh B, Gayen N, Roy J, Mandal A. Bipartite Role of Heat Shock Protein 90 (Hsp90) Keeps CRAF Kinase Poised for Activation. J Biol Chem. 2016;291:24579-24593 pubmed
  93. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  94. Treindl F, Ruprecht B, Beiter Y, Schultz S, Döttinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852 pubmed 出版商
  95. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed 出版商
  96. Kim H, Lee K, Kim A, Choi M, Choi K, Kang M, et al. A chemical with proven clinical safety rescues Down-syndrome-related phenotypes in through DYRK1A inhibition. Dis Model Mech. 2016;9:839-48 pubmed 出版商
  97. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  98. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  99. Sun S, Gu X, Gao X, Li Y, Yu H, Xiong W, et al. Overexpression of AKR1C3 significantly enhances human prostate cancer cells resistance to radiation. Oncotarget. 2016;7:48050-48058 pubmed 出版商
  100. Subramaniam S, Ozdener M, Abdoul Azize S, Saito K, Malik B, Maquart G, et al. ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J. 2016;30:3489-3500 pubmed
  101. Tuncbag N, Milani P, Pokorny J, Johnson H, Sio T, Dalin S, et al. Network Modeling Identifies Patient-specific Pathways in Glioblastoma. Sci Rep. 2016;6:28668 pubmed 出版商
  102. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  103. Kemper K, Krijgsman O, Kong X, Cornelissen Steijger P, Shahrabi A, Weeber F, et al. BRAF(V600E) Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Rep. 2016;16:263-277 pubmed 出版商
  104. Kuramoto K, Wang N, Fan Y, Zhang W, Schoenen F, Frankowski K, et al. Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids. Autophagy. 2016;12:1460-71 pubmed 出版商
  105. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  106. Zhou B, Ritt D, Morrison D, Der C, Cox A. Protein Kinase CK2? Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2? Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem. 2016;291:17804-15 pubmed 出版商
  107. Cant Barrett K, Spijkers Hagelstein J, Buijs Gladdines J, Uitdehaag J, Smits W, van der Zwet J, et al. MEK and PI3K-AKT inhibitors synergistically block activated IL7 receptor signaling in T-cell acute lymphoblastic leukemia. Leukemia. 2016;30:1832-43 pubmed 出版商
  108. Xu Z, Mei F, Liu H, Sun C, Zheng Z. C-C Motif Chemokine Receptor 9 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction. J Am Heart Assoc. 2016;5: pubmed 出版商
  109. Kii I, Sumida Y, Goto T, Sonamoto R, Okuno Y, Yoshida S, et al. Selective inhibition of the kinase DYRK1A by targeting its folding process. Nat Commun. 2016;7:11391 pubmed 出版商
  110. Hatanaka M, Higashi Y, Kawai K, Su J, Zeng W, Chen X, et al. CD147-targeted siRNA in A375 malignant melanoma cells induces the phosphorylation of EGFR and downregulates cdc25C and MEK phosphorylation. Oncol Lett. 2016;11:2424-2428 pubmed
  111. Hernández Bule M, Martinez Botas J, Trillo M, Paíno C, Ubeda A. Antiadipogenic effects of subthermal electric stimulation at 448 kHz on differentiating human mesenchymal stem cells. Mol Med Rep. 2016;13:3895-903 pubmed 出版商
  112. An X, Zhao Z, Luo Y, Zhang R, Tang X, Hao D, et al. Netrin-1 suppresses the MEK/ERK pathway and ITGB4 in pancreatic cancer. Oncotarget. 2016;7:24719-33 pubmed 出版商
  113. Chatelle C, Hövermann D, Muller A, Wagner H, Weber W, Radziwill G. Optogenetically controlled RAF to characterize BRAF and CRAF protein kinase inhibitors. Sci Rep. 2016;6:23713 pubmed 出版商
  114. Wu J, Ivanov A, Fisher P, Fu Z. Polo-like kinase 1 induces epithelial-to-mesenchymal transition and promotes epithelial cell motility by activating CRAF/ERK signaling. elife. 2016;5: pubmed 出版商
  115. Koussounadis A, Langdon S, Um I, Kay C, Francis K, Harrison D, et al. Dynamic modulation of phosphoprotein expression in ovarian cancer xenograft models. BMC Cancer. 2016;16:205 pubmed 出版商
  116. Woodfield S, Zhang L, Scorsone K, Liu Y, Zage P. Binimetinib inhibits MEK and is effective against neuroblastoma tumor cells with low NF1 expression. BMC Cancer. 2016;16:172 pubmed 出版商
  117. Yu C, Tang L, Liang C, Chen X, Song S, Ding X, et al. Angiotensin-Converting Enzyme 3 (ACE3) Protects Against Pressure Overload-Induced Cardiac Hypertrophy. J Am Heart Assoc. 2016;5: pubmed 出版商
  118. Bhargava A, Pelech S, Woodard B, Kerwin J, Maherali N. Registered report: RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. elife. 2016;5: pubmed 出版商
  119. Zhang Z, Zhang H, Peng T, Li D, Xu J. Melittin suppresses cathepsin S-induced invasion and angiogenesis via blocking of the VEGF-A/VEGFR-2/MEK1/ERK1/2 pathway in human hepatocellular carcinoma. Oncol Lett. 2016;11:610-618 pubmed
  120. Hennig A, Markwart R, Wolff K, Schubert K, Cui Y, Prior I, et al. Feedback activation of neurofibromin terminates growth factor-induced Ras activation. Cell Commun Signal. 2016;14:5 pubmed 出版商
  121. Chung S, Moon H, Ju H, Kim D, Cho K, Ribback S, et al. Comparison of liver oncogenic potential among human RAS isoforms. Oncotarget. 2016;7:7354-66 pubmed 出版商
  122. Roßner F, Gieseler C, Morkel M, Royer H, Rivera M, Bläker H, et al. Uncoupling of EGFR-RAS signaling and nuclear localization of YBX1 in colorectal cancer. Oncogenesis. 2016;5:e187 pubmed 出版商
  123. Wandinger S, Lahortiga I, Jacobs K, Klammer M, Jordan N, Elschenbroich S, et al. Quantitative Phosphoproteomics Analysis of ERBB3/ERBB4 Signaling. PLoS ONE. 2016;11:e0146100 pubmed 出版商
  124. Kiel C, Benisty H, Lloréns Rico V, Serrano L. The yin-yang of kinase activation and unfolding explains the peculiarity of Val600 in the activation segment of BRAF. elife. 2016;5:e12814 pubmed 出版商
  125. Berges C, Chatterjee M, Topp M, Einsele H. Targeting polo-like kinase 1 suppresses essential functions of alloreactive T cells. Immunol Res. 2016;64:687-98 pubmed 出版商
  126. Park Y, Kim S, Kwon T, Kim J, Song I, Shin H, et al. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene. 2016;35:3503-13 pubmed 出版商
  127. Yang C, Lowther K, Lalioti M, Seli E. Embryonic Poly(A)-Binding Protein (EPAB) Is Required for Granulosa Cell EGF Signaling and Cumulus Expansion in Female Mice. Endocrinology. 2016;157:405-16 pubmed 出版商
  128. Pirman N, Barber K, Aerni H, Ma N, Haimovich A, Rogulina S, et al. A flexible codon in genomically recoded Escherichia coli permits programmable protein phosphorylation. Nat Commun. 2015;6:8130 pubmed 出版商
  129. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  130. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  131. Bunaciu R, Jensen H, Macdonald R, Latocha D, Varner J, Yen A. 6-Formylindolo(3,2-b)Carbazole (FICZ) Modulates the Signalsome Responsible for RA-Induced Differentiation of HL-60 Myeloblastic Leukemia Cells. PLoS ONE. 2015;10:e0135668 pubmed 出版商
  132. Å olman M, Ligabue A, BlaževitÅ¡ O, Jaiswal A, Zhou Y, Liang H, et al. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation. elife. 2015;4:e08905 pubmed 出版商
  133. Simpson D, Lemonie N, Morgan D, Gaddameedhi S, Kaufmann W. Oncogenic BRAF(V600E) Induces Clastogenesis and UVB Hypersensitivity. Cancers (Basel). 2015;7:1072-90 pubmed 出版商
  134. Hutchinson K, Johnson D, Johnson A, Sanchez V, Kuba M, Lu P, et al. ERBB activation modulates sensitivity to MEK1/2 inhibition in a subset of driver-negative melanoma. Oncotarget. 2015;6:22348-60 pubmed
  135. Tang X, Chen X, Xu Y, Qiao Y, Zhang X, Wang Y, et al. CD166 positively regulates MCAM via inhibition to ubiquitin E3 ligases Smurf1 and βTrCP through PI3K/AKT and c-Raf/MEK/ERK signaling in Bel-7402 hepatocellular carcinoma cells. Cell Signal. 2015;27:1694-702 pubmed 出版商
  136. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  137. Boswell B, Musil L. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells. Mol Biol Cell. 2015;26:2561-72 pubmed 出版商
  138. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  139. Tate C, Mc Entire J, Pallini R, Vakana E, Wyss L, Blosser W, et al. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology. PLoS ONE. 2015;10:e0125697 pubmed 出版商
  140. Brobeil A, Kämmerer F, Tag C, Steger K, Gattenlöhner S, Wimmer M. PTPIP51—A New RelA-tionship with the NFκB Signaling Pathway. Biomolecules. 2015;5:485-504 pubmed 出版商
  141. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  142. Gupta J, Igea A, Papaioannou M, López Casas P, Llonch E, Hidalgo M, et al. Pharmacological inhibition of p38 MAPK reduces tumor growth in patient-derived xenografts from colon tumors. Oncotarget. 2015;6:8539-51 pubmed
  143. Bao M, Cai Z, Zhang X, Li L, Liu X, Wan N, et al. Dickkopf-3 protects against cardiac dysfunction and ventricular remodelling following myocardial infarction. Basic Res Cardiol. 2015;110:25 pubmed 出版商
  144. Fallahi Sichani M, Moerke N, Niepel M, Zhang T, Gray N, Sorger P. Systematic analysis of BRAF(V600E) melanomas reveals a role for JNK/c-Jun pathway in adaptive resistance to drug-induced apoptosis. Mol Syst Biol. 2015;11:797 pubmed 出版商
  145. Vogel C, Smit M, Maddalo G, Possik P, Sparidans R, van der Burg S, et al. Cooperative induction of apoptosis in NRAS mutant melanoma by inhibition of MEK and ROCK. Pigment Cell Melanoma Res. 2015;28:307-17 pubmed 出版商
  146. Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog. 2016;55:525-36 pubmed 出版商
  147. Tanaka T, Iino M. Sec8 regulates cytokeratin8 phosphorylation and cell migration by controlling the ERK and p38 MAPK signalling pathways. Cell Signal. 2015;27:1110-9 pubmed 出版商
  148. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  149. Chow H, Dong B, Duron S, Campbell D, Ong C, Hoeflich K, et al. Group I Paks as therapeutic targets in NF2-deficient meningioma. Oncotarget. 2015;6:1981-94 pubmed
  150. Yoda A, Adelmant G, Tamburini J, Chapuy B, Shindoh N, Yoda Y, et al. Mutations in G protein β subunits promote transformation and kinase inhibitor resistance. Nat Med. 2015;21:71-5 pubmed 出版商
  151. Yi X, Li X, Zhou Y, Ren S, Wan W, Feng G, et al. Hepatocyte growth factor regulates the TGF-?1-induced proliferation, differentiation and secretory function of cardiac fibroblasts. Int J Mol Med. 2014;34:381-90 pubmed 出版商
  152. Eucker T, Samuelson D, Hunzicker Dunn M, Konkel M. The focal complex of epithelial cells provides a signalling platform for interleukin-8 induction in response to bacterial pathogens. Cell Microbiol. 2014;16:1441-55 pubmed 出版商
  153. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  154. Sun Y, Guo W, Ren T, Liang W, Zhou W, Lu Q, et al. Gli1 inhibition suppressed cell growth and cell cycle progression and induced apoptosis as well as autophagy depending on ERK1/2 activity in human chondrosarcoma cells. Cell Death Dis. 2014;5:e979 pubmed 出版商
  155. Wang Z, Ren Z, Hu Z, Hu X, Zhang H, Wu H, et al. Angiotensin-II induces phosphorylation of ERK1/2 and promotes aortic adventitial fibroblasts differentiating into myofibroblasts during aortic dissection formation. J Mol Histol. 2014;45:401-12 pubmed 出版商
  156. Choi J, Landrette S, Wang T, Evans P, Bacchiocchi A, Bjornson R, et al. Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors. Pigment Cell Melanoma Res. 2014;27:253-62 pubmed 出版商
  157. Zhang Y, Zhang X, Gao L, Liu Y, Jiang D, Chen K, et al. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. Biochim Biophys Acta. 2014;1842:232-44 pubmed 出版商
  158. Paugh B, Zhu X, Qu C, Endersby R, Diaz A, Zhang J, et al. Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. Cancer Res. 2013;73:6219-29 pubmed 出版商
  159. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed 出版商
  160. Dai J, Shen D, Bian Z, Zhou H, Gan H, Zong J, et al. IKKi deficiency promotes pressure overload-induced cardiac hypertrophy and fibrosis. PLoS ONE. 2013;8:e53412 pubmed 出版商