这是一篇来自已证抗体库的有关大鼠 Mapk1的综述,是根据936篇发表使用所有方法的文章归纳的。这综述旨在帮助来邦网的访客找到最适合Mapk1 抗体。
Mapk1 同义词: ERK-2; ERT1; Erk2; p42-MAPK

圣克鲁斯生物技术
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Mol Sci (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 1g
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1g). Front Pharmacol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 1f
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 1f). Cell Death Discov (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 5b). Front Immunol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 7a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Sci Rep (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Biomol Ther (Seoul) (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2g
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2g). J Parkinsons Dis (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 2f
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2f). Oncogene (2021) ncbi
小鼠 单克隆(4C11C11C4)
  • 免疫印迹; 人类; 1:300; 图 7d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-65981)被用于被用于免疫印迹在人类样本上浓度为1:300 (图 7d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 7d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 7d). Cancers (Basel) (2021) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3g, 3h
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在小鼠样本上 (图 3g, 3h). Front Pharmacol (2021) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Front Med (Lausanne) (2021) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 7k
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383 HRP)被用于被用于免疫印迹在人类样本上 (图 7k). Amino Acids (2021) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 2b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在小鼠样本上 (图 2b). Front Immunol (2020) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:3000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:3000. elife (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:1000; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6b). Antioxidants (Basel) (2020) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 s3b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 s3b). Nature (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2020) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 4s2a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 4s2a). elife (2019) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). Front Endocrinol (Lausanne) (2019) ncbi
小鼠 单克隆(33)
  • 免疫沉淀; 人类; 图 3d
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136288)被用于被用于免疫沉淀在人类样本上 (图 3d) 和 被用于免疫印迹在人类样本上 (图 2b). Oncogenesis (2019) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:200; 图 3c, 3d, s8b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 3c, 3d, s8b). Science (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 s3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 s3a). Sci Adv (2019) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3c
圣克鲁斯生物技术 Mapk1抗体(Santa, sc-135,900)被用于被用于免疫印迹在大鼠样本上 (图 3c). BMC Complement Altern Med (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:5000; 图 1c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 1c). Nat Commun (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514,302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). EBioMedicine (2019) ncbi
小鼠 单克隆(12A4)
  • 免疫印迹; 人类; 图 3a
  • 免疫印迹; 小鼠; 图 2d
圣克鲁斯生物技术 Mapk1抗体(Santa, sc-81457)被用于被用于免疫印迹在人类样本上 (图 3a) 和 被用于免疫印迹在小鼠样本上 (图 2d). Oncogene (2019) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 2e
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 3g, s7c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 3g, s7c). Cell (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 8a
圣克鲁斯生物技术 Mapk1抗体(santa cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 8a). J Exp Med (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology Inc, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4d). J Clin Invest (2018) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Restor Neurol Neurosci (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 2b). Cell Death Dis (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, E-4)被用于被用于免疫印迹在人类样本上 (图 5a). Cell Res (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology Inc, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 6d). Neurotherapeutics (2018) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-冰冻切片; 小鼠; 1:20; 图 s6f
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-81492)被用于被用于免疫组化-冰冻切片在小鼠样本上浓度为1:20 (图 s6f). Nat Commun (2018) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 3b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Oncol (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Mol Med Rep (2018) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2017) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 7a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上 (图 7a). Cancer Lett (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7a
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-1647)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7a). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3g
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3g). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3e
圣克鲁斯生物技术 Mapk1抗体(SCB, E-4)被用于被用于免疫印迹在人类样本上 (图 3e). Cancer Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 3c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3c). Oncol Lett (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 4b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 4b). J Exp Med (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6a). Exp Mol Med (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 图 6A
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上 (图 6A). Sci Rep (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 6). J Ethnopharmacol (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:200; 图 2b
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 2b). Toxicol In Vitro (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2b
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2b). J Steroid Biochem Mol Biol (2017) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:2000; 图 4a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4a). Exp Ther Med (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, D-2)被用于被用于免疫印迹在人类样本上 (图 1a). Nucleic Acids Res (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2e
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2e). Nat Commun (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 1c). Mol Carcinog (2017) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上. Acta Histochem (2017) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 1a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Int J Cancer (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5b). Int J Mol Med (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 图 3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上 (图 3a). Int J Mol Sci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, Sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 6b). Physiol Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1500; 图 4a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 4a). Oncol Lett (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, SC-514302)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Blood Cancer J (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫组化-石蜡切片; 人类; 图 7a
  • 免疫印迹; 人类; 1:500; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫组化-石蜡切片在人类样本上 (图 7a) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 表 1
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 1). J Neuroinflammation (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6e
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 6e). Am J Physiol Heart Circ Physiol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5a). Mol Cell Biochem (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3a). J Cereb Blood Flow Metab (2017) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7a). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 4). Mol Ther Methods Clin Dev (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:1000; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Cell Rep (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫沉淀; 大鼠; 图 5c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-81457)被用于被用于免疫沉淀在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 图 5c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-136521)被用于被用于免疫印迹在大鼠样本上 (图 5c). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2). Cell Death Dis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3). Oncol Lett (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 2a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Cell Biol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3h
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 3h). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 5d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5d). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 6A
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 6A). Front Pharmacol (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 1
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 1). PLoS ONE (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000; 图 s4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). Mol Med Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 5a). Int J Endocrinol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7c). J Biol Chem (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc1647)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上 (图 4). BMC Complement Altern Med (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在小鼠样本上 (图 s2). Sci Rep (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:500; 图 3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3). Oncoimmunology (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). J Immunol Res (2016) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:200; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:200 (图 5). Genes Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). BMC Cancer (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠; 1:50; 图 5
  • 免疫组化; 小鼠; 1:50; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 5) 和 被用于免疫组化在小鼠样本上浓度为1:50 (图 5). Nat Commun (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncotarget (2016) ncbi
小鼠 单克隆
  • 免疫印迹; 大鼠; 图 10a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫印迹在大鼠样本上 (图 10a). Int J Mol Med (2016) ncbi
小鼠 单克隆
  • 免疫组化; 小鼠; 1:500; 图 3d
  • 免疫印迹; 小鼠; 1:500; 图 3d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-514302)被用于被用于免疫组化在小鼠样本上浓度为1:500 (图 3d) 和 被用于免疫印迹在小鼠样本上浓度为1:500 (图 3d). J Neurosci (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
  • 免疫印迹; 小鼠; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 8) 和 被用于免疫印迹在小鼠样本上 (图 5). J Exp Med (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). Exp Ther Med (2016) ncbi
小鼠 单克隆(C-8)
  • 免疫印迹; 小鼠; 图 8f
圣克鲁斯生物技术 Mapk1抗体(santa cruz, C-8)被用于被用于免疫印迹在小鼠样本上 (图 8f). Front Endocrinol (Lausanne) (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(12D4)
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 5
  • 免疫印迹; 小鼠; 1:1000; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 5) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 7e
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 7e). J Immunol (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 小鼠; 图 7
  • 免疫印迹; 大鼠; 图 1d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc7383)被用于被用于免疫组化在小鼠样本上 (图 7) 和 被用于免疫印迹在大鼠样本上 (图 1d). J Cell Mol Med (2016) ncbi
小鼠 单克隆(E-4)
  • 酶联免疫吸附测定; 人类; 1:500; 图 10
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于酶联免疫吸附测定在人类样本上浓度为1:500 (图 10). Oncotarget (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruze, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 6). PLoS ONE (2016) ncbi
小鼠 单克隆(12A4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc81457)被用于被用于免疫印迹在人类样本上 (图 2). Breast Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Drug Des Devel Ther (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 1:2000; 图 s3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s3). Clin Cancer Res (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 10
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 10). J Neuroinflammation (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 小鼠; 1:1000; 图 s7
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫印迹; 人类; 1:1000; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:1000 (图 s7), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5c
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cells (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5a). Apoptosis (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 S3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 S3). Oncotarget (2016) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上 (图 3). Biomed Res Int (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 s3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 s3). J Immunol Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 小鼠; 1:200; 图 2
  • 免疫印迹; 小鼠; 1:1000; 图 2
  • 免疫组化; 非洲爪蛙; 1:50; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, D-2)被用于被用于免疫细胞化学在小鼠样本上浓度为1:200 (图 2), 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2) 和 被用于免疫组化在非洲爪蛙样本上浓度为1:50 (图 5). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 8
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6a). Oncogene (2016) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在人类样本上. Int J Cancer (2016) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:2000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:2000. Proc Natl Acad Sci U S A (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 3c
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 3c). Oncogene (2016) ncbi
小鼠 单克隆(H-9)
  • 免疫印迹; 人类; 图 3a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-271451)被用于被用于免疫印迹在人类样本上 (图 3a). Cancer Cell Int (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:8000; 图 7
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:8000 (图 7). Int J Mol Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; pigs ; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在pigs 样本上 (图 2). J Immunol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 人类; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在人类样本上 (图 6b). BMC Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上 (图 3). Cancer Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Cardiovasc Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Laboratories, SC7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 图 6b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在小鼠样本上 (图 6b). J Exp Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:1000. Int J Neuropsychopharmacol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-自由浮动切片; 大鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫组化-自由浮动切片在大鼠样本上. Free Radic Biol Med (2015) ncbi
小鼠 单克隆(33)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136288)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Med Rep (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). J Biomed Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在小鼠样本上. Virol Sin (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa-Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). PLoS Pathog (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. Neuropharmacology (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 图 4d
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Cancer Res (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 小鼠; 图 s4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在小鼠样本上 (图 s4). Br J Cancer (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s8
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s8). Autophagy (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 7
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 7). PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 染色质免疫沉淀 ; 人类; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotech, sc-135900)被用于被用于染色质免疫沉淀 在人类样本上 (图 6). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Neuroscience (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-81492)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Nutr Biochem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上 (图 5). Mar Drugs (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上 (图 5). Br J Nutr (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:500; 图 4g
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 4g). J Cell Sci (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 人类; 图 6
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在人类样本上 (图 6). Curr Mol Med (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上. Cell Mol Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Cell Signal (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上 (图 1). Nucleic Acids Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 2
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 2). PLoS ONE (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 小鼠; 1:500; 图 4a
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4a). Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5f
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5f). Cell Commun Signal (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500; 图 4
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-7383)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4). Nat Commun (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 小鼠
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnologies, SC-7383)被用于被用于免疫细胞化学在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Endocrinology (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 s21
圣克鲁斯生物技术 Mapk1抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上 (图 s21). PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Ther Med (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上. Mutat Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫沉淀; 人类; 图 3
  • 免疫印迹; 人类; 图 s9
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, sc-7383)被用于被用于免疫沉淀在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s9). Cell Death Differ (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫沉淀; 人类; 图 3
  • 免疫细胞化学; 人类; 图 3
  • 免疫印迹; 人类; 图 4
圣克鲁斯生物技术 Mapk1抗体(santa Cruz, sc-1647)被用于被用于免疫沉淀在人类样本上 (图 3), 被用于免疫细胞化学在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 4). Cell Death Differ (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Mol Cell Endocrinol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Leuk Lymphoma (2015) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E4)被用于被用于免疫印迹在人类样本上 (图 2). Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2). Cell Cycle (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 2b
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 2b). Environ Health Perspect (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC7383)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Mol Cell Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, E-4)被用于被用于免疫印迹在人类样本上 (图 1). J Biol Chem (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫组化; 人类; 1:100
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫组化在人类样本上浓度为1:100. Cancer Lett (2015) ncbi
小鼠 单克隆(D-2)
  • 免疫细胞化学; 人类; 1:200
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫细胞化学在人类样本上浓度为1:200 和 被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(12D4)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-81492)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Life Sci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Tumour Biol (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Neurosci (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 图 3
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上 (图 3). Biochem Pharmacol (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Cell Res (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Oncotarget (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 1
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, 7383)被用于被用于免疫印迹在人类样本上 (图 1). Cell Cycle (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠; 1:500; 图 2
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 2). Nat Commun (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上浓度为1:1000. J Biol Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, E-4, sc-7383)被用于被用于免疫组化-石蜡切片在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Hippocampus (2015) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类; 1:800
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, SC-135900)被用于被用于免疫印迹在人类样本上浓度为1:800. Growth Factors (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; kangaroo rats; 1:200; 图 2
圣克鲁斯生物技术 Mapk1抗体(santa cruz, sc-7383)被用于被用于免疫印迹在kangaroo rats样本上浓度为1:200 (图 2). Cell Mol Neurobiol (2015) ncbi
小鼠 单克隆(12D4)
  • 免疫细胞化学; 人类; 1:300
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotech, sc-81492)被用于被用于免疫细胞化学在人类样本上浓度为1:300. Biores Open Access (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Biometals (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样本上. Cancer Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-135900)被用于被用于免疫印迹在小鼠样本上. J Am Heart Assoc (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Virol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000. BMC Cancer (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫组化-石蜡切片; 人类; 1:100
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc7383)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100. J Gastroenterol Hepatol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 牛
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在牛样本上. Biomed Res Int (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Angiogenesis (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Int J Oncol (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-1647)被用于被用于免疫印迹在人类样本上. Pigment Cell Melanoma Res (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; domestic rabbit; 1:1,000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在domestic rabbit样本上浓度为1:1,000. Stem Cells Dev (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cell Endocrinol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000; 图 1
圣克鲁斯生物技术 Mapk1抗体(Santa, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1). Mol Cancer Ther (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. Oncogene (2015) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在人类样本上. Biochem Pharmacol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc7383)被用于被用于免疫印迹在人类样本上. Mol Cell Biol (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Electrophoresis (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 小鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在小鼠样本上. Exp Mol Med (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 番茄
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, SC-7383)被用于被用于免疫印迹在番茄样本上. J Agric Food Chem (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:1000
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, E-4)被用于被用于免疫印迹在人类样本上浓度为1:1000. Mol Cancer Res (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫细胞化学; 大鼠
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫细胞化学在大鼠样本上 和 被用于免疫印迹在大鼠样本上. Glia (2014) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上. J Biol Chem (2014) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-135900)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(pT202/pY204.22A)
  • 免疫印迹; 大鼠; 1:200
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-136521)被用于被用于免疫印迹在大鼠样本上浓度为1:200. Exp Cell Res (2014) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, D2)被用于被用于免疫印迹在人类样本上. J Biol Chem (2013) ncbi
小鼠 单克隆(MK1)
  • 免疫印迹; 人类
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-135900)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. Mol Neurodegener (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(D-2)
  • 免疫印迹; 人类; 1:500
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-1647)被用于被用于免疫印迹在人类样本上浓度为1:500. J Neuroimmunol (2013) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz Biotechnology, sc-7383)被用于被用于免疫印迹在大鼠样本上. Lab Anim Res (2012) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 大鼠; 1:1000; 图 3b
圣克鲁斯生物技术 Mapk1抗体(SantaCruz, E-4)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3b). Am J Physiol Gastrointest Liver Physiol (2011) ncbi
小鼠 单克隆(E-4)
  • 免疫印迹; 人类; 图 5
圣克鲁斯生物技术 Mapk1抗体(Santa Cruz, sc-7383)被用于被用于免疫印迹在人类样本上 (图 5). Leukemia (2011) ncbi
艾博抗(上海)贸易有限公司
domestic rabbit 单克隆(EPR19401)
  • 免疫组化-自由浮动切片; 小鼠; 1:1000; 图 10a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫组化-自由浮动切片在小鼠样本上浓度为1:1000 (图 10a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 小鼠; 图 6c
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫印迹在小鼠样本上 (图 6c). Antioxidants (Basel) (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 图 5a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上 (图 5a). J Inflamm Res (2021) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫组化; 人类; 1:100; 图 1n
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫组化在人类样本上浓度为1:100 (图 1n). Int J Med Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3e
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab214362)被用于被用于免疫印迹在大鼠样本上 (图 3e). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3d
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在大鼠样本上 (图 3d). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5f
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5f). Aging (Albany NY) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5f
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5f). Aging (Albany NY) (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2d
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 2d). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(E460)
  • 免疫组化; 人类; 图 8c
  • 免疫印迹; 人类; 图 6g
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab32081)被用于被用于免疫组化在人类样本上 (图 8c) 和 被用于免疫印迹在人类样本上 (图 6g). Mol Cancer (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6e, 6g
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab214362)被用于被用于免疫印迹在人类样本上 (图 6e, 6g). Aging (Albany NY) (2020) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 6e, 6g
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在人类样本上 (图 6e, 6g). Aging (Albany NY) (2020) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:1000; 图 2b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b). Sci Rep (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab-54230)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Am J Transl Res (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500; 图 5a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab-5011)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5a). Am J Transl Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab115799)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Biosci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab214362,)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Cell Death Dis (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab115799)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
domestic rabbit 单克隆(EPR18444)
  • 免疫印迹; 人类; 图 5b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab214036)被用于被用于免疫印迹在人类样本上 (图 5b). Eur Rev Med Pharmacol Sci (2019) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 7a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上 (图 7a). Int J Biol Sci (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Lab Invest (2019) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 1:1000; 图 5c
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5c). Exp Ther Med (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:100; 图 5a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(E460)
  • 免疫印迹; 人类; 1:100; 图 5b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab32081)被用于被用于免疫印迹在人类样本上浓度为1:100 (图 5b). Exp Ther Med (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:1000; 图 4b
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4b). Braz J Med Biol Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 3a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3a). J Mol Neurosci (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 1:200; 图 6d
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫细胞化学在人类样本上浓度为1:200 (图 6d). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Oncotarget (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, Ab50011)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, Ab17942)被用于被用于免疫印迹在大鼠样本上. PLoS ONE (2016) ncbi
domestic rabbit 单克隆(E460)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 6f
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab32081)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 6f). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(EPR19401)
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab201015)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab17942)被用于被用于免疫印迹在大鼠样本上 (图 4). Mol Brain (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
艾博抗(上海)贸易有限公司 Mapk1抗体(AbCam, Ab17942)被用于被用于免疫细胞化学在人类样本上 (图 2). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 图 5
艾博抗(上海)贸易有限公司 Mapk1抗体(AbCam, Ab50011)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 5). Cancer Biol Ther (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 2
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 2). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 1d
艾博抗(上海)贸易有限公司 Mapk1抗体(abcam, 50011)被用于被用于免疫印迹在人类样本上 (图 1d). Mar Drugs (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 图 1
艾博抗(上海)贸易有限公司 Mapk1抗体(abcam, ab50011)被用于被用于免疫组化在人类样本上 (图 1). Mol Cancer (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 6). Biomaterials (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2a
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上 (图 2a). Med Oncol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; 斑马鱼; 1:300
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:300. J Immunol (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:2000; 图 1d
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab54230)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1d). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 大鼠; 1:200
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫组化在大鼠样本上浓度为1:200. J Surg Res (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:50-500
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫印迹在人类样本上浓度为1:50-500. Reprod Biol Endocrinol (2013) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 人类; 1:200
艾博抗(上海)贸易有限公司 Mapk1抗体(Abcam, ab50011)被用于被用于免疫组化在人类样本上浓度为1:200. PLoS ONE (2013) ncbi
赛默飞世尔
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Mapk1抗体(Thermo Fisher Scientific, 44-6544)被用于被用于免疫印迹在人类样本上 (图 6). Eur J Histochem (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4b
赛默飞世尔 Mapk1抗体(Thermo Fisher Scientific, 44-654G)被用于被用于免疫印迹在大鼠样本上 (图 4b). Biosci Rep (2018) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 大鼠; 图 4a
赛默飞世尔 Mapk1抗体(Thermo Fisher Scientific, 700012)被用于被用于免疫印迹在大鼠样本上 (图 4a). Biosci Rep (2018) ncbi
domestic rabbit 单克隆(B.742.5)
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapk1抗体(ThermoFisher, MA5-15174)被用于被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a) 和 被用于免疫印迹在人类样本上 (图 4). F1000Res (2017) ncbi
小鼠 单克隆(3F8B3)
  • 免疫印迹; 人类; 图 4
  • 免疫印迹; Stylophora pistillata; 1:1000; 图 2a
赛默飞世尔 Mapk1抗体(ThermoFisher, MA5-15605)被用于被用于免疫印迹在人类样本上 (图 4) 和 被用于免疫印迹在Stylophora pistillata样本上浓度为1:1000 (图 2a). F1000Res (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 人类; 图 5a
  • 免疫印迹; 人类; 图 5a
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫沉淀在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 5a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛默飞世尔 Mapk1抗体(Thermo Scientific, PA1-4703)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Mol Neurobiol (2018) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:500; 图 3a
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 Mapk1抗体(Invitrogen, 44-654G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛默飞世尔 Mapk1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1d). Biochim Biophys Acta Mol Basis Dis (2017) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 5e
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 5e). MAbs (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5f
赛默飞世尔 Mapk1抗体(Invitrogen, 36-8800)被用于被用于免疫印迹在人类样本上 (图 5f). MAbs (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛默飞世尔 Mapk1抗体(Invitrogen, 61-7400)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; African green monkey; 图 5c
赛默飞世尔 Mapk1抗体(Zymed, 61-7400)被用于被用于免疫印迹在African green monkey样本上 (图 5c). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛默飞世尔 Mapk1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1b). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 Mapk1抗体(生活技术, 44-654G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3b
  • 免疫印迹; 小鼠; 图 5e
赛默飞世尔 Mapk1抗体(生活技术, 44-680G)被用于被用于免疫印迹在人类样本上 (图 s3b) 和 被用于免疫印迹在小鼠样本上 (图 5e). Nat Immunol (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 1:2000; 图 2a
赛默飞世尔 Mapk1抗体(Thermo Fisher Scientific, ERK-7D8)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk1抗体(生活技术, 44-654-G)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛默飞世尔 Mapk1抗体(Invitrogen, 44680G)被用于被用于免疫印迹在人类样本上 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛默飞世尔 Mapk1抗体(Invitrogen, 368800)被用于被用于免疫印迹在人类样本上 (图 7a). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 图 3
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk1抗体(Invitrogen, 44680G)被用于被用于免疫组化-石蜡切片在人类样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 1). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛默飞世尔 Mapk1抗体(Invitrogen Biosource, 44-654G)被用于被用于免疫印迹在人类样本上 (图 6). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 图 5
赛默飞世尔 Mapk1抗体(Zymed, 61-7400)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (图 5). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Mapk1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在大鼠样本上 (图 5). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Invitrogen, 44680G)被用于. Int J Mol Sci (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Thermo Fisher Scientific, 44-680G)被用于. Biomed Res Int (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(生活技术, 44-654-G)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk1抗体(Invitrogen, 44-680G)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Invitrogen, 44680G)被用于. Biochem Pharmacol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(生活技术, 44680G)被用于. PLoS ONE (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Biosource, 44-680G)被用于. Nat Cell Biol (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 1:500; 图 5b
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 5b). Nat Cell Biol (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Invitrogen, CA 61-7400)被用于. Oncotarget (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Invitrogen Life Technologies, 44-654G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 多克隆
赛默飞世尔 Mapk1抗体(Invitrogen Life Technologies, 44680G)被用于. Cell Death Dis (2015) ncbi
domestic rabbit 重组(15H10L7)
  • 免疫印迹; 人类
赛默飞世尔 Mapk1抗体(Invitrogen, 700012)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2015) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(K.913.4)
  • 免疫组化-石蜡切片; 斑马鱼
  • 免疫印迹; 斑马鱼
赛默飞世尔 Mapk1抗体(Pierce, MA5-15134)被用于被用于免疫组化-石蜡切片在斑马鱼样本上 和 被用于免疫印迹在斑马鱼样本上. Cell Res (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk1抗体(Zymed Laboratories, 13-6200)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:2500; 表 1
赛默飞世尔 Mapk1抗体(Invitrogen, 136200)被用于被用于免疫印迹在大鼠样本上浓度为1:2500 (表 1). Amino Acids (2012) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在人类样本上. Biochim Biophys Acta (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 1
赛默飞世尔 Mapk1抗体(Invitrogen, 13-6200)被用于被用于免疫印迹在人类样本上 (图 1). J Endocrinol Invest (2011) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 2a
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 2a). Nat Immunol (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 6
赛默飞世尔 Mapk1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 6). Cardiovasc Res (2006) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 7
赛默飞世尔 Mapk1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上 (图 7). J Biomed Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 1:5000; 图 2
赛默飞世尔 Mapk1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 2). Life Sci (2005) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠; 图 5
赛默飞世尔 Mapk1抗体(Zymed, 13-6200,)被用于被用于免疫印迹在大鼠样本上 (图 5). J Biol Chem (2004) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 2
赛默飞世尔 Mapk1抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 2). J Neurochem (2000) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 大鼠
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在大鼠样本上. J Clin Invest (1999) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 小鼠; 图 1, 2
赛默飞世尔 Mapk1抗体(Zymed, 13-6200)被用于被用于免疫印迹在小鼠样本上 (图 1, 2). Neurochem Res (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫沉淀; 小鼠
  • 免疫印迹; 小鼠
赛默飞世尔 Mapk1抗体(Zymed, ERK-7D8)被用于被用于免疫沉淀在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Proc Natl Acad Sci U S A (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 非洲爪蛙; 1:1000; 图 1
赛默飞世尔 Mapk1抗体(Zymed, ERK-7D8)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:1000 (图 1). Science (1998) ncbi
小鼠 单克隆(ERK-7D8)
  • 免疫印迹; 人类; 图 3
赛默飞世尔 Mapk1抗体(Zymed Laboratories, clone ERK-7D8)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (1997) ncbi
亚诺法生技股份有限公司
domestic rabbit 单克隆(G15-B)
  • 免疫印迹; 人类
亚诺法生技股份有限公司 Mapk1抗体(Abnova, G15-B)被用于被用于免疫印迹在人类样本上. J Transl Med (2015) ncbi
赛信通(上海)生物试剂有限公司
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2d). Sci Adv (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:500; 图 1s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9,101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500 (图 1s2). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Mol Gastroenterol Hepatol (2022) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 5b). Aging (Albany NY) (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s11b
  • 免疫印迹; 人类; 图 s11a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 s11b) 和 被用于免疫印迹在人类样本上 (图 s11a). J Immunother Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). Eur Respir J (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling technology, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 4). Antioxidants (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s8c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s8c). Sci Adv (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). Int J Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5b). J Inflamm Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 2b). BMC Cancer (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4a). Cell Rep (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). J Lipid Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6b). J Lipid Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 4e). Cell Rep Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2h
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2h). Acta Neuropathol Commun (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s5a). Adv Sci (Weinh) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5a). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 3i
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3i). Front Pharmacol (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 大鼠; 1:50; 图 4c
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376)被用于被用于免疫组化在大鼠样本上浓度为1:50 (图 4c) 和 被用于免疫印迹在大鼠样本上 (图 4a). J Neuroinflammation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalin, 9101)被用于被用于免疫印迹在人类样本上 (图 1c). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 4a). Int J Mol Sci (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376S)被用于被用于免疫印迹在人类样本上 (图 5a). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500; 图 3c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 3c). J Dev Biol (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 4g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4g). Cell Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4e). BMC Cancer (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 6d). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s8h
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s8h). Cancer Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 7f
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101s)被用于被用于免疫印迹在大鼠样本上 (图 7f). Circulation (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 14g
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 14g). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1a). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7i
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7i). Int J Mol Sci (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 ev5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev5b). EMBO Mol Med (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 7e). Nucleic Acids Res (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:700; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上浓度为1:700 (图 6). Int J Endocrinol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1a). JCI Insight (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 3a). Sci Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 s5a). Theranostics (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7c). J Exp Clin Cancer Res (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 1:100; 图 4a
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376S)被用于被用于免疫组化在小鼠样本上浓度为1:100 (图 4a) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Proc Natl Acad Sci U S A (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Environ Health Perspect (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫组化在小鼠样本上. Cell Metab (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 1l
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 1l). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Cancers (Basel) (2021) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 1:500; 图 3e
  • 免疫印迹; 斑马鱼; 1:2000; 图 3d, 5e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 3e) 和 被用于免疫印迹在斑马鱼样本上浓度为1:2000 (图 3d, 5e). EMBO Rep (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1a). Endocr Relat Cancer (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 图 1c
  • 免疫印迹; 人类; 图 s9c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376)被用于被用于免疫组化-石蜡切片在人类样本上 (图 1c) 和 被用于免疫印迹在人类样本上 (图 s9c). Sci Rep (2021) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Nat Commun (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 6e). Biomolecules (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s9b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s9b). Nat Commun (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Am J Cancer Res (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4b). Mol Metab (2021) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376 S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Commun Biol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s6-2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s6-2a). elife (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Bone Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2d). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 s3). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化; 小鼠; 1:1000; 图 9d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫组化在小鼠样本上浓度为1:1000 (图 9d). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signalling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3c). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Res (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 197G2)被用于被用于流式细胞仪在人类样本上 (图 6b). Cell Mol Gastroenterol Hepatol (2021) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Cancers (Basel) (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4i
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4i). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4f). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3b). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Commun Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4a). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 6a). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2h
  • 免疫印迹; 大鼠; 1:1000; 图 s2g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2h) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s2g). Sci Adv (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 1e
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376S)被用于被用于免疫印迹在小鼠样本上 (图 1e). Aging Cell (2020) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于. Neuron (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在人类样本上 (图 4a) 和 被用于免疫印迹在小鼠样本上 (图 4e). Cancer Res (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4d). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:4000; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:4000 (图 5c). Cell Death Dis (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2j, 4s3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2j, 4s3e). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在人类样本上 (图 4d). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在猕猴样本上浓度为1:1000 (图 5a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于流式细胞仪在小鼠样本上 (图 5b). J Biol Chem (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:500; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4c). Oncol Lett (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4f). EMBO Rep (2020) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Br J Pharmacol (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6l
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 6l). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1k
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1k). Sci Adv (2020) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 4a). Aging (Albany NY) (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 图 4b
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 4b) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Cancer Cell (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Res Cardiol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 ev1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 ev1c). EMBO Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 1b, 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b, 1c). Sci Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Int J Mol Med (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1f). Adv Sci (Weinh) (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Front Immunol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Artif Cells Nanomed Biotechnol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s8c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 s8c). Nature (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101S)被用于被用于免疫组化在斑马鱼样本上 (图 4c). Cell Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 斑马鱼; 1:250; 图 2n
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:250 (图 2n). PLoS Biol (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7a, 7b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7a, 7b). Mol Cells (2020) ncbi
domestic rabbit 多克隆
  • 免疫沉淀; 人类; 1:2500; 图 2d, 3d, 4d, 5d, 6d, 7d
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, #9101)被用于被用于免疫沉淀在人类样本上浓度为1:2500 (图 2d, 3d, 4d, 5d, 6d, 7d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4a). Sci Adv (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 197G2)被用于被用于免疫印迹在人类样本上 (图 5c). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s17d
  • 免疫印迹; 小鼠; 图 s13h
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101S)被用于被用于免疫组化在小鼠样本上 (图 s17d) 和 被用于免疫印迹在小鼠样本上 (图 s13h). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 非洲爪蛙; 1:250; 图 4s1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫细胞化学在非洲爪蛙样本上浓度为1:250 (图 4s1b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3e). Mol Med Rep (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a, 3f, 3k
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a, 3f, 3k). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a, 3c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3a, 3c). J Am Heart Assoc (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Front Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 5a). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 8a
  • 免疫印迹; 绿脓假单胞菌; 图 8a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 9101)被用于被用于免疫印迹在小鼠样本上 (图 8a) 和 被用于免疫印迹在绿脓假单胞菌样本上 (图 8a). Infect Immun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 绿脓假单胞菌; 图 8a
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 9101)被用于被用于免疫印迹在绿脓假单胞菌样本上 (图 8a) 和 被用于免疫印迹在小鼠样本上 (图 8a). Histochem Cell Biol (2019) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101S)被用于. elife (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:600; 图 4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:600 (图 4f). Sci Signal (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上 (图 4a). Cells (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 7a). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 11a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 11a). Biomolecules (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 s3a). Cell Metab (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3f
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3f). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3d). Breast Cancer Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). J Physiol Biochem (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 4a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; Dictyostelium discoideum; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在Dictyostelium discoideum样本上浓度为1:1000 (图 4a). BMC Biol (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 6g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 6g). Cell Metab (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 9101)被用于被用于免疫印迹在人类样本上 (图 4a). Science (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 10b
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signaling technologies, 9101)被用于被用于免疫印迹在人类样本上 (图 10b). Front Genet (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). BMC Cancer (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1e). J Exp Med (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 6g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6g). Int J Oncol (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 1e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 1e). Oncotarget (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1c). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1s2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1s2b). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4e). J Exp Med (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 2e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在大鼠样本上 (图 2e). Sci Adv (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3j
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3j). elife (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s3e). J Clin Invest (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b, 2d
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上 (图 2b, 2d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 3b). Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 e2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 e2b). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:400; 图 8a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫细胞化学在人类样本上浓度为1:400 (图 8a). Front Mol Neurosci (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s1i
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s1i). Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:2000; 图 s2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s2b). Nat Commun (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 7b). Cell (2019) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cell Stem Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 3d). Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4a). Autophagy (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2b). Nature (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 大鼠; 1:2000; 图 2c
  • 免疫印迹; 大鼠; 1:1000; 图 s1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376)被用于被用于免疫组化-石蜡切片在大鼠样本上浓度为1:2000 (图 2c) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 s1b). Histochem Cell Biol (2019) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 6c). elife (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6d). Infect Immun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 2a). Blood Cancer J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 猕猴; 图 1d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在猕猴样本上 (图 1d). Sci Rep (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d, s1b
  • 免疫印迹; 小鼠; 图 4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1d, s1b) 和 被用于免疫印迹在小鼠样本上 (图 4f). Cell (2019) ncbi
domestic rabbit 单克隆(20G11)
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于. Nature (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9108)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s4c). Nat Commun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; Dictyostelium discoideum; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在Dictyostelium discoideum样本上 (图 3d). Dev Cell (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1b). EBioMedicine (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s1d). Science (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上 (图 5d). Cell Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5a). Sci Signal (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3s1d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3s1d). elife (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2d
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 2d) 和 被用于免疫印迹在人类样本上 (图 3a). Oncogene (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2e). Exp Mol Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3e). Sci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6d). Behav Brain Res (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4b). Cell Stem Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4a). Infect Immun (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4b). Science (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 5a
  • 免疫印迹; 人类; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上 (图 5a) 和 被用于免疫印迹在人类样本上 (图 6c). J Virol (2019) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 s11d
  • 免疫印迹; 小鼠; 图 s10c
  • 免疫印迹; 人类; 图 s10b, s10d, s12b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在小鼠样本上 (图 s11d), 被用于免疫印迹在小鼠样本上 (图 s10c) 和 被用于免疫印迹在人类样本上 (图 s10b, s10d, s12b). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5b). Science (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫细胞化学; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫细胞化学在人类样本上浓度为1:1000 (图 s3c). Genes Dev (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3a). J Cell Sci (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 7c). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Immunity (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 人类; 1:200; 表 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (表 1). Br J Cancer (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 5d). FASEB J (2019) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2e). Cancer Res (2018) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:400; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫组化在小鼠样本上浓度为1:400 (图 3e). Science (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s1b). Genes Dev (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100; 图 s17b
  • 免疫组化-石蜡切片; 小鼠; 1:100; 图 s5j, s6h, s14f, s15g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 (图 s17b) 和 被用于免疫组化-石蜡切片在小鼠样本上浓度为1:100 (图 s5j, s6h, s14f, s15g). Nat Med (2018) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 小鼠; 1:100-1:200; 图 s4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于流式细胞仪在小鼠样本上浓度为1:100-1:200 (图 s4d). Cell Stem Cell (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2a). J Neurochem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1f). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3a). J Exp Med (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). Biosci Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s2). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 6f). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1a). Cell Mol Immunol (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 9a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上 (图 9a). J Exp Med (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 其他; 人类; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于其他在人类样本上 (图 4c). Cancer Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3a). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s1a). Mol Genet Metab (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Biochem Biophys Res Commun (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 8b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8b). Br J Pharmacol (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 6e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6e). Nat Commun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2a). Mol Med Rep (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogenesis (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上 (图 2b). Cell (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 5b). Oncogene (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3a). Gastroenterology (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1a). Immunity (2017) ncbi
domestic rabbit 多克隆
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于. J Biol Chem (2018) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠; 图 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上 (图 1c). J Clin Invest (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5c). Nat Commun (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3a). Brain Behav Immun (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5a). Mol Neurobiol (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 10a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上 (图 10a). J Biol Chem (2018) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 13e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 13e). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2a). Basic Clin Pharmacol Toxicol (2018) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 9e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 9e). J Clin Invest (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 3d). BMC Cancer (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3e). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2h
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2h). Cancer Res (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4h
  • 免疫组化; 小鼠; 1:400; 图 4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4h) 和 被用于免疫组化在小鼠样本上浓度为1:400 (图 4f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 犬; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在犬样本上 (图 5a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s4f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s4f). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s5b). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1d). Biochem J (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 1:250; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在小鼠样本上浓度为1:250 (图 4a). Development (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 图 s17b
  • 免疫印迹; 人类; 图 5e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在人类样本上 (图 s17b) 和 被用于免疫印迹在人类样本上 (图 5e). Oncogene (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:3000; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:3000 (图 3d). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上 (图 2c). Leukemia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s1b). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3s1d
  • 免疫组化; 斑马鱼; 图 3s1f
  • 免疫印迹; 斑马鱼; 图 3s1e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 3s1d), 被用于免疫组化在斑马鱼样本上 (图 3s1f) 和 被用于免疫印迹在斑马鱼样本上 (图 3s1e). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 s5f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 s5f). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:50; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:50 (图 5b). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4c). Cell Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7c, 7g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 7c, 7g). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Exp Ther Med (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Breast Cancer (Dove Med Press) (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:500; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101S)被用于被用于免疫印迹在大鼠样本上浓度为1:500 (图 2a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 2). Neoplasia (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Sci Rep (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4A
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4A). Neurochem Res (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7b). Toxicol Appl Pharmacol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9108)被用于被用于免疫印迹在人类样本上 (图 6b). elife (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b, 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4b, 4d). J Gerontol A Biol Sci Med Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2d). Mol Cell (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 3). Front Aging Neurosci (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3c
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 3c) 和 被用于免疫印迹在人类样本上 (图 4a). Sci Signal (2017) ncbi
domestic rabbit 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 st6
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4377)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 st6). Cancer Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5d). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 EV4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 EV4a). EMBO Mol Med (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1f
赛信通(上海)生物试剂有限公司 Mapk1抗体(cst, 4377S)被用于被用于免疫印迹在人类样本上 (图 1f). J Cell Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3a
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3a) 和 被用于免疫印迹在人类样本上 (图 4a). J Biol Chem (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 5c). Mol Biol Cell (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 S6o
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 S6o). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101L)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 番茄; 图 7b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在番茄样本上 (图 7b). Front Plant Sci (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1b). Cancer Res (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 5a). Am J Respir Crit Care Med (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:5000; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 (图 1a). Cell Death Differ (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s9a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s9a). Arterioscler Thromb Vasc Biol (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上 (图 3a). PLoS ONE (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 s7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 s7a). Am J Hum Genet (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s3). Proc Natl Acad Sci U S A (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 6c). J Cell Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3d). Mol Immunol (2017) ncbi
domestic rabbit 单克隆(197G2)
  • reverse phase protein lysate microarray; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于reverse phase protein lysate microarray在人类样本上 (图 3a). Nature (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 1:200; 图 7b
  • 免疫印迹; 人类; 1:1000; 图 7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上浓度为1:200 (图 7b) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Oncotarget (2017) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 小鼠; 1:400; 图 4h
  • 免疫印迹; 小鼠; 1:5000; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:400 (图 4h) 和 被用于免疫印迹在小鼠样本上浓度为1:5000 (图 4b). Breast Cancer Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 2f
  • 免疫印迹; 人类; 1:1000; 图 2e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 2f) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 2e). Mol Clin Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s5e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s5e). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 7c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7c). J Clin Invest (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1b). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 4d). Oncogene (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 s5f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 s5f). Nature (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 6e). JCI Insight (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4a). Neural Plast (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Cell Syst (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000. Biochim Biophys Acta Mol Cell Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2b). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 1a). J Immunol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1a). J Biol Chem (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3a
  • 免疫印迹; 人类; 1:1000; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 3b). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9108)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6a). J Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 e7d
  • 免疫印迹; 小鼠; 图 e2c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫细胞化学在人类样本上 (图 e7d) 和 被用于免疫印迹在小鼠样本上 (图 e2c). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 9
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 9). Neurobiol Aging (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-石蜡切片; 斑马鱼; 1:200; 图 3g
  • 免疫印迹; 斑马鱼; 1:200; 图 s2e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫组化-石蜡切片在斑马鱼样本上浓度为1:200 (图 3g) 和 被用于免疫印迹在斑马鱼样本上浓度为1:200 (图 s2e). Dis Model Mech (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 12
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 12). J Neurosci Res (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化在小鼠样本上 (图 3e). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 5b). J Hematol Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:300; 图 1e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:300 (图 1e). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上 (图 5a). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 8h
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 8h). elife (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4a). Front Immunol (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Respir Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2b
  • 免疫印迹; 大鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2b) 和 被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3a). Neuroreport (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101L)被用于被用于免疫印迹在人类样本上 (图 2a). Nat Chem Biol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4G
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4G). J Clin Invest (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3h, s4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3h, s4a). Nature (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 2d). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6a). Redox Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在brewer's yeast样本上 (图 4b). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6a). Mol Neurobiol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 s4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s4b). Neoplasia (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:3000; 图 5e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:3000 (图 5e). Cell Cycle (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3) 和 被用于免疫印迹在小鼠样本上 (图 6). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4a). Mol Cell Biol (2017) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101 S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:800; 图 7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:800 (图 7a). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6h
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6h). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4). elife (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 4a). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6a). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1c). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上. Cell Discov (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上 (图 7a). Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 s7e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s7e). Nat Cell Biol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 s5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 s5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3g
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3g). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3h
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3h). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s2). Nucleic Acids Res (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 其他; 人类; 1:50; 图 5e
  • 免疫印迹; 人类; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于其他在人类样本上浓度为1:50 (图 5e) 和 被用于免疫印迹在人类样本上浓度为1:1000 (图 5a). BMC Cancer (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:200; 图 3
  • 免疫印迹; 人类; 1:3000; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在人类样本上浓度为1:200 (图 3) 和 被用于免疫印迹在人类样本上浓度为1:3000 (图 6c). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 9101s)被用于被用于免疫印迹在小鼠样本上 (图 6a). Clin Sci (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化-冰冻切片; 大鼠; 1:100; 图 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:100 (图 4c). J Headache Pain (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). J Physiol Biochem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:500; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101s)被用于被用于免疫印迹在人类样本上 (图 2c). Autophagy (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 4b). Neuropharmacology (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3d). Biol Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1d). J Am Heart Assoc (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 5c). Mol Cell Biol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上 (图 s2). Sci Rep (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:4000; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:4000 (图 4). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 8
  • 免疫印迹; 小鼠; 1:1000; 图 6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101s)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 8) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6c). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上 (图 3). Physiol Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6.a, b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6.a, b). Cancer Chemother Pharmacol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Cell Death Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4). Oncol Lett (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 表 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (表 1). Br J Cancer (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 2a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6c). Nature (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化在小鼠样本上 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 9
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 9) 和 被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101S)被用于被用于免疫印迹在大鼠样本上 (图 4a). Toxicol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2f
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 2f). Biochim Biophys Acta (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 91015)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 3a). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3e
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4377S)被用于被用于免疫印迹在人类样本上 (图 3e). Nature (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101S)被用于被用于免疫印迹在人类样本上 (图 6b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 6). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 3d). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2000; 图 S11
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 S11). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3a). Oncogene (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). Oxid Med Cell Longev (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5). PLoS Pathog (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000; 图 s4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376S)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 5l
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5l). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6). J Exp Clin Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 7). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 小鼠; 1:50; 图 S5B
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫细胞化学在小鼠样本上浓度为1:50 (图 S5B). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 5a). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上 (图 2). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1a). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7). Front Cell Infect Microbiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101s)被用于被用于免疫印迹在人类样本上 (图 s1). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 5b
  • 免疫印迹; 人类; 图 5b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 5b) 和 被用于免疫印迹在人类样本上 (图 5b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:800; 图 4
  • 免疫印迹; 小鼠; 1:800; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:800 (图 4) 和 被用于免疫印迹在小鼠样本上浓度为1:800 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:10,000; 图 2C
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:10,000 (图 2C). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101S)被用于被用于免疫印迹在人类样本上 (图 7b). Biochim Biophys Acta (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6). Mol Hum Reprod (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 7). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2). Aging (Albany NY) (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 3
  • 免疫印迹; 人类; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 3) 和 被用于免疫印迹在人类样本上 (图 s3). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫组化在小鼠样本上 (图 4b). J Pathol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上. EMBO Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1C
  • 免疫印迹; 人类; 图 1A
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1C) 和 被用于免疫印迹在人类样本上 (图 1A). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在人类样本上. elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 4a). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1b). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
  • 免疫印迹; 小鼠; 图 4b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9108)被用于被用于免疫印迹在人类样本上 (图 1b) 和 被用于免疫印迹在小鼠样本上 (图 4b). Cell Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:500; 图 2c
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫组化在人类样本上浓度为1:500 (图 2c). Science (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 5c). Mucosal Immunol (2017) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 7). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 `1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 `1). Sci Rep (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 4376)被用于被用于免疫印迹在人类样本上 (图 5). Oncogenesis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a, 4b, 4c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4a, 4b, 4c). Breast Cancer Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s2). Pediatr Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101S)被用于被用于免疫印迹在人类样本上 (图 3). Int J Mol Sci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; pigs ; 图 2a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在pigs 样本上 (图 2a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在人类样本上 (图 3a). Int J Oncol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 5). Sci Rep (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5). J Neurosci (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s3). Nat Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 1c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 1c). Exp Neurol (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:500; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 6). Cell Death Differ (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6). Mol Cancer Ther (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 1b). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2
  • 免疫印迹; African green monkey; 图 1
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2), 被用于免疫印迹在African green monkey样本上 (图 1) 和 被用于免疫印迹在人类样本上 (图 4). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signal, 4377S)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s2). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; fruit fly ; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在fruit fly 样本上 (图 3). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:5000; 表 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:5000 (表 1). J Alzheimers Dis (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4). Oncotarget (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 20G11)被用于被用于免疫印迹在人类样本上 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 1a). Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 斑马鱼; 图 s12
  • 免疫印迹; 斑马鱼; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 9101)被用于被用于免疫组化在斑马鱼样本上 (图 s12) 和 被用于免疫印迹在斑马鱼样本上 (图 4). PLoS Genet (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 1:50; 图 2
  • 免疫印迹; 人类; 图 s11
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫细胞化学在人类样本上浓度为1:50 (图 2) 和 被用于免疫印迹在人类样本上 (图 s11). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 5). Life Sci (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 4377S)被用于被用于免疫印迹在人类样本上 (图 3). Sci Signal (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3). EMBO Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 7). Oncogene (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 s5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 7a). Stem Cells (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 5e
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5e). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫印迹在小鼠样本上 (图 6). PLoS ONE (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. Sci Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Ozyme, 9101)被用于被用于免疫印迹在人类样本上 (图 5a). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:5000; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:5000 (图 2). Nat Commun (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 5s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 5s3). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101 S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 s7a). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫组化; 人类; 1:20; 表 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101S)被用于被用于免疫组化在人类样本上浓度为1:20 (表 2). Hematol Oncol (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 9101)被用于被用于免疫印迹在人类样本上 (图 1b). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 2
  • 免疫印迹; 人类; 1:500; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫细胞化学在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上浓度为1:500 (图 2). elife (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 1). PLoS ONE (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; brewer's yeast; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在brewer's yeast样本上 (图 4). J Biol Chem (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样本上 (图 3d). J Exp Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 1). Nat Commun (2016) ncbi
domestic rabbit 单克隆(197G2)
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 4377)被用于. Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signalling, #9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 2). Cell Mol Gastroenterol Hepatol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 s7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 s7). Cell Res (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:400; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:400 (图 5). Biomaterials (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). Sci Rep (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 图 1b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 1b). Nat Commun (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 1). Proc Natl Acad Sci U S A (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 2c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上 (图 2c). Exp Hematol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 3). Clin Cancer Res (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 5). Target Oncol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s7). Brain Behav (2015) ncbi
domestic rabbit 多克隆
  • 流式细胞仪; 人类; 图 8
  • 免疫印迹; 人类; 图 8
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于流式细胞仪在人类样本上 (图 8) 和 被用于免疫印迹在人类样本上 (图 8). J Clin Invest (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠; 1:50; 图 6b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, cs4377s)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:50 (图 6b). Development (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 6d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 4d). J Biol Chem (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3d). Am J Physiol Lung Cell Mol Physiol (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3). J Cell Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 6). Mol Med Rep (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 4a). Biol Cell (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 人类; 图 2
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于流式细胞仪在人类样本上 (图 2) 和 被用于免疫印迹在人类样本上 (图 2). Oncogene (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 5a). Int J Mol Med (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 5C
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Sgnaling, 9101)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5C). Mol Oncol (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 3). elife (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 3a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 3a). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 1a). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:1000; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101L)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 6). Oncotarget (2016) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠; 1:1000; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 4377)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 3). Nat Neurosci (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 5a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 5a). Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 8
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 8). Sci Rep (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 5c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 5c). Sci Signal (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:150; 图 s3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:150 (图 s3). Mol Cancer (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 3b). Int J Obes (Lond) (2016) ncbi
domestic rabbit 多克隆
  • 免疫细胞化学; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 9101)被用于被用于免疫细胞化学在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4b,c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4b,c). Leukemia (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在小鼠样本上浓度为1:500. FASEB J (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上 (图 s5). Nature (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376S)被用于被用于免疫印迹在小鼠样本上 (图 3). Nat Struct Mol Biol (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 9101)被用于被用于免疫印迹在人类样本上 (图 4). Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4376S)被用于被用于免疫印迹在大鼠样本上 (图 5). J Korean Med Sci (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 2,3,4,5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376s)被用于被用于免疫印迹在小鼠样本上 (图 2,3,4,5). Cell Res (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:200; 图 6a, 6b
  • 免疫印迹; 人类; 图 3a, 4a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:200 (图 6a, 6b) 和 被用于免疫印迹在人类样本上 (图 3a, 4a). Oncotarget (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:500. Dev Biol (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 4d
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上 (图 4d). Oncotarget (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 s1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 s1). Mol Cancer Res (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 s10
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上 (图 s10). Oncogene (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 9101)被用于被用于免疫印迹在人类样本上. Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 2). elife (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 7). Oncotarget (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 家羊; 1:2500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在家羊样本上浓度为1:2500. Mol Cell Endocrinol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1). J Immunol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在人类样本上. PLoS Pathog (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Tech, 9101)被用于被用于免疫印迹在人类样本上 (图 1). Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 5). Oncogene (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 大鼠; 1:1000; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(cell signalling, 4376)被用于被用于免疫印迹在大鼠样本上浓度为1:1000 (图 4). Toxicology (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 6). Mol Biol Cell (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 犬
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫组化-石蜡切片在犬样本上. Int J Oncol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Mol Cancer Ther (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上 (图 1). FASEB J (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000; 图 s3c
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies,, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 s3c). Nat Commun (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1500; 图 st8
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 197G2)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 st8). Gastroenterology (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(CST, 20G11)被用于被用于免疫印迹在人类样本上. Acta Neuropathol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500 (图 4). J Physiol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:500; 表 3
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:500 (表 3). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 图 s7a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4376)被用于被用于免疫印迹在小鼠样本上 (图 s7a). Nat Immunol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 4376)被用于被用于免疫组化-石蜡切片在人类样本上. Cancer Genet (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在人类样本上. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:2000; 图 5
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 5). PLoS ONE (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 197G2)被用于被用于免疫印迹在人类样本上. J Cell Mol Med (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1a
  • 免疫印迹; 小鼠; 图 1a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1a). Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上. Cell Signal (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 197G2)被用于被用于免疫印迹在人类样本上 (图 2). Oncotarget (2015) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 9101)被用于被用于免疫印迹在人类样本上. Mol Carcinog (2016) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. PLoS ONE (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:1000; 图 7
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 7). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000; 图 s6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell signaling, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 s6). Development (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 8). Mol Cell Biol (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在人类样本上浓度为1:1000. Am J Physiol Renal Physiol (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:25
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:25. PLoS Genet (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 20G11)被用于被用于免疫组化在人类样本上. Cancer Cell (2015) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 8a
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在小鼠样本上 (图 8a). Free Radic Biol Med (2015) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 图 s4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上 (图 s4). Nat Commun (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. J Mol Endocrinol (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上 (图 6). Oncotarget (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 20G11)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376S)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. Neoplasia (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 和 被用于免疫印迹在人类样本上浓度为1:1000. Int Immunopharmacol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 6
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上 (图 6). PLoS ONE (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 图 1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling Technology, 4377S)被用于被用于免疫印迹在人类样本上 (图 1). Cell Prolif (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; pigs ; 1:500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在pigs 样本上浓度为1:500. Amino Acids (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上. Arthritis Rheumatol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Eur J Cancer (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:500. Free Radic Biol Med (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling technology, 4376)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 图 s1
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于免疫印迹在小鼠样本上 (图 s1). Nat Immunol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上. Cell Death Differ (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. J Immunol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 大鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377S)被用于被用于免疫印迹在大鼠样本上. Brain Res (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:2500
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:2500. Brain Behav (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. Breast Cancer Res (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在人类样本上浓度为1:1000. Int J Radiat Oncol Biol Phys (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-冰冻切片; 大鼠; 1:200
  • 免疫印迹; 大鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫组化-冰冻切片在大鼠样本上浓度为1:200 和 被用于免疫印迹在大鼠样本上浓度为1:1000. BMC Complement Altern Med (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 流式细胞仪; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 197G2)被用于被用于流式细胞仪在小鼠样本上. PLoS ONE (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 小鼠; 1:75; 图 2
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化-石蜡切片在小鼠样本上浓度为1:75 (图 2). Genes Dev (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377S)被用于被用于免疫印迹在人类样本上. Neuro Oncol (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 小鼠
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫组化-石蜡切片在小鼠样本上 和 被用于免疫印迹在小鼠样本上. J Biol Chem (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4377)被用于被用于免疫印迹在小鼠样本上. Am J Respir Cell Mol Biol (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; pigs ; 1:50
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signalling, 4376)被用于被用于免疫组化在pigs 样本上浓度为1:50. Dev Biol (2014) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫组化在人类样本上. Mol Cancer Ther (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上浓度为1:1000. Nat Med (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 小鼠
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在小鼠样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:400
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:400 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4377)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上. PLoS ONE (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 小鼠; 1:200
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹在小鼠样本上浓度为1:200. Nat Med (2013) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫组化-石蜡切片; 人类; 1:100
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologies, 4376)被用于被用于免疫组化-石蜡切片在人类样本上浓度为1:100 和 被用于免疫印迹在人类样本上浓度为1:1000. Oncotarget (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technologie, 4377)被用于被用于免疫印迹在人类样本上. Oncogenesis (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4377)被用于被用于免疫印迹在人类样本上浓度为1:1000. Head Neck (2014) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫印迹在人类样本上. Cancer Cell Int (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫组化; 小鼠
  • 免疫印迹; 小鼠; 图 2b
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫组化在小鼠样本上 和 被用于免疫印迹在小鼠样本上 (图 2b). FASEB J (2013) ncbi
domestic rabbit 单克隆(197G2)
  • 免疫细胞化学; 小鼠; 图 4
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4377)被用于被用于免疫细胞化学在小鼠样本上 (图 4). Stem Cells (2012) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹; 人类
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling, 4376)被用于被用于免疫印迹在人类样本上. J Appl Physiol (1985) (2012) ncbi
domestic rabbit 单克隆(20G11)
  • 免疫印迹基因敲除验证; 小鼠; 1:1000
赛信通(上海)生物试剂有限公司 Mapk1抗体(Cell Signaling Technology, 4376)被用于被用于免疫印迹基因敲除验证在小鼠样本上浓度为1:1000. Development (2007) ncbi
西格玛奥德里奇
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1500; 图 2c
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1500 (图 2c). Nat Commun (2021) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; Ciona; 1:500; 图 2d
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫组化在Ciona样本上浓度为1:500 (图 2d). Front Cell Dev Biol (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2e
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2e). Theranostics (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇 Mapk1抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 6i
西格玛奥德里奇 Mapk1抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上 (图 6i). elife (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 s1c
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1c). Nat Commun (2020) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 s1b
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 s1b). Nat Commun (2020) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 3b). Cancer Cell (2019) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:1000; 图 7a
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M7802)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 7a). elife (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4c
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4c). EMBO J (2019) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 图 5a
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上 (图 5a). Cell Death Dis (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 2c
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 2c). Breast Cancer Res Treat (2018) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 小鼠; 图 s5d
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫组化在小鼠样本上 (图 s5d). Science (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:500; 图 4b
西格玛奥德里奇 Mapk1抗体(Sigma Aldrich, M8159)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 4b). Nat Commun (2017) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:2000; 图 4b
西格玛奥德里奇 Mapk1抗体(Sigma Aldrich, M5670)被用于被用于免疫印迹在人类样本上浓度为1:2000 (图 4b). Nat Commun (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 4d
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 4d). Mol Cell Biochem (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; 斑马鱼; 1:500; 图 5I''
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫组化在斑马鱼样本上浓度为1:500 (图 5I''). elife (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 图 1a
  • 免疫印迹; 小鼠; 图 1c
西格玛奥德里奇 Mapk1抗体(sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上 (图 1a) 和 被用于免疫印迹在小鼠样本上 (图 1c). Proc Natl Acad Sci U S A (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 表 4
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (表 4). Transl Psychiatry (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:2000; 图 s8a
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:2000 (图 s8a). Nat Commun (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3c
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在人类样本上 (图 3c). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; pigs ; 图 1b
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫印迹在pigs 样本上 (图 1b). Arthritis Rheumatol (2017) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 4b
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 4b). Oncotarget (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 非洲爪蛙; 1:5000; 图 2f
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在非洲爪蛙样本上浓度为1:5000 (图 2f). Open Biol (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 7e
西格玛奥德里奇 Mapk1抗体(Sigma, MAPK-YT)被用于被用于免疫印迹在人类样本上 (图 7e). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:10,000; 图 2a
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 2a). Dig Dis Sci (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 3
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 3). J Biol Chem (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 7
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 7). elife (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 小鼠; 1:2000; 图 5
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于被用于免疫印迹在小鼠样本上浓度为1:2000 (图 5). Nat Commun (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 图 3b
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于被用于免疫印迹在人类样本上 (图 3b). Mol Cell Proteomics (2016) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000; 图 5
西格玛奥德里奇 Mapk1抗体(Sigma, M 8159)被用于被用于免疫印迹在人类样本上浓度为1:1000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 人类; 1:10,000; 图 5
西格玛奥德里奇 Mapk1抗体(Sigma, M 5670)被用于被用于免疫印迹在人类样本上浓度为1:10,000 (图 5). Oncotarget (2016) ncbi
domestic rabbit 多克隆
  • 免疫印迹; 大鼠; 1:40,000; 图 s2a
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于被用于免疫印迹在大鼠样本上浓度为1:40,000 (图 s2a). Metallomics (2016) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M5670)被用于. Nat Commun (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于. BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 犬; 图 1d
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在犬样本上 (图 1d). BMC Genomics (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 小鼠; 1:500; 图 1
  • 免疫印迹; 小鼠; 1:2000; 图 2
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫细胞化学在小鼠样本上浓度为1:500 (图 1) 和 被用于免疫印迹在小鼠样本上浓度为1:2000 (图 2). PLoS ONE (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma Chemical Co, M5670)被用于. J Biol Chem (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; fruit fly ; 1:500
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在fruit fly 样本上浓度为1:500. Development (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-石蜡切片; fruit fly ; 1:200; 图 2
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫组化-石蜡切片在fruit fly 样本上浓度为1:200 (图 2). Nat Cell Biol (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化-冰冻切片; 斑马鱼; 1:50; 图 s5
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫组化-冰冻切片在斑马鱼样本上浓度为1:50 (图 s5). PLoS ONE (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s5
西格玛奥德里奇 Mapk1抗体(Sigma, M9692)被用于被用于免疫印迹在人类样本上 (图 s5). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma, M5670)被用于. Int J Mol Med (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma, M-5670)被用于. Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 8
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 8). Oncotarget (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 5
西格玛奥德里奇 Mapk1抗体(Sigma, 8159)被用于被用于免疫印迹在人类样本上 (图 5). Cancer Cell (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 4
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 4). Proc Natl Acad Sci U S A (2015) ncbi
domestic rabbit 多克隆
西格玛奥德里奇 Mapk1抗体(Sigma, M 5670)被用于. Nat Commun (2015) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫印迹; 人类; 1:500; 图 6
西格玛奥德里奇 Mapk1抗体(Sigma, M 7802)被用于被用于免疫印迹在人类样本上浓度为1:500 (图 6). Nat Commun (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 Mapk1抗体(Sigma, M-9692)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 图 s4
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上 (图 s4). J Cell Sci (2015) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫组化; fruit fly ; 1:200
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫组化在fruit fly 样本上浓度为1:200. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 图 2
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上 (图 2). EMBO J (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 大鼠; 1:5000
  • 免疫印迹; 小鼠; 1:5000
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在大鼠样本上浓度为1:5000 和 被用于免疫印迹在小鼠样本上浓度为1:5000. J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类; 1:1000
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上浓度为1:1000. Exp Neurol (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:500
西格玛奥德里奇 Mapk1抗体(Sigma Aldrich, M9692)被用于被用于免疫印迹在小鼠样本上浓度为1:500. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Proc Natl Acad Sci U S A (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 小鼠; 1:1000; 图 4a
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在小鼠样本上浓度为1:1000 (图 4a). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 人类; 图 5
西格玛奥德里奇 Mapk1抗体(Sigma, # M 8159)被用于被用于免疫细胞化学在人类样本上 (图 5). Toxicol In Vitro (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫细胞化学; 大鼠; 1:250; 图 3
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M9692)被用于被用于免疫细胞化学在大鼠样本上浓度为1:250 (图 3). J Biol Chem (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M9692)被用于被用于免疫印迹在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(ERK-PT115)
  • 免疫细胞化学; 人类
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M7802)被用于被用于免疫细胞化学在人类样本上. Mol Biol Cell (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 Mapk1抗体(SIGMA, M8159)被用于被用于免疫印迹在人类样本上. PLoS ONE (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • reverse phase protein lysate microarray; 人类; 1:500
西格玛奥德里奇 Mapk1抗体(Sigma, M-9692)被用于被用于reverse phase protein lysate microarray在人类样本上浓度为1:500. Pulm Pharmacol Ther (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 牛; 图 5, 6
西格玛奥德里奇 Mapk1抗体(Sigma-Aldrich, M8159)被用于被用于免疫印迹在牛样本上 (图 5, 6). Endocrinology (2014) ncbi
小鼠 单克隆(MAPK-YT)
  • 免疫印迹; 人类
西格玛奥德里奇 Mapk1抗体(Sigma, M8159)被用于被用于免疫印迹在人类样本上. Oncogene (2014) ncbi
碧迪BD
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类; 图 s6
碧迪BD Mapk1抗体(BD Biosciences, 610103)被用于被用于免疫印迹在人类样本上 (图 s6). Sci Rep (2016) ncbi
小鼠 单克隆(33/ERK2)
  • 免疫印迹; 人类
碧迪BD Mapk1抗体(BD Biosciences, 610104)被用于被用于免疫印迹在人类样本上. Biochem Biophys Res Commun (2014) ncbi
文章列表
  1. Komleva Y, Potapenko I, Lopatina O, Gorina Y, Chernykh A, Khilazheva E, et al. NLRP3 Inflammasome Blocking as a Potential Treatment of Central Insulin Resistance in Early-Stage Alzheimer's Disease. Int J Mol Sci. 2021;22: pubmed 出版商
  2. Valussi M, Besser J, Wystub Lis K, Zukunft S, Richter M, Kubin T, et al. Repression of Osmr and Fgfr1 by miR-1/133a prevents cardiomyocyte dedifferentiation and cell cycle entry in the adult heart. Sci Adv. 2021;7:eabi6648 pubmed 出版商
  3. Correia de Sousa M, Calo N, Sobolewski C, Gjorgjieva M, Clement S, Maeder C, et al. Mir-21 Suppression Promotes Mouse Hepatocarcinogenesis. Cancers (Basel). 2021;13: pubmed 出版商
  4. Hsu H, Chen H, Tsai C, Liao P, Chan Y, Lee Y, et al. Aryl Hydrocarbon Receptor Defect Attenuates Mitogen-Activated Signaling through Leucine-Rich Repeats and Immunoglobulin-like Domains 1 (LRIG1)-Dependent EGFR Degradation. Int J Mol Sci. 2021;22: pubmed 出版商
  5. Lim J, Tai H, Liao W, Chu Y, Hao C, Huang Y, et al. ASIC1a is required for neuronal activation via low-intensity ultrasound stimulation in mouse brain. elife. 2021;10: pubmed 出版商
  6. Wu J, Xue X, Fan G, Gu Y, Zhou F, Zheng Q, et al. Ferulic Acid Ameliorates Hepatic Inflammation and Fibrotic Liver Injury by Inhibiting PTP1B Activity and Subsequent Promoting AMPK Phosphorylation. Front Pharmacol. 2021;12:754976 pubmed 出版商
  7. Rock S, Jiang K, Wu Y, Liu Y, Li J, Weiss H, et al. Neurotensin Regulates Proliferation and Stem Cell Function in the Small Intestine in a Nutrient-Dependent Manner. Cell Mol Gastroenterol Hepatol. 2022;13:501-516 pubmed 出版商
  8. Liu Y, Li Y, Huang S, Li Y, Xia J, Jia J, et al. Liver-specific over-expression of Cripto-1 in transgenic mice promotes hepatocyte proliferation and deregulated expression of hepatocarcinogenesis-related genes and signaling pathways. Aging (Albany NY). 2021;13:21155-21190 pubmed 出版商
  9. Wang Z, He L, Li W, Xu C, Zhang J, Wang D, et al. GDF15 induces immunosuppression via CD48 on regulatory T cells in hepatocellular carcinoma. J Immunother Cancer. 2021;9: pubmed 出版商
  10. Gredic M, Wu C, Hadžić S, Pak O, Savai R, Kojonazarov B, et al. Myeloid cell-specific deletion of inducible nitric oxide synthase protects against smoke-induced pulmonary hypertension in mice. Eur Respir J. 2021;: pubmed 出版商
  11. Lim D, Kim M, Yoon M, Lee J, Lee C, Um M. 1,3-Dicaffeoylquinic Acid as an Active Compound of Arctium lappa Root Extract Ameliorates Depressive-Like Behavior by Regulating Hippocampal Nitric Oxide Synthesis in Ovariectomized Mice. Antioxidants (Basel). 2021;10: pubmed 出版商
  12. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer's disease pathology. Sci Adv. 2021;7: pubmed 出版商
  13. Liu Y, Lin J, Chen Y, Li Z, Zhou J, Lu X, et al. Omega‑3 polyunsaturated fatty acids inhibit IL‑11/STAT3 signaling in hepatocytes during acetaminophen hepatotoxicity. Int J Mol Med. 2021;48: pubmed 出版商
  14. Liu M, Shan M, Zhang Y, Guo Z. Progranulin Protects Against Airway Remodeling Through the Modulation of Autophagy via HMGB1 Suppression in House Dust Mite-Induced Chronic Asthma. J Inflamm Res. 2021;14:3891-3904 pubmed 出版商
  15. Moon S, Lee H, Kim S, Hong J, Chun S, Lee H, et al. Inhibition of STAT3 enhances sensitivity to tamoxifen in tamoxifen-resistant breast cancer cells. BMC Cancer. 2021;21:931 pubmed 出版商
  16. Ma S, Mangala L, Hu W, Bayaktar E, Yokoi A, Hu W, et al. CD63-mediated cloaking of VEGF in small extracellular vesicles contributes to anti-VEGF therapy resistance. Cell Rep. 2021;36:109549 pubmed 出版商
  17. Berger C, Heyne H, Heiland T, Dommel S, Höfling C, Guiu Jurado E, et al. A novel compound heterozygous leptin receptor mutation causes more severe obesity than in Leprdb/db mice. J Lipid Res. 2021;62:100105 pubmed 出版商
  18. Clark A, Kugathasan U, Baskozos G, Priestman D, Fugger N, Lone M, et al. An iPSC model of hereditary sensory neuropathy-1 reveals L-serine-responsive deficits in neuronal ganglioside composition and axoglial interactions. Cell Rep Med. 2021;2:100345 pubmed 出版商
  19. Li P, Cao S, Huang Y, Zhang Y, Liu J, Cai X, et al. A novel chemical inhibitor suppresses breast cancer cell growth and metastasis through inhibiting HPIP oncoprotein. Cell Death Discov. 2021;7:198 pubmed 出版商
  20. Jeong A, Cheng S, Zhong R, Bennett D, Bergo M, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun. 2021;9:129 pubmed 出版商
  21. Arnold F, Mahaddalkar P, Kraus J, Zhong X, Bergmann W, Srinivasan D, et al. Functional Genomic Screening During Somatic Cell Reprogramming Identifies DKK3 as a Roadblock of Organ Regeneration. Adv Sci (Weinh). 2021;8:2100626 pubmed 出版商
  22. Lassiter R, Merchen T, Fang X, Wang Y. Protective Role of Kynurenine 3-Monooxygenase in Allograft Rejection and Tubular Injury in Kidney Transplantation. Front Immunol. 2021;12:671025 pubmed 出版商
  23. Yang S, Qu Y, Chen J, Chen S, Sun L, Zhou Y, et al. Bee Pollen Polysaccharide From Rosa rugosa Thunb. (Rosaceae) Promotes Pancreatic β-Cell Proliferation and Insulin Secretion. Front Pharmacol. 2021;12:688073 pubmed 出版商
  24. Lin H, Guan L, Meng L, Uzui H, Guo H. SGLT1 Knockdown Attenuates Cardiac Fibroblast Activation in Diabetic Cardiac Fibrosis. Front Pharmacol. 2021;12:700366 pubmed 出版商
  25. Li H, Yang Q, Wang W, Tian X, Feng F, Zhang S, et al. Red nucleus IL-33 facilitates the early development of mononeuropathic pain in male rats by inducing TNF-α through activating ERK, p38 MAPK, and JAK2/STAT3. J Neuroinflammation. 2021;18:150 pubmed 出版商
  26. Fan H, Wang S, Wang H, Sun M, Wu S, Bao W. Melatonin Ameliorates the Toxicity Induced by Deoxynivalenol in Murine Ovary Granulosa Cells by Antioxidative and Anti-Inflammatory Effects. Antioxidants (Basel). 2021;10: pubmed 出版商
  27. Lee S, Jung J, Lee Y, Kim S, Kim J, Kim B, et al. Targeting HSF1 as a Therapeutic Strategy for Multiple Mechanisms of EGFR Inhibitor Resistance in EGFR Mutant Non-Small-Cell Lung Cancer. Cancers (Basel). 2021;13: pubmed 出版商
  28. Hering L, Katkeviciute E, Schwarzfischer M, Niechcial A, Riggs J, Wawrzyniak M, et al. Macrophages Compensate for Loss of Protein Tyrosine Phosphatase N2 in Dendritic Cells to Protect from Elevated Colitis. Int J Mol Sci. 2021;22: pubmed 出版商
  29. Mergener S, Siveke J, Peña Llopis S. Monosomy 3 Is Linked to Resistance to MEK Inhibitors in Uveal Melanoma. Int J Mol Sci. 2021;22: pubmed 出版商
  30. Ibarra B, Machen C, ATIT R. Wnt-Dependent Activation of ERK Mediates Repression of Chondrocyte Fate during Calvarial Development. J Dev Biol. 2021;9: pubmed 出版商
  31. Watson A, Grant A, Parker S, Hill S, Whalen M, Chakrabarti J, et al. Breast tumor stiffness instructs bone metastasis via maintenance of mechanical conditioning. Cell Rep. 2021;35:109293 pubmed 出版商
  32. Pham Q, Taniyama D, Sekino Y, Akabane S, Babasaki T, Kobayashi G, et al. Clinicopathologic features of TDO2 overexpression in renal cell carcinoma. BMC Cancer. 2021;21:737 pubmed 出版商
  33. Jiang T, Xu S, Shen Y, Xu Y, Li Y. Genistein Attenuates Isoflurane-Induced Neuroinflammation by Inhibiting TLR4-Mediated Microglial-Polarization in vivo and in vitro. J Inflamm Res. 2021;14:2587-2600 pubmed 出版商
  34. Shelton W, Thomas S, Alexander H, Thomes C, Conway D, Dubash A. Desmoglein-2 harnesses a PDZ-GEF2/Rap1 signaling axis to control cell spreading and focal adhesions independent of cell-cell adhesion. Sci Rep. 2021;11:13295 pubmed 出版商
  35. Cheng X, Wang J, Liu C, Jiang T, Yang N, Liu D, et al. Zinc transporter SLC39A13/ZIP13 facilitates the metastasis of human ovarian cancer cells via activating Src/FAK signaling pathway. J Exp Clin Cancer Res. 2021;40:199 pubmed 出版商
  36. Laine A, Nagelli S, Farrington C, Butt U, Cvrljevic A, Vainonen J, et al. CIP2A Interacts with TopBP1 and Drives Basal-Like Breast Cancer Tumorigenesis. Cancer Res. 2021;81:4319-4331 pubmed 出版商
  37. Zhang Y, Da Q, Cao S, Yan K, Shi Z, Miao Q, et al. HINT1 (Histidine Triad Nucleotide-Binding Protein 1) Attenuates Cardiac Hypertrophy Via Suppressing HOXA5 (Homeobox A5) Expression. Circulation. 2021;144:638-654 pubmed 出版商
  38. Hsieh Y, Lee K, Lei H, Lan K, Huo T, Lin Y, et al. (Pro)renin Receptor Knockdown Attenuates Liver Fibrosis Through Inactivation of ERK/TGF-β1/SMAD3 Pathway. Cell Mol Gastroenterol Hepatol. 2021;12:813-838 pubmed 出版商
  39. Errico A, Stocco A, Riccardi V, Gambalunga A, Bassetto F, Grigatti M, et al. Neurofibromin Deficiency and Extracellular Matrix Cooperate to Increase Transforming Potential through FAK-Dependent Signaling. Cancers (Basel). 2021;13: pubmed 出版商
  40. López Gambero A, Rosell Valle C, Medina Vera D, Navarro J, Vargas A, Rivera P, et al. A Negative Energy Balance Is Associated with Metabolic Dysfunctions in the Hypothalamus of a Humanized Preclinical Model of Alzheimer's Disease, the 5XFAD Mouse. Int J Mol Sci. 2021;22: pubmed 出版商
  41. Citron F, Segatto I, Musco L, Pellarin I, Rampioni Vinciguerra G, Franchin G, et al. miR-9 modulates and predicts the response to radiotherapy and EGFR inhibition in HNSCC. EMBO Mol Med. 2021;13:e12872 pubmed 出版商
  42. Kim C, Park S, Lee S, Kim Y, Jang S, Woo S, et al. NSrp70 is a lymphocyte-essential splicing factor that controls thymocyte development. Nucleic Acids Res. 2021;49:5760-5778 pubmed 出版商
  43. Lee J, Hsu Y, Li Y, Cheng S. Galectin-3 Inhibitors Suppress Anoikis Resistance and Invasive Capacity in Thyroid Cancer Cells. Int J Endocrinol. 2021;2021:5583491 pubmed 出版商
  44. Xu L, Humphries F, Delagic N, Wang B, Holland A, Edgar K, et al. ECSIT is a critical limiting factor for cardiac function. JCI Insight. 2021;6: pubmed 出版商
  45. Lagosz Cwik K, Wielento A, Lipska W, Kantorowicz M, Darczuk D, Kaczmarzyk T, et al. hTERT-immortalized gingival fibroblasts respond to cytokines but fail to mimic primary cell responses to Porphyromonas gingivalis. Sci Rep. 2021;11:10770 pubmed 出版商
  46. Lin C, Tsai M, Chen Y, Liu W, Lin C, Hsu K, et al. Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo. Biomol Ther (Seoul). 2021;29:551-561 pubmed 出版商
  47. Renko J, Mahato A, Visnapuu T, Valkonen K, Karelson M, Voutilainen M, et al. Neuroprotective Potential of a Small Molecule RET Agonist in Cultured Dopamine Neurons and Hemiparkinsonian Rats. J Parkinsons Dis. 2021;11:1023-1046 pubmed 出版商
  48. Prokakis E, Dyas A, Grün R, Fritzsche S, Bedi U, Kazerouni Z, et al. USP22 promotes HER2-driven mammary carcinoma aggressiveness by suppressing the unfolded protein response. Oncogene. 2021;40:4004-4018 pubmed 出版商
  49. Bi Y, Chen X, Wei B, Wang L, Gong L, Li H, et al. DEPTOR stabilizes ErbB2 to promote the proliferation and survival of ErbB2-positive breast cancer cells. Theranostics. 2021;11:6355-6369 pubmed 出版商
  50. Li Q, Liu M, Sun Y, Jin T, Zhu P, Wan X, et al. SLC6A8-mediated intracellular creatine accumulation enhances hypoxic breast cancer cell survival via ameliorating oxidative stress. J Exp Clin Cancer Res. 2021;40:168 pubmed 出版商
  51. Tien J, Chugh S, Goodrum A, Cheng Y, Mannan R, Zhang Y, et al. AGO2 promotes tumor progression in KRAS-driven mouse models of non-small cell lung cancer. Proc Natl Acad Sci U S A. 2021;118: pubmed 出版商
  52. Wang Y, Lee Y, Hsu Y, Chiu I, Huang C, Huang C, et al. The Kidney-Related Effects of Polystyrene Microplastics on Human Kidney Proximal Tubular Epithelial Cells HK-2 and Male C57BL/6 Mice. Environ Health Perspect. 2021;129:57003 pubmed 出版商
  53. Gruber T, Pan C, Contreras R, Wiedemann T, Morgan D, Skowronski A, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension. Cell Metab. 2021;33:1155-1170.e10 pubmed 出版商
  54. Murray E, Cheng X, Krishna A, Jin X, Ohara T, Stappenbeck T, et al. HER2 and APC Mutations Promote Altered Crypt-Villus Morphology and Marked Hyperplasia in the Intestinal Epithelium. Cell Mol Gastroenterol Hepatol. 2021;12:1105-1120 pubmed 出版商
  55. Catalano A, Adlesic M, Kaltenbacher T, Klar R, Albers J, Seidel P, et al. Sensitivity and Resistance of Oncogenic RAS-Driven Tumors to Dual MEK and ERK Inhibition. Cancers (Basel). 2021;13: pubmed 出版商
  56. Loureiro J, Raimundo L, Calheiros J, Carvalho C, Barcherini V, Lima N, et al. Targeting p53 for Melanoma Treatment: Counteracting Tumour Proliferation, Dissemination and Therapeutic Resistance. Cancers (Basel). 2021;13: pubmed 出版商
  57. Li X, Huang K, Liu X, Ruan H, Ma L, Liang J, et al. Ellagic Acid Attenuates BLM-Induced Pulmonary Fibrosis via Inhibiting Wnt Signaling Pathway. Front Pharmacol. 2021;12:639574 pubmed 出版商
  58. Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker J, et al. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep. 2021;22:e50958 pubmed 出版商
  59. Luckett K, Cracchiolo J, Krishnamoorthy G, Leandro García L, Nagarajah J, Saqcena M, et al. Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers. Endocr Relat Cancer. 2021;28:391-402 pubmed 出版商
  60. Fang W, Sofia Acevedo D, Smart C, Zinda B, Alissa N, Warren K, et al. Expression of CCL2/CCR2 signaling proteins in breast carcinoma cells is associated with invasive progression. Sci Rep. 2021;11:8708 pubmed 出版商
  61. Low H, Wong Z, Wu B, Kong L, Png C, Cho Y, et al. DUSP16 promotes cancer chemoresistance through regulation of mitochondria-mediated cell death. Nat Commun. 2021;12:2284 pubmed 出版商
  62. Liu J, You Y, Tian Z, Xiao M, Zheng J, Wang Y, et al. Increased nuclear translation of YAP might act as a potential therapeutic target for NF1-related plexiform neurofibroma. Int J Med Sci. 2021;18:2008-2016 pubmed 出版商
  63. Tirronen A, Downes N, Huusko J, Laakkonen J, Tuomainen T, Tavi P, et al. The Ablation of VEGFR-1 Signaling Promotes Pressure Overload-Induced Cardiac Dysfunction and Sudden Death. Biomolecules. 2021;11: pubmed 出版商
  64. Gualtieri A, Kyprianou N, Gregory L, Vignola M, Nicholson J, Tan R, et al. Activating mutations in BRAF disrupt the hypothalamo-pituitary axis leading to hypopituitarism in mice and humans. Nat Commun. 2021;12:2028 pubmed 出版商
  65. Shi L, Magee P, Fassan M, Sahoo S, Leong H, LEE D, et al. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun. 2021;12:2038 pubmed 出版商
  66. Ngamsri K, Gamper Tsigaras J, Reutershan J, Konrad F. Fractalkine Is Linked to the Necrosome Pathway in Acute Pulmonary Inflammation. Front Med (Lausanne). 2021;8:591790 pubmed 出版商
  67. Xia X, Li R, Zhou P, Xing Z, Lu C, Long Z, et al. Decreased NSG3 enhances PD-L1 expression by Erk1/2 pathway to promote pancreatic cancer progress. Am J Cancer Res. 2021;11:916-929 pubmed
  68. Malvi P, Janostiak R, Nagarajan A, Zhang X, Wajapeyee N. N-acylsphingosine amidohydrolase 1 promotes melanoma growth and metastasis by suppressing peroxisome biogenesis-induced ROS production. Mol Metab. 2021;48:101217 pubmed 出版商
  69. Sadeghi M, Hemmati S, Mohammadi S, Yousefi Manesh H, Vafaei A, Zare M, et al. Chronically altered NMDAR signaling in epilepsy mediates comorbid depression. Acta Neuropathol Commun. 2021;9:53 pubmed 出版商
  70. Shao G, Fan X, Zhang P, Liu X, Huang L, Ji S. Methylation-dependent MCM6 repression induced by LINC00472 inhibits triple-negative breast cancer metastasis by disturbing the MEK/ERK signaling pathway. Aging (Albany NY). 2021;13:4962-4975 pubmed 出版商
  71. Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol. 2021;4:114 pubmed 出版商
  72. Fell S, Wang Z, Blanchard A, Nanthakumar C, Griffin M. Transglutaminase 2: a novel therapeutic target for idiopathic pulmonary fibrosis using selective small molecule inhibitors. Amino Acids. 2021;53:205-217 pubmed 出版商
  73. Dilshat R, Fock V, Kenny C, Gerritsen I, Lasseur R, Travnickova J, et al. MITF reprograms the extracellular matrix and focal adhesion in melanoma. elife. 2021;10: pubmed 出版商
  74. Kushioka J, Kaito T, Okada R, Ishiguro H, Bal Z, Kodama J, et al. A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res. 2020;8:41 pubmed 出版商
  75. Bao Y, Oguz G, Lee W, Lee P, Ghosh K, Li J, et al. EZH2-mediated PP2A inactivation confers resistance to HER2-targeted breast cancer therapy. Nat Commun. 2020;11:5878 pubmed 出版商
  76. Alijaj N, Moutel S, Gouveia Z, Gray M, Roveri M, Dzhumashev D, et al. Novel FGFR4-Targeting Single-Domain Antibodies for Multiple Targeted Therapies against Rhabdomyosarcoma. Cancers (Basel). 2020;12: pubmed 出版商
  77. Xiao L, Zhong M, Huang Y, Zhu J, Tang W, Li D, et al. Puerarin alleviates osteoporosis in the ovariectomy-induced mice by suppressing osteoclastogenesis via inhibition of TRAF6/ROS-dependent MAPK/NF-κB signaling pathways. Aging (Albany NY). 2020;12:21706-21729 pubmed 出版商
  78. Ruan H, Li X, Xu X, Leibowitz B, Tong J, Chen L, et al. eIF4E S209 phosphorylation licenses myc- and stress-driven oncogenesis. elife. 2020;9: pubmed 出版商
  79. Myers D, Abram C, Wildes D, Belwafa A, Welsh A, Schulze C, et al. Shp1 Loss Enhances Macrophage Effector Function and Promotes Anti-Tumor Immunity. Front Immunol. 2020;11:576310 pubmed 出版商
  80. Cheng C, Wooten J, Gibbs Z, McGlynn K, Mishra P, Whitehurst A. Sperm-specific COX6B2 enhances oxidative phosphorylation, proliferation, and survival in human lung adenocarcinoma. elife. 2020;9: pubmed 出版商
  81. Shaaya M, Fauser J, Zhurikhina A, Conage Pough J, Huyot V, Brennan M, et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. elife. 2020;9: pubmed 出版商
  82. Pati S, Saba K, Salvi S, Tiwari P, Chaudhari P, Verma V, et al. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. elife. 2020;9: pubmed 出版商
  83. Kumar A, Xie L, Ta C, Hinton A, Gunasekar S, Minerath R, et al. SWELL1 regulates skeletal muscle cell size, intracellular signaling, adiposity and glucose metabolism. elife. 2020;9: pubmed 出版商
  84. Zhou S, Zhang W, Cai G, Ding Y, Wei C, Li S, et al. Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res. 2020;30:1063-1077 pubmed 出版商
  85. Sun R, Hedl M, Abraham C. TNFSF15 Promotes Antimicrobial Pathways in Human Macrophages and These Are Modulated by TNFSF15 Disease-Risk Variants. Cell Mol Gastroenterol Hepatol. 2021;11:249-272 pubmed 出版商
  86. Teramura Y, Tanaka M, Yamazaki Y, Yamashita K, Takazawa Y, Ae K, et al. Identification of Novel Fusion Genes in Bone and Soft Tissue Sarcoma and Their Implication in the Generation of a Mouse Model. Cancers (Basel). 2020;12: pubmed 出版商
  87. Banik S, Pedram K, Wisnovsky S, Ahn G, Riley N, Bertozzi C. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature. 2020;584:291-297 pubmed 出版商
  88. Bhaskar A, Kumar S, Khan M, Singh A, Dwivedi V, Nandicoori V. Host sirtuin 2 as an immunotherapeutic target against tuberculosis. elife. 2020;9: pubmed 出版商
  89. Au C, Furness J, Britt K, Oshchepkova S, Ladumor H, Soo K, et al. Three-dimensional growth of breast cancer cells potentiates the anti-tumor effects of unacylated ghrelin and AZP-531. elife. 2020;9: pubmed 出版商
  90. Kim K, Gibboney S, Razy Krajka F, Lowe E, Wang W, Stolfi A. Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate Ciona. Front Cell Dev Biol. 2020;8:477 pubmed 出版商
  91. Chabloz A, Schaefer J, Kozieradzki I, Cronin S, Strebinger D, Macaluso F, et al. Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol. 2020;3:342 pubmed 出版商
  92. Sato T, Verma S, Andrade C, Omeara M, Campbell N, Wang J, et al. A FAK/HDAC5 signaling axis controls osteocyte mechanotransduction. Nat Commun. 2020;11:3282 pubmed 出版商
  93. Wang T, Cao Z, Shen Z, Yang J, Chen X, Yang Z, et al. Existence and functions of a kisspeptin neuropeptide signaling system in a non-chordate deuterostome species. elife. 2020;9: pubmed 出版商
  94. Lechertier T, Reynolds L, Kim H, Pedrosa A, Gómez Escudero J, Muñoz Félix J, et al. Pericyte FAK negatively regulates Gas6/Axl signalling to suppress tumour angiogenesis and tumour growth. Nat Commun. 2020;11:2810 pubmed 出版商
  95. Bi H, Zhang X, Zhang Y, Xie X, Xia Y, Du J, et al. The deubiquitinase UCHL1 regulates cardiac hypertrophy by stabilizing epidermal growth factor receptor. Sci Adv. 2020;6:eaax4826 pubmed 出版商
  96. Valbuena Perez J, Linnenberger R, Dembek A, Bruscoli S, Riccardi C, Schulz M, et al. Altered glucocorticoid metabolism represents a feature of macroph-aging. Aging Cell. 2020;19:e13156 pubmed 出版商
  97. Jiang H, Gallet S, Klemm P, Scholl P, Folz Donahue K, Altmuller J, et al. MCH Neurons Regulate Permeability of the Median Eminence Barrier. Neuron. 2020;107:306-319.e9 pubmed 出版商
  98. Feng Y, Mischler W, Gurung A, Kavanagh T, Androsov G, Sadow P, et al. Therapeutic Targeting of the Secreted Lysophospholipase D Autotaxin Suppresses Tuberous Sclerosis Complex-Associated Tumorigenesis. Cancer Res. 2020;80:2751-2763 pubmed 出版商
  99. Du T, Yan Z, Zhu S, Chen G, Wang L, Ye Z, et al. QKI deficiency leads to osteoporosis by promoting RANKL-induced osteoclastogenesis and disrupting bone metabolism. Cell Death Dis. 2020;11:330 pubmed 出版商
  100. Wu Y, Chou T, Young L, Hsieh F, Pan H, Mo S, et al. Tumor suppressor death-associated protein kinase 1 inhibits necroptosis by p38 MAPK activation. Cell Death Dis. 2020;11:305 pubmed 出版商
  101. Bogucka K, Pompaiah M, Marini F, Binder H, Harms G, Kaulich M, et al. ERK3/MAPK6 controls IL-8 production and chemotaxis. elife. 2020;9: pubmed 出版商
  102. Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, et al. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Theranostics. 2020;10:5137-5153 pubmed 出版商
  103. Tsang Y, Wang Y, Kong K, Grzeskowiak C, Zagorodna O, Dogruluk T, et al. Differential expression of MAGEA6 toggles autophagy to promote pancreatic cancer progression. elife. 2020;9: pubmed 出版商
  104. Du T, Zhu G, Chen Y, Shi L, Liu D, Liu Y, et al. Anterior thalamic nucleus stimulation protects hippocampal neurons by activating autophagy in epileptic monkeys. Aging (Albany NY). 2020;12:6324-6339 pubmed 出版商
  105. Ray S, Chee L, Matson D, Palermo N, Bresnick E, Hewitt K. Sterile α-motif domain requirement for cellular signaling and survival. J Biol Chem. 2020;295:7113-7125 pubmed 出版商
  106. Inoue S, Tsunoda T, Riku M, Ito H, Inoko A, Murakami H, et al. Diffuse mesothelin expression leads to worse prognosis through enhanced cellular proliferation in colorectal cancer. Oncol Lett. 2020;19:1741-1750 pubmed 出版商
  107. Steins A, van Mackelenbergh M, van der Zalm A, Klaassen R, Serrels B, Goris S, et al. High-grade mesenchymal pancreatic ductal adenocarcinoma drives stromal deactivation through CSF-1. EMBO Rep. 2020;21:e48780 pubmed 出版商
  108. Yeom J, Ma S, Lim Y. Oxyresveratrol Induces Autophagy via the ER Stress Signaling Pathway, and Oxyresveratrol-Induced Autophagy Stimulates MUC2 Synthesis in Human Goblet Cells. Antioxidants (Basel). 2020;9: pubmed 出版商
  109. Gallo S, Spilinga M, Albano R, Ferrauto G, Di Gregorio E, Casanova E, et al. Activation of the MET receptor attenuates doxorubicin-induced cardiotoxicity in vivo and in vitro. Br J Pharmacol. 2020;177:3107-3122 pubmed 出版商
  110. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, et al. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020;18:e3000603 pubmed 出版商
  111. Lu G, Li L, Wang B, Kuang L. LINC00623/miR-101/HRAS axis modulates IL-1β-mediated ECM degradation, apoptosis and senescence of osteoarthritis chondrocytes. Aging (Albany NY). 2020;12:3218-3237 pubmed 出版商
  112. Haag A, Walser M, Henggeler A, Hajnal A. The CHORD protein CHP-1 regulates EGF receptor trafficking and signaling in C. elegans and in human cells. elife. 2020;9: pubmed 出版商
  113. Lu C, Wei Y, Wang X, Zhang Z, Yin J, Li W, et al. DNA-methylation-mediated activating of lncRNA SNHG12 promotes temozolomide resistance in glioblastoma. Mol Cancer. 2020;19:28 pubmed 出版商
  114. Gu Y, Zhu Z, Pei H, Xu D, Jiang Y, Zhang L, et al. Long non-coding RNA NNT-AS1 promotes cholangiocarcinoma cells proliferation and epithelial-to-mesenchymal transition through down-regulating miR-203. Aging (Albany NY). 2020;12:2333-2346 pubmed 出版商
  115. Xhima K, Markham Coultes K, Nedev H, Heinen S, Saragovi H, Hynynen K, et al. Focused ultrasound delivery of a selective TrkA agonist rescues cholinergic function in a mouse model of Alzheimer's disease. Sci Adv. 2020;6:eaax6646 pubmed 出版商
  116. Lin L, Li Y, Liu M, Li Q, Liu Q, Li R. The Interleukin-33/ST2 axis promotes glioma mesenchymal transition, stemness and TMZ resistance via JNK activation. Aging (Albany NY). 2020;12:1685-1703 pubmed 出版商
  117. Vetuschi A, Pompili S, Di Marco G, Calvaruso F, Iacomino E, Angelosante L, et al. Can the AGE/RAGE/ERK signalling pathway and the epithelial-to-mesenchymal transition interact in the pathogenesis of chronic rhinosinusitis with nasal polyps?. Eur J Histochem. 2020;64: pubmed 出版商
  118. Cheung E, DeNicola G, Nixon C, Blyth K, Labuschagne C, Tuveson D, et al. Dynamic ROS Control by TIGAR Regulates the Initiation and Progression of Pancreatic Cancer. Cancer Cell. 2020;37:168-182.e4 pubmed 出版商
  119. Veith C, Neghabian D, Luitel H, Wilhelm J, Egemnazarov B, Muntanjohl C, et al. FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Res Cardiol. 2020;115:17 pubmed 出版商
  120. Kennedy S, Jarboui M, Srihari S, Raso C, Bryan K, Dernayka L, et al. Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D. Nat Commun. 2020;11:499 pubmed 出版商
  121. Buhl E, Djudjaj S, Klinkhammer B, Ermert K, Puelles V, Lindenmeyer M, et al. Dysregulated mesenchymal PDGFR-β drives kidney fibrosis. EMBO Mol Med. 2020;12:e11021 pubmed 出版商
  122. Mus L, Lambertz I, Claeys S, Kumps C, Van Loocke W, Van Neste C, et al. The ETS transcription factor ETV5 is a target of activated ALK in neuroblastoma contributing to increased tumour aggressiveness. Sci Rep. 2020;10:218 pubmed 出版商
  123. Mlyczynska E, Kurowska P, Drwal E, Opydo Chanek M, Tworzydło W, Kotula Balak M, et al. Apelin and apelin receptor in human placenta: Expression, signalling pathway and regulation of trophoblast JEG‑3 and BeWo cells proliferation and cell cycle. Int J Mol Med. 2020;45:691-702 pubmed 出版商
  124. Chen M, Zhao Z, Meng Q, Liang P, Su Z, Wu Y, et al. TRIM14 Promotes Noncanonical NF-κB Activation by Modulating p100/p52 Stability via Selective Autophagy. Adv Sci (Weinh). 2020;7:1901261 pubmed 出版商
  125. Liu T, Han S, Dai Q, Zheng J, Liu C, Li S, et al. IL-17A-Mediated Excessive Autophagy Aggravated Neuronal Ischemic Injuries via Src-PP2B-mTOR Pathway. Front Immunol. 2019;10:2952 pubmed 出版商
  126. Li Y, Xu S, Xu Q, Chen Y. Clostridium difficile toxin B induces colonic inflammation through the TRIM46/DUSP1/MAPKs and NF-κB signalling pathway. Artif Cells Nanomed Biotechnol. 2020;48:452-462 pubmed 出版商
  127. Xue J, Zhao Y, Aronowitz J, Mai T, Vides A, Qeriqi B, et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature. 2020;577:421-425 pubmed 出版商
  128. Nichols E, Smith C. Functional Regeneration of the Sensory Root via Axonal Invasion. Cell Rep. 2020;30:9-17.e3 pubmed 出版商
  129. Bhattarai P, Cosacak M, Mashkaryan V, Demir S, Popova S, Govindarajan N, et al. Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol. 2020;18:e3000585 pubmed 出版商
  130. Kim K, Kim J, Kim I, Seong S, Kim N. Rev-erbα Negatively Regulates Osteoclast and Osteoblast Differentiation through p38 MAPK Signaling Pathway. Mol Cells. 2020;43:34-47 pubmed 出版商
  131. Smolko C, Janes K. An ultrasensitive fiveplex activity assay for cellular kinases. Sci Rep. 2019;9:19409 pubmed 出版商
  132. Wu Y, Chen K, Xing G, Li L, Ma B, Hu Z, et al. Phospholipid remodeling is critical for stem cell pluripotency by facilitating mesenchymal-to-epithelial transition. Sci Adv. 2019;5:eaax7525 pubmed 出版商
  133. Lee Y, Ho S, Graves J, Xiao Y, Huang S, Lin W. CGRRF1, a growth suppressor, regulates EGFR ubiquitination in breast cancer. Breast Cancer Res. 2019;21:134 pubmed 出版商
  134. Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, et al. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol. 2019;: pubmed 出版商
  135. Moya I, Castaldo S, Van den Mooter L, Soheily S, Sansores Garcia L, Jacobs J, et al. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science. 2019;366:1029-1034 pubmed 出版商
  136. Koppers M, Cagnetta R, Shigeoka T, Wunderlich L, Vallejo Ramirez P, Qiaojin Lin J, et al. Receptor-specific interactome as a hub for rapid cue-induced selective translation in axons. elife. 2019;8: pubmed 出版商
  137. Kim D, Choi J, Jo I, Kim M, Lee H, Hong S, et al. Berberine ameliorates lipopolysaccharide‑induced inflammatory responses in mouse inner medullary collecting duct‑3 cells by downregulation of NF‑κB pathway. Mol Med Rep. 2020;21:258-266 pubmed 出版商
  138. Zeng H, Castillo Cabrera J, Manser M, Lu B, Yang Z, Strande V, et al. Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. elife. 2019;8: pubmed 出版商
  139. Sarek G, Kotsantis P, Ruis P, Van Ly D, Margalef P, Borel V, et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature. 2019;: pubmed 出版商
  140. Thirugnanam K, Cossette S, Lu Q, Chowdhury S, Harmann L, Gupta A, et al. Cardiomyocyte-Specific Snrk Prevents Inflammation in the Heart. J Am Heart Assoc. 2019;8:e012792 pubmed 出版商
  141. Hellinger J, Hüchel S, Goetz L, Bauerschmitz G, Emons G, Gründker C. Inhibition of CYR61-S100A4 Axis Limits Breast Cancer Invasion. Front Oncol. 2019;9:1074 pubmed 出版商
  142. Liu P, Tee A, Milazzo G, Hannan K, Maag J, Mondal S, et al. The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35. Nat Commun. 2019;10:5026 pubmed 出版商
  143. Jiao W, Ji J, Xu W, Bu W, Zheng Y, Ma A, et al. Distinct downstream signaling and the roles of VEGF and PlGF in high glucose-mediated injuries of human retinal endothelial cells in culture. Sci Rep. 2019;9:15339 pubmed 出版商
  144. Wu W, Piao H, Wu F, Han Y, An D, Wu Y, et al. Yu Jin Pulvis inhibits carbon tetrachloride-induced liver fibrosis by blocking the MAPK and PI3K/Akt signaling pathways. Am J Transl Res. 2019;11:5998-6006 pubmed
  145. Pang Z, Raudonis R, McCormick C, Cheng Z. Early Growth Response 1 Deficiency Protects the Host against Pseudomonas aeruginosa Lung Infection. Infect Immun. 2019;88: pubmed 出版商
  146. Hirano K, Takada Y, Furukawa K. LacdiNAcylation of N-glycans in MDA-MB-231 human breast cancer cells results in changes in morphological appearance and adhesive properties of the cells. Histochem Cell Biol. 2019;: pubmed 出版商
  147. Veschi V, Mangiapane L, Nicotra A, Di Franco S, Scavo E, Apuzzo T, et al. Targeting chemoresistant colorectal cancer via systemic administration of a BMP7 variant. Oncogene. 2020;39:987-1003 pubmed 出版商
  148. Zhang L, Zheng C, Sun Z, Wang H, Wang F. Long non-coding RNA urothelial cancer associated 1 can regulate the migration and invasion of colorectal cancer cells (SW480) via myocardin-related transcription factor-A. Oncol Lett. 2019;18:4185-4193 pubmed 出版商
  149. Matsubara S, Shiraishi A, Osugi T, Kawada T, Satake H. The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates. elife. 2019;8: pubmed 出版商
  150. Gomes A, Ilter D, Low V, Rosenzweig A, Shen Z, Schild T, et al. Dynamic Incorporation of Histone H3 Variants into Chromatin Is Essential for Acquisition of Aggressive Traits and Metastatic Colonization. Cancer Cell. 2019;36:402-417.e13 pubmed 出版商
  151. Wang H, Wei Y, Pu Y, Jiang D, Jiang X, Zhang Y, et al. Brain-derived neurotrophic factor stimulation of T-type Ca2+ channels in sensory neurons contributes to increased peripheral pain sensitivity. Sci Signal. 2019;12: pubmed 出版商
  152. Wang Q, Yang Q, Zhang A, Kang Z, Wang Y, Zhang Z. Silencing of SPARC represses heterotopic ossification via inhibition of the MAPK signaling pathway. Biosci Rep. 2019;39: pubmed 出版商
  153. Linnebacher A, Mayer P, Marnet N, Bergmann F, Herpel E, Revia S, et al. Interleukin 21 Receptor/Ligand Interaction Is Linked to Disease Progression in Pancreatic Cancer. Cells. 2019;8: pubmed 出版商
  154. Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, et al. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis. 2019;10:687 pubmed 出版商
  155. Deng Q, Li P, Che M, Liu J, Biswas S, Ma G, et al. Activation of hedgehog signaling in mesenchymal stem cells induces cartilage and bone tumor formation via Wnt/β-Catenin. elife. 2019;8: pubmed 出版商
  156. Xu B, Lang L, Li S, Guo J, Wang J, Yang H, et al. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure. Biomolecules. 2019;9: pubmed 出版商
  157. Choi W, Kim H, Kim M, Cinar R, Yi H, Eun H, et al. Glutamate Signaling in Hepatic Stellate Cells Drives Alcoholic Steatosis. Cell Metab. 2019;30:877-889.e7 pubmed 出版商
  158. Park M, Kim A, Manandhar S, Oh S, Jang G, Kang L, et al. CCN1 interlinks integrin and hippo pathway to autoregulate tip cell activity. elife. 2019;8: pubmed 出版商
  159. Nagpal A, Redvers R, Ling X, Ayton S, Fuentes M, Tavancheh E, et al. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2+ve breast cancer metastasis. Breast Cancer Res. 2019;21:94 pubmed 出版商
  160. Sang D, Pinglay S, Wiewiora R, Selvan M, Lou H, Chodera J, et al. Ancestral reconstruction reveals mechanisms of ERK regulatory evolution. elife. 2019;8: pubmed 出版商
  161. Zhao J, Peng W, Ran Y, Ge H, Zhang C, Zou H, et al. Dysregulated expression of ACTN4 contributes to endothelial cell injury via the activation of the p38-MAPK/p53 apoptosis pathway in preeclampsia. J Physiol Biochem. 2019;: pubmed 出版商
  162. Debruyne D, Dries R, Sengupta S, Seruggia D, Gao Y, Sharma B, et al. BORIS promotes chromatin regulatory interactions in treatment-resistant cancer cells. Nature. 2019;572:676-680 pubmed 出版商
  163. Wang N, Fan Y, Yuan C, Song J, Yao Y, Liu W, et al. Selective ERK1/2 agonists isolated from Melia azedarach with potent anti-leukemic activity. BMC Cancer. 2019;19:764 pubmed 出版商
  164. Jaiswal P, Kimmel A. mTORC1/AMPK responses define a core gene set for developmental cell fate switching. BMC Biol. 2019;17:58 pubmed 出版商
  165. Birtley J, Alomary M, Zanini E, Antony J, Maben Z, Weaver G, et al. Inactivating mutations and X-ray crystal structure of the tumor suppressor OPCML reveal cancer-associated functions. Nat Commun. 2019;10:3134 pubmed 出版商
  166. Bi J, Ichu T, Zanca C, Yang H, Zhang W, Gu Y, et al. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab. 2019;30:525-538.e8 pubmed 出版商
  167. Masson N, Keeley T, Giuntoli B, White M, Puerta M, Perata P, et al. Conserved N-terminal cysteine dioxygenases transduce responses to hypoxia in animals and plants. Science. 2019;365:65-69 pubmed 出版商
  168. Kaur S, Nag A, Gangenahalli G, Sharma K. Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Front Genet. 2019;10:554 pubmed 出版商
  169. Suo L, Chang X, Xu N, Ji H. The Anti-proliferative Activity of GnRH Through Downregulation of the Akt/ERK Pathways in Pancreatic Cancer. Front Endocrinol (Lausanne). 2019;10:370 pubmed 出版商
  170. Petersen C, Mahmood B, Badsted C, Dahlby T, Rasmussen H, Hansen M, et al. Possible predisposition for colorectal carcinogenesis due to altered gene expressions in normal appearing mucosa from patients with colorectal neoplasia. BMC Cancer. 2019;19:643 pubmed 出版商
  171. Bando H, Pradipta A, Iwanaga S, Okamoto T, Okuzaki D, Tanaka S, et al. CXCR4 regulates Plasmodium development in mouse and human hepatocytes. J Exp Med. 2019;: pubmed 出版商
  172. Wang L, Shi H, Liu Y, Zhang W, Duan X, Li M, et al. Cystathionine‑γ‑lyase promotes the metastasis of breast cancer via the VEGF signaling pathway. Int J Oncol. 2019;55:473-487 pubmed 出版商
  173. James N, Beffa L, Oliver M, Borgstadt A, Emerson J, Chichester C, et al. Inhibition of DUSP6 sensitizes ovarian cancer cells to chemotherapeutic agents via regulation of ERK signaling response genes. Oncotarget. 2019;10:3315-3327 pubmed
  174. Frischknecht L, Britschgi C, Galliker P, Christinat Y, Vichalkovski A, Gstaiger M, et al. BRAF inhibition sensitizes melanoma cells to α-amanitin via decreased RNA polymerase II assembly. Sci Rep. 2019;9:7779 pubmed 出版商
  175. Jewell J, Fu V, Hong A, Yu F, Meng D, Melick C, et al. GPCR signaling inhibits mTORC1 via PKA phosphorylation of Raptor. elife. 2019;8: pubmed 出版商
  176. Nakai A, Fujimoto J, Miyata H, Stumm R, Narazaki M, Schulz S, et al. The COMMD3/8 complex determines GRK6 specificity for chemoattractant receptors. J Exp Med. 2019;: pubmed 出版商
  177. Xie X, Bi H, Lai S, Zhang Y, Li N, Cao H, et al. The immunoproteasome catalytic β5i subunit regulates cardiac hypertrophy by targeting the autophagy protein ATG5 for degradation. Sci Adv. 2019;5:eaau0495 pubmed 出版商
  178. Wang Q, Lepus C, Raghu H, Reber L, Tsai M, Wong H, et al. IgE-mediated mast cell activation promotes inflammation and cartilage destruction in osteoarthritis. elife. 2019;8: pubmed 出版商
  179. Pan C, Jin L, Wang X, Li Y, Chun J, Boese A, et al. Inositol-triphosphate 3-kinase B confers cisplatin resistance by regulating NOX4-dependent redox balance. J Clin Invest. 2019;129:2431-2445 pubmed 出版商
  180. Zhao J, Sun H, Zhang J, Wang M, Du X, Zhang J. Long non-coding RNA ANRIL down-regulates microRNA-7 to protect human trabecular meshwork cells in an experimental model for glaucoma. Eur Rev Med Pharmacol Sci. 2019;23:3173-3182 pubmed 出版商
  181. Jia Y, Li H, Wang J, Wang Y, Zhang P, Ma N, et al. Phosphorylation of 14-3-3ζ links YAP transcriptional activation to hypoxic glycolysis for tumorigenesis. Oncogenesis. 2019;8:31 pubmed 出版商
  182. Wang J, Liu Y, Liu Y, Zheng S, Wang X, Zhao J, et al. Time-resolved protein activation by proximal decaging in living systems. Nature. 2019;569:509-513 pubmed 出版商
  183. Chung H, Zou X, Bajar B, Brand V, Huo Y, Alcudia J, et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science. 2019;364: pubmed 出版商
  184. Fletcher Jones A, Hildick K, Evans A, Nakamura Y, Wilkinson K, Henley J. The C-terminal helix 9 motif in rat cannabinoid receptor type 1 regulates axonal trafficking and surface expression. elife. 2019;8: pubmed 出版商
  185. Xu D, Li X, Shao F, Lv G, Lv H, Lee J, et al. The protein kinase activity of fructokinase A specifies the antioxidant responses of tumor cells by phosphorylating p62. Sci Adv. 2019;5:eaav4570 pubmed 出版商
  186. Lotta L, Mokrosinski J, Mendes de Oliveira E, Li C, Sharp S, Luan J, et al. Human Gain-of-Function MC4R Variants Show Signaling Bias and Protect against Obesity. Cell. 2019;177:597-607.e9 pubmed 出版商
  187. Shi Y, Gao W, Lytle N, Huang P, Yuan X, Dann A, et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature. 2019;569:131-135 pubmed 出版商
  188. Hausott B, Park J, Valovka T, Offterdinger M, Hess M, Geley S, et al. Subcellular Localization of Sprouty2 in Human Glioma Cells. Front Mol Neurosci. 2019;12:73 pubmed 出版商
  189. Nakanishi M, Mitchell R, Benoit Y, Orlando L, Reid J, Shimada K, et al. Human Pluripotency Is Initiated and Preserved by a Unique Subset of Founder Cells. Cell. 2019;177:910-924.e22 pubmed 出版商
  190. Gao L, Hu Y, Tian Y, Fan Z, Wang K, Li H, et al. Lung cancer deficient in the tumor suppressor GATA4 is sensitive to TGFBR1 inhibition. Nat Commun. 2019;10:1665 pubmed 出版商
  191. Hancock M, Meyer R, Mistry M, Khetani R, Wagschal A, Shin T, et al. Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression. Cell. 2019;177:722-736.e22 pubmed 出版商
  192. Wang E, Dai Z, Ferrante A, Drake C, Christiano A. A Subset of TREM2+ Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth. Cell Stem Cell. 2019;: pubmed 出版商
  193. Yao W, Rose J, Wang W, Seth S, Jiang H, Taguchi A, et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature. 2019;: pubmed 出版商
  194. Wang S, Ni H, Chao X, Wang H, Bridges B, Kumer S, et al. Impaired TFEB-mediated lysosomal biogenesis promotes the development of pancreatitis in mice and is associated with human pancreatitis. Autophagy. 2019;15:1954-1969 pubmed 出版商
  195. Diamond E, Durham B, Ulaner G, Drill E, Buthorn J, Ki M, et al. Efficacy of MEK inhibition in patients with histiocytic neoplasms. Nature. 2019;567:521-524 pubmed 出版商
  196. Mammone T, Chidlow G, Casson R, Wood J. Improved immunohistochemical detection of phosphorylated mitogen-activated protein kinases in the injured rat optic nerve head. Histochem Cell Biol. 2019;151:435-456 pubmed 出版商
  197. Yambire K, Fernández Mosquera L, Steinfeld R, Mühle C, Ikonen E, Milosevic I, et al. Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases. elife. 2019;8: pubmed 出版商
  198. Li J, Liu X, Chen H, Sun Z, Chen H, Wang L, et al. Multi-targeting chemoprevention of Chinese herb formula Yanghe Huayan decoction on experimentally induced mammary tumorigenesis. BMC Complement Altern Med. 2019;19:48 pubmed 出版商
  199. Liu J, Zhu G, Jia N, Wang W, Wang Y, Yin M, et al. CD9 regulates keratinocyte migration by negatively modulating the sheddase activity of ADAM17. Int J Biol Sci. 2019;15:493-506 pubmed 出版商
  200. Bartholomew T, Kidd T, Sá Pessoa J, Conde Alvarez R, Bengoechea J. 2-Hydroxylation of Acinetobacter baumannii Lipid A Contributes to Virulence. Infect Immun. 2019;87: pubmed 出版商
  201. Zhu Y, Shi C, Bruins L, Wang X, Riggs D, Porter B, et al. Identification of lenalidomide resistance pathways in myeloma and targeted resensitization using cereblon replacement, inhibition of STAT3 or targeting of IRF4. Blood Cancer J. 2019;9:19 pubmed 出版商
  202. Hayashi H, Mamun A, Takeyama M, Yamamura A, Zako M, Yagasaki R, et al. Activator of G-protein signaling 8 is involved in VEGF-induced choroidal neovascularization. Sci Rep. 2019;9:1560 pubmed 出版商
  203. Yin C, Zhu B, Zhang T, Liu T, Chen S, Liu Y, et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113-1127.e16 pubmed 出版商
  204. Dai L, Hu W, Yang Z, Chen D, He B, Chen Y, et al. Upregulated expression of HOXB7 in intrahepatic cholangiocarcinoma is associated with tumor cell metastasis and poor prognosis. Lab Invest. 2019;99:736-748 pubmed 出版商
  205. Jeong W, Park J, Kim W, Ro E, Jeon S, Lee S, et al. WDR76 is a RAS binding protein that functions as a tumor suppressor via RAS degradation. Nat Commun. 2019;10:295 pubmed 出版商
  206. Nerurkar N, Lee C, Mahadevan L, Tabin C. Molecular control of macroscopic forces drives formation of the vertebrate hindgut. Nature. 2019;565:480-484 pubmed 出版商
  207. Smith B, Wang S, Jaime Figueroa S, Harbin A, Wang J, Hamman B, et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat Commun. 2019;10:131 pubmed 出版商
  208. Nichols J, Paschke P, Peak Chew S, Williams T, Tweedy L, Skehel M, et al. The Atypical MAP Kinase ErkB Transmits Distinct Chemotactic Signals through a Core Signaling Module. Dev Cell. 2019;48:491-505.e9 pubmed 出版商
  209. Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194-206 pubmed 出版商
  210. Ruscetti M, Leibold J, Bott M, Fennell M, Kulick A, Salgado N, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018;362:1416-1422 pubmed 出版商
  211. Simula L, Pacella I, Colamatteo A, Procaccini C, Cancila V, Bordi M, et al. Drp1 Controls Effective T Cell Immune-Surveillance by Regulating T Cell Migration, Proliferation, and cMyc-Dependent Metabolic Reprogramming. Cell Rep. 2018;25:3059-3073.e10 pubmed 出版商
  212. Roy N, MacKay J, Robertson T, Hammer D, Burkhardt J. Crk adaptor proteins mediate actin-dependent T cell migration and mechanosensing induced by the integrin LFA-1. Sci Signal. 2018;11: pubmed 出版商
  213. Unni A, Harbourne B, Oh M, Wild S, Ferrarone J, Lockwood W, et al. Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells. elife. 2018;7: pubmed 出版商
  214. Zhao H, Martin E, Matalkah F, Shah N, Ivanov A, Ruppert J, et al. Conditional knockout of SHP2 in ErbB2 transgenic mice or inhibition in HER2-amplified breast cancer cell lines blocks oncogene expression and tumorigenesis. Oncogene. 2019;38:2275-2290 pubmed 出版商
  215. Lee S, Cho Y, Cha P, Yoon J, Ro E, Jeong W, et al. A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab. Exp Mol Med. 2018;50:153 pubmed 出版商
  216. Grohmann M, Wiede F, Dodd G, Gurzov E, Ooi G, Butt T, et al. Obesity Drives STAT-1-Dependent NASH and STAT-3-Dependent HCC. Cell. 2018;175:1289-1306.e20 pubmed 出版商
  217. Hakuno D, Kimura M, Ito S, Satoh J, Nakashima Y, Horie T, et al. Hepatokine α1-Microglobulin Signaling Exacerbates Inflammation and Disturbs Fibrotic Repair in Mouse Myocardial Infarction. Sci Rep. 2018;8:16749 pubmed 出版商
  218. Lian S, Xu B, Wang D, Wang L, Li W, Yao R, et al. Possible mechanisms of prenatal cold stress induced-anxiety-like behavior depression in offspring rats. Behav Brain Res. 2019;359:304-311 pubmed 出版商
  219. Baghdadi M, Firmino J, Soni K, Evano B, Di Girolamo D, Mourikis P, et al. Notch-Induced miR-708 Antagonizes Satellite Cell Migration and Maintains Quiescence. Cell Stem Cell. 2018;23:859-868.e5 pubmed 出版商
  220. Fossati G, Pozzi D, Canzi A, Mirabella F, Valentino S, Morini R, et al. Pentraxin 3 regulates synaptic function by inducing AMPA receptor clustering via ECM remodeling and β1-integrin. EMBO J. 2019;38: pubmed 出版商
  221. Hou M, Wang W, Hu F, Zhang Y, Yang D, Liu Q. Phosphothreonine Lyase Promotes p65 Degradation in a Mitogen-Activated Protein Kinase/Mitogen- and Stress-Activated Protein Kinase 1-Dependent Manner. Infect Immun. 2019;87: pubmed 出版商
  222. Ablain J, Xu M, Rothschild H, JORDAN R, Mito J, Daniels B, et al. Human tumor genomics and zebrafish modeling identify SPRED1 loss as a driver of mucosal melanoma. Science. 2018;362:1055-1060 pubmed 出版商
  223. Xu P, Chen A, Ganaie S, Cheng F, Shen W, Wang X, et al. The 11-Kilodalton Nonstructural Protein of Human Parvovirus B19 Facilitates Viral DNA Replication by Interacting with Grb2 through Its Proline-Rich Motifs. J Virol. 2019;93: pubmed 出版商
  224. Gerber T, Murawala P, Knapp D, Masselink W, Schuez M, Hermann S, et al. Single-cell analysis uncovers convergence of cell identities during axolotl limb regeneration. Science. 2018;362: pubmed 出版商
  225. Albrengues J, Shields M, Ng D, Park C, Ambrico A, Poindexter M, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361: pubmed 出版商
  226. McCloskey A, Ibarra A, Hetzer M. Tpr regulates the total number of nuclear pore complexes per cell nucleus. Genes Dev. 2018;32:1321-1331 pubmed 出版商
  227. Chen S, Yun F, Yao Y, Cao M, Zhang Y, Wang J, et al. USP38 critically promotes asthmatic pathogenesis by stabilizing JunB protein. J Exp Med. 2018;215:2850-2867 pubmed 出版商
  228. Sutherland L, Ruhe M, Gattegno Ho D, Mann K, Greaves J, Koscielniak M, et al. LIF-dependent survival of embryonic stem cells is regulated by a novel palmitoylated Gab1 signalling protein. J Cell Sci. 2018;131: pubmed 出版商
  229. Song K, Kim J, Lee Y, Bae H, Lee H, Woo S, et al. Mitochondrial reprogramming via ATP5H loss promotes multimodal cancer therapy resistance. J Clin Invest. 2018;128:4098-4114 pubmed 出版商
  230. Stathopoulou C, Gangaplara A, Mallett G, Flomerfelt F, Liniany L, Knight D, et al. PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity. 2018;49:247-263.e7 pubmed 出版商
  231. Roseweir A, Halcrow E, Chichilo S, Powell A, McMillan D, Horgan P, et al. ERK and p38MAPK combine to improve survival in patients with BRAF mutant colorectal cancer. Br J Cancer. 2018;: pubmed 出版商
  232. Xiao N, Li H, Yu W, Gu C, Fang H, Peng Y, et al. SUMO-specific protease 2 (SENP2) suppresses keratinocyte migration by targeting NDR1 for de-SUMOylation. FASEB J. 2019;33:163-174 pubmed 出版商
  233. Jung I, Kim Y, Yu H, Lee M, Kim S, Lee J. CRISPR/Cas9-Mediated Knockout of DGK Improves Antitumor Activities of Human T Cells. Cancer Res. 2018;78:4692-4703 pubmed 出版商
  234. Liu J, Sharma K, Zangrandi L, Chen C, Humphrey S, Chiu Y, et al. In vivo brain GPCR signaling elucidated by phosphoproteomics. Science. 2018;360: pubmed 出版商
  235. Li F, Li Y, Liang H, Xu T, Kong Y, Huang M, et al. HECTD3 mediates TRAF3 polyubiquitination and type I interferon induction during bacterial infection. J Clin Invest. 2018;128:4148-4162 pubmed 出版商
  236. Kim S, Knight D, Jones L, Vervoort S, Ng A, Seymour J, et al. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genes Dev. 2018;32:849-864 pubmed 出版商
  237. Li R, Sahu S, Schachner M. Phenelzine, a small organic compound mimicking the functions of cell adhesion molecule L1, promotes functional recovery after mouse spinal cord injury. Restor Neurol Neurosci. 2018;36:469-483 pubmed 出版商
  238. Lei F, Jin L, Liu X, Lai F, Yan X, Farrelly M, et al. RIP1 protects melanoma cells from apoptosis induced by BRAF/MEK inhibitors. Cell Death Dis. 2018;9:679 pubmed 出版商
  239. Ruess D, Heynen G, Ciecielski K, Ai J, Berninger A, Kabacaoglu D, et al. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med. 2018;24:954-960 pubmed 出版商
  240. Baumgartner C, Toifl S, Farlik M, Halbritter F, Scheicher R, Fischer I, et al. An ERK-Dependent Feedback Mechanism Prevents Hematopoietic Stem Cell Exhaustion. Cell Stem Cell. 2018;22:879-892.e6 pubmed 出版商
  241. Lautz J, Brown E, Williams VanSchoiack A, Smith S. Synaptic activity induces input-specific rearrangements in a targeted synaptic protein interaction network. J Neurochem. 2018;146:540-559 pubmed 出版商
  242. Xue Z, Vis D, Bruna A, Sustic T, van Wageningen S, Batra A, et al. MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018;28:719-729 pubmed 出版商
  243. Rondon A, de Almeida V, Gomes T, Verçoza B, Carvalho R, Konig S, et al. Tissue factor mediates microvesicles shedding from MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun. 2018;502:137-144 pubmed 出版商
  244. Mitchell K, Barreyro L, Todorova T, Taylor S, Antony Debré I, Narayanagari S, et al. IL1RAP potentiates multiple oncogenic signaling pathways in AML. J Exp Med. 2018;215:1709-1727 pubmed 出版商
  245. Wang X, Du C, He X, Deng X, He Y, Zhou X. MiR-4463 inhibits the migration of human aortic smooth muscle cells by AMOT. Biosci Rep. 2018;38: pubmed 出版商
  246. Huang M, Qi W, Fang S, Jiang P, Yang C, Mo Y, et al. Pigment Epithelium-Derived Factor Plays a Role in Alzheimer's Disease by Negatively Regulating Aβ42. Neurotherapeutics. 2018;15:728-741 pubmed 出版商
  247. Ahmad F, Salahuddin M, Alsamman K, Herzallah H, Al Otaibi S. Neonatal maternal deprivation impairs localized de novo activity-induced protein translation at the synapse in the rat hippocampus. Biosci Rep. 2018;38: pubmed 出版商
  248. Ge J, Burnier L, Adamopoulou M, Kwa M, Schaks M, Rottner K, et al. RhoA, Rac1, and Cdc42 differentially regulate αSMA and collagen I expression in mesenchymal stem cells. J Biol Chem. 2018;293:9358-9369 pubmed 出版商
  249. Han Y, Liu Q, Hou J, Gu Y, Zhang Y, Chen Z, et al. Tumor-Induced Generation of Splenic Erythroblast-like Ter-Cells Promotes Tumor Progression. Cell. 2018;173:634-648.e12 pubmed 出版商
  250. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, et al. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Cell Mol Immunol. 2018;: pubmed 出版商
  251. Durai V, Bagadia P, Briseño C, Theisen D, Iwata A, Davidson J, et al. Altered compensatory cytokine signaling underlies the discrepancy between Flt3-/- and Flt3l-/- mice. J Exp Med. 2018;215:1417-1435 pubmed 出版商
  252. Ng P, Li J, Jeong K, Shao S, Chen H, Tsang Y, et al. Systematic Functional Annotation of Somatic Mutations in Cancer. Cancer Cell. 2018;33:450-462.e10 pubmed 出版商
  253. Lino Cardenas C, Kessinger C, Cheng Y, MacDonald C, Macgillivray T, Ghoshhajra B, et al. An HDAC9-MALAT1-BRG1 complex mediates smooth muscle dysfunction in thoracic aortic aneurysm. Nat Commun. 2018;9:1009 pubmed 出版商
  254. zur Nedden S, Eith R, Schwarzer C, Zanetti L, Seitter H, Fresser F, et al. Protein kinase N1 critically regulates cerebellar development and long-term function. J Clin Invest. 2018;128:2076-2088 pubmed 出版商
  255. Summers M, Vasiljevski E, Mikulec K, Peacock L, Little D, Schindeler A. Developmental dosing with a MEK inhibitor (PD0325901) rescues myopathic features of the muscle-specific but not limb-specific Nf1 knockout mouse. Mol Genet Metab. 2018;123:518-525 pubmed 出版商
  256. Qi Z, Xu H, Zhang S, Xu J, Li S, Gao H, et al. RIPK4/PEBP1 axis promotes pancreatic cancer cell migration and invasion by activating RAF1/MEK/ERK signaling. Int J Oncol. 2018;52:1105-1116 pubmed 出版商
  257. Kou W, Xu X, Ji S, Chen M, Liu D, Wang K, et al. The inhibition of the effect and mechanism of vascular intimal hyperplasia in Tiam1 knockout mice. Biochem Biophys Res Commun. 2018;497:248-255 pubmed 出版商
  258. Lu Y, Kim N, Jiang Y, Zhang H, Zheng D, Zhu F, et al. Cambogin suppresses dextran sulphate sodium-induced colitis by enhancing Treg cell stability and function. Br J Pharmacol. 2018;175:1085-1099 pubmed 出版商
  259. De Pasquale V, Pezone A, Sarogni P, Tramontano A, Schiattarella G, Avvedimento V, et al. EGFR activation triggers cellular hypertrophy and lysosomal disease in NAGLU-depleted cardiomyoblasts, mimicking the hallmarks of mucopolysaccharidosis IIIB. Cell Death Dis. 2018;9:40 pubmed 出版商
  260. Velázquez Villegas L, Perino A, Lemos V, Zietak M, Nomura M, Pols T, et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat Commun. 2018;9:245 pubmed 出版商
  261. Park G, Kim D. Cigarette smoke-induced EGFR activation promotes epithelial mesenchymal migration of human retinal pigment epithelial cells through regulation of the FAK-mediated Syk/Src pathway. Mol Med Rep. 2018;17:3563-3574 pubmed 出版商
  262. Arrizabalaga O, Moreno Cugnon L, Auzmendi Iriarte J, Aldaz P, Ibanez de Caceres I, Garros Regulez L, et al. High expression of MKP1/DUSP1 counteracts glioma stem cell activity and mediates HDAC inhibitor response. Oncogenesis. 2017;6:401 pubmed 出版商
  263. Barrow A, Edeling M, Trifonov V, Luo J, Goyal P, Bohl B, et al. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor. Cell. 2018;172:534-548.e19 pubmed 出版商
  264. Qian Z, Ryu B, Kang K, Heo S, Kang D, Bae S, et al. Cellular properties of the fermented microalgae Pavlova lutheri and its isolated active peptide in osteoblastic differentiation of MG?63 cells. Mol Med Rep. 2018;17:2044-2050 pubmed 出版商
  265. Rasheed S, Leong H, Lakshmanan M, Raju A, Dadlani D, Chong F, et al. GNA13 expression promotes drug resistance and tumor-initiating phenotypes in squamous cell cancers. Oncogene. 2018;37:1340-1353 pubmed 出版商
  266. He P, Yang J, Yang V, Bialkowska A. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice. Gastroenterology. 2018;154:1494-1508.e13 pubmed 出版商
  267. Coelho M, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina Arcas M, et al. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity. 2017;47:1083-1099.e6 pubmed 出版商
  268. Sutavani R, Phair I, Barker R, McFarlane A, Shpiro N, Lang S, et al. Differential control of Toll-like receptor 4-induced interleukin-10 induction in macrophages and B cells reveals a role for p90 ribosomal S6 kinases. J Biol Chem. 2018;293:2302-2317 pubmed 出版商
  269. Cho M, Lee J, Shin M, Kim H, Choi Y, Rho S, et al. TSC-22 inhibits CSF-1R function and induces apoptosis in cervical cancer. Oncotarget. 2017;8:97990-98003 pubmed 出版商
  270. Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest. 2018;128:415-426 pubmed 出版商
  271. Schwartz J, Ma J, Lamprecht T, Walsh M, Wang S, Bryant V, et al. The genomic landscape of pediatric myelodysplastic syndromes. Nat Commun. 2017;8:1557 pubmed 出版商
  272. Balan I, Warnock K, Puche A, GONDRE LEWIS M, Aurelian L. Innately activated TLR4 signal in the nucleus accumbens is sustained by CRF amplification loop and regulates impulsivity. Brain Behav Immun. 2018;69:139-153 pubmed 出版商
  273. Urbanska M, Gozdz A, Macias M, Cymerman I, Liszewska E, Kondratiuk I, et al. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol. 2018;55:6050-6062 pubmed 出版商
  274. Bostner J, Alayev A, Berman A, Fornander T, Nordenskjold B, Holz M, et al. Raptor localization predicts prognosis and tamoxifen response in estrogen receptor-positive breast cancer. Breast Cancer Res Treat. 2018;168:17-27 pubmed 出版商
  275. Gasparotto J, Girardi C, Somensi N, Ribeiro C, Moreira J, Michels M, et al. Receptor for advanced glycation end products mediates sepsis-triggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293:226-244 pubmed 出版商
  276. Liang Z, Yang Y, He Y, Yang P, Wang X, He G, et al. SUMOylation of IQGAP1 promotes the development of colorectal cancer. Cancer Lett. 2017;411:90-99 pubmed 出版商
  277. Kim J, Park D, Bae H, Park D, Kim D, Lee C, et al. Impaired angiopoietin/Tie2 signaling compromises Schlemm's canal integrity and induces glaucoma. J Clin Invest. 2017;127:3877-3896 pubmed 出版商
  278. Tsutsumi R, Harizanova J, Stockert R, Schröder K, Bastiaens P, Neel B. Assay to visualize specific protein oxidation reveals spatio-temporal regulation of SHP2. Nat Commun. 2017;8:466 pubmed 出版商
  279. Urbschat A, Baer P, Zacharowski K, Sprunck V, Scheller B, Raimann F, et al. Systemic TLR2 Antibody Application in Renal Ischaemia and Reperfusion Injury Decreases AKT Phosphorylation and Increases Apoptosis in the Mouse Kidney. Basic Clin Pharmacol Toxicol. 2018;122:223-232 pubmed 出版商
  280. Zhao F, Franco H, Rodriguez K, Brown P, Tsai M, Tsai S, et al. Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science. 2017;357:717-720 pubmed 出版商
  281. Kim J, Kim Y, Kim J, Park D, Bae H, Lee D, et al. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 2017;127:3441-3461 pubmed 出版商
  282. Quadri H, Aiken T, Allgaeuer M, Moravec R, Altekruse S, Hussain S, et al. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer. 2017;17:495 pubmed 出版商
  283. Courtial L, Picco V, Pagès G, Ferrier Pagès C. Validation of commercial ERK antibodies against the ERK orthologue of the scleractinian coral Stylophora pistillata. F1000Res. 2017;6:577 pubmed 出版商
  284. Olivares O, Mayers J, Gouirand V, Torrence M, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031 pubmed 出版商
  285. Zhang C, Mao H, Cao Y. Nuclear accumulation of symplekin promotes cellular proliferation and dedifferentiation in an ERK1/2-dependent manner. Sci Rep. 2017;7:3769 pubmed 出版商
  286. Wang R, Cao X, Kulej K, Liu W, Ma T, MacDonald M, et al. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma. Proc Natl Acad Sci U S A. 2017;114:E5352-E5361 pubmed 出版商
  287. Akiel M, Guo C, Li X, Rajasekaran D, Mendoza R, Robertson C, et al. IGFBP7 Deletion Promotes Hepatocellular Carcinoma. Cancer Res. 2017;77:4014-4025 pubmed 出版商
  288. Kamerkar S, LeBleu V, Sugimoto H, Yang S, Ruivo C, Melo S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 2017;546:498-503 pubmed 出版商
  289. Zhang K, Myllymäki S, Gao P, Devarajan R, Kytölä V, Nykter M, et al. Oncogenic K-Ras upregulates ITGA6 expression via FOSL1 to induce anoikis resistance and synergizes with αV-Class integrins to promote EMT. Oncogene. 2017;36:5681-5694 pubmed 出版商
  290. Matsumoto Y, La Rose J, Lim M, Adissu H, Law N, Mao X, et al. Ubiquitin ligase RNF146 coordinates bone dynamics and energy metabolism. J Clin Invest. 2017;127:2612-2625 pubmed 出版商
  291. Bae S, Lee M, Mun S, Giannopoulou E, Yong Gonzalez V, Cross J, et al. MYC-dependent oxidative metabolism regulates osteoclastogenesis via nuclear receptor ERR?. J Clin Invest. 2017;127:2555-2568 pubmed 出版商
  292. Szoka L, Karna E, Hlebowicz Sarat K, Karaszewski J, Palka J. Exogenous proline stimulates type I collagen and HIF-1? expression and the process is attenuated by glutamine in human skin fibroblasts. Mol Cell Biochem. 2017;435:197-206 pubmed 出版商
  293. Zhang J, MacArtney T, Peggie M, Cohen P. Interleukin-1 and TRAF6-dependent activation of TAK1 in the absence of TAB2 and TAB3. Biochem J. 2017;474:2235-2248 pubmed 出版商
  294. Haston S, Pozzi S, Carreno G, Manshaei S, Panousopoulos L, González Meljem J, et al. MAPK pathway control of stem cell proliferation and differentiation in the embryonic pituitary provides insights into the pathogenesis of papillary craniopharyngioma. Development. 2017;144:2141-2152 pubmed 出版商
  295. Read M, Fong J, Modasia B, Fletcher A, Imruetaicharoenchoke W, Thompson R, et al. Elevated PTTG and PBF predicts poor patient outcome and modulates DNA damage response genes in thyroid cancer. Oncogene. 2017;36:5296-5308 pubmed 出版商
  296. Nishimura S, Mishra Gorur K, Park J, Surovtseva Y, Sebti S, Levchenko A, et al. Combined HMG-COA reductase and prenylation inhibition in treatment of CCM. Proc Natl Acad Sci U S A. 2017;114:5503-5508 pubmed 出版商
  297. Schwartz J, Wang S, Ma J, Lamprecht T, Walsh M, Song G, et al. Germline SAMD9 mutation in siblings with monosomy 7 and myelodysplastic syndrome. Leukemia. 2017;31:1827-1830 pubmed 出版商
  298. Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, et al. ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A. 2017;114:E3964-E3973 pubmed 出版商
  299. Cabezas R, Vega Vela N, González Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, et al. PDGF-BB Preserves Mitochondrial Morphology, Attenuates ROS Production, and Upregulates Neuroglobin in an Astrocytic Model Under Rotenone Insult. Mol Neurobiol. 2018;55:3085-3095 pubmed 出版商
  300. Gong B, Shen W, Xiao W, Meng Y, Meng A, Jia S. The Sec14-like phosphatidylinositol transfer proteins Sec14l3/SEC14L2 act as GTPase proteins to mediate Wnt/Ca2+ signaling. elife. 2017;6: pubmed 出版商
  301. Tian H, Ketova T, Hardy D, Xu X, Gao X, Zijlstra A, et al. Endoglin Mediates Vascular Maturation by Promoting Vascular Smooth Muscle Cell Migration and Spreading. Arterioscler Thromb Vasc Biol. 2017;37:1115-1126 pubmed 出版商
  302. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann B, et al. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. J Cell Biol. 2017;216:1567-1577 pubmed 出版商
  303. Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees J. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol. 2017;317:18-25 pubmed 出版商
  304. Yan J, Hedl M, Abraham C. An inflammatory bowel disease-risk variant in INAVA decreases pattern recognition receptor-induced outcomes. J Clin Invest. 2017;127:2192-2205 pubmed 出版商
  305. Ma S, Wan X, Deng Z, Shi L, Hao C, Zhou Z, et al. Epigenetic regulator CXXC5 recruits DNA demethylase Tet2 to regulate TLR7/9-elicited IFN response in pDCs. J Exp Med. 2017;214:1471-1491 pubmed 出版商
  306. Kim D, Ko H, Park G, Hur D, Kim Y, Yang J. Vandetanib and ADAM inhibitors synergistically attenuate the pathological migration of EBV-infected retinal pigment epithelial cells by regulating the VEGF-mediated MAPK pathway. Exp Ther Med. 2017;13:1415-1425 pubmed 出版商
  307. Chen M, Dai L, Fei A, Pan S, Wang H. Isoquercetin activates the ERK1/2-Nrf2 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Exp Ther Med. 2017;13:1353-1359 pubmed 出版商
  308. He L, Zhang L, Wang M, Wang W. miR-9 functions as a tumor inhibitor of cell proliferation in epithelial ovarian cancer through targeting the SDF-1/CXCR4 pathway. Exp Ther Med. 2017;13:1203-1208 pubmed 出版商
  309. Yang X, Qi L, Lin F, Ou Z. The role of the chemokine receptor XCR1 in breast cancer cells. Breast Cancer (Dove Med Press). 2017;9:227-236 pubmed 出版商
  310. Gaggianesi M, Turdo A, Chinnici A, Lipari E, Apuzzo T, Benfante A, et al. IL4 Primes the Dynamics of Breast Cancer Progression via DUSP4 Inhibition. Cancer Res. 2017;77:3268-3279 pubmed 出版商
  311. Honjoh C, Chihara K, Yoshiki H, Yamauchi S, Takeuchi K, Kato Y, et al. Association of C-Type Lectin Mincle with FcεRIβγ Subunits Leads to Functional Activation of RBL-2H3 Cells through Syk. Sci Rep. 2017;7:46064 pubmed 出版商
  312. Xiao Z, Gaertner S, Morresi Hauf A, Genzel R, Duell T, Ullrich A, et al. Metformin Triggers Autophagy to Attenuate Drug-Induced Apoptosis in NSCLC Cells, with Minor Effects on Tumors of Diabetic Patients. Neoplasia. 2017;19:385-395 pubmed 出版商
  313. Yan X, Zhu Z, Xu S, Yang L, Liao X, Zheng M, et al. MicroRNA-140-5p inhibits hepatocellular carcinoma by directly targeting the unique isomerase Pin1 to block multiple cancer-driving pathways. Sci Rep. 2017;7:45915 pubmed 出版商
  314. Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, et al. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res. 2017;42:2326-2335 pubmed 出版商
  315. Bai X, Hong W, Cai P, Chen Y, Xu C, Cao D, et al. Valproate induced hepatic steatosis by enhanced fatty acid uptake and triglyceride synthesis. Toxicol Appl Pharmacol. 2017;324:12-25 pubmed 出版商
  316. Mon N, Senga T, Ito S. Interleukin-1? activates focal adhesion kinase and Src to induce matrix metalloproteinase-9 production and invasion of MCF-7 breast cancer cells. Oncol Lett. 2017;13:955-960 pubmed 出版商
  317. Schweighoffer E, Nys J, Vanes L, Smithers N, Tybulewicz V. TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. J Exp Med. 2017;214:1269-1280 pubmed 出版商
  318. Fischer A, Harrison K, Ramirez Y, Auer D, Chowdhury S, Prusty B, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. elife. 2017;6: pubmed 出版商
  319. Cai W, Sakaguchi M, Kleinridders A, Gonzalez Del Pino G, Dreyfuss J, O Neill B, et al. Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nat Commun. 2017;8:14892 pubmed 出版商
  320. Juhasz A, Markel S, Gaur S, Liu H, Lu J, Jiang G, et al. NADPH oxidase 1 supports proliferation of colon cancer cells by modulating reactive oxygen species-dependent signal transduction. J Biol Chem. 2017;292:7866-7887 pubmed 出版商
  321. Menicacci B, Laurenzana A, Chillà A, Margheri F, Peppicelli S, Tanganelli E, et al. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells. J Gerontol A Biol Sci Med Sci. 2017;72:1187-1195 pubmed 出版商
  322. Gupta A, Anjomani Virmouni S, Koundouros N, Dimitriadi M, Choo Wing R, Valle A, et al. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell. 2017;65:999-1013.e7 pubmed 出版商
  323. Yang K, Chen Y, To K, Wang F, Li D, Chen L, et al. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med. 2017;49:e303 pubmed 出版商
  324. Balmer D, Bapst Wicht L, Pyakurel A, Emery M, Nanchen N, Bochet C, et al. Bis-Retinoid A2E Induces an Increase of Basic Fibroblast Growth Factor via Inhibition of Extracellular Signal-Regulated Kinases 1/2 Pathway in Retinal Pigment Epithelium Cells and Facilitates Phagocytosis. Front Aging Neurosci. 2017;9:43 pubmed 出版商
  325. CAROMILE L, Dortche K, Rahman M, Grant C, Stoddard C, Ferrer F, et al. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal. 2017;10: pubmed 出版商
  326. Cherniack A, Shen H, Walter V, Stewart C, Murray B, Bowlby R, et al. Integrated Molecular Characterization of Uterine Carcinosarcoma. Cancer Cell. 2017;31:411-423 pubmed 出版商
  327. Reynolds L, D Amico G, Lechertier T, Papachristodoulou A, Muñoz Félix J, De Arcangelis A, et al. Dual role of pericyte ?6?1-integrin in tumour blood vessels. J Cell Sci. 2017;130:1583-1595 pubmed 出版商
  328. Hammers D, Merscham Banda M, Hsiao J, ENGST S, Hartman J, Sweeney H. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017;9:531-544 pubmed 出版商
  329. Li L, Baxter S, Gu N, Ji M, Zhan X. Missing-in-metastasis protein downregulates CXCR4 by promoting ubiquitylation and interaction with small Rab GTPases. J Cell Sci. 2017;130:1475-1485 pubmed 出版商
  330. Obeid S, Wankell M, Charrez B, Sternberg J, Kreuter R, Esmaili S, et al. Adiponectin confers protection from acute colitis and restricts a B cell immune response. J Biol Chem. 2017;292:6569-6582 pubmed 出版商
  331. Chung C, Chang C, Hsu C, Lin K, Peng H, Huang T. Aggretin Venom Polypeptide as a Novel Anti-angiogenesis Agent by Targeting Integrin alpha2beta1. Sci Rep. 2017;7:43612 pubmed 出版商
  332. de Oliveira R, de Campos Castilho G, da Cunha A, Miyajima F, de Oliveira Martins D. Dilodendron bipinnatum Radlk. inhibits pro-inflammatory mediators through the induction of MKP-1 and the down-regulation of MAPKp38/JNK/NF-?B pathways and COX-2 in LPS-activated RAW 264.7 cells. J Ethnopharmacol. 2017;202:127-137 pubmed 出版商
  333. Pan X, Wang Y, Lübke T, Hinek A, Pshezhetsky A. Mice, double deficient in lysosomal serine carboxypeptidases Scpep1 and Cathepsin A develop the hyperproliferative vesicular corneal dystrophy and hypertrophic skin thickenings. PLoS ONE. 2017;12:e0172854 pubmed 出版商
  334. Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav P, et al. Core engagement with ?-arrestin is dispensable for agonist-induced vasopressin receptor endocytosis and ERK activation. Mol Biol Cell. 2017;28:1003-1010 pubmed 出版商
  335. Wang H, Shan X, Qiao Y. PDK2 promotes chondrogenic differentiation of mesenchymal stem cells by upregulation of Sox6 and activation of JNK/MAPK/ERK pathway. Braz J Med Biol Res. 2017;50:e5988 pubmed 出版商
  336. Vallejo A, Perurena N, Guruceaga E, Mazur P, Martínez Canarias S, Zandueta C, et al. An integrative approach unveils FOSL1 as an oncogene vulnerability in KRAS-driven lung and pancreatic cancer. Nat Commun. 2017;8:14294 pubmed 出版商
  337. Sethna F, Feng W, Ding Q, ROBISON A, Feng Y, Wang H. Enhanced expression of ADCY1 underlies aberrant neuronal signalling and behaviour in a syndromic autism model. Nat Commun. 2017;8:14359 pubmed 出版商
  338. Kovacs J, Poór P, Kaschani F, Chandrasekar B, Hong T, Misas Villamil J, et al. Proteasome Activity Profiling Uncovers Alteration of Catalytic ?2 and ?5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots. Front Plant Sci. 2017;8:107 pubmed 出版商
  339. Steinberg S, Shabaneh T, Zhang P, Martyanov V, Li Z, Malik B, et al. Myeloid Cells That Impair Immunotherapy Are Restored in Melanomas with Acquired Resistance to BRAF Inhibitors. Cancer Res. 2017;77:1599-1610 pubmed 出版商
  340. Radder J, Zhang Y, Gregory A, Yu S, Kelly N, Leader J, et al. Extreme Trait Whole-Genome Sequencing Identifies PTPRO as a Novel Candidate Gene in Emphysema with Severe Airflow Obstruction. Am J Respir Crit Care Med. 2017;196:159-171 pubmed 出版商
  341. Tao C, Hsu W, Ma Y, Cheng S, Lee E. Epigenetic regulation of HDAC1 SUMOylation as an endogenous neuroprotection against Aβ toxicity in a mouse model of Alzheimer's disease. Cell Death Differ. 2017;24:597-614 pubmed 出版商
  342. He Y, Wang X, Zhang J, Liu Z, Pan W, Shen Y, et al. Association of Serum HMGB2 Levels With In-Stent Restenosis: HMGB2 Promotes Neointimal Hyperplasia in Mice With Femoral Artery Injury and Proliferation and Migration of VSMCs. Arterioscler Thromb Vasc Biol. 2017;37:717-729 pubmed 出版商
  343. Ni Y, Teng T, Li R, Simonyi A, Sun G, Lee J. TNFα alters occludin and cerebral endothelial permeability: Role of p38MAPK. PLoS ONE. 2017;12:e0170346 pubmed 出版商
  344. Lee J, Hsu C, Michael M, Nanda A, Liu L, McMillan J, et al. Large Intragenic Deletion in DSTYK Underlies Autosomal-Recessive Complicated Spastic Paraparesis, SPG23. Am J Hum Genet. 2017;100:364-370 pubmed 出版商
  345. Lim E, Nakanishi S, Hoghooghi V, Eaton S, Palmer A, Frederick A, et al. AlphaB-crystallin regulates remyelination after peripheral nerve injury. Proc Natl Acad Sci U S A. 2017;114:E1707-E1716 pubmed 出版商
  346. Mindos T, Dun X, North K, Doddrell R, Schulz A, Edwards P, et al. Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity. J Cell Biol. 2017;216:495-510 pubmed 出版商
  347. Carpi S, Fogli S, Polini B, Montagnani V, Podestà A, Breschi M, et al. Tumor-promoting effects of cannabinoid receptor type 1 in human melanoma cells. Toxicol In Vitro. 2017;40:272-279 pubmed 出版商
  348. Difranco K, Mulligan J, Sumal A, Diamond G. Induction of CFTR gene expression by 1,25(OH)2 vitamin D3, 25OH vitamin D3, and vitamin D3 in cultured human airway epithelial cells and in mouse airways. J Steroid Biochem Mol Biol. 2017;173:323-332 pubmed 出版商
  349. Li M, Yuan Y, Hu B, Wu L. Study on Lentivirus-Mediated ABCA7 Improves Neurocognitive Function and Related Mechanisms in the C57BL/6 Mouse Model of Alzheimer's Disease. J Mol Neurosci. 2017;61:489-497 pubmed 出版商
  350. Lisse T, Rieger S. IKKα regulates human keratinocyte migration through surveillance of the redox environment. J Cell Sci. 2017;130:975-988 pubmed 出版商
  351. Lin Y, Lin Y, Huang M, Kuo P, Wu C, Lee M, et al. Tumor necrosis factor-alpha inhibitors suppress CCL2 chemokine in monocytes via epigenetic modification. Mol Immunol. 2017;83:82-91 pubmed 出版商
  352. . Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378-384 pubmed 出版商
  353. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares N, Puchalka J, et al. A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun. 2017;8:14209 pubmed 出版商
  354. Graziano A, Cardile V, Avola R, Vicario N, Parenti C, Salvatorelli L, et al. Wilms' tumor gene 1 silencing inhibits proliferation of human osteosarcoma MG-63 cell line by cell cycle arrest and apoptosis activation. Oncotarget. 2017;8:13917-13931 pubmed 出版商
  355. Barcus C, O Leary K, Brockman J, Rugowski D, Liu Y, Garcia N, et al. Elevated collagen-I augments tumor progressive signals, intravasation and metastasis of prolactin-induced estrogen receptor alpha positive mammary tumor cells. Breast Cancer Res. 2017;19:9 pubmed 出版商
  356. Xia L, Plachynta M, Liu T, Xiao X, Song J, Li X, et al. Pro-inflammatory effect of a traditional Chinese medicine formula with potent anti-cancer activity in vitro impedes tumor inhibitory potential in vivo. Mol Clin Oncol. 2016;5:717-723 pubmed 出版商
  357. Peng Y, Shi X, Li Z, He X, Sun Y. Particularly interesting Cys-His-rich protein is highly expressed in human intracranial aneurysms and resists aneurysmal rupture. Exp Ther Med. 2016;12:3905-3912 pubmed 出版商
  358. Asensio Juan E, Fueyo R, PAPPA S, Iacobucci S, Badosa C, Lois S, et al. The histone demethylase PHF8 is a molecular safeguard of the IFNγ response. Nucleic Acids Res. 2017;45:3800-3811 pubmed 出版商
  359. Lee H, Diaz M, Price K, Ozuna J, Zhang S, Sevick Muraca E, et al. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat Commun. 2017;8:14122 pubmed 出版商
  360. Kechele D, Blue R, Zwarycz B, Espenschied S, Mah A, Siegel M, et al. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest. 2017;127:593-607 pubmed 出版商
  361. Xu X, Fan Z, Liang C, Li L, Wang L, Liang Y, et al. A signature motif in LIM proteins mediates binding to checkpoint proteins and increases tumour radiosensitivity. Nat Commun. 2017;8:14059 pubmed 出版商
  362. Kozlovskaja GumbrienÄ— A, Yi R, Alexander R, Aman A, Jiskra R, Nagelberg D, et al. Proliferation-independent regulation of organ size by Fgf/Notch signaling. elife. 2017;6: pubmed 出版商
  363. Rahman A, Haugh J. Kinetic Modeling and Analysis of the Akt/Mechanistic Target of Rapamycin Complex 1 (mTORC1) Signaling Axis Reveals Cooperative, Feedforward Regulation. J Biol Chem. 2017;292:2866-2872 pubmed 出版商
  364. Zhao B, Hu W, Kumar S, Gonyo P, Rana U, Liu Z, et al. The Nogo-B receptor promotes Ras plasma membrane localization and activation. Oncogene. 2017;36:3406-3416 pubmed 出版商
  365. Kidger A, Rushworth L, Stellzig J, Davidson J, Bryant C, Bayley C, et al. Dual-specificity phosphatase 5 controls the localized inhibition, propagation, and transforming potential of ERK signaling. Proc Natl Acad Sci U S A. 2017;114:E317-E326 pubmed 出版商
  366. Babagana M, Johnson S, Slabodkin H, Bshara W, Morrison C, Kandel E. P21-activated kinase 1 regulates resistance to BRAF inhibition in human cancer cells. Mol Carcinog. 2017;56:1515-1525 pubmed 出版商
  367. Matsumoto A, Pasut A, Matsumoto M, Yamashita R, Fung J, Monteleone E, et al. mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide. Nature. 2017;541:228-232 pubmed 出版商
  368. Hammers D, Sleeper M, Forbes S, Coker C, Jirousek M, Zimmer M, et al. Disease-modifying effects of orally bioavailable NF-κB inhibitors in dystrophin-deficient muscle. JCI Insight. 2016;1:e90341 pubmed 出版商
  369. Ye Y, Zhao Z, Xu H, Zhang X, Su X, Yang Y, et al. Activation of Sphingosine 1-Phosphate Receptor 1 Enhances Hippocampus Neurogenesis in a Rat Model of Traumatic Brain Injury: An Involvement of MEK/Erk Signaling Pathway. Neural Plast. 2016;2016:8072156 pubmed 出版商
  370. Hill S, Nesser N, Johnson Camacho K, Jeffress M, Johnson A, Boniface C, et al. Context Specificity in Causal Signaling Networks Revealed by Phosphoprotein Profiling. Cell Syst. 2017;4:73-83.e10 pubmed 出版商
  371. Hayakawa M, Hayakawa H, Petrova T, Ritprajak P, Sutavani R, Jiménez Andrade G, et al. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction. J Biol Chem. 2017;292:1762-1772 pubmed 出版商
  372. Su C, Gao X, Yang W, Zhao Y, Fu X, Cui X, et al. Phosphorylation of Tudor-SN, a novel substrate of JNK, is involved in the efficient recruitment of Tudor-SN into stress granules. Biochim Biophys Acta Mol Cell Res. 2017;1864:562-571 pubmed 出版商
  373. Long M, Eddy W, Gong K, Lovelace Macon L, McMahan R, Charron J, et al. MEK1/2 Inhibition Promotes Macrophage Reparative Properties. J Immunol. 2017;198:862-872 pubmed 出版商
  374. Dudhgaonkar S, Ranade S, Nagar J, Subramani S, Prasad D, Karunanithi P, et al. Selective IRAK4 Inhibition Attenuates Disease in Murine Lupus Models and Demonstrates Steroid Sparing Activity. J Immunol. 2017;198:1308-1319 pubmed 出版商
  375. Takahashi M, Li Y, Dillon T, Stork P. Phosphorylation of Rap1 by cAMP-dependent Protein Kinase (PKA) Creates a Binding Site for KSR to Sustain ERK Activation by cAMP. J Biol Chem. 2017;292:1449-1461 pubmed 出版商
  376. Fourneaux B, Chaire V, Lucchesi C, Karanian M, Pineau R, Laroche Clary A, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8:7878-7890 pubmed 出版商
  377. Jerić I, Maurer G, Cavallo A, Raguz J, Desideri E, Tarkowski B, et al. A cell-autonomous tumour suppressor role of RAF1 in hepatocarcinogenesis. Nat Commun. 2016;7:13781 pubmed 出版商
  378. Wang S, Cheng Y, Zheng Y, He Z, Chen W, Zhou W, et al. PRKAR1A is a functional tumor suppressor inhibiting ERK/Snail/E-cadherin pathway in lung adenocarcinoma. Sci Rep. 2016;6:39630 pubmed 出版商
  379. Wymant J, Hiscox S, Westwell A, Urbé S, Clague M, Jones A. The Role of BCA2 in the Endocytic Trafficking of EGFR and Significance as a Prognostic Biomarker in Cancer. J Cancer. 2016;7:2388-2407 pubmed
  380. Harper K, Sosa M, Entenberg D, Hosseini H, Cheung J, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature. 2016;540:588-592 pubmed 出版商
  381. Yeung P, Lai A, Son H, Zhang X, Hwang O, Chung S, et al. Aldose reductase deficiency leads to oxidative stress-induced dopaminergic neuronal loss and autophagic abnormality in an animal model of Parkinson's disease. Neurobiol Aging. 2017;50:119-133 pubmed 出版商
  382. Lopes M, Leal R, Guarnieri R, Schwarzbold M, Hoeller A, Diaz A, et al. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry. 2016;6:e986 pubmed 出版商
  383. Jung J, Jung H, Neupane S, Kim K, Kim J, Yamamoto H, et al. Involvement of PI3K and PKA pathways in mouse tongue epithelial differentiation. Acta Histochem. 2017;119:92-98 pubmed 出版商
  384. Ramratnam M, Salama G, Sharma R, Wang D, Smith S, Banerjee S, et al. Gene-Targeted Mice with the Human Troponin T R141W Mutation Develop Dilated Cardiomyopathy with Calcium Desensitization. PLoS ONE. 2016;11:e0167681 pubmed 出版商
  385. Mayrhofer M, Gourain V, Reischl M, Affaticati P, Jenett A, Joly J, et al. A novel brain tumour model in zebrafish reveals the role of YAP activation in MAPK- and PI3K-induced malignant growth. Dis Model Mech. 2017;10:15-28 pubmed 出版商
  386. Nagahara Y, Shimazawa M, Ohuchi K, Ito J, Takahashi H, Tsuruma K, et al. GPNMB ameliorates mutant TDP-43-induced motor neuron cell death. J Neurosci Res. 2017;95:1647-1665 pubmed 出版商
  387. Mukhopadhyay C, Triplett A, Bargar T, HECKMAN C, Wagner K, Naramura M. Casitas B-cell lymphoma (Cbl) proteins protect mammary epithelial cells from proteotoxicity of active c-Src accumulation. Proc Natl Acad Sci U S A. 2016;113:E8228-E8237 pubmed 出版商
  388. Weyandt J, Carney J, Pavlisko E, Xu M, Counter C. Isoform-Specific Effects of Wild-Type Ras Genes on Carcinogen-Induced Lung Tumorigenesis in Mice. PLoS ONE. 2016;11:e0167205 pubmed 出版商
  389. Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn L, Scharager Tapia C, et al. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal. 2016;9:ra111 pubmed
  390. Bangi E, Murgia C, Teague A, Sansom O, Cagan R. Functional exploration of colorectal cancer genomes using Drosophila. Nat Commun. 2016;7:13615 pubmed 出版商
  391. Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, et al. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol. 2016;9:130 pubmed
  392. Gong J, Tu W, Han J, He J, Liu J, Han P, et al. Hepatic SATB1 induces paracrine activation of hepatic stellate cells and is upregulated by HBx. Sci Rep. 2016;6:37717 pubmed 出版商
  393. Hart G, Balleine B. Consolidation of Goal-Directed Action Depends on MAPK/ERK Signaling in Rodent Prelimbic Cortex. J Neurosci. 2016;36:11974-11986 pubmed
  394. Mandel E, Dunford E, Trifonova A, Abdifarkosh G, Teich T, Riddell M, et al. Prazosin Can Prevent Glucocorticoid Mediated Capillary Rarefaction. PLoS ONE. 2016;11:e0166899 pubmed 出版商
  395. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011-86025 pubmed 出版商
  396. Chou H, Fong Y, Lin H, Tsai E, Chen J, Chang W, et al. An Acetamide Derivative as a Camptothecin Sensitizer for Human Non-Small-Cell Lung Cancer Cells through Increased Oxidative Stress and JNK Activation. Oxid Med Cell Longev. 2016;2016:9128102 pubmed
  397. Moyle L, Blanc E, Jaka O, Prueller J, Banerji C, Tedesco F, et al. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. elife. 2016;5: pubmed 出版商
  398. Roversi F, Pericole F, Machado Neto J, da Silva Santos Duarte A, Longhini A, Corrocher F, et al. Hematopoietic cell kinase (HCK) is a potential therapeutic target for dysplastic and leukemic cells due to integration of erythropoietin/PI3K pathway and regulation of erythropoiesis: HCK in erythropoietin/PI3K pathway. Biochim Biophys Acta Mol Basis Dis. 2017;1863:450-461 pubmed 出版商
  399. Wang Y, Chiang H, Huang Y, Hsu C, Yang P, Juan H, et al. A link between adipogenesis and innate immunity: RNase-L promotes 3T3-L1 adipogenesis by destabilizing Pref-1 mRNA. Cell Death Dis. 2016;7:e2458 pubmed 出版商
  400. Pandey R, Mehrotra S, Sharma S, Gudde R, Sundar S, Shaha C. Leishmania donovani-Induced Increase in Macrophage Bcl-2 Favors Parasite Survival. Front Immunol. 2016;7:456 pubmed
  401. Milara J, Cervera A, de Diego A, Sanz C, Juan G, Gavaldá A, et al. Non-neuronal cholinergic system contributes to corticosteroid resistance in chronic obstructive pulmonary disease patients. Respir Res. 2016;17:145 pubmed
  402. Flütsch A, Henry K, Mantuano E, Lam M, Shibayama M, Takahashi K, et al. Evidence that LDL receptor-related protein 1 acts as an early injury detection receptor and activates c-Jun in Schwann cells. Neuroreport. 2016;27:1305-1311 pubmed
  403. Spencer Smith R, Koide A, Zhou Y, Eguchi R, Sha F, Gajwani P, et al. Inhibition of RAS function through targeting an allosteric regulatory site. Nat Chem Biol. 2017;13:62-68 pubmed 出版商
  404. Marichal T, Gaudenzio N, El Abbas S, Sibilano R, Zurek O, Starkl P, et al. Guanine nucleotide exchange factor RABGEF1 regulates keratinocyte-intrinsic signaling to maintain skin homeostasis. J Clin Invest. 2016;126:4497-4515 pubmed 出版商
  405. Newton K, Wickliffe K, Maltzman A, Dugger D, Strasser A, Pham V, et al. RIPK1 inhibits ZBP1-driven necroptosis during development. Nature. 2016;540:129-133 pubmed 出版商
  406. Hegedüs L, Garay T, Molnar E, Varga K, Bilecz A, Torok S, et al. The plasma membrane Ca2+ pump PMCA4b inhibits the migratory and metastatic activity of BRAF mutant melanoma cells. Int J Cancer. 2017;140:2758-2770 pubmed 出版商
  407. Hu Y, Kim J, He K, Wan Q, Kim J, Flach M, et al. Scramblase TMEM16F terminates T cell receptor signaling to restrict T cell exhaustion. J Exp Med. 2016;213:2759-2772 pubmed
  408. Kitsati N, Mantzaris M, Galaris D. Hydroxytyrosol inhibits hydrogen peroxide-induced apoptotic signaling via labile iron chelation. Redox Biol. 2016;10:233-242 pubmed 出版商
  409. Alekhina O, Marchese A. ?-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem. 2016;291:26083-26097 pubmed
  410. Grugan K, Dorn K, Jarantow S, Bushey B, Pardinas J, Laquerre S, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114-126 pubmed 出版商
  411. Desfossés Baron K, Hammond Martel I, Simoneau A, Sellam A, Roberts S, Wurtele H. Valproate inhibits MAP kinase signalling and cell cycle progression in S. cerevisiae. Sci Rep. 2016;6:36013 pubmed 出版商
  412. Kunzler A, Zeidán Chuliá F, Gasparotto J, Girardi C, Klafke K, Petiz L, et al. Changes in Cell Cycle and Up-Regulation of Neuronal Markers During SH-SY5Y Neurodifferentiation by Retinoic Acid are Mediated by Reactive Species Production and Oxidative Stress. Mol Neurobiol. 2017;54:6903-6916 pubmed 出版商
  413. Ismail H, Didangelos A, Vincent T, Saklatvala J. Rapid Activation of Transforming Growth Factor ?-Activated Kinase 1 in Chondrocytes by Phosphorylation and K63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol. 2017;69:565-575 pubmed 出版商
  414. Zhang Q, Zhang Y, Parsels J, Lohse I, Lawrence T, Pasca di Magliano M, et al. Fbxw7 Deletion Accelerates KrasG12D-Driven Pancreatic Tumorigenesis via Yap Accumulation. Neoplasia. 2016;18:666-673 pubmed 出版商
  415. Zimmermann M, Arachchige Don A, Donaldson M, Patriarchi T, Horne M. Cyclin G2 promotes cell cycle arrest in breast cancer cells responding to fulvestrant and metformin and correlates with patient survival. Cell Cycle. 2016;15:3278-3295 pubmed
  416. Che D, Zhou T, Lan Y, Xie J, Gong H, Li C, et al. High glucose-induced epithelial-mesenchymal transition contributes to the upregulation of fibrogenic factors in retinal pigment epithelial cells. Int J Mol Med. 2016;38:1815-1822 pubmed 出版商
  417. Nowacka J, Baumgartner C, Pelorosso C, Roth M, Zuber J, Baccarini M. MEK1 is required for the development of NRAS-driven leukemia. Oncotarget. 2016;7:80113-80130 pubmed 出版商
  418. Choi Y, Shembade N, Parvatiyar K, Balachandran S, Harhaj E. TAX1BP1 Restrains Virus-Induced Apoptosis by Facilitating Itch-Mediated Degradation of the Mitochondrial Adaptor MAVS. Mol Cell Biol. 2017;37: pubmed 出版商
  419. Li S, Yang B, Teguh D, Zhou L, Xu J, Rong L. Amyloid ? Peptide Enhances RANKL-Induced Osteoclast Activation through NF-?B, ERK, and Calcium Oscillation Signaling. Int J Mol Sci. 2016;17: pubmed
  420. Yue G, Xie S, Lee J, Kwok H, Gao S, Nian Y, et al. New potential beneficial effects of actein, a triterpene glycoside isolated from Cimicifuga species, in breast cancer treatment. Sci Rep. 2016;6:35263 pubmed 出版商
  421. Tseng H, Vong C, Kwan Y, Lee S, Hoi M. TRPM2 regulates TXNIP-mediated NLRP3 inflammasome activation via interaction with p47 phox under high glucose in human monocytic cells. Sci Rep. 2016;6:35016 pubmed 出版商
  422. Kotsantis P, Silva L, Irmscher S, Jones R, Folkes L, Gromak N, et al. Increased global transcription activity as a mechanism of replication stress in cancer. Nat Commun. 2016;7:13087 pubmed 出版商
  423. Visuttijai K, Pettersson J, Mehrbani Azar Y, van den Bout I, Orndal C, Marcickiewicz J, et al. Lowered Expression of Tumor Suppressor Candidate MYO1C Stimulates Cell Proliferation, Suppresses Cell Adhesion and Activates AKT. PLoS ONE. 2016;11:e0164063 pubmed 出版商
  424. Rodina A, Wang T, Yan P, Gomes E, Dunphy M, Pillarsetty N, et al. The epichaperome is an integrated chaperome network that facilitates tumour survival. Nature. 2016;538:397-401 pubmed 出版商
  425. Yong K, Li A, Ou W, Hong C, Zhao W, Wang F, et al. Targeting SALL4 by entinostat in lung cancer. Oncotarget. 2016;7:75425-75440 pubmed 出版商
  426. Belliard A, Gulati G, Duan Q, Alves R, Brewer S, Madan N, et al. Ischemia/reperfusion-induced alterations of enzymatic and signaling functions of the rat cardiac Na+/K+-ATPase: protection by ouabain preconditioning. Physiol Rep. 2016;4: pubmed
  427. Cizmecioglu O, Ni J, Xie S, Zhao J, Roberts T. Rac1-mediated membrane raft localization of PI3K/p110? is required for its activation by GPCRs or PTEN loss. elife. 2016;5: pubmed 出版商
  428. Zhong W, Wang X, Pan B, Li F, Kuang L, Su Z. Eupatilin induces human renal cancer cell apoptosis via ROS-mediated MAPK and PI3K/AKT signaling pathways. Oncol Lett. 2016;12:2894-2899 pubmed
  429. Lu W, Shi J, Zhang J, Lv Z, Guo F, Huang H, et al. CXCL12/CXCR4 Axis Regulates Aggrecanase Activation and Cartilage Degradation in a Post-Traumatic Osteoarthritis Rat Model. Int J Mol Sci. 2016;17: pubmed
  430. Jin Q, Ren Y, Wang M, Suraneni P, Li D, Crispino J, et al. Novel function of FAXDC2 in megakaryopoiesis. Blood Cancer J. 2016;6:e478 pubmed 出版商
  431. Wu X, Gu W, Lu H, Liu C, Yu B, Xu H, et al. Soluble Receptor for Advanced Glycation End Product Ameliorates Chronic Intermittent Hypoxia Induced Renal Injury, Inflammation, and Apoptosis via P38/JNK Signaling Pathways. Oxid Med Cell Longev. 2016;2016:1015390 pubmed
  432. Wu J, Sun Y, Zhang P, Qian M, Zhang H, Chen X, et al. The Fra-1-miR-134-SDS22 feedback loop amplifies ERK/JNK signaling and reduces chemosensitivity in ovarian cancer cells. Cell Death Dis. 2016;7:e2384 pubmed 出版商
  433. Yuzugullu H, Von T, Thorpe L, Walker S, Roberts T, Frank D, et al. NTRK2 activation cooperates with PTEN deficiency in T-ALL through activation of both the PI3K-AKT and JAK-STAT3 pathways. Cell Discov. 2016;2:16030 pubmed 出版商
  434. Chen B, Zeng X, He Y, Wang X, Liang Z, Liu J, et al. STC2 promotes the epithelial-mesenchymal transition of colorectal cancer cells through AKT-ERK signaling pathways. Oncotarget. 2016;7:71400-71416 pubmed 出版商
  435. Xin H, ZHONG C, Nudleman E, Ferrara N. Evidence for Pro-angiogenic Functions of VEGF-Ax. Cell. 2016;167:275-284.e6 pubmed 出版商
  436. Jansson D, Scotter E, Rustenhoven J, Coppieters N, Smyth L, Oldfield R, et al. Interferon-? blocks signalling through PDGFR? in human brain pericytes. J Neuroinflammation. 2016;13:249 pubmed
  437. Johnson R, Finger E, Olcina M, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18:1078-1089 pubmed 出版商
  438. Egholm C, Khammy M, Dalsgaard T, Mazur A, Tritsaris K, Hansen A, et al. GLP-1 inhibits VEGFA-mediated signaling in isolated human endothelial cells and VEGFA-induced dilation of rat mesenteric arteries. Am J Physiol Heart Circ Physiol. 2016;311:H1214-H1224 pubmed 出版商
  439. Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar Onfray F, et al. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 2016;7:67373-67386 pubmed 出版商
  440. Zhong Y, Zou L, Wang Z, Pan Y, Dai Z, Liu X, et al. Lrrc75b is a novel negative regulator of C2C12 myogenic differentiation. Int J Mol Med. 2016;38:1411-1418 pubmed 出版商
  441. Yadav V, Hong K, Zeldin D, Nayeem M. Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K+ channels. Mol Cell Biochem. 2016;422:197-206 pubmed
  442. Gross S, Devraj K, Feng Y, Macas J, Liebner S, Wieland T. Nucleoside diphosphate kinase B regulates angiogenic responses in the endothelium via caveolae formation and c-Src-mediated caveolin-1 phosphorylation. J Cereb Blood Flow Metab. 2017;37:2471-2484 pubmed 出版商
  443. Wu Y, Ren D, Chen G. Siglec-E Negatively Regulates the Activation of TLR4 by Controlling Its Endocytosis. J Immunol. 2016;197:3336-3347 pubmed
  444. Lee H, Noh H, Mun J, Gu C, Sever S, Park S. Anks1a regulates COPII-mediated anterograde transport of receptor tyrosine kinases critical for tumorigenesis. Nat Commun. 2016;7:12799 pubmed 出版商
  445. Waasdorp M, Duitman J, Florquin S, Spek C. Protease-activated receptor-1 deficiency protects against streptozotocin-induced diabetic nephropathy in mice. Sci Rep. 2016;6:33030 pubmed 出版商
  446. Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, et al. Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene. 2017;36:1573-1584 pubmed 出版商
  447. Wang H, Han X, Bretz C, Becker S, Gambhir D, Smith G, et al. Retinal pigment epithelial cell expression of active Rap 1a by scAAV2 inhibits choroidal neovascularization. Mol Ther Methods Clin Dev. 2016;3:16056 pubmed 出版商
  448. García Carpizo V, Sarmentero J, Han B, Grana O, Ruiz Llorente S, Pisano D, et al. NSD2 contributes to oncogenic RAS-driven transcription in lung cancer cells through long-range epigenetic activation. Sci Rep. 2016;6:32952 pubmed 出版商
  449. Makita N, Sato T, Yajima Shoji Y, Sato J, Manaka K, Eda Hashimoto M, et al. Analysis of the V2 Vasopressin Receptor (V2R) Mutations Causing Partial Nephrogenic Diabetes Insipidus Highlights a Sustainable Signaling by a Non-peptide V2R Agonist. J Biol Chem. 2016;291:22460-22471 pubmed
  450. Fan L, Liu M, Guo M, Hu C, Yan Z, Chen J, et al. FAM122A, a new endogenous inhibitor of protein phosphatase 2A. Oncotarget. 2016;7:63887-63900 pubmed 出版商
  451. Caporali S, Alvino E, Lacal P, Levati L, Giurato G, Memoli D, et al. Targeting the PI3K/AKT/mTOR pathway overcomes the stimulating effect of dabrafenib on the invasive behavior of melanoma cells with acquired resistance to the BRAF inhibitor. Int J Oncol. 2016;49:1164-74 pubmed 出版商
  452. Nettersheim D, Jostes S, Fabry M, Honecker F, Schumacher V, Kirfel J, et al. A signaling cascade including ARID1A, GADD45B and DUSP1 induces apoptosis and affects the cell cycle of germ cell cancers after romidepsin treatment. Oncotarget. 2016;7:74931-74946 pubmed 出版商
  453. Shang W, Zhao L, Dong X, Zhao Z, Li J, Zhang B, et al. Curcumin inhibits osteoclastogenic potential in PBMCs from rheumatoid arthritis patients via the suppression of MAPK/RANK/c-Fos/NFATc1 signaling pathways. Mol Med Rep. 2016;14:3620-6 pubmed 出版商
  454. Hong X, Liu W, Song R, Shah J, Feng X, Tsang C, et al. SOX9 is targeted for proteasomal degradation by the E3 ligase FBW7 in response to DNA damage. Nucleic Acids Res. 2016;44:8855-8869 pubmed
  455. Padhan N, Nordling T, Sundstrom M, Akerud P, Birgisson H, Nygren P, et al. High sensitivity isoelectric focusing to establish a signaling biomarker for the diagnosis of human colorectal cancer. BMC Cancer. 2016;16:683 pubmed 出版商
  456. Gao Y, Li J, Qiao N, Meng Q, Zhang M, Wang X, et al. Adrenomedullin blockade suppresses sunitinib-resistant renal cell carcinoma growth by targeting the ERK/MAPK pathway. Oncotarget. 2016;7:63374-63387 pubmed 出版商
  457. Zeng Y, Yao X, Chen L, Yan Z, Liu J, Zhang Y, et al. Sphingosine-1-phosphate induced epithelial-mesenchymal transition of hepatocellular carcinoma via an MMP-7/ syndecan-1/TGF-β autocrine loop. Oncotarget. 2016;7:63324-63337 pubmed 出版商
  458. Hong J, Shin M, Douglas I, Chung K, Kim E, Jung J, et al. Inhibition of EphA2/EphrinA1 signal attenuates lipopolysaccharide-induced lung injury. Clin Sci (Lond). 2016;130:1993-2003 pubmed
  459. Kupka S, De Miguel D, Dráber P, Martino L, Surinova S, Rittinger K, et al. SPATA2-Mediated Binding of CYLD to HOIP Enables CYLD Recruitment to Signaling Complexes. Cell Rep. 2016;16:2271-80 pubmed 出版商
  460. Greenwood E, Maisel S, Ebertz D, Russ A, Pandey R, SCHROEDER J. Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration. Oncotarget. 2016;7:60776-60792 pubmed 出版商
  461. Chen N, Chen W, Sung C, Lu C, Chen C, Hung H, et al. Contributions of p38 and ERK to the antinociceptive effects of TGF-?1 in chronic constriction injury-induced neuropathic rats. J Headache Pain. 2016;17:72 pubmed 出版商
  462. Nehra S, Bhardwaj V, Bansal A, Saraswat D. Nanocurcumin accords protection against acute hypobaric hypoxia induced lung injury in rats. J Physiol Biochem. 2016;72:763-779 pubmed
  463. Efazat G, Novak M, Kaminskyy V, De Petris L, Kanter L, Juntti T, et al. Ephrin B3 interacts with multiple EphA receptors and drives migration and invasion in non-small cell lung cancer. Oncotarget. 2016;7:60332-60347 pubmed 出版商
  464. Gómez Puerto M, Verhagen L, Braat A, Lam E, Coffer P, Lorenowicz M. Activation of autophagy by FOXO3 regulates redox homeostasis during osteogenic differentiation. Autophagy. 2016;12:1804-1816 pubmed
  465. Li Y, Dillon T, Takahashi M, Earley K, Stork P. Protein Kinase A-independent Ras Protein Activation Cooperates with Rap1 Protein to Mediate Activation of the Extracellular Signal-regulated Kinases (ERK) by cAMP. J Biol Chem. 2016;291:21584-21595 pubmed
  466. Luessen D, Hinshaw T, Sun H, Howlett A, MARRS G, McCool B, et al. RGS2 modulates the activity and internalization of dopamine D2 receptors in neuroblastoma N2A cells. Neuropharmacology. 2016;110:297-307 pubmed 出版商
  467. Ruess D, Probst M, Marjanovic G, Wittel U, Hopt U, Keck T, et al. HDACi Valproic Acid (VPA) and Suberoylanilide Hydroxamic Acid (SAHA) Delay but Fail to Protect against Warm Hepatic Ischemia-Reperfusion Injury. PLoS ONE. 2016;11:e0161233 pubmed 出版商
  468. Nadeau Vallée M, Boudreault A, Leimert K, Hou X, Obari D, Madaan A, et al. Uterotonic Neuromedin U Receptor 2 and Its Ligands Are Upregulated by Inflammation in Mice and Humans, and Elicit Preterm Birth. Biol Reprod. 2016;95:72 pubmed
  469. Hammers D, Sleeper M, Forbes S, Shima A, Walter G, Sweeney H. Tadalafil Treatment Delays the Onset of Cardiomyopathy in Dystrophin-Deficient Hearts. J Am Heart Assoc. 2016;5: pubmed 出版商
  470. Siljamäki E, Abankwa D. SPRED1 Interferes with K-ras but Not H-ras Membrane Anchorage and Signaling. Mol Cell Biol. 2016;36:2612-25 pubmed 出版商
  471. Ogasawara R, Fujita S, Hornberger T, Kitaoka Y, Makanae Y, Nakazato K, et al. The role of mTOR signalling in the regulation of skeletal muscle mass in a rodent model of resistance exercise. Sci Rep. 2016;6:31142 pubmed 出版商
  472. Stucky A, Bakshi K, Friedman E, Wang H. Prenatal Cocaine Exposure Upregulates BDNF-TrkB Signaling. PLoS ONE. 2016;11:e0160585 pubmed 出版商
  473. Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha S. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol. 2016;6: pubmed 出版商
  474. Lagares Tena L, García Monclús S, López Alemany R, Almacellas Rabaiget O, Huertas Martínez J, Sáinz Jaspeado M, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889-56903 pubmed 出版商
  475. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer's disease. Mol Med Rep. 2016;14:2614-24 pubmed 出版商
  476. Lyukmanova E, Shulepko M, Shenkarev Z, Bychkov M, Paramonov A, Chugunov A, et al. Secreted Isoform of Human Lynx1 (SLURP-2): Spatial Structure and Pharmacology of Interactions with Different Types of Acetylcholine Receptors. Sci Rep. 2016;6:30698 pubmed 出版商
  477. Salta E, Sierksma A, Vanden Eynden E, De Strooper B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer's brain. EMBO Mol Med. 2016;8:1005-18 pubmed 出版商
  478. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K. Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep. 2016;4: pubmed 出版商
  479. Fiedor E, Gregoraszczuk E. The molecular mechanism of action of superactive human leptin antagonist (SHLA) and quadruple leptin mutein Lan-2 on human ovarian epithelial cell lines. Cancer Chemother Pharmacol. 2016;78:611-22 pubmed 出版商
  480. Di Siena S, Gimmelli R, Nori S, Barbagallo F, Campolo F, Dolci S, et al. Activated c-Kit receptor in the heart promotes cardiac repair and regeneration after injury. Cell Death Dis. 2016;7:e2317 pubmed 出版商
  481. Anta B, Pérez Rodríguez A, Castro J, García Domínguez C, Ibiza S, Martínez N, et al. PGA1-induced apoptosis involves specific activation of H-Ras and N-Ras in cellular endomembranes. Cell Death Dis. 2016;7:e2311 pubmed 出版商
  482. Ho J, Hsu R, Wu C, Liao G, Gao H, Wang T, et al. Reduced miR-550a-3p leads to breast cancer initiation, growth, and metastasis by increasing levels of ERK1 and 2. Oncotarget. 2016;7:53853-53868 pubmed 出版商
  483. Fecková B, Kimáková P, Ilkovičová L, Szentpéteriová E, Debeljak N, Solárová Z, et al. Far-western blotting as a solution to the non-specificity of the anti-erythropoietin receptor antibody. Oncol Lett. 2016;12:1575-1580 pubmed
  484. Shi K, Qian J, Qi L, Mao D, Chen Y, Zhu Y, et al. Atorvastatin antagonizes the visfatin-induced expression of inflammatory mediators via the upregulation of NF-?B activation in HCAECs. Oncol Lett. 2016;12:1438-1444 pubmed
  485. Nettersheim D, Arndt I, Sharma R, Riesenberg S, Jostes S, Schneider S, et al. The cancer/testis-antigen PRAME supports the pluripotency network and represses somatic and germ cell differentiation programs in seminomas. Br J Cancer. 2016;115:454-64 pubmed 出版商
  486. Kang J, Park S, Jeong S, Han M, Lee C, Lee K, et al. Epigenetic regulation of Kcna3-encoding Kv1.3 potassium channel by cereblon contributes to regulation of CD4+ T-cell activation. Proc Natl Acad Sci U S A. 2016;113:8771-6 pubmed 出版商
  487. Posada I, Serulla M, Zhou Y, Oetken Lindholm C, Abankwa D, Lectez B. ASPP2 Is a Novel Pan-Ras Nanocluster Scaffold. PLoS ONE. 2016;11:e0159677 pubmed 出版商
  488. Kojima Y, Volkmer J, McKenna K, Civelek M, Lusis A, Miller C, et al. CD47-blocking antibodies restore phagocytosis and prevent atherosclerosis. Nature. 2016;536:86-90 pubmed
  489. Raguz J, Jerić I, Niault T, Nowacka J, Kuzet S, Rupp C, et al. Epidermal RAF prevents allergic skin disease. elife. 2016;5: pubmed 出版商
  490. Babica P, Zurabian R, Kumar E, Chopra R, Mianecki M, Park J, et al. Methoxychlor and Vinclozolin Induce Rapid Changes in Intercellular and Intracellular Signaling in Liver Progenitor Cells. Toxicol Sci. 2016;153:174-85 pubmed 出版商
  491. Im J, Yoon S, Kim B, Ban H, Won K, Chung K, et al. DNA damage induced apoptosis suppressor (DDIAS) is upregulated via ERK5/MEF2B signaling and promotes ?-catenin-mediated invasion. Biochim Biophys Acta. 2016;1859:1449-1458 pubmed 出版商
  492. Carino A, Graziosi L, D Amore C, Cipriani S, Marchianò S, Marino E, et al. The bile acid receptor GPBAR1 (TGR5) is expressed in human gastric cancers and promotes epithelial-mesenchymal transition in gastric cancer cell lines. Oncotarget. 2016;7:61021-61035 pubmed 出版商
  493. Inda C, Dos Santos Claro P, Bonfiglio J, Senin S, Maccarrone G, Turck C, et al. Different cAMP sources are critically involved in G protein-coupled receptor CRHR1 signaling. J Cell Biol. 2016;214:181-95 pubmed 出版商
  494. Fresco V, Kern C, Mohammadi M, Twal W. Fibulin-1 Binds to Fibroblast Growth Factor 8 with High Affinity: EFFECTS ON EMBRYO SURVIVAL. J Biol Chem. 2016;291:18730-9 pubmed 出版商
  495. Köchl R, Thelen F, Vanes L, Brazão T, Fountain K, Xie J, et al. WNK1 kinase balances T cell adhesion versus migration in vivo. Nat Immunol. 2016;17:1075-83 pubmed 出版商
  496. Wang C, Guo S, Wang J, Yan X, Farrelly M, Zhang Y, et al. Reactivation of ERK and Akt confers resistance of mutant BRAF colon cancer cells to the HSP90 inhibitor AUY922. Oncotarget. 2016;7:49597-49610 pubmed 出版商
  497. Huang C, Lee C, Lin H, Chang J. Cathepsin S attenuates endosomal EGFR signalling: A mechanical rationale for the combination of cathepsin S and EGFR tyrosine kinase inhibitors. Sci Rep. 2016;6:29256 pubmed 出版商
  498. Elzi D, Song M, Blackman B, Weintraub S, Lopez Terrada D, Chen Y, et al. FGF19 functions as autocrine growth factor for hepatoblastoma. Genes Cancer. 2016;7:125-35 pubmed 出版商
  499. Chen Y, LaMarche M, Chan H, Fekkes P, García Fortanet J, Acker M, et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature. 2016;535:148-52 pubmed
  500. Madureira P, Bharadwaj A, Bydoun M, Garant K, O Connell P, Lee P, et al. Cell surface protease activation during RAS transformation: Critical role of the plasminogen receptor, S100A10. Oncotarget. 2016;7:47720-47737 pubmed 出版商
  501. Chen Z, Ding X, Jin S, Pitt B, Zhang L, Billiar T, et al. WISP1-?v?3 integrin signaling positively regulates TLR-triggered inflammation response in sepsis induced lung injury. Sci Rep. 2016;6:28841 pubmed 出版商
  502. Barcus C, Keely P, Eliceiri K, Schuler L. Prolactin signaling through focal adhesion complexes is amplified by stiff extracellular matrices in breast cancer cells. Oncotarget. 2016;7:48093-48106 pubmed 出版商
  503. Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao K, et al. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep. 2016;6:28627 pubmed 出版商
  504. Chakedis J, French R, Babicky M, Jaquish D, Mose E, Cheng P, et al. Characterization of RON protein isoforms in pancreatic cancer: implications for biology and therapeutics. Oncotarget. 2016;7:45959-45975 pubmed 出版商
  505. Aguilera O, Muñoz Sagastibelza M, Torrejón B, Borrero Palacios A, del Puerto Nevado L, Martínez Useros J, et al. Vitamin C uncouples the Warburg metabolic switch in KRAS mutant colon cancer. Oncotarget. 2016;7:47954-47965 pubmed 出版商
  506. Gautheron J, Vucur M, Schneider A, Severi I, Roderburg C, Roy S, et al. The necroptosis-inducing kinase RIPK3 dampens adipose tissue inflammation and glucose intolerance. Nat Commun. 2016;7:11869 pubmed 出版商
  507. Khan S, Sikander M, Ebeling M, Ganju A, Kumari S, Yallapu M, et al. MUC13 interaction with receptor tyrosine kinase HER2 drives pancreatic ductal adenocarcinoma progression. Oncogene. 2017;36:491-500 pubmed 出版商
  508. Burger D, Turner M, Munkonda M, Touyz R. Endothelial Microparticle-Derived Reactive Oxygen Species: Role in Endothelial Signaling and Vascular Function. Oxid Med Cell Longev. 2016;2016:5047954 pubmed 出版商
  509. Liu C, Lin S, Hsu H, Yang S, Lin C, Yang M, et al. Suspension survival mediated by PP2A-STAT3-Col XVII determines tumour initiation and metastasis in cancer stem cells. Nat Commun. 2016;7:11798 pubmed 出版商
  510. Tisza M, Zhao W, Fuentes J, Prijic S, Chen X, Levental I, et al. Motility and stem cell properties induced by the epithelial-mesenchymal transition require destabilization of lipid rafts. Oncotarget. 2016;7:51553-51568 pubmed 出版商
  511. Maugeri G, D Amico A, Reitano R, Magro G, Cavallaro S, Salomone S, et al. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol. 2016;7:139 pubmed 出版商
  512. Zhai W, Chen D, Shen H, Chen Z, Li H, Yu Z, et al. A1 adenosine receptor attenuates intracerebral hemorrhage-induced secondary brain injury in rats by activating the P38-MAPKAP2-Hsp27 pathway. Mol Brain. 2016;9:66 pubmed 出版商
  513. Priego N, Arechederra M, Sequera C, Bragado P, Vázquez Carballo A, Gutierrez Uzquiza A, et al. C3G knock-down enhances migration and invasion by increasing Rap1-mediated p38? activation, while it impairs tumor growth through p38?-independent mechanisms. Oncotarget. 2016;7:45060-45078 pubmed 出版商
  514. Hey F, Giblett S, Forrest S, Herbert C, Pritchard C. Phosphorylations of Serines 21/9 in Glycogen Synthase Kinase 3α/β Are Not Required for Cell Lineage Commitment or WNT Signaling in the Normal Mouse Intestine. PLoS ONE. 2016;11:e0156877 pubmed 出版商
  515. Wang T, Pan D, Zhou Z, You Y, Jiang C, Zhao X, et al. Dectin-3 Deficiency Promotes Colitis Development due to Impaired Antifungal Innate Immune Responses in the Gut. PLoS Pathog. 2016;12:e1005662 pubmed 出版商
  516. Wang J, Farris A, Xu K, Wang P, Zhang X, Duong D, et al. GPRC5A suppresses protein synthesis at the endoplasmic reticulum to prevent radiation-induced lung tumorigenesis. Nat Commun. 2016;7:11795 pubmed 出版商
  517. Pawar A, Meier J, Dasgupta A, Diwanji N, Deshpande N, Saxena K, et al. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cell Signal. 2016;28:1225-36 pubmed 出版商
  518. Zhang Y, Liu H, Yi R, Yan T, He Y, Zhao Y, et al. Hepatitis B virus whole-X and X protein play distinct roles in HBV-related hepatocellular carcinoma progression. J Exp Clin Cancer Res. 2016;35:87 pubmed 出版商
  519. Park J, Kotani T, Konno T, Setiawan J, Kitamura Y, Imada S, et al. Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLoS ONE. 2016;11:e0156334 pubmed 出版商
  520. Kanda M, Nagai T, Takahashi T, Liu M, Kondou N, Naito A, et al. Leukemia Inhibitory Factor Enhances Endogenous Cardiomyocyte Regeneration after Myocardial Infarction. PLoS ONE. 2016;11:e0156562 pubmed 出版商
  521. Schütz I, López Hernández T, Gao Q, Puchkov D, Jabs S, Nordmeyer D, et al. Lysosomal Dysfunction Caused by Cellular Accumulation of Silica Nanoparticles. J Biol Chem. 2016;291:14170-84 pubmed 出版商
  522. Chesnokova V, Zonis S, Zhou C, Recouvreux M, Ben Shlomo A, Araki T, et al. Growth hormone is permissive for neoplastic colon growth. Proc Natl Acad Sci U S A. 2016;113:E3250-9 pubmed 出版商
  523. Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS ONE. 2016;11:e0156303 pubmed 出版商
  524. Blee A, Liu S, Wang L, Huang H. BET bromodomain-mediated interaction between ERG and BRD4 promotes prostate cancer cell invasion. Oncotarget. 2016;7:38319-38332 pubmed 出版商
  525. Kwon H, Choi G, Ryu S, Kwon S, Kim S, Booth C, et al. Stepwise phosphorylation of p65 promotes NF-?B activation and NK cell responses during target cell recognition. Nat Commun. 2016;7:11686 pubmed 出版商
  526. Hanson R, Brown R, Steele M, Grandgenett P, Grunkemeyer J, Hollingsworth M. Identification of FRA-1 as a novel player in pancreatic cancer in cooperation with a MUC1: ERK signaling axis. Oncotarget. 2016;7:39996-40011 pubmed 出版商
  527. Yang Z, Jiang Q, Chen S, Hu C, Shen H, Huang P, et al. Differential changes in Neuregulin-1 signaling in major brain regions in a lipopolysaccharide-induced neuroinflammation mouse model. Mol Med Rep. 2016;14:790-6 pubmed 出版商
  528. Kohler T, Scholz A, Kiachludis D, Hammerschmidt S. Induction of Central Host Signaling Kinases during Pneumococcal Infection of Human THP-1 Cells. Front Cell Infect Microbiol. 2016;6:48 pubmed 出版商
  529. Al Nakouzi N, Wang C, Beraldi E, Jäger W, Ettinger S, Fazli L, et al. Clusterin knockdown sensitizes prostate cancer cells to taxane by modulating mitosis. EMBO Mol Med. 2016;8:761-78 pubmed 出版商
  530. Stein S, Mack E, Rome K, Pajcini K, Ohtani T, Xu L, et al. Trib2 Suppresses Tumor Initiation in Notch-Driven T-ALL. PLoS ONE. 2016;11:e0155408 pubmed 出版商
  531. Zhang C, Li L, Zhao B, Jiao A, Li X, Sun N, et al. Ghrelin Protects against Dexamethasone-Induced INS-1 Cell Apoptosis via ERK and p38MAPK Signaling. Int J Endocrinol. 2016;2016:4513051 pubmed 出版商
  532. Fusté N, Fernández Hernández R, Cemeli T, Mirantes C, Pedraza N, Rafel M, et al. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin. Nat Commun. 2016;7:11581 pubmed 出版商
  533. Chen L, DeWispelaere A, Dastvan F, Osborne W, Blechner C, Windhorst S, et al. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE. 2016;11:e0155726 pubmed 出版商
  534. Kunze M, Benz F, Brauß T, Lampe S, Weigand J, Braun J, et al. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism. Biochim Biophys Acta. 2016;1859:848-59 pubmed 出版商
  535. Hudson C, McArdle C, López Bernal A. Steroid receptor co-activator interacting protein (SIP) mediates EGF-stimulated expression of the prostaglandin synthase COX2 and prostaglandin release in human myometrium. Mol Hum Reprod. 2016;22:512-25 pubmed 出版商
  536. Wang X, Bey A, Katz B, Badea A, Kim N, David L, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459 pubmed 出版商
  537. Segatto I, Massarut S, Boyle R, Baldassarre G, Walker D, Belletti B. Preclinical validation of a novel compound targeting p70S6 kinase in breast cancer. Aging (Albany NY). 2016;8:958-76 pubmed 出版商
  538. Yang Y, Andersson P, Hosaka K, Zhang Y, Cao R, Iwamoto H, et al. The PDGF-BB-SOX7 axis-modulated IL-33 in pericytes and stromal cells promotes metastasis through tumour-associated macrophages. Nat Commun. 2016;7:11385 pubmed 出版商
  539. Wu Y, Lan C, Ren D, Chen G. Induction of Siglec-1 by Endotoxin Tolerance Suppresses the Innate Immune Response by Promoting TGF-?1 Production. J Biol Chem. 2016;291:12370-82 pubmed 出版商
  540. Guinot A, Lehmann H, Wild P, Frew I. Combined deletion of Vhl, Trp53 and Kif3a causes cystic and neoplastic renal lesions. J Pathol. 2016;239:365-73 pubmed 出版商
  541. Choi H, Kim M, Choi Y, Shin Y, Cho S, Ko S. Rhus verniciflua Stokes (RVS) and butein induce apoptosis of paclitaxel-resistant SKOV-3/PAX ovarian cancer cells through inhibition of AKT phosphorylation. BMC Complement Altern Med. 2016;16:122 pubmed 出版商
  542. Afonina I, Van Nuffel E, Baudelet G, Driege Y, Kreike M, Staal J, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17:914-27 pubmed 出版商
  543. Kim S, Choi K, Cho S, Yun S, Jeon J, Koh Y, et al. Fisetin stimulates autophagic degradation of phosphorylated tau via the activation of TFEB and Nrf2 transcription factors. Sci Rep. 2016;6:24933 pubmed 出版商
  544. Thomas J, Chhuy Hy L, Andrykovich K, Moos M. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR. PLoS ONE. 2016;11:e0154294 pubmed 出版商
  545. Mendel I, Yacov N, Shoham A, Ishai E, Breitbart E. Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis. Dig Dis Sci. 2016;61:2545-53 pubmed 出版商
  546. Jadwin J, Oh D, Curran T, Ogiue Ikeda M, Jia L, White F, et al. Time-resolved multimodal analysis of Src Homology 2 (SH2) domain binding in signaling by receptor tyrosine kinases. elife. 2016;5:e11835 pubmed 出版商
  547. Uto T, Fukaya T, Takagi H, Arimura K, Nakamura T, Kojima N, et al. Clec4A4 is a regulatory receptor for dendritic cells that impairs inflammation and T-cell immunity. Nat Commun. 2016;7:11273 pubmed 出版商
  548. Bosma M, Gerling M, Pasto J, Georgiadi A, Graham E, Shilkova O, et al. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice. Nat Commun. 2016;7:11314 pubmed 出版商
  549. Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, et al. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. elife. 2016;5: pubmed 出版商
  550. Macritchie N, Volpert G, Al Washih M, Watson D, Futerman A, Kennedy S, et al. Effect of the sphingosine kinase 1 selective inhibitor, PF-543 on arterial and cardiac remodelling in a hypoxic model of pulmonary arterial hypertension. Cell Signal. 2016;28:946-55 pubmed 出版商
  551. Maselli A, Capoccia S, Pugliese P, Raggi C, Cirulli F, Fabi A, et al. Autoantibodies specific to estrogen receptor alpha act as estrogen agonists and their levels correlate with breast cancer cell proliferation. Oncoimmunology. 2016;5:e1074375 pubmed
  552. Su X, Ditlev J, Hui E, Xing W, Banjade S, Okrut J, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science. 2016;352:595-9 pubmed 出版商
  553. Damle S, Martin R, Cross J, Conrad D. Macrophage migration inhibitory factor deficiency enhances immune response to Nippostrongylus brasiliensis. Mucosal Immunol. 2017;10:205-214 pubmed 出版商
  554. Shi C, Iura A, Terajima M, Liu F, Lyons K, Pan H, et al. Deletion of BMP receptor type IB decreased bone mass in association with compromised osteoblastic differentiation of bone marrow mesenchymal progenitors. Sci Rep. 2016;6:24256 pubmed 出版商
  555. Rorsman C, Tsioumpekou M, Heldin C, Lennartsson J. The Ubiquitin Ligases c-Cbl and Cbl-b Negatively Regulate Platelet-derived Growth Factor (PDGF) BB-induced Chemotaxis by Affecting PDGF Receptor β (PDGFRβ) Internalization and Signaling. J Biol Chem. 2016;291:11608-18 pubmed 出版商
  556. Rhee M, Lee S, Kim J, Ham D, Park H, Yang H, et al. Preadipocyte factor 1 induces pancreatic ductal cell differentiation into insulin-producing cells. Sci Rep. 2016;6:23960 pubmed 出版商
  557. Papadakis E, Barker C, Syed H, Reeves T, Schwaiger S, Stuppner H, et al. The Bag-1 inhibitor, Thio-2, reverses an atypical 3D morphology driven by Bag-1L overexpression in a MCF-10A model of ductal carcinoma in situ. Oncogenesis. 2016;5:e215 pubmed 出版商
  558. Das S, Romagnoli M, Mineva N, Barillé Nion S, Jezequel P, Campone M, et al. miR-720 is a downstream target of an ADAM8-induced ERK signaling cascade that promotes the migratory and invasive phenotype of triple-negative breast cancer cells. Breast Cancer Res. 2016;18:40 pubmed 出版商
  559. Alemán O, Mora N, Cortés Vieyra R, Uribe Querol E, Rosales C. Differential Use of Human Neutrophil Fc? Receptors for Inducing Neutrophil Extracellular Trap Formation. J Immunol Res. 2016;2016:2908034 pubmed 出版商
  560. Riggle K, Riehle K, Kenerson H, Turnham R, Homma M, Kazami M, et al. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatr Res. 2016;80:110-8 pubmed 出版商
  561. Maugeri G, D Amico A, Rasà D, Reitano R, Saccone S, Federico C, et al. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells. Genes Cancer. 2016;7:47-58 pubmed
  562. Huang J, Yao C, Chuang S, Yeh C, Lee L, Chen R, et al. Honokiol inhibits sphere formation and xenograft growth of oral cancer side population cells accompanied with JAK/STAT signaling pathway suppression and apoptosis induction. BMC Cancer. 2016;16:245 pubmed 出版商
  563. Margaryan N, Gilgur A, Seftor E, Purnell C, Arva N, Gosain A, et al. Melanocytes Affect Nodal Expression and Signaling in Melanoma Cells: A Lesson from Pediatric Large Congenital Melanocytic Nevi. Int J Mol Sci. 2016;17:418 pubmed 出版商
  564. Sun M, Zhu S, Li Y, Lin J, Gong S, Jiao G, et al. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6:23555 pubmed 出版商
  565. Sakakini N, Turchi L, Bergon A, Holota H, Rekima S, Lopez F, et al. A Positive Feed-forward Loop Associating EGR1 and PDGFA Promotes Proliferation and Self-renewal in Glioblastoma Stem Cells. J Biol Chem. 2016;291:10684-99 pubmed 出版商
  566. Relic B, Charlier E, Deroyer C, Malaise O, Neuville S, Desoroux A, et al. BAY 11-7085 induces glucocorticoid receptor activation and autophagy that collaborate with apoptosis to induce human synovial fibroblast cell death. Oncotarget. 2016;7:23370-82 pubmed 出版商
  567. Lee J, Kim H, Rho S, Lee S. eIF3f reduces tumor growth by directly interrupting clusterin with anti-apoptotic property in cancer cells. Oncotarget. 2016;7:18541-57 pubmed 出版商
  568. Kabe Y, Nakane T, Koike I, Yamamoto T, Sugiura Y, Harada E, et al. Haem-dependent dimerization of PGRMC1/Sigma-2 receptor facilitates cancer proliferation and chemoresistance. Nat Commun. 2016;7:11030 pubmed 出版商
  569. Obino D, Farina F, Malbec O, Sáez P, Maurin M, Gaillard J, et al. Actin nucleation at the centrosome controls lymphocyte polarity. Nat Commun. 2016;7:10969 pubmed 出版商
  570. Morena D, Maestro N, Bersani F, Forni P, Lingua M, Foglizzo V, et al. Hepatocyte Growth Factor-mediated satellite cells niche perturbation promotes development of distinct sarcoma subtypes. elife. 2016;5: pubmed 出版商
  571. Kurimoto R, Iwasawa S, Ebata T, Ishiwata T, Sekine I, Tada Y, et al. Drug resistance originating from a TGF-β/FGF-2-driven epithelial-to-mesenchymal transition and its reversion in human lung adenocarcinoma cell lines harboring an EGFR mutation. Int J Oncol. 2016;48:1825-36 pubmed 出版商
  572. Afsar T, Trembley J, Salomon C, Razak S, Khan M, Ahmed K. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways. Sci Rep. 2016;6:23077 pubmed 出版商
  573. Acharya M, Sokolovska A, Tam J, Conway K, Stefani C, Raso F, et al. αv Integrins combine with LC3 and atg5 to regulate Toll-like receptor signalling in B cells. Nat Commun. 2016;7:10917 pubmed 出版商
  574. He H, Deng K, Siddiq M, Pyie A, Mellado W, Hannila S, et al. Cyclic AMP and Polyamines Overcome Inhibition by Myelin-Associated Glycoprotein through eIF5A-Mediated Increases in p35 Expression and Activation of Cdk5. J Neurosci. 2016;36:3079-91 pubmed 出版商
  575. Yang H, Vainshtein A, Maik Rachline G, Peles E. G protein-coupled receptor 37 is a negative regulator of oligodendrocyte differentiation and myelination. Nat Commun. 2016;7:10884 pubmed 出版商
  576. Atiq R, Hertz R, Eldad S, Smeir E, Bar Tana J. Suppression of B-Raf(V600E) cancers by MAPK hyper-activation. Oncotarget. 2016;7:18694-704 pubmed 出版商
  577. Jang C, Oh S, Wada S, Rowe G, Liu L, Chan M, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance. Nat Med. 2016;22:421-6 pubmed 出版商
  578. Yang P, Leu D, Ye K, Srinivasan C, Fike J, Huang T. Cognitive impairments following cranial irradiation can be mitigated by treatment with a tropomyosin receptor kinase B agonist. Exp Neurol. 2016;279:178-186 pubmed 出版商
  579. Thakur A, Nigri J, Lac S, Leca J, Bressy C, Berthezene P, et al. TAp73 loss favors Smad-independent TGF-β signaling that drives EMT in pancreatic ductal adenocarcinoma. Cell Death Differ. 2016;23:1358-70 pubmed 出版商
  580. Ardini E, Menichincheri M, Banfi P, Bosotti R, De Ponti C, Pulci R, et al. Entrectinib, a Pan-TRK, ROS1, and ALK Inhibitor with Activity in Multiple Molecularly Defined Cancer Indications. Mol Cancer Ther. 2016;15:628-39 pubmed 出版商
  581. Singh A, Joshi S, Zulcic M, Alcaraz M, GARLICH J, Morales G, et al. PI-3K Inhibitors Preferentially Target CD15+ Cancer Stem Cell Population in SHH Driven Medulloblastoma. PLoS ONE. 2016;11:e0150836 pubmed 出版商
  582. Yang W, Yang Y, Yang J, Liang M, Song J. Treatment with bone marrow mesenchymal stem cells combined with plumbagin alleviates spinal cord injury by affecting oxidative stress, inflammation, apoptotis and the activation of the Nrf2 pathway. Int J Mol Med. 2016;37:1075-82 pubmed 出版商
  583. Jing H, Sun W, Fan J, Zhang Y, Yang J, Jia J, et al. Shikonin induces apoptosis of HaCaT cells via the mitochondrial, Erk and Akt pathways. Mol Med Rep. 2016;13:3009-16 pubmed 出版商
  584. Persaud S, Park S, Ishigami Yuasa M, Koyano Nakagawa N, Kagechika H, Wei L. All trans-retinoic acid analogs promote cancer cell apoptosis through non-genomic Crabp1 mediating ERK1/2 phosphorylation. Sci Rep. 2016;6:22396 pubmed 出版商
  585. Bigenzahn J, Fauster A, Rebsamen M, Kandasamy R, Scorzoni S, Vladimer G, et al. An Inducible Retroviral Expression System for Tandem Affinity Purification Mass-Spectrometry-Based Proteomics Identifies Mixed Lineage Kinase Domain-like Protein (MLKL) as an Heat Shock Protein 90 (HSP90) Client. Mol Cell Proteomics. 2016;15:1139-50 pubmed
  586. Woo J, Srikanth S, Nishi M, Ping P, Takeshima H, Gwack Y. Junctophilin-4, a component of the endoplasmic reticulum-plasma membrane junctions, regulates Ca2+ dynamics in T cells. Proc Natl Acad Sci U S A. 2016;113:2762-7 pubmed 出版商
  587. Konogami T, Yang Y, Ogihara M, Hikiba J, Kataoka H, Saito K. Ligand-dependent responses of the silkworm prothoracicotropic hormone receptor, Torso, are maintained by unusual intermolecular disulfide bridges in the transmembrane region. Sci Rep. 2016;6:22437 pubmed 出版商
  588. Guillot F, Kemppainen S, Lavasseur G, Miettinen P, Laroche S, Tanila H, et al. Brain-Specific Basal and Novelty-Induced Alternations in PI3K-Akt and MAPK/ERK Signaling in a Middle-Aged AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis. 2016;51:1157-73 pubmed 出版商
  589. Nakayama R, Zhang Y, Czaplinski J, Anatone A, Sicinska E, Fletcher J, et al. Preclinical activity of selinexor, an inhibitor of XPO1, in sarcoma. Oncotarget. 2016;7:16581-92 pubmed 出版商
  590. Eriksson J, Le Joncour V, Nummela P, Jahkola T, Virolainen S, Laakkonen P, et al. Gene expression analyses of primary melanomas reveal CTHRC1 as an important player in melanoma progression. Oncotarget. 2016;7:15065-92 pubmed 出版商
  591. Mason J, Davison Versagli C, Leliaert A, Pape D, McCallister C, Zuo J, et al. Oncogenic Ras differentially regulates metabolism and anoikis in extracellular matrix-detached cells. Cell Death Differ. 2016;23:1271-82 pubmed 出版商
  592. Abdul Rahman N, Greenwood S, Brett R, Tossell K, Ungless M, Plevin R, et al. Mitogen-Activated Protein Kinase Phosphatase-2 Deletion Impairs Synaptic Plasticity and Hippocampal-Dependent Memory. J Neurosci. 2016;36:2348-54 pubmed 出版商
  593. Yufune S, Satoh Y, Akai R, Yoshinaga Y, Kobayashi Y, Endo S, et al. Suppression of ERK phosphorylation through oxidative stress is involved in the mechanism underlying sevoflurane-induced toxicity in the developing brain. Sci Rep. 2016;6:21859 pubmed 出版商
  594. Hu H, Wang H, Xiao Y, Jin J, Chang J, Zou Q, et al. Otud7b facilitates T cell activation and inflammatory responses by regulating Zap70 ubiquitination. J Exp Med. 2016;213:399-414 pubmed 出版商
  595. Hu M, Bai Y, Zhang C, Liu F, Cui Z, Chen J, et al. Liver-Enriched Gene 1, a Glycosylated Secretory Protein, Binds to FGFR and Mediates an Anti-stress Pathway to Protect Liver Development in Zebrafish. PLoS Genet. 2016;12:e1005881 pubmed 出版商
  596. Sancho Martinez I, Nivet E, Xia Y, Hishida T, Aguirre A, Ocampo A, et al. Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nat Commun. 2016;7:10743 pubmed 出版商
  597. Urnukhsaikhan E, Cho H, Mishig Ochir T, Seo Y, Park J. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs. Life Sci. 2016;151:130-138 pubmed 出版商
  598. Huo L, Shi W, Chong L, Wang J, Zhang K, Li Y. Asiatic acid inhibits left ventricular remodeling and improves cardiac function in a rat model of myocardial infarction. Exp Ther Med. 2016;11:57-64 pubmed
  599. Kline C, van den Heuvel A, Allen J, Prabhu V, Dicker D, El Deiry W. ONC201 kills solid tumor cells by triggering an integrated stress response dependent on ATF4 activation by specific eIF2α kinases. Sci Signal. 2016;9:ra18 pubmed 出版商
  600. Baietti M, Simíček M, Abbasi Asbagh L, Radaelli E, Lievens S, Crowther J, et al. OTUB1 triggers lung cancer development by inhibiting RAS monoubiquitination. EMBO Mol Med. 2016;8:288-303 pubmed 出版商
  601. Wang J, Goetsch L, Tucker L, Zhang Q, Gonzalez A, Vaidya K, et al. Anti-c-Met monoclonal antibody ABT-700 breaks oncogene addiction in tumors with MET amplification. BMC Cancer. 2016;16:105 pubmed 出版商
  602. Kim D, Helfman D. Loss of MLCK leads to disruption of cell-cell adhesion and invasive behavior of breast epithelial cells via increased expression of EGFR and ERK/JNK signaling. Oncogene. 2016;35:4495-508 pubmed 出版商
  603. Krause C, Popp O, Thirunarayanan N, Dittmar G, Lipp M, Müller G. MicroRNA-34a promotes genomic instability by a broad suppression of genome maintenance mechanisms downstream of the oncogene KSHV-vGPCR. Oncotarget. 2016;7:10414-32 pubmed 出版商
  604. Chang C, Hale S, Cox C, Blair A, Kronsteiner B, Grabowska R, et al. Junctional Adhesion Molecule-A Is Highly Expressed on Human Hematopoietic Repopulating Cells and Associates with the Key Hematopoietic Chemokine Receptor CXCR4. Stem Cells. 2016;34:1664-78 pubmed 出版商
  605. Ebbing E, Medema J, Damhofer H, Meijer S, Krishnadath K, van Berge Henegouwen M, et al. ADAM10-mediated release of heregulin confers resistance to trastuzumab by activating HER3. Oncotarget. 2016;7:10243-54 pubmed 出版商
  606. Nawaz M, Giarda E, Bedogni F, La Montanara P, Ricciardi S, Ciceri D, et al. CDKL5 and Shootin1 Interact and Concur in Regulating Neuronal Polarization. PLoS ONE. 2016;11:e0148634 pubmed 出版商
  607. Däbritz J, Judd L, Chalinor H, Menheniott T, Giraud A. Altered gp130 signalling ameliorates experimental colitis via myeloid cell-specific STAT3 activation and myeloid-derived suppressor cells. Sci Rep. 2016;6:20584 pubmed 出版商
  608. Coke C, Scarlett K, Chetram M, Jones K, Sandifer B, Davis A, et al. Simultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression. J Biol Chem. 2016;291:9991-10005 pubmed 出版商
  609. Vincent K, Cornea V, Jong Y, Laferriere A, Kumar N, Mickeviciute A, et al. Intracellular mGluR5 plays a critical role in neuropathic pain. Nat Commun. 2016;7:10604 pubmed 出版商
  610. Martin B, Chadwick W, Janssens J, Premont R, Schmalzigaug R, Becker K, et al. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne). 2015;6:191 pubmed 出版商
  611. Liu L, Zhu J, Zhou L, Wan L. RACK1 promotes maintenance of morphine-associated memory via activation of an ERK-CREB dependent pathway in hippocampus. Sci Rep. 2016;6:20183 pubmed 出版商
  612. Dorris E, Blackshields G, Sommerville G, Alhashemi M, Dias A, McEneaney V, et al. Pluripotency markers are differentially induced by MEK inhibition in thyroid and melanoma BRAFV600E cell lines. Cancer Biol Ther. 2016;17:526-42 pubmed 出版商
  613. Derangère V, Fumet J, Boidot R, Bengrine L, Limagne E, Chevriaux A, et al. Does bevacizumab impact anti-EGFR therapy efficacy in metastatic colorectal cancer?. Oncotarget. 2016;7:9309-21 pubmed 出版商
  614. Johnson D, Estrada M, Salgado R, Sanchez V, Doxie D, Opalenik S, et al. Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy. Nat Commun. 2016;7:10582 pubmed 出版商
  615. Theodosiou M, Widmaier M, Böttcher R, Rognoni E, Veelders M, Bharadwaj M, et al. Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. elife. 2016;5:e10130 pubmed 出版商
  616. Stefanovic M, Tutusaus A, Martinez Nieto G, Bárcena C, de Gregorio E, Moutinho C, et al. Targeting glucosylceramide synthase upregulation reverts sorafenib resistance in experimental hepatocellular carcinoma. Oncotarget. 2016;7:8253-67 pubmed 出版商
  617. Tsang Y, Dogruluk T, Tedeschi P, Wardwell Ozgo J, Lu H, Espitia M, et al. Functional annotation of rare gene aberration drivers of pancreatic cancer. Nat Commun. 2016;7:10500 pubmed 出版商
  618. Teng Y, Pi W, Wang Y, Cowell J. WASF3 provides the conduit to facilitate invasion and metastasis in breast cancer cells through HER2/HER3 signaling. Oncogene. 2016;35:4633-40 pubmed 出版商
  619. Grassilli E, Pisano F, Cialdella A, Bonomo S, Missaglia C, Cerrito M, et al. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene. 2016;35:4368-78 pubmed 出版商
  620. Menter T, Dickenmann M, Juskevicius D, Steiger J, Dirnhofer S, Tzankov A. Comprehensive phenotypic characterization of PTLD reveals potential reliance on EBV or NF-κB signalling instead of B-cell receptor signalling. Hematol Oncol. 2017;35:187-197 pubmed 出版商
  621. Bouhlal H, Ouled Haddou H, Debuysscher V, Singh A, Ossart C, Reignier A, et al. RB/PLK1-dependent induced pathway by SLAMF3 expression inhibits mitosis and control hepatocarcinoma cell proliferation. Oncotarget. 2016;7:9832-43 pubmed 出版商
  622. Hattermann K, Gebhardt H, Krossa S, Ludwig A, Lucius R, Held Feindt J, et al. Transmembrane chemokines act as receptors in a novel mechanism termed inverse signaling. elife. 2016;5:e10820 pubmed 出版商
  623. Peres T, Ong L, Costa A, Eyng H, Venske D, Colle D, et al. Tyrosine hydroxylase regulation in adult rat striatum following short-term neonatal exposure to manganese. Metallomics. 2016;8:597-604 pubmed 出版商
  624. Yoshida T, Song L, Bai Y, Kinose F, Li J, Ohaegbulam K, et al. ZEB1 Mediates Acquired Resistance to the Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer. PLoS ONE. 2016;11:e0147344 pubmed 出版商
  625. Alonso Rodríguez E, Fernández Piñar P, Sacristán Reviriego A, Molina M, Martín H. An Analog-sensitive Version of the Protein Kinase Slt2 Allows Identification of Novel Targets of the Yeast Cell Wall Integrity Pathway. J Biol Chem. 2016;291:5461-72 pubmed 出版商
  626. Chan A, Punwani D, Kadlecek T, Cowan M, Olson J, Mathes E, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155-65 pubmed 出版商
  627. Zheng F, Yue C, Li G, He B, Cheng W, Wang X, et al. Nuclear AURKA acquires kinase-independent transactivating function to enhance breast cancer stem cell phenotype. Nat Commun. 2016;7:10180 pubmed 出版商
  628. Lv P, Tong X, Peng Q, Liu Y, Jin H, Liu R, et al. Treatment with the herbal medicine, naoxintong improves the protective effect of high-density lipoproteins on endothelial function in patients with type 2 diabetes. Mol Med Rep. 2016;13:2007-16 pubmed 出版商
  629. Chen Y, Zheng Y, You X, Yu M, Fu G, Su X, et al. Kras Is Critical for B Cell Lymphopoiesis. J Immunol. 2016;196:1678-85 pubmed 出版商
  630. Cipriani G, Gibbons S, Verhulst P, Choi K, Eisenman S, Hein S, et al. Diabetic Csf1op/op mice lacking macrophages are protected against the development of delayed gastric emptying. Cell Mol Gastroenterol Hepatol. 2016;2:40-47 pubmed
  631. Peng K, Tian X, Qian Y, Skibba M, Zou C, Liu Z, et al. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II. J Cell Mol Med. 2016;20:482-94 pubmed 出版商
  632. Daniele S, Barresi E, Zappelli E, Marinelli L, Novellino E, Da Settimo F, et al. Long lasting MDM2/Translocator protein modulator: a new strategy for irreversible apoptosis of human glioblastoma cells. Oncotarget. 2016;7:7866-84 pubmed 出版商
  633. Pivonello C, Negri M, De Martino M, Napolitano M, De Angelis C, Provvisiero D, et al. The dual targeting of insulin and insulin-like growth factor 1 receptor enhances the mTOR inhibitor-mediated antitumor efficacy in hepatocellular carcinoma. Oncotarget. 2016;7:9718-31 pubmed 出版商
  634. Lin C, Wang C, Hsu S, Liao L, Lin T, Hsueh C. Molecular Mechanisms Responsible for Neuron-Derived Conditioned Medium (NCM)-Mediated Protection of Ischemic Brain. PLoS ONE. 2016;11:e0146692 pubmed 出版商
  635. Gu K, Zhang Q, Yan Y, Li T, Duan F, Hao J, et al. Pluripotency-associated miR-290/302 family of microRNAs promote the dismantling of naive pluripotency. Cell Res. 2016;26:350-66 pubmed 出版商
  636. Yang S, Krug S, Heitmann J, Hu L, Reinhold A, Sauer S, et al. Analgesic drug delivery via recombinant tissue plasminogen activator and microRNA-183-triggered opening of the blood-nerve barrier. Biomaterials. 2016;82:20-33 pubmed 出版商
  637. Lee K, Hsieh Y, Yang Y, Chan C, Huang Y, Lin H. Aliskiren Reduces Hepatic steatosis and Epididymal Fat Mass and Increases Skeletal Muscle Insulin Sensitivity in High-Fat Diet-Fed Mice. Sci Rep. 2016;6:18899 pubmed 出版商
  638. Matalkah F, Martin E, Zhao H, Agazie Y. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 2016;18:2 pubmed 出版商
  639. Yamaguchi T, Lu C, Ida L, Yanagisawa K, Usukura J, Cheng J, et al. ROR1 sustains caveolae and survival signalling as a scaffold of cavin-1 and caveolin-1. Nat Commun. 2016;7:10060 pubmed 出版商
  640. Vivar O, Masi G, Carpier J, Magalhaes J, Galgano D, Pazour G, et al. IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo. Proc Natl Acad Sci U S A. 2016;113:386-91 pubmed 出版商
  641. Hernandez R, Puro A, Manos J, Huitron Resendiz S, Reyes K, Liu K, et al. Transgenic mice with increased astrocyte expression of IL-6 show altered effects of acute ethanol on synaptic function. Neuropharmacology. 2016;103:27-43 pubmed 出版商
  642. Ishibashi T, Yaguchi A, Terada K, Ueno Yokohata H, Tomita O, Iijima K, et al. Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells. Exp Hematol. 2016;44:177-88.e5 pubmed 出版商
  643. Fan S, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell. 2016;27:702-15 pubmed 出版商
  644. Shih M, Pan K, Cherng J. Possible Mechanisms of Di(2-ethylhexyl) Phthalate-Induced MMP-2 and MMP-9 Expression in A7r5 Rat Vascular Smooth Muscle Cells. Int J Mol Sci. 2015;16:28800-11 pubmed 出版商
  645. He J, Johnson J, Monfregola J, Ramadass M, Pestonjamasp K, Napolitano G, et al. Munc13-4 interacts with syntaxin 7 and regulates late endosomal maturation, endosomal signaling, and TLR9-initiated cellular responses. Mol Biol Cell. 2016;27:572-87 pubmed 出版商
  646. Sun J, Fu X, Liu Y, Wang Y, Huo B, Guo Y, et al. Hypoglycemic effect and mechanism of honokiol on type 2 diabetic mice. Drug Des Devel Ther. 2015;9:6327-42 pubmed 出版商
  647. Drilon A, Somwar R, Wagner J, Vellore N, Eide C, Zabriskie M, et al. A Novel Crizotinib-Resistant Solvent-Front Mutation Responsive to Cabozantinib Therapy in a Patient with ROS1-Rearranged Lung Cancer. Clin Cancer Res. 2016;22:2351-8 pubmed 出版商
  648. Huguet F, Fernet M, Giocanti N, Favaudon V, Larsen A. Afatinib, an Irreversible EGFR Family Inhibitor, Shows Activity Toward Pancreatic Cancer Cells, Alone and in Combination with Radiotherapy, Independent of KRAS Status. Target Oncol. 2016;11:371-81 pubmed 出版商
  649. Franco Villanueva A, Wandosell F, Antón I. Neuritic complexity of hippocampal neurons depends on WIP-mediated mTORC1 and Abl family kinases activities. Brain Behav. 2015;5:e00359 pubmed 出版商
  650. Edmonds M, Boyd K, Moyo T, Mitra R, Duszynski R, Arrate M, et al. MicroRNA-31 initiates lung tumorigenesis and promotes mutant KRAS-driven lung cancer. J Clin Invest. 2016;126:349-64 pubmed 出版商
  651. Audette D, Anand D, So T, Rubenstein T, Lachke S, Lovicu F, et al. Prox1 and fibroblast growth factor receptors form a novel regulatory loop controlling lens fiber differentiation and gene expression. Development. 2016;143:318-28 pubmed 出版商
  652. Ceccon M, Merlo M, Mologni L, Poggio T, Varesio L, Menotti M, et al. Excess of NPM-ALK oncogenic signaling promotes cellular apoptosis and drug dependency. Oncogene. 2016;35:3854-3865 pubmed 出版商
  653. Jiménez Pérez L, Cidad P, Álvarez Miguel I, Santos Hipólito A, Torres Merino R, Alonso E, et al. Molecular Determinants of Kv1.3 Potassium Channels-induced Proliferation. J Biol Chem. 2016;291:3569-80 pubmed 出版商
  654. Trzeciecka A, Klossowski S, Bajor M, Zagozdzon R, Gaj P, Muchowicz A, et al. Dimeric peroxiredoxins are druggable targets in human Burkitt lymphoma. Oncotarget. 2016;7:1717-31 pubmed 出版商
  655. Daniele S, Zappelli E, Martini C. Trazodone regulates neurotrophic/growth factors, mitogen-activated protein kinases and lactate release in human primary astrocytes. J Neuroinflammation. 2015;12:225 pubmed 出版商
  656. Duchnowska R, Wysocki P, Korski K, Czartoryska ArÅ‚ukowicz B, NiwiÅ„ska A, Orlikowska M, et al. Immunohistochemical prediction of lapatinib efficacy in advanced HER2-positive breast cancer patients. Oncotarget. 2016;7:550-64 pubmed 出版商
  657. Bunda S, Burrell K, Heir P, Zeng L, Alamsahebpour A, Kano Y, et al. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat Commun. 2015;6:8859 pubmed 出版商
  658. Debruyne D, Bhatnagar N, Sharma B, Luther W, Moore N, Cheung N, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35:3681-91 pubmed 出版商
  659. Lim J, Nguyen K, Han J, Jang I, Fabian C, Cho K. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells. 2015;38:1111-7 pubmed 出版商
  660. Giri K, Pabelick C, Mukherjee P, Prakash Y. Hepatoma derived growth factor (HDGF) dynamics in ovarian cancer cells. Apoptosis. 2016;21:329-39 pubmed 出版商
  661. Miyamoto T, Kim D, Knox J, Johnson E, Mucke L. Increasing the Receptor Tyrosine Kinase EphB2 Prevents Amyloid-β-induced Depletion of Cell Surface Glutamate Receptors by a Mechanism That Requires the PDZ-binding Motif of EphB2 and Neuronal Activity. J Biol Chem. 2016;291:1719-34 pubmed 出版商
  662. Awad K, Elinoff J, Wang S, Gairhe S, Ferreyra G, Cai R, et al. Raf/ERK drives the proliferative and invasive phenotype of BMPR2-silenced pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2016;310:L187-201 pubmed 出版商
  663. El Khattouti A, Selimovic D, Hannig M, Taylor E, Abd Elmageed Z, Hassan S, et al. Imiquimod-induced apoptosis of melanoma cells is mediated by ER stress-dependent Noxa induction and enhanced by NF-κB inhibition. J Cell Mol Med. 2016;20:266-86 pubmed 出版商
  664. Wang Z, Ma B, Li H, Xiao X, Zhou W, Liu F, et al. Protein 4.1N acts as a potential tumor suppressor linking PP1 to JNK-c-Jun pathway regulation in NSCLC. Oncotarget. 2016;7:509-23 pubmed 出版商
  665. Hu Y, Zhang Y, Tian K, Xun C, Wang S, Lv D. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro. Mol Med Rep. 2016;13:49-58 pubmed 出版商
  666. Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics. 2015;16:944 pubmed 出版商
  667. Ampofo E, Später T, Müller I, Eichler H, Menger M, Laschke M. The Marine-Derived Kinase Inhibitor Fascaplysin Exerts Anti-Thrombotic Activity. Mar Drugs. 2015;13:6774-91 pubmed 出版商
  668. Chen K, Zeng J, Tang K, Xiao H, Hu J, Huang C, et al. miR-490-5p suppresses tumour growth in renal cell carcinoma through targeting PIK3CA. Biol Cell. 2016;108:41-50 pubmed 出版商
  669. Quintero Barceinas R, García Regalado A, Aréchaga Ocampo E, Villegas Sepúlveda N, González De la Rosa C. All-Trans Retinoic Acid Induces Proliferation, Survival, and Migration in A549 Lung Cancer Cells by Activating the ERK Signaling Pathway through a Transcription-Independent Mechanism. Biomed Res Int. 2015;2015:404368 pubmed 出版商
  670. Ksionda O, Melton A, Bache J, Tenhagen M, Bakker J, Harvey R, et al. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene. 2016;35:3658-68 pubmed 出版商
  671. Yen Y, Hsiao J, Jiang S, Chang J, Wang S, Shen Y, et al. Insulin-like growth factor-independent insulin-like growth factor binding protein 3 promotes cell migration and lymph node metastasis of oral squamous cell carcinoma cells by requirement of integrin β1. Oncotarget. 2015;6:41837-55 pubmed 出版商
  672. Vernot J, Perdomo Arciniegas A, Pérez Quintero L, Martínez D. Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res. 2015;2015:395371 pubmed 出版商
  673. Li W, Wei S, Liu C, Song M, Wu H, Yang Y. Regulation of the osteogenic and adipogenic differentiation of bone marrow-derived stromal cells by extracellular uridine triphosphate: The role of P2Y2 receptor and ERK1/2 signaling. Int J Mol Med. 2016;37:63-73 pubmed 出版商
  674. Pai P, Rachagani S, Lakshmanan I, Macha M, Sheinin Y, Smith L, et al. The canonical Wnt pathway regulates the metastasis-promoting mucin MUC4 in pancreatic ductal adenocarcinoma. Mol Oncol. 2016;10:224-39 pubmed 出版商
  675. Freedman T, Tan Y, Skrzypczynska K, Manz B, Sjaastad F, Goodridge H, et al. LynA regulates an inflammation-sensitive signaling checkpoint in macrophages. elife. 2015;4: pubmed 出版商
  676. Sipieter F, Cappe B, Gonzalez Pisfil M, Spriet C, Bodart J, Cailliau Maggio K, et al. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms. PLoS ONE. 2015;10:e0140924 pubmed 出版商
  677. Ko T, Chin H, Chuah C, Huang J, Ng K, Khaw S, et al. The BIM deletion polymorphism: A paradigm of a permissive interaction between germline and acquired TKI resistance factors in chronic myeloid leukemia. Oncotarget. 2016;7:2721-33 pubmed 出版商
  678. Wu S, Guo Z, Hopkins C, Wei N, Chu E, Wipf P, et al. Bis-cyclopropane analog of disorazole C1 is a microtubule-destabilizing agent active in ABCB1-overexpressing human colon cancer cells. Oncotarget. 2015;6:40866-79 pubmed 出版商
  679. Ramcharan R, Aleksic T, Kamdoum W, Gao S, Pfister S, Tanner J, et al. IGF-1R inhibition induces schedule-dependent sensitization of human melanoma to temozolomide. Oncotarget. 2015;6:39877-90 pubmed 出版商
  680. Bauer J, Ozden O, Akagi N, Carroll T, Principe D, Staudacher J, et al. Activin and TGFβ use diverging mitogenic signaling in advanced colon cancer. Mol Cancer. 2015;14:182 pubmed 出版商
  681. Verbrugge S, Al M, Assaraf Y, Kammerer S, Chandrupatla D, Honeywell R, et al. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget. 2016;7:5240-57 pubmed 出版商
  682. Hruska M, Henderson N, Xia N, Le Marchand S, Dalva M. Anchoring and synaptic stability of PSD-95 is driven by ephrin-B3. Nat Neurosci. 2015;18:1594-605 pubmed 出版商
  683. Chakedis J, French R, Babicky M, Jaquish D, Howard H, Mose E, et al. A novel protein isoform of the RON tyrosine kinase receptor transforms human pancreatic duct epithelial cells. Oncogene. 2016;35:3249-59 pubmed 出版商
  684. Strizzi L, Sandomenico A, Margaryan N, Focà A, Sanguigno L, Bodenstine T, et al. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget. 2015;6:34071-86 pubmed 出版商
  685. Barbáchano A, Fernández Barral A, Pereira F, Segura M, Ordóñez Morán P, Carrillo de Santa Pau E, et al. SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150. Oncogene. 2016;35:2991-3003 pubmed 出版商
  686. Salas E, Roy S, Marsh T, Rubin B, Debnath J. Oxidative pentose phosphate pathway inhibition is a key determinant of antimalarial induced cancer cell death. Oncogene. 2016;35:2913-22 pubmed 出版商
  687. Kim H, Lim J, Kim J, Kim Y, Park S, Sohn J. Panaxydol, a component of Panax ginseng, induces apoptosis in cancer cells through EGFR activation and ER stress and inhibits tumor growth in mouse models. Int J Cancer. 2016;138:1432-41 pubmed 出版商
  688. Liu L, Li C, Lu Y, Zong X, Luo C, Sun J, et al. Baclofen mediates neuroprotection on hippocampal CA1 pyramidal cells through the regulation of autophagy under chronic cerebral hypoperfusion. Sci Rep. 2015;5:14474 pubmed 出版商
  689. Sun Y, Ju M, Lin Z, Fredrick T, Evans L, Tian K, et al. SOCS3 in retinal neurons and glial cells suppresses VEGF signaling to prevent pathological neovascular growth. Sci Signal. 2015;8:ra94 pubmed 出版商
  690. Pearson H, McGlinn E, Phesse T, Schlüter H, Srikumar A, Gödde N, et al. The polarity protein Scrib mediates epidermal development and exerts a tumor suppressive function during skin carcinogenesis. Mol Cancer. 2015;14:169 pubmed 出版商
  691. Singh P, Sharma P, Sahakyan K, Davison D, Sert Kuniyoshi F, Romero Corral A, et al. Differential effects of leptin on adiponectin expression with weight gain versus obesity. Int J Obes (Lond). 2016;40:266-74 pubmed 出版商
  692. Davare M, Vellore N, Wagner J, Eide C, Goodman J, Drilon A, et al. Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proc Natl Acad Sci U S A. 2015;112:E5381-90 pubmed 出版商
  693. Xing R, Li L, Chen L, Gao Z, Wang H, Li W, et al. Copy number variations of HLA-I and activation of NKp30 pathway determine the sensitivity of gastric cancer cells to the cytotoxicity of natural killer cells. Oncogene. 2016;35:2584-91 pubmed 出版商
  694. Schnerch D, Nigg E. Structural centrosome aberrations favor proliferation by abrogating microtubule-dependent tissue integrity of breast epithelial mammospheres. Oncogene. 2016;35:2711-22 pubmed 出版商
  695. Ramírez de Arellano A, Lopez Pulido E, Martínez Neri P, Estrada Chávez C, González Lucano R, Fafutis Morris M, et al. STAT3 activation is required for the antiapoptotic effects of prolactin in cervical cancer cells. Cancer Cell Int. 2015;15:83 pubmed 出版商
  696. Zhou X, Tao Y, Liang C, Zhang Y, Li H, Chen Q. BMP3 Alone and Together with TGF-β Promote the Differentiation of Human Mesenchymal Stem Cells into a Nucleus Pulposus-Like Phenotype. Int J Mol Sci. 2015;16:20344-59 pubmed 出版商
  697. Higa Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem. 2015;290:25974-85 pubmed 出版商
  698. Thijssen R, Ter Burg J, van Bochove G, de Rooij M, Kuil A, Jansen M, et al. The pan phosphoinositide 3-kinase/mammalian target of rapamycin inhibitor SAR245409 (voxtalisib/XL765) blocks survival, adhesion and proliferation of primary chronic lymphocytic leukemia cells. Leukemia. 2016;30:337-45 pubmed 出版商
  699. Georgiannakis A, Burgoyne T, Lueck K, Futter C, Greenwood J, Moss S. Retinal Pigment Epithelial Cells Mitigate the Effects of Complement Attack by Endocytosis of C5b-9. J Immunol. 2015;195:3382-9 pubmed 出版商
  700. Gong Y, Qiu W, Ning X, Yang X, Liu L, Wang Z, et al. CCDC34 is up-regulated in bladder cancer and regulates bladder cancer cell proliferation, apoptosis and migration. Oncotarget. 2015;6:25856-67 pubmed 出版商
  701. Zarpelon A, Rodrigues F, Lopes A, Souza G, Carvalho T, Pinto L, et al. Spinal cord oligodendrocyte-derived alarmin IL-33 mediates neuropathic pain. FASEB J. 2016;30:54-65 pubmed 出版商
  702. Kumarasamy V, Shin Y, White J, Sun D. Selective repression of RET proto-oncogene in medullary thyroid carcinoma by a natural alkaloid berberine. BMC Cancer. 2015;15:599 pubmed 出版商
  703. Wong T, Lin S, Leung L. The Flavone Luteolin Suppresses SREBP-2 Expression and Post-Translational Activation in Hepatic Cells. PLoS ONE. 2015;10:e0135637 pubmed 出版商
  704. Zhao C, Su Y, Zhang J, Feng Q, Qu L, Wang L, et al. Fibrinogen-derived fibrinostatin inhibits tumor growth through anti-angiogenesis. Cancer Sci. 2015;106:1596-606 pubmed 出版商
  705. Zhang Q, Zhao K, Shen Q, Han Y, Gu Y, Li X, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature. 2015;525:389-393 pubmed 出版商
  706. Park E, Kim N, Ficarro S, Zhang Y, Lee B, Cho A, et al. Structure and mechanism of activity-based inhibition of the EGF receptor by Mig6. Nat Struct Mol Biol. 2015;22:703-711 pubmed 出版商
  707. Kruiswijk F, Hasenfuss S, Sivapatham R, Baar M, Putavet D, Naipal K, et al. Targeted inhibition of metastatic melanoma through interference with Pin1-FOXM1 signaling. Oncogene. 2016;35:2166-77 pubmed 出版商
  708. Sivaraj K, Li R, Albarrán Juárez J, Wang S, Tischner D, Grimm M, et al. Endothelial Gαq/11 is required for VEGF-induced vascular permeability and angiogenesis. Cardiovasc Res. 2015;108:171-80 pubmed 出版商
  709. Sun D, Buttitta L. Protein phosphatase 2A promotes the transition to G0 during terminal differentiation in Drosophila. Development. 2015;142:3033-45 pubmed 出版商
  710. Kim K, Byeon G, Kim H, Baek S, Shin S, Koo S. Mechanical Antiallodynic Effect of Intrathecal Nefopam in a Rat Neuropathic Pain Model. J Korean Med Sci. 2015;30:1189-96 pubmed 出版商
  711. Patel P, Dutta D, Edgar B. Niche appropriation by Drosophila intestinal stem cell tumours. Nat Cell Biol. 2015;17:1182-92 pubmed 出版商
  712. Wu M, Lee W, Hua K, Kuo M, Lin M. Macrophage Infiltration Induces Gastric Cancer Invasiveness by Activating the β-Catenin Pathway. PLoS ONE. 2015;10:e0134122 pubmed 出版商
  713. Zhang W, Zheng X, Du L, Sun J, Shen Z, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res. 2015;25:893-910 pubmed 出版商
  714. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z, et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med. 2015;212:1323-36 pubmed 出版商
  715. García Pérez D, Laorden M, Milanés M. Regulation of Pleiotrophin, Midkine, Receptor Protein Tyrosine Phosphatase β/ζ, and Their Intracellular Signaling Cascades in the Nucleus Accumbens During Opiate Administration. Int J Neuropsychopharmacol. 2015;19: pubmed 出版商
  716. Gorojod R, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler M. The autophagic- lysosomal pathway determines the fate of glial cells under manganese- induced oxidative stress conditions. Free Radic Biol Med. 2015;87:237-51 pubmed 出版商
  717. Yang S, Lin H, Chang V, Chen C, Liu Y, Wang J, et al. Lovastatin overcomes gefitinib resistance through TNF-α signaling in human cholangiocarcinomas with different LKB1 statuses in vitro and in vivo. Oncotarget. 2015;6:23857-73 pubmed
  718. Xiong H, Zhou S, Sun A, He Y, Li J, Yuan X. MicroRNA‑197 reverses the drug resistance of fluorouracil‑induced SGC7901 cells by targeting mitogen‑activated protein kinase 1. Mol Med Rep. 2015;12:5019-25 pubmed 出版商
  719. Seo G, Ho M, Bui N, Kim Y, Koh D, Lim Y, et al. Novel naphthochalcone derivative accelerate dermal wound healing through induction of epithelial-mesenchymal transition of keratinocyte. J Biomed Sci. 2015;22:47 pubmed 出版商
  720. He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174-89 pubmed 出版商
  721. Noda K, Mishina Y, Komatsu Y. Constitutively active mutation of ACVR1 in oral epithelium causes submucous cleft palate in mice. Dev Biol. 2016;415:306-313 pubmed 出版商
  722. Roda D, Castillo J, Telechea Fernández M, Gil A, López Rodas G, Franco L, et al. EGF-Induced Acetylation of Heterogeneous Nuclear Ribonucleoproteins Is Dependent on KRAS Mutational Status in Colorectal Cancer Cells. PLoS ONE. 2015;10:e0130543 pubmed 出版商
  723. Westcot S, Hatzold J, Urban M, Richetti S, Skuster K, Harm R, et al. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS ONE. 2015;10:e0130688 pubmed 出版商
  724. Pickard A, McDade S, McFarland M, McCluggage W, Wheeler C, McCance D. HPV16 Down-Regulates the Insulin-Like Growth Factor Binding Protein 2 to Promote Epithelial Invasion in Organotypic Cultures. PLoS Pathog. 2015;11:e1004988 pubmed 出版商
  725. Choi J, Kim J, Kim T, Park J, Lee J, Kim H, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015;97:346-56 pubmed 出版商
  726. Chen M, Yen C, Cheng C, Wu R, Huang S, Yu C, et al. Identification of SPHK1 as a therapeutic target and marker of poor prognosis in cholangiocarcinoma. Oncotarget. 2015;6:23594-608 pubmed
  727. Faggi F, Codenotti S, Poliani P, Cominelli M, Chiarelli N, Colombi M, et al. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line. PLoS ONE. 2015;10:e0130287 pubmed 出版商
  728. Gopinathan G, Milagre C, Pearce O, Reynolds L, Hodivala Dilke K, Leinster D, et al. Interleukin-6 Stimulates Defective Angiogenesis. Cancer Res. 2015;75:3098-107 pubmed 出版商
  729. Nan X, Tamgüney T, Collisson E, Lin L, Pitt C, Galeas J, et al. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway. Proc Natl Acad Sci U S A. 2015;112:7996-8001 pubmed 出版商
  730. Hensel J, Duex J, Owens C, Dancik G, Edwards M, Frierson H, et al. Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res. 2015;13:1306-15 pubmed 出版商
  731. Fedorenko I, Abel E, Koomen J, Fang B, Wood E, Chen Y, et al. Fibronectin induction abrogates the BRAF inhibitor response of BRAF V600E/PTEN-null melanoma cells. Oncogene. 2016;35:1225-35 pubmed 出版商
  732. Lee W, Shen S, Shih Y, Chou C, Tseng J, Chin S, et al. Early decline in serum phospho-CSE1L levels in vemurafenib/sunitinib-treated melanoma and sorafenib/lapatinib-treated colorectal tumor xenografts. J Transl Med. 2015;13:191 pubmed 出版商
  733. Kurppa K, Denessiouk K, Johnson M, Elenius K. Activating ERBB4 mutations in non-small cell lung cancer. Oncogene. 2016;35:1283-91 pubmed 出版商
  734. Unni A, Lockwood W, Zejnullahu K, Lee Lin S, Varmus H. Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma. elife. 2015;4:e06907 pubmed 出版商
  735. Wightman S, Uppal A, Pitroda S, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327-35 pubmed 出版商
  736. García Cano J, Ambroise G, Pascual Serra R, Carrión M, Serrano Oviedo L, Ortega Muelas M, et al. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget. 2015;6:15551-65 pubmed
  737. Boeldt D, Grummer M, YI F, Magness R, Bird I. Phosphorylation of Ser-279/282 and Tyr-265 positions on Cx43 as possible mediators of VEGF-165 inhibition of pregnancy-adapted Ca2+ burst function in ovine uterine artery endothelial cells. Mol Cell Endocrinol. 2015;412:73-84 pubmed 出版商
  738. Tampella G, Kerns H, Niu D, Singh S, Khim S, Bosch K, et al. The Tec Kinase-Regulated Phosphoproteome Reveals a Mechanism for the Regulation of Inhibitory Signals in Murine Macrophages. J Immunol. 2015;195:246-56 pubmed 出版商
  739. Li T, Lu H, Mukherjee D, Lahiri S, Shen C, Yu L, et al. Identification of epidermal growth factor receptor and its inhibitory microRNA141 as novel targets of Krüppel-like factor 8 in breast cancer. Oncotarget. 2015;6:21428-42 pubmed
  740. Luan Q, Jin L, Jiang C, Tay K, Lai F, Liu X, et al. RIPK1 regulates survival of human melanoma cells upon endoplasmic reticulum stress through autophagy. Autophagy. 2015;11:975-94 pubmed 出版商
  741. Yen C, Chiang W, Liu S, Lin C, Liao K, Lin C, et al. Impacts of autophagy-inducing ingredient of areca nut on tumor cells. PLoS ONE. 2015;10:e0128011 pubmed 出版商
  742. Korotkevych N, Labyntsev A, Kolybo D, Komisarenko S. The Soluble Heparin-Binding EGF-Like Growth Factor Stimulates EGF Receptor Trafficking to the Nucleus. PLoS ONE. 2015;10:e0127887 pubmed 出版商
  743. Reigada D, Nieto Díaz M, Navarro Ruiz R, Caballero López M, Del Águila A, Muñoz Galdeano T, et al. Acute administration of ucf-101 ameliorates the locomotor impairments induced by a traumatic spinal cord injury. Neuroscience. 2015;300:404-17 pubmed 出版商
  744. Bargut T, Mandarim de Lacerda C, Aguila M. A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem. 2015;26:960-9 pubmed 出版商
  745. Greenfeld H, Takasaki K, Walsh M, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 Coordinates Polyubiquitin Signaling to Enhance Epstein-Barr Virus LMP1-Mediated Growth and Survival Pathway Activation. PLoS Pathog. 2015;11:e1004890 pubmed 出版商
  746. Li P, Sheu M, Ma W, Pan C, Sheu J, Wu C. Anti-Restenotic Roles of Dihydroaustrasulfone Alcohol Involved in Inhibiting PDGF-BB-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells. Mar Drugs. 2015;13:3046-60 pubmed 出版商
  747. Pan D, Jiang C, Ma Z, Blonska M, You M, Lin X. MALT1 is required for EGFR-induced NF-?B activation and contributes to EGFR-driven lung cancer progression. Oncogene. 2016;35:919-28 pubmed 出版商
  748. Ji X, Li Z, Chen H, Li J, Tian H, Li Z, et al. Cytotoxic mechanism related to dihydrolipoamide dehydrogenase in Leydig cells exposed to heavy metals. Toxicology. 2015;334:22-32 pubmed 出版商
  749. Wong T, Lin S, Leung L. The flavone apigenin blocks nuclear translocation of sterol regulatory element-binding protein-2 in the hepatic cells WRL-68. Br J Nutr. 2015;113:1844-52 pubmed 出版商
  750. Ketema M, Secades P, Kreft M, Nahidiazar L, Janssen H, Jalink K, et al. The rod domain is not essential for the function of plectin in maintaining tissue integrity. Mol Biol Cell. 2015;26:2402-17 pubmed 出版商
  751. Andersen N, Boguslawski E, Kuk C, Chambers C, Duesbery N. Combined inhibition of MEK and mTOR has a synergic effect on angiosarcoma tumorgrafts. Int J Oncol. 2015;47:71-80 pubmed 出版商
  752. Cong X, Zhang Y, Li J, Mei M, Ding C, Xiang R, et al. Claudin-4 is required for modulation of paracellular permeability by muscarinic acetylcholine receptor in epithelial cells. J Cell Sci. 2015;128:2271-86 pubmed 出版商
  753. Rios Doria J, Sabol D, Chesebrough J, Stewart D, Xu L, Tammali R, et al. A Monoclonal Antibody to ADAM17 Inhibits Tumor Growth by Inhibiting EGFR and Non-EGFR-Mediated Pathways. Mol Cancer Ther. 2015;14:1637-49 pubmed 出版商
  754. Yu Y, Koehn C, Yue Y, Li S, Thiele G, Hearth Holmes M, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015;15:401-10 pubmed
  755. Lee E, Park E, Mun H, Chang E, Ko J, Kim D, et al. Soluble receptor for advanced glycation end products inhibits disease progression in autosomal dominant polycystic kidney disease by down-regulating cell proliferation. FASEB J. 2015;29:3506-14 pubmed 出版商
  756. Bhang S, Han J, Jang H, Noh M, La W, Yi M, et al. pH-triggered release of manganese from MnAu nanoparticles that enables cellular neuronal differentiation without cellular toxicity. Biomaterials. 2015;55:33-43 pubmed 出版商
  757. SCANLON C, Banerjee R, Inglehart R, Liu M, Russo N, Hariharan A, et al. Galanin modulates the neural niche to favour perineural invasion in head and neck cancer. Nat Commun. 2015;6:6885 pubmed 出版商
  758. Pasqualon T, Pruessmeyer J, Weidenfeld S, Babendreyer A, Groth E, Schumacher J, et al. A transmembrane C-terminal fragment of syndecan-1 is generated by the metalloproteinase ADAM17 and promotes lung epithelial tumor cell migration and lung metastasis formation. Cell Mol Life Sci. 2015;72:3783-801 pubmed 出版商
  759. Daniele S, Da Pozzo E, Zappelli E, Martini C. Trazodone treatment protects neuronal-like cells from inflammatory insult by inhibiting NF-?B, p38 and JNK. Cell Signal. 2015;27:1609-29 pubmed 出版商
  760. Chan S, Selth L, Li Y, Nyquist M, Miao L, Bradner J, et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res. 2015;43:5880-97 pubmed 出版商
  761. Huang L, Counter C. Reduced HRAS G12V-Driven Tumorigenesis of Cell Lines Expressing KRAS C118S. PLoS ONE. 2015;10:e0123918 pubmed 出版商
  762. Yang Z, Zheng B, Zhang Y, He M, Zhang X, Ma D, et al. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta. 2015;1852:1477-89 pubmed 出版商
  763. Selvaraj N, Kedage V, Hollenhorst P. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal. 2015;13:12 pubmed 出版商
  764. Zhang X, Liang D, Chi Z, Chu Q, Zhao C, Ma R, et al. Effect of zinc on high glucose-induced epithelial-to-mesenchymal transition in renal tubular epithelial cells. Int J Mol Med. 2015;35:1747-54 pubmed 出版商
  765. Hayashi Y, Bardsley M, Toyomasu Y, Milosavljevic S, Gajdos G, Choi K, et al. Platelet-Derived Growth Factor Receptor-α Regulates Proliferation of Gastrointestinal Stromal Tumor Cells With Mutations in KIT by Stabilizing ETV1. Gastroenterology. 2015;149:420-32.e16 pubmed 出版商
  766. Navis A, van Lith S, van Duijnhoven S, de Pooter M, Yetkin Arik B, Wesseling P, et al. Identification of a novel MET mutation in high-grade glioma resulting in an auto-active intracellular protein. Acta Neuropathol. 2015;130:131-44 pubmed 出版商
  767. Witkiewicz A, McMillan E, Balaji U, Baek G, Lin W, Mansour J, et al. Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun. 2015;6:6744 pubmed 出版商
  768. Kim T, Lawson M. GnRH Regulates Gonadotropin Gene Expression Through NADPH/Dual Oxidase-Derived Reactive Oxygen Species. Endocrinology. 2015;156:2185-99 pubmed 出版商
  769. Boncompagni S, Arthurton L, Akujuru E, Pearson T, Steverding D, Protasi F, et al. Membrane glucocorticoid receptors are localised in the extracellular matrix and signal through the MAPK pathway in mammalian skeletal muscle fibres. J Physiol. 2015;593:2679-92 pubmed 出版商
  770. Brohée L, Demine S, Willems J, Arnould T, Colige A, Deroanne C. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget. 2015;6:11264-80 pubmed
  771. Chan N, He S, Spee C, Ishikawa K, Hinton D. Attenuation of choroidal neovascularization by histone deacetylase inhibitor. PLoS ONE. 2015;10:e0120587 pubmed 出版商
  772. Zhang Q, Kuang H, Chen C, Yan J, Do Umehara H, Liu X, et al. The kinase Jnk2 promotes stress-induced mitophagy by targeting the small mitochondrial form of the tumor suppressor ARF for degradation. Nat Immunol. 2015;16:458-66 pubmed 出版商
  773. Graziani G, Artuso S, De Luca A, Muzi A, Rotili D, Scimeca M, et al. A new water soluble MAPK activator exerts antitumor activity in melanoma cells resistant to the BRAF inhibitor vemurafenib. Biochem Pharmacol. 2015;95:16-27 pubmed 出版商
  774. Kumar A, Pathak P, Purkait S, Faruq M, Jha P, Mallick S, et al. Oncogenic KIAA1549-BRAF fusion with activation of the MAPK/ERK pathway in pediatric oligodendrogliomas. Cancer Genet. 2015;208:91-5 pubmed 出版商
  775. Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS ONE. 2015;10:e0119898 pubmed 出版商
  776. Kawada M, Inoue H, Ohba S, Yoshida J, Masuda T, Yamasaki M, et al. Stromal cells positively and negatively modulate the growth of cancer cells: stimulation via the PGE2-TNFα-IL-6 pathway and inhibition via secreted GAPDH-E-cadherin interaction. PLoS ONE. 2015;10:e0119415 pubmed 出版商
  777. Carnesecchi J, Malbouyres M, de Mets R, Balland M, Beauchef G, Vié K, et al. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor GPR30. PLoS ONE. 2015;10:e0120672 pubmed 出版商
  778. Qu D, Chen Y, Xu X, Zhang M, Zhang Y, Li S. Cbl-b-regulated extracellular signal-regulated kinase signaling is involved in the shikonin-induced apoptosis of lung cancer cells in vitro. Exp Ther Med. 2015;9:1265-1270 pubmed
  779. Wang B, Wu S, Tang S, Lai C, Ou C, Wu M, et al. Benzo[a]pyrene-induced cell cycle progression occurs via ERK-induced Chk1 pathway activation in human lung cancer cells. Mutat Res. 2015;773:1-8 pubmed 出版商
  780. Wilson F, Johannessen C, Piccioni F, Tamayo P, Kim J, Van Allen E, et al. A functional landscape of resistance to ALK inhibition in lung cancer. Cancer Cell. 2015;27:397-408 pubmed 出版商
  781. Münzberg C, Höhn K, Krndija D, Maaß U, Bartsch D, Slater E, et al. IGF-1 drives chromogranin A secretion via activation of Arf1 in human neuroendocrine tumour cells. J Cell Mol Med. 2015;19:948-59 pubmed 出版商
  782. Warren D, Tajsic T, Porter L, Minaisah R, Cobb A, Jacob A, et al. Nesprin-2-dependent ERK1/2 compartmentalisation regulates the DNA damage response in vascular smooth muscle cell ageing. Cell Death Differ. 2015;22:1540-50 pubmed 出版商
  783. Silva G, Aboussekhra A. p16(INK4A) inhibits the pro-metastatic potentials of osteosarcoma cells through targeting the ERK pathway and TGF-β1. Mol Carcinog. 2016;55:525-36 pubmed 出版商
  784. Cheng Z, Liu F, Zhu S, Tian H, Wang L, Wang Y. A rapid and convenient method for fluorescence analysis of in vitro cultivated metacestode vesicles from Echinococcus multilocularis. PLoS ONE. 2015;10:e0118215 pubmed 出版商
  785. Wnorowski A, Sadowska M, Paul R, Singh N, Boguszewska Czubara A, Jimenez L, et al. Activation of β2-adrenergic receptor by (R,R')-4'-methoxy-1-naphthylfenoterol inhibits proliferation and motility of melanoma cells. Cell Signal. 2015;27:997-1007 pubmed 出版商
  786. Murrow L, Malhotra R, Debnath J. ATG12-ATG3 interacts with Alix to promote basal autophagic flux and late endosome function. Nat Cell Biol. 2015;17:300-10 pubmed 出版商
  787. Skarra D, Thackray V. FOXO1 is regulated by insulin and IGF1 in pituitary gonadotropes. Mol Cell Endocrinol. 2015;405:14-24 pubmed 出版商
  788. Guillaumond F, Bidaut G, Ouaissi M, Servais S, Gouirand V, Olivares O, et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc Natl Acad Sci U S A. 2015;112:2473-8 pubmed 出版商
  789. Momeny M, Saunus J, Marturana F, McCart Reed A, Black D, Sala G, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932-46 pubmed
  790. Fouladi F, Jehn L, Metzelder S, Hub F, Henkenius K, Burchert A, et al. Sorafenib induces paradoxical phosphorylation of the extracellular signal-regulated kinase pathway in acute myeloid leukemia cells lacking FLT3-ITD mutation. Leuk Lymphoma. 2015;56:2690-8 pubmed 出版商
  791. Kondapalli K, Llongueras J, Capilla González V, Prasad H, Hack A, Smith C, et al. A leak pathway for luminal protons in endosomes drives oncogenic signalling in glioblastoma. Nat Commun. 2015;6:6289 pubmed 出版商
  792. Castorina A, Waschek J, Marzagalli R, Cardile V, Drago F. PACAP interacts with PAC1 receptors to induce tissue plasminogen activator (tPA) expression and activity in schwann cell-like cultures. PLoS ONE. 2015;10:e0117799 pubmed 出版商
  793. Papadakis A, Sun C, Knijnenburg T, Xue Y, Grernrum W, Hölzel M, et al. SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer. Cell Res. 2015;25:445-58 pubmed 出版商
  794. Bai L, Mao R, Wang J, Ding L, Jiang S, Gao C, et al. ERK1/2 promoted proliferation and inhibited apoptosis of human cervical cancer cells and regulated the expression of c-Fos and c-Jun proteins. Med Oncol. 2015;32:57 pubmed 出版商
  795. Kozlova N, Samoylenko A, Drobot L, Kietzmann T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol Carcinog. 2016;55:170-81 pubmed 出版商
  796. Shaw A, Pickup M, Chytil A, Aakre M, Owens P, Moses H, et al. TGFβ signaling in myeloid cells regulates mammary carcinoma cell invasion through fibroblast interactions. PLoS ONE. 2015;10:e0117908 pubmed 出版商
  797. Bele A, Mirza S, Zhang Y, Ahmad Mir R, Lin S, Kim J, et al. The cell cycle regulator ecdysoneless cooperates with H-Ras to promote oncogenic transformation of human mammary epithelial cells. Cell Cycle. 2015;14:990-1000 pubmed 出版商
  798. Albanito L, Lappano R, Madeo A, Chimento A, Prossnitz E, Cappello A, et al. Effects of atrazine on estrogen receptor α- and G protein-coupled receptor 30-mediated signaling and proliferation in cancer cells and cancer-associated fibroblasts. Environ Health Perspect. 2015;123:493-9 pubmed 出版商
  799. Tian E, Stevens S, Guan Y, Springer D, Anderson S, Starost M, et al. Galnt1 is required for normal heart valve development and cardiac function. PLoS ONE. 2015;10:e0115861 pubmed 出版商
  800. Seaberg B, Henslee G, Wang S, Paez Colasante X, Landreth G, Rimer M. Muscle-derived extracellular signal-regulated kinases 1 and 2 are required for the maintenance of adult myofibers and their neuromuscular junctions. Mol Cell Biol. 2015;35:1238-53 pubmed 出版商
  801. Tontonoz P, Cortez Toledo O, Wroblewski K, Hong C, Lim L, Carranza R, et al. The orphan nuclear receptor Nur77 is a determinant of myofiber size and muscle mass in mice. Mol Cell Biol. 2015;35:1125-38 pubmed 出版商
  802. Schäker K, Bartsch S, Patry C, Stoll S, Hillebrands J, Wieland T, et al. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development. J Biol Chem. 2015;290:6408-18 pubmed 出版商
  803. de Oliveira S, Boudinot P, Calado Ã, Mulero V. Duox1-derived H2O2 modulates Cxcl8 expression and neutrophil recruitment via JNK/c-JUN/AP-1 signaling and chromatin modifications. J Immunol. 2015;194:1523-33 pubmed 出版商
  804. Majuelos Melguizo J, Rodríguez M, López Jiménez L, Rodríguez Vargas J, Martí Martín Consuegra J, Serrano Sáenz S, et al. PARP targeting counteracts gliomagenesis through induction of mitotic catastrophe and aggravation of deficiency in homologous recombination in PTEN-mutant glioma. Oncotarget. 2015;6:4790-803 pubmed
  805. Cheng Y, Chen P, Chiang H, Suen C, Hwang M, Lin T, et al. Candidate tumor suppressor B-cell translocation gene 3 impedes neoplastic progression by suppression of AKT. Cell Death Dis. 2015;6:e1584 pubmed 出版商
  806. Sathyamurthy A, Yin D, Barik A, Shen C, Bean J, Figueiredo D, et al. ERBB3-mediated regulation of Bergmann glia proliferation in cerebellar lamination. Development. 2015;142:522-32 pubmed 出版商
  807. Zanotto Filho A, Braganhol E, Klafke K, Figueiró F, Terra S, Paludo F, et al. Autophagy inhibition improves the efficacy of curcumin/temozolomide combination therapy in glioblastomas. Cancer Lett. 2015;358:220-31 pubmed 出版商
  808. Gonzalez Granado J, Navarro Puche A, Molina Sánchez P, Blanco Berrocal M, Viana R, Font de Mora J, et al. Sorting nexin 6 enhances lamin a synthesis and incorporation into the nuclear envelope. PLoS ONE. 2014;9:e115571 pubmed 出版商
  809. Salotti J, Sakchaisri K, Tourtellotte W, Johnson P. An Arf-Egr-C/EBPβ pathway linked to ras-induced senescence and cancer. Mol Cell Biol. 2015;35:866-83 pubmed 出版商
  810. Passos E, Pereira C, Gonçalves I, Rocha Rodrigues S, Silva N, Guimarães J, et al. Role of physical exercise on hepatic insulin, glucocorticoid and inflammatory signaling pathways in an animal model of non-alcoholic steatohepatitis. Life Sci. 2015;123:51-60 pubmed 出版商
  811. Machado Neto J, Lazarini M, Favaro P, de Melo Campos P, Scopim Ribeiro R, Franchi Junior G, et al. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells. Biochim Biophys Acta. 2015;1853:583-93 pubmed 出版商
  812. Kim E, Kim S, Jin X, Ham S, Kim J, Park J, et al. Epidermal growth factor receptor variant III renders glioma cancer cells less differentiated by JAGGED1. Tumour Biol. 2015;36:2921-8 pubmed 出版商
  813. Narumi K, Hirose T, Sato E, Mori T, Kisu K, Ishikawa M, et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. Am J Physiol Renal Physiol. 2015;308:F487-99 pubmed 出版商
  814. Pastor Clerigues A, Martí Bonmatí E, Milara J, Almudever P, Cortijo J. Anti-inflammatory and anti-fibrotic profile of fish oil emulsions used in parenteral nutrition-associated liver disease. PLoS ONE. 2014;9:e115404 pubmed 出版商
  815. Bifsha P, Yang J, Fisher R, Drouin J. Rgs6 is required for adult maintenance of dopaminergic neurons in the ventral substantia nigra. PLoS Genet. 2014;10:e1004863 pubmed 出版商
  816. Girotti M, Lopes F, Preece N, Niculescu Duvaz D, Zambon A, Davies L, et al. Paradox-breaking RAF inhibitors that also target SRC are effective in drug-resistant BRAF mutant melanoma. Cancer Cell. 2015;27:85-96 pubmed 出版商
  817. Delloye Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, et al. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci. 2015;18:36-45 pubmed 出版商
  818. Diesenberg K, Beerbaum M, Fink U, Schmieder P, Krauss M. SEPT9 negatively regulates ubiquitin-dependent downregulation of EGFR. J Cell Sci. 2015;128:397-407 pubmed 出版商
  819. Bernusso V, Machado Neto J, Pericole F, Vieira K, Duarte A, Traina F, et al. Imatinib restores VASP activity and its interaction with Zyxin in BCR-ABL leukemic cells. Biochim Biophys Acta. 2015;1853:388-95 pubmed 出版商
  820. Xu T, Pan Z, Dong M, Yu C, Niu Y. Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol. 2015;93:49-58 pubmed 出版商
  821. Tang D, Yu Y, Zhao X, Schachner M, Zhao W. Single chain fragment variable antibodies developed by using as target the 3rd fibronectin type III homologous repeat fragment of human neural cell adhesion molecule L1 promote cell migration and neuritogenesis. Exp Cell Res. 2015;330:336-45 pubmed 出版商
  822. Olayanju A, Copple I, Bryan H, Edge G, Sison R, Wong M, et al. Brusatol provokes a rapid and transient inhibition of Nrf2 signaling and sensitizes mammalian cells to chemical toxicity-implications for therapeutic targeting of Nrf2. Free Radic Biol Med. 2015;78:202-12 pubmed 出版商
  823. Giovannini C, Minguzzi M, Baglioni M, Fornari F, Giannone F, Ravaioli M, et al. Suppression of p53 by Notch3 is mediated by Cyclin G1 and sustained by MDM2 and miR-221 axis in hepatocellular carcinoma. Oncotarget. 2014;5:10607-20 pubmed
  824. Heynen G, Fonfara A, Bernards R. Resistance to targeted cancer drugs through hepatocyte growth factor signaling. Cell Cycle. 2014;13:3808-17 pubmed 出版商
  825. Matsuoka S, Gupta S, Suzuki E, Hiromi Y, Asaoka M. gone early, a novel germline factor, ensures the proper size of the stem cell precursor pool in the Drosophila ovary. PLoS ONE. 2014;9:e113423 pubmed 出版商
  826. Janardhan S, Marks R, Gajewski T. Primary murine CD4+ T cells fail to acquire the ability to produce effector cytokines when active Ras is present during Th1/Th2 differentiation. PLoS ONE. 2014;9:e112831 pubmed 出版商
  827. Huang L, Carney J, Cardona D, Counter C. Decreased tumorigenesis in mice with a Kras point mutation at C118. Nat Commun. 2014;5:5410 pubmed 出版商
  828. Blaabjerg L, Christensen G, Matsumoto M, van der Meulen T, Huising M, Billestrup N, et al. CRFR1 activation protects against cytokine-induced β-cell death. J Mol Endocrinol. 2014;53:417-27 pubmed 出版商
  829. Huertas Martínez J, Rello Varona S, Herrero Martín D, Barrau I, García Monclús S, Sáinz Jaspeado M, et al. Caveolin-1 is down-regulated in alveolar rhabdomyosarcomas and negatively regulates tumor growth. Oncotarget. 2014;5:9744-55 pubmed
  830. Rai S, Tanaka H, Suzuki M, Ogoh H, Taniguchi Y, Morita Y, et al. Clathrin assembly protein CALM plays a critical role in KIT signaling by regulating its cellular transport from early to late endosomes in hematopoietic cells. PLoS ONE. 2014;9:e109441 pubmed 出版商
  831. Wang Y, Kuramitsu Y, Tokuda K, Baron B, Kitagawa T, Akada J, et al. Gemcitabine induces poly (ADP-ribose) polymerase-1 (PARP-1) degradation through autophagy in pancreatic cancer. PLoS ONE. 2014;9:e109076 pubmed 出版商
  832. Kannike K, Sepp M, Zuccato C, Cattaneo E, Timmusk T. Forkhead transcription factor FOXO3a levels are increased in Huntington disease because of overactivated positive autofeedback loop. J Biol Chem. 2014;289:32845-57 pubmed 出版商
  833. Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, et al. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 2015;25:286-96 pubmed 出版商
  834. Zhou X, Tao Y, Wang J, Liang C, Wang J, Li H, et al. Roles of FGF-2 and TGF-beta/FGF-2 on differentiation of human mesenchymal stem cells towards nucleus pulposus-like phenotype. Growth Factors. 2015;33:23-30 pubmed 出版商
  835. Charlaftis N, Suddason T, Wu X, Anwar S, Karin M, Gallagher E. The MEKK1 PHD ubiquitinates TAB1 to activate MAPKs in response to cytokines. EMBO J. 2014;33:2581-96 pubmed 出版商
  836. Zhu X, Zhao L, Park J, Willingham M, Cheng S. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia. 2014;16:757-69 pubmed 出版商
  837. Dou W, Zhang J, Ren G, Ding L, Sun A, Deng C, et al. Mangiferin attenuates the symptoms of dextran sulfate sodium-induced colitis in mice via NF-κB and MAPK signaling inactivation. Int Immunopharmacol. 2014;23:170-8 pubmed 出版商
  838. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P. Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol. 2015;35:23-31 pubmed 出版商
  839. Candelaria N, Addanki S, Zheng J, Nguyen Vu T, Karaboga H, Dey P, et al. Antiproliferative effects and mechanisms of liver X receptor ligands in pancreatic ductal adenocarcinoma cells. PLoS ONE. 2014;9:e106289 pubmed 出版商
  840. Tang J, Shen L, Yang Q, Zhang C. Overexpression of metadherin mediates metastasis of osteosarcoma by regulating epithelial-mesenchymal transition. Cell Prolif. 2014;47:427-34 pubmed 出版商
  841. Sa S, Wong L, McCloskey K. Combinatorial fibronectin and laminin signaling promote highly efficient cardiac differentiation of human embryonic stem cells. Biores Open Access. 2014;3:150-61 pubmed 出版商
  842. Han P, Zhou X, Chang N, Xiao C, Yan S, Ren H, et al. Hydrogen peroxide primes heart regeneration with a derepression mechanism. Cell Res. 2014;24:1091-107 pubmed 出版商
  843. Li L, Wu P, Lee J, Li P, Hsieh W, Ho C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS ONE. 2014;9:e104203 pubmed 出版商
  844. Zhang S, Ren M, Zeng X, He P, Ma X, Qiao S. Leucine stimulates ASCT2 amino acid transporter expression in porcine jejunal epithelial cell line (IPEC-J2) through PI3K/Akt/mTOR and ERK signaling pathways. Amino Acids. 2014;46:2633-42 pubmed 出版商
  845. Watanabe T, Nakamura S, Ono T, Ui S, Yagi S, Kagawa H, et al. Pyrrolidinium fullerene induces apoptosis by activation of procaspase-9 via suppression of Akt in primary effusion lymphoma. Biochem Biophys Res Commun. 2014;451:93-100 pubmed 出版商
  846. Castorina A, Giunta S. Mucin 1 (MUC1) signalling contributes to increase the resistance to cell death in human bronchial epithelial cells exposed to nickel acetate. Biometals. 2014;27:1149-58 pubmed 出版商
  847. Wu T, Ye Y, Min S, Zhu J, Khobahy E, Zhou J, et al. Prevention of murine lupus nephritis by targeting multiple signaling axes and oxidative stress using a synthetic triterpenoid. Arthritis Rheumatol. 2014;66:3129-39 pubmed 出版商
  848. Zeldich E, Chen C, Colvin T, Bove Fenderson E, Liang J, Tucker Zhou T, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289:24700-15 pubmed 出版商
  849. Kugel C, Hartsough E, Davies M, Setiady Y, Aplin A. Function-blocking ERBB3 antibody inhibits the adaptive response to RAF inhibitor. Cancer Res. 2014;74:4122-32 pubmed 出版商
  850. Kapur N, Qiao X, Paruchuri V, Mackey E, Daly G, Ughreja K, et al. Reducing endoglin activity limits calcineurin and TRPC-6 expression and improves survival in a mouse model of right ventricular pressure overload. J Am Heart Assoc. 2014;3: pubmed 出版商
  851. Hu J, Cheng Y, Li Y, Jin Z, Pan Y, Liu G, et al. microRNA-128 plays a critical role in human non-small cell lung cancer tumourigenesis, angiogenesis and lymphangiogenesis by directly targeting vascular endothelial growth factor-C. Eur J Cancer. 2014;50:2336-50 pubmed 出版商
  852. Ribeiro M, Rosenstock T, Oliveira A, Oliveira C, Rego A. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells. Free Radic Biol Med. 2014;74:129-44 pubmed 出版商
  853. Liu J, Ke F, Xu Z, Liu Z, Zhang L, Yan S, et al. CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo. PLoS ONE. 2014;9:e101137 pubmed 出版商
  854. Martínez Pinilla E, Reyes Resina I, Oñatibia Astibia A, Zamarbide M, Ricobaraza A, Navarro G, et al. CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Exp Neurol. 2014;261:44-52 pubmed 出版商
  855. Chang P, Hung C, Wang S, Tsai P, Shih Y, Chen L, et al. Identification and characterization of two novel spliced genes located in the orf47-orf46-orf45 gene locus of Kaposi's sarcoma-associated herpesvirus. J Virol. 2014;88:10092-109 pubmed 出版商
  856. Rathore K, Cekanova M. Animal model of naturally occurring bladder cancer: characterization of four new canine transitional cell carcinoma cell lines. BMC Cancer. 2014;14:465 pubmed 出版商
  857. Ishikawa D, Shimada M, Utsunomiya T, Morine Y, Imura S, Ikemoto T, et al. Effect of Twist and Bmi1 on intraductal papillary mucinous neoplasm of the pancreas. J Gastroenterol Hepatol. 2014;29:2032-7 pubmed 出版商
  858. Au Yeung B, Melichar H, Ross J, Cheng D, Zikherman J, Shokat K, et al. Quantitative and temporal requirements revealed for Zap70 catalytic activity during T cell development. Nat Immunol. 2014;15:687-94 pubmed 出版商
  859. Zielniok K, Motyl T, Gajewska M. Functional interactions between 17 ? -estradiol and progesterone regulate autophagy during acini formation by bovine mammary epithelial cells in 3D cultures. Biomed Res Int. 2014;2014:382653 pubmed 出版商
  860. Mena H, Lokajczyk A, Dizier B, Strier S, Voto L, Boisson Vidal C, et al. Acidic preconditioning improves the proangiogenic responses of endothelial colony forming cells. Angiogenesis. 2014;17:867-79 pubmed 出版商
  861. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Mammalian sterile-like 1 kinase inhibits TGF? and EGF?dependent regulation of invasiveness, migration and proliferation of HEC-1-A endometrial cancer cells. Int J Oncol. 2014;45:853-60 pubmed 出版商
  862. Kardos G, Dai M, Robertson G. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res. 2014;27:801-12 pubmed 出版商
  863. Jiang Y, Kou Z, Wu T, An W, Zhou R, Wang H, et al. Xist deficiency and disorders of X-inactivation in rabbit embryonic stem cells can be rescued by transcription-factor-mediated conversion. Stem Cells Dev. 2014;23:2283-96 pubmed 出版商
  864. Cazanave S, Wang X, Zhou H, Rahmani M, Grant S, Durrant D, et al. Degradation of Keap1 activates BH3-only proteins Bim and PUMA during hepatocyte lipoapoptosis. Cell Death Differ. 2014;21:1303-12 pubmed 出版商
  865. Doughton G, Wei J, Tapon N, Welham M, Chalmers A. Formation of a polarised primitive endoderm layer in embryoid bodies requires fgfr/erk signalling. PLoS ONE. 2014;9:e95434 pubmed 出版商
  866. Ost M, Werner F, Dokas J, Klaus S, Voigt A. Activation of AMPK?2 is not crucial for mitochondrial uncoupling-induced metabolic effects but required to maintain skeletal muscle integrity. PLoS ONE. 2014;9:e94689 pubmed 出版商
  867. Kerdivel G, Boudot A, Habauzit D, Percevault F, Demay F, Pakdel F, et al. Activation of the MKL1/actin signaling pathway induces hormonal escape in estrogen-responsive breast cancer cell lines. Mol Cell Endocrinol. 2014;390:34-44 pubmed 出版商
  868. Gürtler C, Carty M, Kearney J, Schattgen S, Ding A, Fitzgerald K, et al. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter. J Immunol. 2014;192:4821-32 pubmed 出版商
  869. Chen P, Qin L, Zhuang Z, Tellides G, Lax I, Schlessinger J, et al. The docking protein FRS2? is a critical regulator of VEGF receptors signaling. Proc Natl Acad Sci U S A. 2014;111:5514-9 pubmed 出版商
  870. Lamprecht M, Morrison B. GPR30 activation is neither necessary nor sufficient for acute neuroprotection by 17?-estradiol after an ischemic injury in organotypic hippocampal slice cultures. Brain Res. 2014;1563:131-7 pubmed 出版商
  871. Guerra M, Wauson E, McGlynn K, Cobb M. Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem. 2014;289:14370-9 pubmed 出版商
  872. Bölck B, Ibrahim M, Steinritz D, Morguet C, Dühr S, Suhr F, et al. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo[a]pyrene in human keratinocytes. Toxicol In Vitro. 2014;28:875-84 pubmed 出版商
  873. Maier P, Zemoura K, Acu a M, Y venes G, Zeilhofer H, Benke D. Ischemia-like oxygen and glucose deprivation mediates down-regulation of cell surface ?-aminobutyric acidB receptors via the endoplasmic reticulum (ER) stress-induced transcription factor CCAAT/enhancer-binding protein (C/EBP)-homologous protein (CH. J Biol Chem. 2014;289:12896-907 pubmed 出版商
  874. Anchan D, Clark S, Pollard K, Vasudevan N. GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice. Brain Behav. 2014;4:51-9 pubmed 出版商
  875. Singel S, Batten K, Cornelius C, Jia G, Fasciani G, Barron S, et al. Receptor-interacting protein kinase 2 promotes triple-negative breast cancer cell migration and invasion via activation of nuclear factor-kappaB and c-Jun N-terminal kinase pathways. Breast Cancer Res. 2014;16:R28 pubmed 出版商
  876. Tsai Y, Wang C, Leung P, Lin K, Chio C, Hu C, et al. Extracellular signal-regulated kinase 1/2 is involved in a tamoxifen neuroprotective effect in a lateral fluid percussion injury rat model. J Surg Res. 2014;189:106-16 pubmed 出版商
  877. Wei N, Chu E, Wipf P, Schmitz J. Protein kinase d as a potential chemotherapeutic target for colorectal cancer. Mol Cancer Ther. 2014;13:1130-41 pubmed 出版商
  878. Yu P, Laird A, Du X, Wu J, Won K, Yamaguchi K, et al. Characterization of the activity of the PI3K/mTOR inhibitor XL765 (SAR245409) in tumor models with diverse genetic alterations affecting the PI3K pathway. Mol Cancer Ther. 2014;13:1078-91 pubmed 出版商
  879. Wang Q, Shen B, Chen L, Zheng P, Feng H, Hao Q, et al. Extracellular calumenin suppresses ERK1/2 signaling and cell migration by protecting fibulin-1 from MMP-13-mediated proteolysis. Oncogene. 2015;34:1006-18 pubmed 出版商
  880. Chapnick D, Liu X. Leader cell positioning drives wound-directed collective migration in TGF?-stimulated epithelial sheets. Mol Biol Cell. 2014;25:1586-93 pubmed 出版商
  881. Bokobza S, Jiang Y, Weber A, Devery A, Ryan A. Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int J Radiat Oncol Biol Phys. 2014;88:947-54 pubmed 出版商
  882. Cheng C, Lin J, Su S, Tang N, Kao S, Hsieh C. Electroacupuncture-like stimulation at Baihui and Dazhui acupoints exerts neuroprotective effects through activation of the brain-derived neurotrophic factor-mediated MEK1/2/ERK1/2/p90RSK/bad signaling pathway in mild transient focal cerebral ischemi. BMC Complement Altern Med. 2014;14:92 pubmed 出版商
  883. Fernandez Estevez M, Casarejos M, Lopez Sendon J, Garcia Caldentey J, Ruiz C, Gomez A, et al. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington's disease patients caused by proteosome inhibition. PLoS ONE. 2014;9:e90202 pubmed 出版商
  884. Okada T, Nitta T, Kaji K, Takashima A, Oda H, Tamehiro N, et al. Differential function of Themis CABIT domains during T cell development. PLoS ONE. 2014;9:e89115 pubmed 出版商
  885. Son J, Jeong H, Kim H, Kim Y, Lee E, Lee H, et al. Pelargonidin attenuates PDGF-BB-induced aortic smooth muscle cell proliferation and migration by direct inhibition of focal adhesion kinase. Biochem Pharmacol. 2014;89:236-45 pubmed 出版商
  886. Ihunnah C, Wada T, Philips B, Ravuri S, Gibbs R, Kirisci L, et al. Estrogen sulfotransferase/SULT1E1 promotes human adipogenesis. Mol Cell Biol. 2014;34:1682-94 pubmed 出版商
  887. Okada N, Lin C, Ribeiro M, Biton A, Lai G, He X, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev. 2014;28:438-50 pubmed 出版商
  888. Wang Y, Kuramitsu Y, Tokuda K, Okada F, Baron B, Akada J, et al. Proteomic analysis indicates that overexpression and nuclear translocation of lactoylglutathione lyase (GLO1) is associated with tumor progression in murine fibrosarcoma. Electrophoresis. 2014;35:2195-202 pubmed 出版商
  889. Feng C, Zhang Y, Yin J, Li J, Abounader R, Zuo Z. Regulatory factor X1 is a new tumor suppressive transcription factor that acts via direct downregulation of CD44 in glioblastoma. Neuro Oncol. 2014;16:1078-85 pubmed 出版商
  890. Milara J, Peiró T, Serrano A, Guijarro R, Zaragozá C, Tenor H, et al. Roflumilast N-oxide inhibits bronchial epithelial to mesenchymal transition induced by cigarette smoke in smokers with COPD. Pulm Pharmacol Ther. 2014;28:138-48 pubmed 出版商
  891. Park E, Kim B, Lee E, Chang E, Kim D, Choi S, et al. Targeting of receptor for advanced glycation end products suppresses cyst growth in polycystic kidney disease. J Biol Chem. 2014;289:9254-62 pubmed 出版商
  892. Lee M, Smith S, Murray S, Pham L, Minoo P, Nielsen H. Dihydrotestosterone potentiates EGF-induced ERK activation by inducing SRC in fetal lung fibroblasts. Am J Respir Cell Mol Biol. 2014;51:114-24 pubmed 出版商
  893. Jin Y, Wi H, Choi M, Hong S, Bae Y. Regulation of anti-inflammatory cytokines IL-10 and TGF-? in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen. Exp Mol Med. 2014;46:e74 pubmed 出版商
  894. Gámez M, Calvo M, Selgas M, García M, Erler K, Böhm V, et al. Effect of E-beam treatment on the chemistry and on the antioxidant activity of lycopene from dry tomato peel and tomato powder. J Agric Food Chem. 2014;62:1557-63 pubmed 出版商
  895. Joannes A, Grelet S, Duca L, Gilles C, Kileztky C, Dalstein V, et al. Fhit regulates EMT targets through an EGFR/Src/ERK/Slug signaling axis in human bronchial cells. Mol Cancer Res. 2014;12:775-83 pubmed 出版商
  896. Valdez Magaña G, Rodriguez A, Zhang H, Webb R, Alberio R. Paracrine effects of embryo-derived FGF4 and BMP4 during pig trophoblast elongation. Dev Biol. 2014;387:15-27 pubmed 出版商
  897. Turner M, Cronin J, Healey G, Sheldon I. Epithelial and stromal cells of bovine endometrium have roles in innate immunity and initiate inflammatory responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1, and TLR6. Endocrinology. 2014;155:1453-65 pubmed 出版商
  898. Murcia Belmonte V, Medina Rodríguez E, Bribian A, De Castro F, Esteban P. ERK1/2 signaling is essential for the chemoattraction exerted by human FGF2 and human anosmin-1 on newborn rat and mouse OPCs via FGFR1. Glia. 2014;62:374-86 pubmed 出版商
  899. Xu C, Chen H, Wang X, Gao J, Che Y, Li Y, et al. S100A14, a member of the EF-hand calcium-binding proteins, is overexpressed in breast cancer and acts as a modulator of HER2 signaling. J Biol Chem. 2014;289:827-37 pubmed 出版商
  900. Wang J, Chen J, Miller D, Li W. Synergistic combination of novel tubulin inhibitor ABI-274 and vemurafenib overcome vemurafenib acquired resistance in BRAFV600E melanoma. Mol Cancer Ther. 2014;13:16-26 pubmed 出版商
  901. Castorina A, Scuderi S, D Amico A, Drago F, D Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res. 2014;322:108-21 pubmed 出版商
  902. Zaganjor E, Osborne J, Weil L, Díaz Martínez L, Gonzales J, Singel S, et al. Ras regulates kinesin 13 family members to control cell migration pathways in transformed human bronchial epithelial cells. Oncogene. 2014;33:5457-66 pubmed 出版商
  903. Udagawa T, Farny N, Jakovcevski M, Kaphzan H, Alarcon J, Anilkumar S, et al. Genetic and acute CPEB1 depletion ameliorate fragile X pathophysiology. Nat Med. 2013;19:1473-7 pubmed 出版商
  904. Lu J, Chang Y, Wang C, Lin Y, Lin C, Wu Z. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor ?-induced lipolysis in 3T3-L1 adipocytes. PLoS ONE. 2013;8:e71517 pubmed 出版商
  905. O Brien M, Carbin S, Morrison J, Smith T. Decreased myometrial p160 ROCK-1 expression in obese women at term pregnancy. Reprod Biol Endocrinol. 2013;11:79 pubmed 出版商
  906. Kucherlapati M, Esfahani S, Habibollahi P, Wang J, Still E, Bronson R, et al. Genotype directed therapy in murine mismatch repair deficient tumors. PLoS ONE. 2013;8:e68817 pubmed 出版商
  907. Bittner S, Ruck T, Schuhmann M, Herrmann A, Moha Ou Maati H, Bobak N, et al. Endothelial TWIK-related potassium channel-1 (TREK1) regulates immune-cell trafficking into the CNS. Nat Med. 2013;19:1161-5 pubmed 出版商
  908. Li Y, Takahashi M, Stork P. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem. 2013;288:27646-57 pubmed 出版商
  909. Mao X, Hütt Cabezas M, Orr B, Weingart M, Taylor I, Rajan A, et al. LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program. Oncotarget. 2013;4:1050-64 pubmed
  910. Beckham T, Cheng J, Lu P, Shao Y, Troyer D, Lance R, et al. Acid ceramidase induces sphingosine kinase 1/S1P receptor 2-mediated activation of oncogenic Akt signaling. Oncogenesis. 2013;2:e49 pubmed 出版商
  911. Henderson Y, Toro Serra R, Chen Y, Ryu J, Frederick M, Zhou G, et al. Src inhibitors in suppression of papillary thyroid carcinoma growth. Head Neck. 2014;36:375-84 pubmed 出版商
  912. Ahnstedt H, Cao L, Krause D, Warfvinge K, Saveland H, Nilsson O, et al. Male-female differences in upregulation of vasoconstrictor responses in human cerebral arteries. PLoS ONE. 2013;8:e62698 pubmed 出版商
  913. Lin S, Hoffmann K, Xiao Z, Jin N, Galli U, Mohr E, et al. MEK inhibition induced downregulation of MRP1 and MRP3 expression in experimental hepatocellular carcinoma. Cancer Cell Int. 2013;13:3 pubmed 出版商
  914. Cieslik K, Trial J, Carlson S, Taffet G, Entman M. Aberrant differentiation of fibroblast progenitors contributes to fibrosis in the aged murine heart: role of elevated circulating insulin levels. FASEB J. 2013;27:1761-71 pubmed 出版商
  915. Slowik A, Merres J, Elfgen A, Jansen S, Mohr F, Wruck C, et al. Involvement of formyl peptide receptors in receptor for advanced glycation end products (RAGE)--and amyloid beta 1-42-induced signal transduction in glial cells. Mol Neurodegener. 2012;7:55 pubmed 出版商
  916. Brandenburg L, Jansen S, Albrecht L, Merres J, Gerber J, Pufe T, et al. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol. 2013;255:18-31 pubmed 出版商
  917. Kim J, Hwang I, Choi S, Lee H, Lee Y, Goo J, et al. Aqueous extract of Liriope platyphylla, a traditional Chinese medicine, significantly inhibits abdominal fat accumulation and improves glucose regulation in OLETF type II diabetes model rats. Lab Anim Res. 2012;28:181-91 pubmed 出版商
  918. Turco M, Furia L, Dietze A, Fernandez Diaz L, Ronzoni S, Sciullo A, et al. Cellular heterogeneity during embryonic stem cell differentiation to epiblast stem cells is revealed by the ShcD/RaLP adaptor protein. Stem Cells. 2012;30:2423-36 pubmed 出版商
  919. Iio W, Matsukawa N, Tsukahara T, Toyoda A. The effects of oral taurine administration on behavior and hippocampal signal transduction in rats. Amino Acids. 2012;43:2037-46 pubmed 出版商
  920. Lemire B, Debigare R, Dubé A, Thériault M, Cote C, Maltais F. MAPK signaling in the quadriceps of patients with chronic obstructive pulmonary disease. J Appl Physiol (1985). 2012;113:159-66 pubmed 出版商
  921. Machado Neto J, Favaro P, Lazarini M, Costa F, Olalla Saad S, Traina F. Knockdown of insulin receptor substrate 1 reduces proliferation and downregulates Akt/mTOR and MAPK pathways in K562 cells. Biochim Biophys Acta. 2011;1813:1404-11 pubmed 出版商
  922. Urbanet R, Pilon C, Giorgino F, Vettor R, Fallo F. Insulin signaling in adipose tissue of patients with primary aldosteronism. J Endocrinol Invest. 2011;34:86-9 pubmed
  923. Chang J, Adams M, Clifton M, Liao M, Brooks J, Hasdemir B, et al. Urocortin 1 modulates immunosignaling in a rat model of colitis via corticotropin-releasing factor receptor 2. Am J Physiol Gastrointest Liver Physiol. 2011;300:G884-94 pubmed 出版商
  924. Modi H, Li L, Chu S, Rossi J, Yee J, Bhatia R. Inhibition of Grb2 expression demonstrates an important role in BCR-ABL-mediated MAPK activation and transformation of primary human hematopoietic cells. Leukemia. 2011;25:305-12 pubmed 出版商
  925. Kunath T, Saba El Leil M, Almousailleakh M, Wray J, Meloche S, Smith A. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development. 2007;134:2895-902 pubmed
  926. Zha Y, Marks R, Ho A, Peterson A, Janardhan S, Brown I, et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-alpha. Nat Immunol. 2006;7:1166-73 pubmed
  927. Zhu M, Feng J, Lucchinetti E, Fischer G, Xu L, Pedrazzini T, et al. Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway. Cardiovasc Res. 2006;72:152-62 pubmed
  928. Lo I, Shih J, Jiang M. Reactive oxygen species and ERK 1/2 mediate monocyte chemotactic protein-1-stimulated smooth muscle cell migration. J Biomed Sci. 2005;12:377-88 pubmed
  929. Tsai M, Jiang M. Extracellular signal-regulated kinase1/2 in contraction of vascular smooth muscle. Life Sci. 2005;76:877-88 pubmed
  930. Usui S, Sugimoto N, Takuwa N, Sakagami S, Takata S, Kaneko S, et al. Blood lipid mediator sphingosine 1-phosphate potently stimulates platelet-derived growth factor-A and -B chain expression through S1P1-Gi-Ras-MAPK-dependent induction of Kruppel-like factor 5. J Biol Chem. 2004;279:12300-11 pubmed
  931. Hernandez M, Barrero M, Crespo M, Nieto M. Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase C(gamma) and a G(alphai) protein. J Neurochem. 2000;75:1575-82 pubmed
  932. Chan E, Stang S, Bottorff D, Stone J. Hypothermic stress leads to activation of Ras-Erk signaling. J Clin Invest. 1999;103:1337-44 pubmed
  933. Korneyev A. Stress-induced tau phosphorylation in mouse strains with different brain Erk 1 + 2 immunoreactivity. Neurochem Res. 1998;23:1539-43 pubmed
  934. Webb C, Van Aelst L, Wigler M, Vande Woude G. Signaling pathways in Ras-mediated tumorigenicity and metastasis. Proc Natl Acad Sci U S A. 1998;95:8773-8 pubmed
  935. Duesbery N, Webb C, Leppla S, Gordon V, Klimpel K, Copeland T, et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998;280:734-7 pubmed
  936. Hidari K, Weyrich A, Zimmerman G, McEver R. Engagement of P-selectin glycoprotein ligand-1 enhances tyrosine phosphorylation and activates mitogen-activated protein kinases in human neutrophils. J Biol Chem. 1997;272:28750-6 pubmed